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Outline of the talk

•What is spectral geometry?

•What is Andreev reflection?

•Schrödinger billiards; Andreev billiards

•Andreev billiards: Classical properties

•Andreev billiards: Quantal properties

•Applications to high-Tc superconductors



 Planck’s BB radiation spectrum
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•cubic oven filled with 
electromag. radiation

•thermal equilibrium 
•volume     
•temperature 
•2 polariz. states, periodic boundary cond’s

⇒ spectral energy density     at frequency 
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What is spectral geometry?

•Planck •Lorentz •Hilbert •Weyl



What is spectral geometry?

•Lorentz (Wolfskehl Lect. Göttingen1910): 
suggests short-wave DOS (henceBBRS) 
depends only on oven volume not shape

•Planck (1900): introduces quanta to 
 derive black body radiation spectrum

•Hilbert (1910): “…will not be proven in 
 my lifetime…”

•Weyl (1911): Lorentz correct; via 
 Hilbert’s integral equation theory



Spectral geometry:
2D Laplacian -- “Can one 
hear the shape of a drum?”

•study eigenvalues of Laplacian:            
with             on the boundary

•origin: energies of Schrödinger particle in box; 
or normal mode freq’s of scalar wave equation

•collect eigenvalues in a 
distribution (DOS)

•study connection of                                             
with shape, especially 
at large 
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Spectral geometry: 3D Laplacian
-- e.g.: smoothed DOS at large energy --

with B.C.s

•volume   ,  surface

•local principal radii of 
curvature      and

ππ
ρ

164
)( 2

SEVE m≈

Ψ=Ψ∇− E2

( ) L+++ −−

Σ
∫ E

RRdS 1
2
1

12
1 1

2
1

12π

V Σ

1R 2R
V

Σ
Dirichlet (-)
Neumann (+)



Spectral geometry: 3D Laplacian
-- e.g.: DOS oscillations --

•also gives long-range clustering of levels 
(semiclass. remnant of quant. shell structure)

•evaluate MRE in saddle-point approximation  
(specular reflection, closed paths,…)

• dominated by classical 
periodic orbits (cpo), w/ tracings

•trace formulae for DOS osc’s
(classical ingredients only)
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Potential Theory I

•View          as due to charge-layer         
or dipole-layer           on boundary

– solve 

– with on boundary (Dirichlet), or

– with on boundary (Neumann)

•BVP of classical electrostatics
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apply Neumann  BC              here
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Potential Theory II
–charge-layer potential     continuous

(but electric field      discontinuous)
–similarly dipole-layer potential discontinuous
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– solve F/II integral equation for    by iterationν



S.G. for Laplacian: Balian-Bloch scheme
•seek Green function

•obeys

 plus                        for     on boundary

•use rep. of     from classical potential theory        

•obtain      via Multiple Reflection Expansion
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Some further settings for S.G.

•acoustics and elasticity 

•thermodynamics (e.g. electronic, 
magnetic and vibrational properties 
of granular matter) 

•superfluid films, Casimir effects 

•nucleation 

•nuclei, atomic clusters, nanoparticles,…



What is Andreev reflection?
[Andreev, Sov. Phys. JETP 19 (1964) 1228]

incoming electron
what happens?

•low-energy electron quasiparticle approaches 
superconductor from normal region 

progressively more superconductivity
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Charge-reversing retro-reflection
•incident low-energy electron quasiparticle

retro-reflected as hole quasiparticle

progressively more superconductivity

electron

retro-reflected hole

(and vice versa)incoming
supercond.

pair 
potential 
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Andreev reflection: semiclassics
•gap excludes single-particle excitations
•velocity must be reversed
•but momentum cannot be…

4

FFFFFF

10/// −≈
∆

≈
∆

≈
∆

≈≈ ∫∫ Evp
dt

p
dt

p
dtdp

p
p ξξξδ

•e/h conversion with retro-reflection
•e acquires mate ⇒ Cooper-pair + hole

•Snell’s law: from action 
with reversed momentum



Schrödinger billiards

•shape is the only “parameter”
•classical mechanics is “geometry”
•DOS oscillations related to “polygons” 

via trace formula
•no separation of periods
•quantum implications of classical chaos

Ψ=Ψ∇− )/2( 22 hmE
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•quantum mechanics 
of finite systems



Andreev billiards

•normal region surrounded                               by 
superconductor 

•1-quasiparticle energy gap;                             low-
energy states confined

•mechanism: Andreev reflection from boundary

•shape-spectrum connection
– DOS oscillations related to chordal orbits        and 

creeping orbits via trace formula
– separation of periods

What are they?

