THE ROLE OF TOPOLOGICAL DEFECTS AND TEXTURES
IN THE KINETICS OF PHASE ORDERING

BY
MARTIN ZAPOTOCKY

Dipl., Univerzita Karlova, 1989
M.A., Columbia University, 1992

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

AUGUST 1996

WE HEREBY RECOMMEND THAT THE THESIS BY

MARTIN ZAPOTOCKY

ENTITLED THE ROLE OF TOPOLOGICAL DEFECTS AND TEXTURES

IN THE KINETICS OF PHASE ORDERING

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

DOCTOR OF PHILOSOPHY

fad M. %uwt’

!, Director of Thesis Research
(Nl W< zi/

Head of Department

THE DEGREE OF

Committee on Final Examinationf
)&f CQ(?‘M“
ﬁq ( Chai
M H, airperson

\/Jéﬁlén =2 "“% é“?“w

M&
J-

T Required for doctor’s degree but not for master’s.

0-517




© Copyright by Martin Zépatockyi, 1996



THE ROLE OF TOPOLOGICAL DEFECTS AND TEXTURES
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Martin Zapotocky, Ph.D.
Department of Physics
University of Illinois at Urbana-Champaign, 1996
Paul M. Goldbart, Advisor

In this thesis, I present the results of a theoretical investigation of ordering pro-
cesses induced by symmetry-breaking quenches in two physical systems. Both systems
investigated possess a rich homotopy structure of the order-parameter space, which
results in numerous topologically stable objects being generated during the quench,
and influencing the properties of the system during the subsequent approach to equi-
librium. The results reported are mostly computational in nature. The two systems
investigated are (i) nematic liquid crystals, which support topologically stable abelian
(in the uniaxial nematic case) and non-abelian (in the biaxial nematic case) singu-
lar defects, and (ii) the O(3)-symmetric vector (i.e., Heisenberg-type) system in 2
spatial dimensions, which supports topologically stable, but non-singular objects—
topological textures.

In the case of nematic systems, the numerical investigation concentrates on the
phase-ordering process and point defect dynamics following a quench into both the
uniaxial and biaxial nematic phases of a quasi-2-dimensional liquid crystalline system.
The time dependences of the correlation function, structure factor, energy density, and
number densities of topological defects are computed. By comparing the growth laws
for the characteristic length scales extracted from the order-parameter correlations
and from the total number of topological defects in the system, it is determined
that weak violations of dynamical scaling occur in the system, even at the latest
times studied. The observed scaling violations are attributed to the presence of
a logarithmic correction to the asymptotic power-law growth of the average inter-
defect separation. Following the quench to the biaxial nematic phase, there are four

topologically distinct defect species present in the system, the populations of which

il



are studied in detail. It is found that only two types of defect are observed in large
numbers at late times, and a mechanism for the selection of the prevailing defect
species is proposed.

In addition to the computational investigation of the phase ordering process in
9-dimensional nematic systems, analytical derivations of the singular (power-law)
short-distance behavior of the contribution to the structure factor (i.e., the light
scattering intensity) for all types of topologically stable defects encountered in 2- and
3-dimensional uniaxial and biaxial nematics are presented.

The second system studied—the Heisenberg-type model in 2 spatial dimensions—
is first implemented numerically as the discretized O(3) noniinea.r o-model with the
standard form of free energy and with purely dissipative dynamics. Two distinct
mechanisms for the decay of the order-parameter variations—single texture unwind-
ing, and topological charge annihilation—are identified and characterized in this sys-
tem. It is found that whereas at early times after the quench the annihilation pro-
cess dominates, the unwinding processes become of comparable importance at later
times. By examining the correlations in the order parameter and in the topological
charge density, it is shown that dynamical scaling is strongly violated during the
phase-ordering process, and multiple characteristic length-scales growing as distinct
power-laws in time are identified.

