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Broad view

• Themes…
macroscopic quantum phenomena
superfluid Josephson physics & S(f)QUIDs

dissipative & reversible regimes 
interactions & disorder

& their competition
non-equilibrium phase transitions
(applications: precision rotation sensors?)

• Motivation: Packard group’s experiments...
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Superfluidity of Helium-four

New eq’m state below ~ 2K

• Ordered liquid: macro occup of 
one single-particle quantum state

• New thermodynamic coord: phase
(analog of elastic displacement; 
but longitudinal only)

• Phase gradients = eq’m currents 
(supercurrents)

• Quantal origin; quantal dynamics

http://ltl.tkk.fi/research/theory/helium.html
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Sensing rotation

Simmonds et al., Nature 412, 55 (2001)
• Superfluid 3He S(f)QUID

magnetic flux → rotation flux

critical current:

exercise: rotating frame? 
Lagrangian picks up Lorentz-like

• Superfluid 4He rotation sensor
measure flow rate through aperture
infer Earth’s rotation rate

Schwab et al., Nature 386, 585 (1997)
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Berkeley group experiment (Sato et al. ’06)

fridge

helium cell

flexible diaphragm

aperture array (center)
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A: aperture array

Berkeley group experiment (Sato et al. ’06)

P: SQUID transducer monitors diaphragm
location

E: electrode,
forces diaphragm

D: diaphragm changes reservoir volumes

• two superfluid reservoirs
• connected by aperture array
• control ΔP and ΔT (hence Δμ)

between reservoirs 
analog of voltage 

• measure diaphragm location 
• infer current through nano-apertures I R: heater
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Berkeley group experiment caricature

Two superfluid reservoirs…

connected by nano-aperture array

• control Δμ between reservoirs 

(analog of voltage)

• measure piston locations

(constrained)

• infer current through nano-apertures I

aperture array

Pistons: pressure controls Δμ
Location: measures reservoir volume

& hence current

4He 4He

x0-x(t) x(t)
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Nano-aperture array geometry

aperture array

4He 4He

• square array of apertures: 65 x 65
• array side ~ 0.2 mm
• array spacing ~ 3 μm (dia x 100)
• aperture diameter ~ 30 nm
• aperture length ~ 50 nm

Si ~ 1 mm
SiN ~ 50 nm

~ 0.2 mm

~ 5 mm

~ 0.2 mm

SiN ~ 50 nm
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Outline

• What’s found in the Berkeley group experiments? 

• Back-of-the-envelope scenario 

• Elements of a model 

• How does the model behave 

••• Other avalanching systemsOther avalanching systemsOther avalanching systems

••• Implications for future experiments Implications for future experiments Implications for future experiments 
(& rotation sensor design?)(& rotation sensor design?)(& rotation sensor design?)

• Concluding remarks



PASI, Mar Del Plata, December 2006Phase-slip avalanches in superflow through nano-apertures

Expectations for the Berkeley group experiments I 

• Seek AC Josephson-type 
phenomena

apply constant Δμ
measure total current power

at Josephson frequency

• Repeat for various temperatures T

• Simple expectations
two regimes of T
stronger signal at lower T

PL PR

4He 4He

x0-x(t) x(t)

Δμ ( = μ R − μ L )

time

0

protocol
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• Short aperture (d<<ξ)
Josephson current-phase 
relation I ~ J sin(ΦR ― ΦL)
single-valued current vs. phase
reversible phase slips 
(not dissipative) 

• Long aperture (d>>ξ)
linear current-phase relation
multi-valued current vs. phase
characterized by 
extrinsic critical velocity
(or equiv. critical twist) 
dissipative phase slips

ξ

φL φR

current

ΦR ― ΦL

Aside: Superflow through a single aperture

φL φR

current

0

Ic

ΦR ― ΦL
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Expectations for the Berkeley group experiments II 
currentPL- PR

time

0 0

currentPL- PR

time

0 0

Islip

1. Higher T / shorter apertures:
reversible, no metastability;

less superfluid, weaker signal

• Basis for expectations

reservoirs described by phases: ΦL & ΦR

Δμ causes relative phase advance:

builds up ‘twist’ & thus superflow
through apertures

key ratio: healing length ξ(T)
to aperture length

2. Lower T / longer apertures:
irreversible phase slips, metastability;

more superfluid, stronger signal
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What’s actually found by the Berkeley group I 

Hoskinson et al., Nature Physics 2, 23 (2006)

• Current-phase relation evolving…

from sinusoidal Josephson
behavior at high T…

to linear (metastable, 
long ‘wire’ like) at lower T 
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What’s actually found by the Berkeley group II