Basic issues

[Kosztin, Maslov & PMG, Phys. Rev. Lett. 75 (1995) 1735]



Andreev billiards: Model system

⇒ Bogoliubov-de Gennes eigenproblem
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(Heisenberg rep.)
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remove spin-up; 
add spin-down 
(Heisenberg rep.)

e/h-qp wave 
functions •one-e/h-qp states:

( ) ⎟
⎠
⎞

⎜
⎝
⎛=∆ potential

pair
energy

excitation
energy
Fermi,,

2
2

2

E
m

κh
where



Andreev billiards: BB scheme
•seek e/h Green function via 

Balian-Bloch type scheme 
(potential theory plus MSE)

•integrate out propagation in 
superconductor; yields eff. 
Mult. Reflection Expansion

L

•evaluate via two asymptotic schemes

 (A)

 (B)

•sets which classical reflections rules hold

).const/(0/, 2 κκκ ∆→∆∞→ LL
.const/, 2κκ ∆∞→L



Andreev billiards: Effective reflection
•integrate out propagation in superconductor:

• Separate propagation 
(a) short range 
(b) long range

• sum all s. r. propagation
effective MRE with renormalized Green function

• l.r. propagation in superconductor vanishes
• e/h interconversion dominant process

Normal reflection Andreev reflection



Andreev billiards: Scheme A

•limits:
•essentially Andreev
•classical rule:              

perfect retro-reflection
•ladder of states on chords
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).const/(0/, 2 κκκ ∆→∆∞→ LL
Van Hove-type singularities

•scheme A:

− sharp spectral features
− signature of bunching  of  

energy levels  
− line-shape “quality” from 

signature of Hessian 
− quantitative DOS via stationary 

lengths and end-point curvatures

•role of stationary chords

•can “hear” lengths of the stationary chords



“Hearing” the geometry

•several stationary chords
•yield distinct features
•some examples…

chord length is
local maximum

ρ

E ρ

E
chord length is
local minimum



•scheme B:
•retro-refl. no longer perfect
•now class. periodic orbits are

– stationary chords (coarse)
– creeping orbits     (fine)

•separation of period scales

S.G. of Andreev billiards: Scheme B
.const/, 2κκ ∆∞→L

results for a circular 
Andreev billiard



What’s missing?
•scheme B:
•make perfect charge-conversion model 
•compare w/ periodic orbit results ⇒ better fit

.const/, 2κκ ∆∞→L

⇒ charge-
preserving
processes 

are missing



Normal reflection in Andreev Billiards

•scheme B:
•retro-refl. no longer perfect
•charge interconv. no longer perfect

.const/, 2κκ ∆∞→L



Some conclusions
•Quantal properties of Andreev billiards 

– discussed in terms of spectral geometry

•Basic structures
– Andreev’s approximation (all chords) 
– fine structure needs creeping orbits etc.

•“Can “hear” novel geometrical features 
– distribution of chord lengths 
– stationary chords, degeneracies and curvatures

•Still to do…
– self-consistent superconductivity
– soft and ray-splitting Schrödinger billiards           
– making an Andreev billiard!
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Side-products I: Impurity states in   
d-wave supercondutor

•along trajectory     determined by classical position and 
velocity: 

•semiclassical motion in 
presence of impurity

•quantum-mechanical 
electron-hole scattering 
along classical trajectory
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Side-products I: Impurity states in

d-wave supercondutor

•a realization of Witten’s supersymmetric
quantum mechanics 

•focus on E=0: 0)2( F =∆±∂ mϕsk
( )F2/)(exp ksds∫ ∆±=⇒ ±ϕ

•normalizability ⇒ low-energy states for 
trajectories on which     changes sign∆
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•gives state at E=0
•degeneracy proportional to 

linear extent of impurity
•no dep. on details of ∆

• does not give state at E=0
• shape of DOS depends on 

details of ∆
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Side products I: Impurity in d-wave

•tunneling through 
the impurity

•diffraction effects in 
scattering

•transition between 
zero energy states

•splitting of E=0 peak



Side products II: Imp. in pseudogap

Pseudogap

Superconductor
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