In order to study in detail the origins of the observed multi-scaling behavior, the
phase-ordering process is then studied within a modified O(3) nonlinear o-model with
an additional free energy term (analogous to the so-called Skyrme term, familiar in
high-energy physics) that stabilizes the textures against shrinking and unwinding. It
is found that this modification influences the multi-scaling properties of the system
in a dramatic way, and that with single-texture unwindings suppressed, the form of
the spectrum of exponents characterizing the decay of the moments of the topological
charge density distribution can be predicted successfully by a simple two-length-scale

argument.
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Chapter 1

Introduction and Overview

The process of phase-ordering kinetics—that is, the approach to equilibrium follow-
ing a quench between two different thermodynamically stable phases of an ordered
system—has been intensively studied since the early 1960s. Phase ordering occurs in
many physical situations, and phase-separation processes in systems such as binary al-
loys, block co-polymers, and binary fluids are of great technological importance. The
task of describing this process theoretically, especially its late-time asymptotic regime,
has proven to be challenging. This is mainly due to the fact that, subsequent to the
quench, the system undergoing phase ordering is far from thermodynamic equilib-
rium, and the well-developed methods of equilibrium and near-equilibrium statistical
physics cannot be used to describe the system fully.

Initially, studies of phase ordering concentrated on systems with scalar order pa-
rameters (such as binary alloys). More recently, advances have been made in both
experimental and the‘oretical investigations of phase ordering in systems with contin-
uous symmetries, such as ferromagnets, antiferromagnets, liquid helium, and liquid
crystals. In particular, nematic liquid crystals have proven to be a very convenient
system for the experimental study of phase ordering. It is interesting to note that
recent experimental investigations of phase ordering in liquid crystals and superfluid
3He have to a large degree been motivated by theoretical studies of the mechanism of
generation of large-scale inhomogeneities in the early Universe.

The feature of phase ordering that has attracted the most attention is the pres-



ence, in many systems, of a late time asymptotic regime where the correlations of
the appropriate order parameter exhibit dynamical scaling, and where a well-defined
characteristic length scale, growing as a power law in the time elapsed since the
quench, emerges in the system. While a fundamental treatment of the origins of the
scaling property remains a theoretical challenge, much progress has been made in in-
vestigating a number of specific features of the late-time regime. In the early work on
phase ordering for systems with discrete symmetry, it was found to be advantageous
to concentrate on the behavior of the domain walls—i.e., singularities of the scalar
order parameter—which are generated in the system in large numbers following the
quench. Likewise, it has been shown that many features of phase ordering in systems
with continuous symmetry can be understood in terms of the topological defects (such
as vortices, disclinations, and hedgehogs) of the corresponding order parameter.

The main purpose of this thesis is to give a detailed discussion of the role of
topology—i.e., the homotopy structure of the order parameter space—in phase or-
dering kinetics. To this end, we study in detail the process of phase ordering in specific
physical systems—uniaxial and biaxial nematics in two and three spatial dimensions,
and the Heisenberg model in two spatial dimensions—with rich topological properties.
The method used is mostly numerical simulations, with measurements concentrating
on identifying the nature of and the role played by the topologically stable objects in
the system. One of the principal features emerging from this ana.lyéis is the explicit
connection of violations of dynamical scaling in some of the systems studied to the
behavior of the topologically nontrivial degrees of freedom.

The thesis is organized as follows. In Chapters 2-4, we introduce the concepts
that are used throughout the thesis serve as the motivation for the investigations
reported in Chapters 5-7 and Appendix A. In Chapter 2, we briefly review, from the
group-theoretical point of view, the description of spontaneous symmetry breaking
through the concept of the order-parameter space. In Chapter 3, we present the
topological classification of defects and textures in ordered media, and give detailed

examples relevant to systems studied in the later chapters. In Chapter 4, we give



a brief introduction to the field of phase ordering kinetics, focusing on the example
of spinodal decomposition in binary alloys, and summarize which systems (in spatial
dimension two and higher) are currently believed to satisfy or to violate the property
of dynamical scaling.

In Chapter 5, we investigate phase-ordering kinetics in nematic films (i.e., in effec-
tively two-dimensional (2D) systems with full O(3) nematic order-parameter symme-
try), concentrating in particular on the behavior of topologically stable point defects
in such systems. In both the uniaxial and biaxial nematic cases, we observe weak
violations of dynamical scaling during the phase-ordering process at even the latest
times reached in our simulations, and attribute these to the pfesence of a logarithmic
correction to the asymptotic power-law growth of the average inter-defect separation.
While there is only one species of topologically stable defect in the case of the uniaxial
nematic, there are four distinct species of topological defects in the biaxial nematic
case. The fundamental homotopy group classifying those defects is non-abelian, which
leads to non-trivial physical effects. In our simulations of the phase-ordering process,
we observe all four species of topological defects that are predicted to occur in the
biaxial nematic, and confirm the defect combination laws predicted by the topological
classification scheme. We find that at late times after the quench from the isotropic
to the biaxial nematic phase, only two species of defects are present at large numbers,
and propose a mechanism for the selection of the prevailing defect species based on
the defect combination laws and the defect reaction energetics.

