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Outline of the talk

e What is spectral geometry?

* What is Andreev reflection?

e Schrodinger billiards; Andreev billiards
 Andreev billiards: Classical properties
* Andreev billiards: Quantal properties

* Applications to high-Tc superconductors



teradian-1 wavenumber 1

Planck’s BB radiation spectrum

e cubic oven filled with
electromag. radiation

* thermal equilibrium
evolume V >> (fic/xT)’
e temperature T

e 2 polariz. states, periodic boundary cond’s

—> spectral energy density U at frequency @
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What Is spectral geometry?

* Planck < Lorentz e+ Hilbert * Weyl
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£y What is spectral geometry?

: b« Planck (1900): introduces quanta to
. derive black body radiation spectrum

e Lorentz (Wolfskehl Lect. Gottingen1910):
he- suggests short-wave DOS (henceBBRS)
.« depends only on oven volume not shape

- ¢ Hilbert (1910): “...will not be proven in
my lifetime...”
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e Weyl (1911): Lorentz correct; via
Hilbert's integral equation theory




Spectral geometry:

2D Laplacian — “Can one
hear the shape of a drum?”

. study eigenvalues E of Laplacian: @&
~V*¥ = EW with ¥ =0 on the boundary

* origin: energies of Schrodinger particle in box;
or normal mode freq’s of scalar wave equation

* collect eigenvalues in a
distribution (DOS) p(E)

* study connection of p(E)
with shape, especially
at large E




Spectral geometry: 3D Laplacian

- e.g.: smoothed DOS at large energy -

. _ " Dirichlet  (-)
_V’V¥ = EW¥ with B.C.s «Neumann (+) %

evolume V surface Y /

* local principal radii of
curvature R and R,
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Spectral geometry: 3D Laplacian
- e.g.: DOS oscillations - ) J |

* also gives long-range clustering of levels
(semiclass. remnant of quant. shell structure)

e evaluate MRE in saddle-point approximation
(specular reflection, closed paths,...)

* o(E) dominated by classical
periodic orbits (cpo), w/ tracings

e trace formulae for DOS osc’s
(classical ingredients only)

A
Pouc(BE)~ D, D, —isin{(pS;(E)/ 1)+ par;)

C.p.0.J trac. p h




Potential Theory |
e BVP of classical electrostatics

-solve VZp(r)=0
- with ¢(a) =w(a) on boundary (Dirichlet), or
- with n -Vo(a)=w(a) on boundary (Neumann)

e View ¢(r) as due to charge-layer v(/5)
or dipole-layer «(/) on boundary

P (r) = i do W) J g)OJE:;abmggatgntial
ps(r)=|do, n,-VG (r, B) u(B)
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Potential Theory I

-charge-layer potential @ continuous
(but electric field E,discontinuous)

-similarly dipole-layer potential discontinuous
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+++++++

lim n V. @.(r)= ——V(Ot)+ jdGﬂ n, V,G,(a,f)v(p)
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= apply Neumann BC w () here

- solve F/Il integral equation for 1by iteration T



S.G. for Laplacian: Balian-Bloch scheme

» seek Green function G(r,r’,z)
eobeys (-V:-2)G(r,r’,z)= 5(1‘ —r')
plus G(r,r’,z) =0for r on boundary
 use rep. of Gfrom classical potential theory
* obtain G via Multiple Reflection Expansion

e evaluate terms via large - Easymptotics .
e gives DOS p(E) via p(E)=7"ImTrG ‘z=E+|O




Some further settings for S.G.

e acoustics and elasticity

* thermodynamics (e.g. electronic,
magnetic and vibrational properties
of granular matter)

e superfluid films, Casimir effects
* nucleation
* nuclei, atomic clusters, nanoparticles,...



What is Andreev reflection?

[Andreev, Sov. Phys. JETP 19 (1964) 1228]

* low-energy electron quasiparticle approaches
superconductor from normal region

. el
.\ “CW what happens?

......................)

progressively more superconductivity

E hole electron
hole 4 electron
electron ‘A :/ branch N \/
Fermi
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quasiparticle excitation spectrum




Charge-reversing retro-reflection

* incident low-energy electron quasiparticle
retro-reflected as hole quasiparticle

e
-mcof(‘;}“on cted ol \ supercond.
veﬂo 4 yice palr
(an potential
....00.....O....00000000000...000000...)
progressively more superconductivity A(r)
E hole
e 1 electron hole electron
electron branch
[/y oL e (A [\ \/ \) o O\j
) 0 Fermi
— P Pr >ea 1

quasiparticle excitation spectrum




Andreev reflection: semiclassics

e gap excludes single-particle excitations
* velocity must be reversed
* but momentum cannot be...

5p j-dp/dtdtNJ- A/.fcf _~10_4
pF pF VF EF

* ¢/h conversion with retro-reflectlon

e e acquires mate = Cooper-pair + hole

e Snell’s law: from action
with reversed momentum

S 1|'|.




Schrodinger billiards

~V'¥ =C2mE/#*)¥
with ¥ = (0 on boundary

e quantum mechanics
of finite systems

* shape is the only “parameter”

* classical mechanics is “geometry”

* DOS oscillations related to “polygons”
via trace formula

* no separation of periods

e quantum implications of classical chaos T




Andreev billiards

[Kosztin, Maslov & PMG, Phys. Rev. Lett. 75 (1995) 1735]

superconducting
What are they? region (S)

* hormal region surrounded
superconductor

e 1-quasiparticle energy gap;
energy states confined

* mechanism: Andreev reflection from boundary

Basic issues

* shape-spectrum connection
- DOS oscillations related to chordal orbits and .
creeping orbits via trace formula 1|T_
- separation of periods )



Andreev billiards: Model system | 1

_ 1 = generic 1-qp state
u(r,t) o <(D0 \PT (r’t)‘ (D1> (Heisenberg rep.)
V(rat) — <(Do \Pf (l‘,t)‘ CI31> = remove Spin-up;
/‘ '\/ add spin-down
(Heisenberg rep.)