Islip(ωJ) vs. T (experiment)

Sato et al., Phys Rev B 74, 144502 (2006)

• Examine all-apertures current power at Josephson frequency 
• Repeat for lower & lower temperatures

apertures slipping synchronously? 
expect strengthening signal 
due to increasing superfluid density 

instead broad, weak maximum is found?

suggests…
increasing lack of synchronicity
at lower temperatures
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• Indirect observation: energy remaining in Helmholtz mode 
after phase-slippage stops 

cold: indicative of Josephson regime

cooler: indicative of simultaneous 
phase-slippage

cooler still: indicative of 
non-simultaneous phase-slippage

Sato et al., PRB 74, 144502 (2006)

What’s actually found by the Berkeley group III 
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What features should one try to capture? 

160 mK 10 mk 5 mk 2.18 K
below below below

Josephson regime:
no metastability,

dissipationless whistle,
single effective junction

(at low currents),
CPR is roughly sinusoidal

synchronous regime:
(~10 mK wide), phase slips

occur simultaneously,
start to lose synchronicity

at low T end

irreversibility sets in
for 1-aperture dynamics:

dissipative phase slips
occur at a critical velocity, 
multiple metastable states

asynchronous regime:
phase slips no longer
occur simultaneously

T

λ transition
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Start with a single aperture
length~50 nm, dia~30 nm, ~cylindrical, 

• Examine coherence length ξ(T)

diverges at λ-point
microscopic at low T

• Compare with aperture length / 5…
smaller than ~ ξ(T) : Josephson regime
larger than ~ ξ(T) : phase-slip regime

• Consistent with Josephson/phase-slip cross-over data

So for synchronous-to-asynchronous transition…
focus on phase-slip regime

Back-of-the-envelope scenario I 

aperture length / 5
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On to a pair of uncoupled apertures
low T, so small ξ: phase-slip regime
distinct critical velocities

• Asynchronicity of slip events
post-transient state

periodic: ap’s slip at regular intervals

but mutually phase-shifted (τ1,τ2)
not ‘maximal’ net sawtooth

reduced power at Josephson frequency

Many (N) uncoupled apertures
distribution of critical currents?
power possibilities range between N 2 and N 1

velocity

time

aperture 1

aperture 2

vc1

vc2

Back-of-the-envelope scenario II 
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Back-of-the-envelope scenario III 

Now for a pair of coupled apertures
one weaker, one stronger

• Origin of coupling?
Δμ twists the phases in time
weaker aperture slips
it’s less ‘tense’ so its phase advances
but this would sets up aperture-to-
aperture reservoir flow

holds back weaker aperture’s advance
advances stronger aperture
combats critical-current distinctions

• Impact of coupling?
promotes synchronicity
enhances power at Josephson frequency

stronger pore

weaker pore
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Back-of-the-envelope scenario IV 

Many apertures & critical-velocity heterogeneity (quenched? random?)

• Without aperture-aperture coupling?
ap’s slip asynch’sly during cycle 
no system-wide avalanching

• If heterogeneity beats coupling?
regime remains asynchronous
no system-wide avalanching

But… experimentally observed transition is temperature controlled?

• With coupling?
combats heterogeneity
& promotes synchronicity

• If coupling beats heterogeneity?
generates synchronous regime
sys-wide avalanching: nonzero
frac of ap’s slip synchrounously,
despite heterogeneity

• Between the two? 
a ‘non-equilibrium phase transition’
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Elements of a theory I 

• Two reservoirs 
filled with superfluid 4He

ignore spatial condensate-

amplitude variations

allow spatial variations in phase

‘zero T ’: ignore thermal fluctuations

• Couple through nano-aperture array 
also filled with superfluid 4He

regular array (boundary conditions?)

apertures have identical geometries

but each characterized by a random critical velocity

(i.e. a critical phase difference)
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Elements of a theory II 

• Freedoms treated as controlled? 
far-field phases 

(cf. Josephson-Anderson)

• Uncontrolled freedoms (‘spins’)? 
phases near where reservoirs 

meet apertures

phase slipped by each aperture 

• State & dynamics? 
not thermal equilibrium

system quasi-statically follows local energy minimum

punctuated by phase slips, occurring deterministically
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Elements of a theory III 

• Energetics? 

flow kinetic energy in reservoirs 
L & R (‘spins’ & controls)

& flow kinetic energy in each aperture i
(‘spins’ & phase slips for each)

plus matching/boundary conditions at aperture ends & control phases

& a quenched random critical velocity (ie ‘twist’) for each aperture
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Elements of a theory IV 

• Eliminate reservoir phase fields 

invoke Anderson’s electrostatics analogy (RMP ’66)

arrive at ‘spins & slips & controls’ Hamiltonian

‘capacitance’ coupling 

matrix, long-ranged

odd states (w.l.o.g.)

aperture diameter
aperture separation

energy inside apertureseffective inter-aperture interaction
mediated by bulk superfluid
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How does this model behave? I 

• Numerics

1. fix ΦR ― ΦL.
2. find { φL

i , φR
i } by energy minimization.