In addition to the numerical investigation of the phase ordering process in 2D
nematic systems in Chapter [19], we present (in Appendix A) analytical derivations of
the singular (power-law) short-distance behavior of the contribution to the structure
factor (i.e., the light scattering intensity) for all types of topologically stable defects
encountered in 2D and 3D uniaxial and biaxial nematics. Of particular interest is
the short distance behavior of the structure factor arising from the ring defect in 3D
uniaxial nematics, which consists of two separate power-law regimes having distinct

exponents and amplitudes.



In Chapters 6 and 7, we investigate phase ordering in O(3)-symmetric vector
(i.e. Heisenberg-type) systems in two spatial dimensions, which support topologi-
cally stable, but non-singular objects—topological textures (also frequently called
skyrmions). In Chapter 6, we implement numerically the Heisenberg-type system as
the discretized nonlinear O(3) o-model with the standard form of the free energy and
with purely dissipative dynamics. We concentrate on the role played by topological
textures and antitextures during the phase-ordering process. We identify and charac-
terize two distinct mechanisms for the decay of the order-parameter variations—single
texture unwinding, and topological charge annihilation. Our results show that while
at early times after the quench the annihilation process dominétes, the unwinding pro-
cesses become of comparable importance at later times. We calculate the correlations
in the order parameter and in the topological charge density, show that dynamical
scaling is strongly violated, and identify multiple characteristic length-scales growing
as distinct power-laws in time.

In order to study in detail the origins of the observed multi-scaling behavior, we
then study (in Chapter 7) phase ordering in a modified nonlinear O(3) o-model that
includes an additional free-energy term (analogous to the Skyrme term familiar in
high-energy physics) the effect of which is to stabilize the textures against shrinking
and unwinding. We find that this modification influences the multi-scaling properties
of the system in a dramatic way. The stabilization of the textures is most clearly
reflected in the change of the spectrum of exponents that characterize the decay
(with time elapsed since the quench) of the moments of the topological charge density
distribution. In the regime where the Skyrme term completely suppresses single-
texture unwindings, we are able to predict successfully the form of the spectrum by
using a two-length-scale argument.

The research described in this thesis was undertaken under the supervision of my
advisor, Paul M. Goldbart. My other collaborators were Nigel Goldenfeld (Chapter
5), Wojtek J. Zakrzewski (Chapters 6 and 7), and Andrew D. Rutenberg (Chapter 7).



Chapter 2

Broken symmetry and the order-parameter space

The bulk of this thesis is concerned with the dynamics of ordered systems following
quenches during which the system is abruptly taken from a higher-symmetry phase to
a lower-symmetry phase. In this chapter, we briefly review the concept of the order-
parameter space as defined through symmetry operations, and give several examples
of order parameters spaces relevant to later chapters. Our presentation of material
in Chapters 2 and 3 is to a large degree influenced by Mermin’s excellent review

article [1].
2.1 Group-theoretic definition of the order-parameter space

Phase transitions are commonly accompanied by spontaneous symmetry breaking [2].
By this, we mean that some of the symmetry operations of the state of the system
before the phase transition no longer leave the state of the system invariant after the
phase transition. A canonical example is that of a Heisenberg ferromagnet, where the
magnetic properties of the system are isotropic before the transition to the ferromag-
netic state, but a randomly selected preferred direction (given by the magnetization)
is acquired after the transition.

It is important to realize, however, that not all of the rotational invariance is
lost during the ferromagnetic phase transition. After the magnetization direction is
randomly selected, the rotating of the system by any angle about the magnetization

axis leaves the state of the system unchanged. The rotational symmetry is therefore



reduced from the full rotatiohal symmetry of the three-dimensional spin space, de-
scribed by the group SO(3), to the symmetry of rotations about a fixed axis, described
by the group SO(2). Other symmetry operations—i.e., the translational symmetry
and the space reflection symmetry—are unchanged during the transition.