= ¢/h-gp wave = ground state
functions (Heis. rep.) e One-e /h-qp states:

— Bogoliubov-de Gennes eigenproblem

—V>—x> —A(r) (u(r)) _E (u(r))
~A(r)" V42 \v(r)) TLv(r)

where h_z( 2 E A): Fermi excitation pair
2m* energy energy potential



Andreev billiards: BB scheme

'||1E

e seek e/h Green function via - L
Balian-Bloch type scheme
(potential theory plus MSE)

* integrate out propagation in
superconductor; yields eff. @

Mult. Reflection Expansion Py

e evaluate via two asymptotic schemes
(A) kxL—>o, A/k* >0 (LA/kx const.)

(B) kL — o0, A/k?const.
e sets which classical reflections rules hold



Andreev bhilliards: Effective reflection

* integrate out propagation in superconductor:
e Separate propagation
(a) short range
(b) long range
e sum all s. r. propagation
—> effective MRE with renormalized Green function
* L.r. propagation in superconductor vanishes

* e¢/h interconversion dominant process

DD
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Andreeyv billiards: Scheme A m

e limits: kL >0, A/k> >0 (LA/k const. )

e essentially Andreev superconducting

e classical rule: o
perfect retro-reflection

* Jadder of states on chords

‘a_m(E/’()—2cos‘l(E/A):27m\ ~<

f f " integer
= chord length = reflection phase-shift

" ¢/h momentum difference

e leads to the scheme-A DOS:

p(E)~ Rejcos 0,5 cos Qﬂa/(l — exp{i‘a — B‘(E//{)— 2i cos‘l(E/A)})

)

normal
region (N)



Van Hove-type singularities
escheme A: xL—>o, A/x> — 0 (LA/k const.)

* role of stationary chords

— sharp spectral features

— signature of bunching of
energy levels

— line-shape “quality” from
sighature of Hessian

— quantitative DOS via stationary
lengths and end-point curvatures

e can “hear” lengths of the stationary chords




“Hearing” the geometry

e several stationary chords
* yield distinct features
e some examples...

A
P chord length is
local maximum

E P

chord length is
local minimum

Y 'm



S.G. of Andreev billiards: Scheme B

escheme B: xL — o, A/k’const. T
* retro-refl. no longer perfect )
* now class. periodic orbits are
- stationary chords (coarse)
- creeping orbits (fine)
p?E%.gparation of period scales

exact

200000 R LN stationary chord

stationary chord
& creeping orbit

10000

E/x

. 2 N '*' 000778, ‘
-10000} W’ ¢

results for a tircular
Andreev billiard

—




What's missing?

escheme B: KL — oo, A/ k* const.

* make perfect charge-conversion model
e compare w/ periodic orbit results = better fit

exact with
perfect e/h interconv.

25000 | |y p(E/K)

20000

stationary chord
& creeping orbit

15000 |

10000 |

—> charge-
preserving
processes
are missing

E

5000 F

-5000

-10000F



Normal reflection in Andreev Billiards

e scheme B: xL —> o, A/x” const.
* retro-refl. no longer perfect
e charge interconv. no longer perfect

p(E/x) [ V ”

exact

stationary chord,
creeping orbit
M w/ normal refl

30000

20000 |-

10000}

E/x
0 [ ] [] [ [ [ 1 1
0.066 0.068 0.07 0.072 0.074 0.076 0.078 E




Some conclusions

* Quantal properties of Andreev billiards

- discussed in terms of spectral geometry

e Basic structures

- Andreev’s approximation (all chords)
- fine structure needs creeping orbits etc.

e “Can “hear” novel geometrical features

- distribution of chord lengths
- stationary chords, degeneracies and curvatures

e Still to do...

- self-consistent superconductivity
- soft and ray-splitting Schrodinger billiards
- making an Andreev billiard!
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Side-products I: Impurity states in
d-wave supercondutor

* honmagnetic impurity

e semiclassical motion in
presence of impurity

ux_ (s)=-VV(x,) —>

e guantum-mechanical
electron-hole scattering
along classical trajectory x

_2ik.0, A (“j—E(“)
A 2ike, )\v)” v

» along trajectory Adetermined by classical position and
velocity: A =A(x_(s);k:x,(5)) :"T.




Side-products I: Impurity states in
d-wave supercondutor

* a realization of Witten’s supersymmetric
quantum mechanics

e focus on E=0: (2k.0.=A)p. =0
=@, =exp([dsA(s)/2k.)

* hormalizability = low-energy states for
trajectories on which Achanges sign



Impurity states in d-wave supercon.

Yazdani et al.; Hudson et al. (1999)

+ : _
/ ) glves state at E_O Local Density of States Near an Atomic Scale Defect
* degeneracy proportional to e

linear extent of impurity = —Center |
\ * no dep. on details of A 24 | —20A

e
S 16
>
Sy
5 12

\\l,

» does not give state at E=0

» shape of DOS depends on o4

-0.1 -0.05 0 0.05 0.1
Voltage [V]
1,1f sign change in A
p=pes +dEILR X {1,
0, 1f no sign change
over all I

s/c trajectories



Side products I: Impurity in d-wave

‘/ e tunneling through
>°\ the impurity

e diffraction effects in
scattering

=P o transition between
Zero energy states

—p ¢ splitting of E=0 peak



Side products Il: Imp. in pseudogap

Phase Diagram

] — — —
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Quantum hQ?
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Quantum Fluctuations
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