3. increment ni in apertures in which current exceeds critical.
4. go to step 2 until no new phase-slips are found in step 3.
5. increment ‘time’ (i.e. increment ΦR ― ΦL).  go to step 2.

• Analytics: so far, a kind of mean-field theory 
similar to ones used in prior work on CDWs, random magnets…

• What emerges?



PASI, Mar Del Plata, December 2006Phase-slip avalanches in superflow through nano-apertures

How does this model behave? II

• Fraction slipped vs. 
‘time’ through the cycle

low disorder: jumps
system-wide avalanche
some synchronicity

high disorder: glides
no system-wide avalanche
no synchronicity

critical disorder line, 
nonequilibrium phase transition

(lines: MFT; points: numerics)

fr
ac

ti
on

 s
lip

pe
d

disorder strength →

ef
f.

 a
pe

rt
ur

e 
st

re
ng

th
←

non-system-wide
avalanching regime

s.w.a.r.



PASI, Mar Del Plata, December 2006Phase-slip avalanches in superflow through nano-apertures

Aside: caricature of MFT 

• MFT mechanism for ferromagnetism

plot LHS & RHS vs. M
y-int H/T, slope J/T
how does the solution evolve 
with H/T at fixed J/T ?

• Similar mech for avalanching systems
steep slope = high disorder: 
continuous evolution, 
no system-wide avalanches
shallow slope = low disorder: 
discontinuous evolution, 
system-wide avalanches
standard mechanism from several 
earlier settings (RFIM, CDW,…)

M

LHS: hi T

RHS

LH
S: 

lo T
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How does this model behave? III

• Impact on current vs. ‘time’
zero disorder: strong sawtooth
small disorder: drop shrunk, 
sawtooth rounded
larger disorder: drop washed out

• Impact on current vs. disorder
current drop ~ an ‘order parameter’
but current oscillation amplitude 
remains into the non-s.w.a. regime

disorder strength →
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So where do we stand?

• Seem to capture some relevant phenomenology 
disorder vs. coupling competition
triggers system-wide avalanching transition
synchronicity diminished with…

increasing disorder
reduced coupling

• But…
experiments see synchronicity loss with reduced T
theory sees synchronicity loss with increased disorder at zero T
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One more ingredient

• Perhaps temperature effectively tunes disorder?

• Plausibility argument: as T is reduced…
superfluid healing length shrinks (from macro to micro)
less able to heal variations/imperfections 
(e.g. aperture surface roughness)
some healed disorder effectively resurges

• Simple model
assume critical velocity near Tλ:

for aperture i
modify for local randomness:

(take ‘defect’ size xi Gaussian)

smaller ξ → larger impact from random xi 
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‘Disorder-driven’ phenomenology via temperature

• Impacts of reducing temperature
increase superfluid density
weaken healing of disorder

• Shows in current oscillations
blue: no disorder
red: with disorder

reminiscent of experiments

• New issue: deterministic heterogeneity
boundaries also create heterogeneity via impact on flow pattern
also produces asynchronicity, even with no disorder (green)
funnels, inlets, engineering of the array housing?
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What’s actually found by the Berkeley group

Islip(ωJ) vs. T (experiment)

Sato et al., Phys Rev B 74, 144502 (2006)

• Examine all-apertures current 
power at Josephson frequency 

• Repeat for lower & lower 
temperatures
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Concluding remarks

• Transition between system-wide avalanching regime & non-s.w.a.r? 
real? direct observations?

avalanche size statistics & scaling; beyond MFT

spatial structure, physical dynamics

• Role of aperture array geometry?
lattice size, shape, topology; interaction range

stochastic vs. deterministic heterogeneity

funnel engineering?

• Role of thermal fluctuations?

• Potentially useful setting for noneq. phase transitions
complements others (random-field magnets, earthquakes, CDWs…)
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Concluding remarks

“Any experiment you can 
do in condensed matter,

you can do better in helium”

(C.C. Grimes → D.S. Fisher → PMG)
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