To identify precisely those symmetry operations that are lost during the phase
transition, we have to find the minimum set of rotational operations that are needed
to transform a system with a given magnetization direction (say along the 2-axis)
to a system with an arbitrary magnetization direction. In this way, the remaining
rotational symmetry SO(2) is “factored out”. As the collection of all possible mag-
netization directions spans the surface of a unit sphere in thfee dimensions, we may
represent the minimum set of rotational operations by such a surface. The funda-
mental mathematical object which is represented geometrically in this way will be
called the order-parameter space.

The precise definition of the order-parameter space may be given as follows. Let
G be the symmetry group of the system before the phase transition, and H be the
remaining symmetry group after the phase transition (frequently called the “little
group”). According to the discussion in the previous paragraph, if two rotations (or,
in general, other symmetry operations) g; and g, from the group G differ only by
a rotation h from the group H—i.e., if go = hgih~'—then g; and g, should not be
considered as two distinct elements of the order-parameter space. As is known from
group theory [4], any element g € G belongs to exactly one of the conjugacy classes of
H in G, defined as sets of elements of G related by the transformation hgh™!, where
h is any element of H. The set of all conjugacy classes of H in G forms what is called
the coset space G/H. We therefore arrive at the following formal definition: the
order-parameter space R corresponding to a phase transition breaking the symmetry
group G into the subgroup H is given by the coset space R = G/H. The usefulness
of such a group-theoretic description of the order-parameter space will become more

apparent in Chapter 3.

In the case of the Heisenberg ferromagnet, the unbroken symmetry group is G =



SO(3), the “little group” is H = SO(2), and therefore R = S0(3)/SO(2). As we saw,
this space R can be visualized as the surface of a three-dimensional sphere. Note that
in this case R does not have a group structure. For example, attempting to define
a group operation on R through simple algebraic addition of the azimuthal angles 6
and polar angles ¢ of two points on the sphere fails, since the group addition of the
North pole with any other point on the sphere (apart from the South pole) is then
not uniquely defined: the North pole can be represented by 6 = 0 and any value of ¢.
In general, for any Lie group G and its subgroup H C G, the coset space R = G/H
is itself a Lie group only if H is a normal subgroup of G [3].

A more simple example is provided by the planar ferromégnet, where the magne-
tization vector is restricted to lie in a fixed plane. In this case we have G = SO(2)
[the group of rotations in two dimensions] and H = {I} [i.e., the trivial subgroup
consisting of only the identity element I], as no rotational symmetry remains af-
ter the magnetization is selected. Consequently, the order-parameter space is R =
SO(2)/{I} = SO(2). Note that in this case R does have a group structure. Ge-
ometrically, R = SO(2) can be pictured as a unit circle in the plane in which the
magnetization is restricted to lie. The group operation is defined by simply adding
the polar angles characterizing two points on the circle. Further examples of order-

parameter spaces are given in the following section.

2.2 Nematic order parameters

In this section, we describe the order-parameter spaces of uniaxial and biaxial nematic
liquid crystals (which we refer to generically as nematic systems). A nematic system
[5] consists of molecules that are anisotropic in shape. The centers of the molecules
are randomly diffusing, and the state of the system is always fully translationally
invariant, with no lattice order present. In the isotropic phase, the distribution of
the orientations of the molecules is isotropic, and the state of the system possesses

the full rotational symmetry in three-dimensional space. In the nematic phase, which



ocecurs for suitable values of temperature and / or pressure, the distribution of the ori-
entations of the molecules is anisotropic, and the rotational symmetry of the isotropic
phase is broken. Depending on the shape of the molecules and on the nature of inter-
actions among them, two distinct nematic phases—the uniaxial nematic phase and
the biaxial nematic phase—can occur.

We first describe the uniaxial nematic phase. In this phase, the distribution of
the orientations of the molecules is anisotropic, but is still symmetric with respect
to rotations about a specific axis. The symmetry axis of the orientation distribution
defines the so-called director n, which can be pictured as a “headless unit vector”
(n and —n describe an identical physical state). The state .of a nematic system in
the uniaxial nematic phase is often pictorially described as consisting of molecules
with the shape of a rod; the director is then given by the the statistically preferred
orientation of the rods. It should be noted, however, that the constituent molecules
of (uniaxial) nematic systems typically do not possess the full symmetry of a rod.

What is the order-parameter space characterizing the phase transition from the
isotropic phase to the uniaxial nematic case? As in the case of the Heisenberg ferro-
magnet, discussed in the previous section, the unbroken rotational symmetry group
G is the full group of rotations in three dimensions, G = SO(3). The little group
H, characterizing the remaining symmetry, is now larger than SO(2): in addition to
the rotations around the director n, it includes the inversion operation n — —n, or
equivalently, 180° rotations about any axis perpendicular to n. The corresponding
group is denoted by Dy, [4]; the order-parameter space for a uniaxial nematic is then
given by R = SO(3)/Doo.

Directors n with all possible orientations trace the surface of a unit sphere in three
dimensions. However, not all points on the sphere are distinct: any two points that are
diametrically opposite (i.e., antipodal) correspond to physically equivalent directors,
and must therefore be considered identical. The resulting object—a spherical surface
with antipodal points identified—is usually denoted as RP; (the real projective plane).

We now turn to the description of the biazial nematic order-parameter space. In



the biaxial nematic phase, the state of the system is characterized by a distribution
of molecular orientations that does not have any axis or rotation. However, the dis-
tribution possesses three mutually perpendicular axes of spatial inversion symmetry
(i.e., has the symmetry of the point group D,). The state of the system can in this
case be pictorially described as consisting of molecules with the symmetry of a cuboid
(i.e., a rectangular box where all three sides of the box have different lengths); the
three symmetry axes of the orientation distribution can then be identified with (i)
the statistically preferred orientation u of the longest sides of the cuboids, (ii) the
statistically preferred orientation b of the second longest sides of the cuboids, and
(iii) the direction perpendicular to both u and b. The directions u and b are referred
to as the first and the second director of the biaxial nematic phase.

In the biaxial nematic phase, no continuous rotational symmetry remains. The
only operations leaving the “cuboid orientational order” invariant are the four ele-
ments of the group D, (consisting of the three 180° rotations about the three symme-
try axes of the cuboid, and of the identity operation). The order-parameter space R
corresponding to the phase transition from the isotropic phase to the biaxial nematic
phase is therefore given by the coset space SO(3)/Ds.

As three independent variables (given for example by the three Euler angles)
are needed to describe the orientation of a cuboid, the order-parameter space R =
SO(3)/ D cannot be represented by a two-dimensional surface (in contrast to the
uniaxial nematic or Heisenberg ferromagnet case). The geometrical representation
of SO(3)/D, is most naturally obtained from the parametrization of the Lie alge-
bra SU(2) of the Lie group SO(3). Recall that any rotation of a general three-
dimensional object can be represented by a unimodular unitary 2 x 2 matrix [i.e.,

an element of SU(2)]. Any unimodular unitary 2 x 2 matrix u can be expressed as

10

u = aol + ayio; + azioy + agio,, where I = (01

) is the unit matrix, o, = ((1](1)),
oy = (? Bi), and o, = ( (1] ~01) are the Pauli matrices, and the coefficients a; satisfy the
condition a2 + a? + a2 + a2 = 1. Pairs of matrices u differing only by an overall sign

change—i.e., matrices with coefficients [ao, a1, az, as] and [—ag, —a1, —a;, —as] in the



parametrization given above—represent the same three-dimensional rotation. The
group SO(3) can therefore be geometrically represented as the (three-dimensional)
surface of a unit sphere in the four-dimensional space of parameters ao, a1, a3, a3, with
antipodal points on the sphere identified (note the similarity in this respect to the
two-dimensional surface RP;). To represent the coset space SO(3)/D., we need to
take into account that rotations by 180° about the three Cartesian coordinate axes z,
y and z in the rotation space leave the cuboid-shaped object unchanged. The gener-
ators of such rotations are given directly by the three matrices ioz, 10y, and io,; we
therefore conclude that the four points [1,0,0,0] (no rotation), [0,1,0,0] (180° rota-
tion about the z-axis), [0,0, 1,0] (180° rotation about the y-akis), and [0, 0,0, 1] (180°
rotation about the z-axis) on the spherical surface aZ+a$ + a3+ a3 = 1 are equivalent
to each other. Combined with the invariance under the simultaneous change of sign of
all the parameters a;, this means that each point on the three-dimensional spherical
surface representing the space SO(3)/D; is equivalent to seven other points, equidis-
tantly spaced from each other on the sphere. While this geometrical representation
of the biaxial nematic order parameter space may seem complicated, it is useful to
keep it in mind while using the homotopy theory formalism, described in the next

chapter.
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Chapter 3

Topological classification of defects and textures
in ordered media

In this chapter, we present the basics of the topological classification of defects and
(topological) textures in ordered systems, and discuss in more detail some mathemat-
ical results relevant to the later parts of this thesis. Our presentation is based mostly
on Refs. [1] and [2]. The concepts described originated in the work of Volovik and
Mineev [3] and of Toulouse, Kléman, and Michel [4]. In order to motivate the mathe-
matical formalism used in the remainder of the chapter, we first discuss (in Sec. 3.1)
the well-known examples of topological defects in planar and Heisenberg ferromagnets
in two and three spatial dimensions. In Section 3.2, we introduce the concept of the
fundamental homotopy group of the order parameter space, and discuss its use in the
classification of topological defects. The specific case of the fundamental group of the
biaxial nematic order parameter space and, in particular, the physical implications of
its non-abelian character, are discussed in Sec. 3.3. In Sec. 3.4, we discuss the mean-
ing of higher (specifically, the second and the third) homotopy groups of the order
parameter space, and introduce the concept of topologically stable, but non-singular

objects—topological textures.

3.1 Topological defects in planar and Heisenberg ferromagnets

Consider a continuum classical description of a ferromagnetic material, the magnetic

ordering of which is locally described by the magnetization m(r). Here m is a two-
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component vector for a planar ferromagnet, and a three-component vector for the
Heisenberg ferromagnet. Although the magnitude |m(r)| of the vector m can vary
throughout the system, if |m(r)| > 0, we may always define the direction of the
magnetization, which is given by the unit vector m(r) = m(r)/|m(r)|. The collec-
tion of possible directions of m are elements of the ferromagnetic order parameter
space, defined in the previous chapter. In general, the spatial variation of m(r) in
a three-dimensional system can be singular (i.e., the gradient of m(r) can be diver-
gent) on isolated points, lines or surfaces; such singular regions will be called point,
linear, or surface defects. Not all defects, however, are topological defects. The basic
question that needs to be answered to decide if a given singuiar defect configuration
is topologically stable is the following: can the defect be removed from the system
by making local changes in the order parameter field, without introducing additional
singularities during the attempt to remove the defect? If the answer is positive, the
defect may be removed from the system by overcoming at most a finite energy barrier
associated with the continuous distortion of the magnetization gradients during the
removal process in a spatially finite region. If the answer is negative, however, the
defect may disappear from the system only by reacting with other defects or diffusing
away through the system boundary, and is then called a topologically stable defect.

A more precise formulation of the basic question is as follows. Consider for sim-
plicity the case of a point defect in a two-dimensional system. Surfound the defect
by a circle such that only the defect in question, and no other defects, lies within the
circle. Is it possible to remove the singularity in the circle by continuous deforma-
tions [5] of the order parameter localized within the circle? (Such deformations will
be termed “local surgery”).

We first give an example of a defect that is removable by local surgery. Consider
the configuration of a two-dimensional Heisenberg ferromagnet pictured in Fig. 3.1a,
in which the magnetization rotates by 360° around the singular point. Keeping the
configuration outside of the indicated circle fixed, we can gradually tilt the magne-

tization vectors out of the plane, starting from the center, until we arrive to the
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Figure 3.1: (a) The 360° defect configuration in the 2D Heisenberg ferromagnet.
(b) Removal of the 360° defect through local surgery (see the main text).

non-singular configuration in Fig. (3.1b). We therefore successfully removed the
vortex-like configuration in a Heisenberg ferromagnet by continuous local surgery.
(The process described above is called “escape into the third dimension”).

Such a removal is not possible for the same magnetization configuration in a pla-
nar ferromagnet, where the magnetization vector cannot be tilted out of the plane.
Furthermore, it is easy to see that it is not possible to remove the defect by axiy
in-plane distortion of the magnetization configuration: Consider a local surgery re-
gion delimited by a circle C of radius r surrounding the central singular point. The
winding number N = (27)~! [ dl - V¢(rh) (where ¢(rh) is the polar angle of m in
the magnetization plane) around the circle C by definition stays equal to 1 during the
local surgery procedure. If the singularity at the central point is successfully removed,
there must exist a circle (of radius s < r) surrounding it for which the circulation
N is zero. Since N in a planar ferromagnet can take only integer values, we would
then have a singular jump in the circulation /N somewhere in between the circles of

radii s and r; this is possible only if singularities of r(r) exist outside of the central
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point, which is contrary to the definition of local surgery. The vortex configuration
Fig. 3.1a in a planar ferromagnet therefore constitutes a topologically stable defect.
Likewise, it is evident that any configuration of a planar ferromagnet in which the
magnetization vector rotates around a central singular point by an integer multiple
of 360° is topologically stable [7], whereas the same configuration in a 2D Heisenberg
ferromagnet is always topologically unstable.

How do the considerations presented above change for a (spatially) three-dimensional
system? For a planar ferromagnet in 3D, we can extend the configuration pictured
in Fig. 3.1a uniformly in the direction perpendicular to the plane of the picture, and
obtain a vortex line. The topological stability of a vortex line. follows from arguments
similar to those given above for the point vortex in 2D; instead of a loop surrounding
the point vortex, we may now use any loop that wraps around the vortex line. In a
Heisenberg ferromagnet in 3D, the vortex line is again topologically unstable. There
does, however, exist a topologically stable point defect in this system: the monopole
configuration pictured in Fig. 3.2 is easily shown to be topologically stable by an
argument similar to that given in the previous paragraph for the vortex in a pla-
nar ferromagnet in 2D. The only difference is that instead of the circulation of r(r)
around a circle surrounding the vortex, we now have to consider the winding number
M = (8m)! [ dS} € th - (O;/h x ;1) on a closed surface (having the topology of a
sphere) surrounding the monopole in the 3D space. The integer M counts how many
times the configuration of r(r) on the (real space) surface S covers the (spherical)
order-parameter space introduced in the previous chapter.

We have demonstrated the existence of the following topological defects: (a) point
defects in the planar ferromagnet in 2D; (b) line defects in the planar ferromagnet in
3D; (c) point defects in the Heisenberg ferromagnet in 3D. In Secs. 3.2 and 3.4 of the
present chapter we shall see how the existence of these topological defects (and the
absence of other types of topological defects) in planar and Heisenberg ferromagnets
naturally follows from the homotopy structure of the corresponding order parameter

spaces.
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Figure 3.2: A monopole defect configuration in the 3D Heisenberg ferromagnet.
3.2 The fundamental homotopy group

We now discuss the concept of the fundamental (or first) homotopy group II;(R) of
a given order parameter space R. In order to motivate the definition of II, (R), let us
return to the example of the topologically unstable point defect configuration, shown
in Fig. 3.1a, in the Heisenberg ferromagnet in 2D. The values of magnetization direc-
tions m(r) on the circle shown in Fig. 3.1a (or in general, on any contour surrounding
the point defect), traversed in the counter-clockwise direction, trace out an oriented
loop in the order parameter space (given by the surface S, of a unit sphere in three
dimensions) of the Heisenberg ferromagnet—see Fig. 3.3. The process of local surgery
that converts Fig. 3.1a to Fig. 3.1b can now be pictured in the order parameter space
as the gradual contraction of the loop in Fig. 3.3 to the north pole. The closer the
contour corresponding to the loop in Fig. 3.1a is to the singular defect, the farther to
the north the loop has to be contracted to achieve the configuration in Fig. 3.1b. For
the defect in Fig. 3.1a to be removable, it must be possible to contract the loop all
the way to a point (the north pole in the order parameter space). It is therefore seen

that the possibility of removing the defect in Fig. 3.1a by local surgery is associated
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Figure 3.3: The contractible loop in the order parameter space S; corresponding to
the topologically unstable configuration shown in Fig. 3.1a.

with the fact that the image of any (real space) contour surrounding the defect is a
contractible loop in order parameter space.

Convefsely, topologically stable defects correspond to incontractible loops in order
parameter space. As an example, consider the vortex configuration Fig. 3.1a in a
planar ferromagnet in 2D. The order parameter space of a planar ferromagnet, as we
saw in Sec. 2.1, is the unit circle. The magnetization configuration on any contour
surrounding the vortex winds around the order parameter circle S; exactly once;
i.e., it maps onto an incontractible loop in S;. Likewise, contours around vortex
configurations with higher winding numbers N map into incontractible loops that
wrap around S; N times.

The third example that we shall consider is that of a uniaxial nematic. As was
shown in Sec. 2.2, the order parameter space is the projective plane RP,. It is read-
ily seen that the singular director configuration analogous to the magnetic vortex in
Fig. 3.1a, in which the director rotates around the central point by 360°, is topologi-
cally unstable—the singularity can be removed by a local surgery process analogous
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to the one described above for the Heisenberg ferromagnet. In contrast, the configura-
tion pictured in Fig. 3.4a, in which the director rotates by only 180°, s topologically
stable: a contour surrounding the central singularity maps onto the loop in RP;
shown in Fig. 3.5a; this loop is incontractible as the antipodal points P and P’ are
identified. We therefore find that topological point defects exist in a uniaxial nematic
in 2D. The failure of an attempt to remove the defect in Fig. 3.4a by local surgery
using rotations of the director out of the plane can be seen explicitly in Fig. 3.4b.
Specifically, let us start rotating the directors located just above the dotted line in
Fig. 3.4b out of the page in such a way that the indicated “nail heads” of the directors
point above the surface of the page, and continue this rotatibn moving clockwise on
each contour surrounding the central singularity. It is evident that in this way, we
arrive at a discontinuity in the order-parameter configuration everywhere along the
dotted line, as the directors on the opposite sides of the line have to rotate in opposite
senses. In general, any attempt to rotate all the directors in Fig. 3.4a out of the page
generates a line singularity extending from the central point to infinity.

The example of a uniaxial nematic is also useful to clarify the meaning of contin-
uous deformations of loops in order parameter space. Instead of the configuration in
Fig. 3.4a, in which the director rotates around the central point uniformly and stays
in a fixed plane, we may consider any continuous deformation [5] of such a configura-
tion; any contour surrounding the singularity is then mapped again into a closed curve
in the order parameter space RP,, which is different from that shown in Fig. 3.5a,
but can be continuously deformed into it in the order parameter space. Of special
interest is the configuration shown in Fig. 3.6, in which the director rotates around
the central point again by 180°, but in the direction opposite to that in Fig. 3.4a.
The corresponding loop in the order parameter space is shown in Fig. 3.5b. Notice
that the loop in Fig. 3.5b can be continuously deformed into the loop in Fig. 3.5a
by sweeping the loop through the north pole while keeping the loop end-points fixed.
The inverse image of this process in real space gives the prescription for a local surgery

procedure converting the configuration in Fig. 3.6 into the configuration in Fig. 3.4a.
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Figure 3.4: (a) The 180° defect configuration in a uniaxial nematic. (b) An attempt
to remove the 180° defect by continuously rotating the “nail heads” given to the
directors out of the plane fails: the directors on opposite sides of the dotted line
would have to rotate in opposite senses, generating a line singularity. (For ease of
visualization, the directors are given “nail heads” in the figure; however, the ends of
each director should still be considered physically indistinguishable.)

P’

(a) (b)

Figure 3.5: Incontractible loops in order parameter space RP, corresponding to the
defect configurations in (a) Fig. 3.4a and (b) Fig. 3.6. Note that antipodal points on
the sphere (for example, the points P and P') should be considered identical.
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Figure 3.6: The —180° defect configuration in the uniaxial nematic, topologically
equivalent to the configuration in Fig. 3.4a.

The two c;)nﬁgurations are therefore topologically equivalent, despite the opposite
signs of the winding angles 180° and —180° of the director. Also, it is evident that
any loop corresponding to a director configuration rotating around the central point
by an odd multiple of £180° can be continuously deformed into the loop shown in
Fig. 3.5a, corresponding to the 180° defect, and that any loop corresponding to the
winding by an even multiple of +£180° can be shrunk to a point, corresponding to a
homogeneous configuration. There is, therefore, only one type of topological defect in
a uniaxial nematic in 2D, and it can be represented by the configuration in Fig. 3.4a.
This is in contrast to the case of the planar ferromagnet in 2D, for which we saw that
a whole family of topologically distinct point defect configurations, parametrized by
the integer winding number N, exists; this is a consequence of the fact that oriented
loops winding around the circle S; a different number of times cannot be continuously
deformed into each other.

The discussion given above motivates us to define the fundamental homotopy group

IT; (R) of the order parameter space R as the space of all classes of mutually deformable
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loops in R (called the homotopy classes of R). The different types of topological point
defects in a two-dimensional system with order parameter space R then correspond
to the different homotopy classes [8].

To be more precise, consider an oriented loop in R that passes through a given
point € R. The loop may be parametrized by a continuous map f(s) : [0,1] = R
with f(0) = (1) = z. Consider now another loop g : [0, 1] — R passing through z.
We say that the loops f and g are homotopic at z if there exists a family of loops
{hy(s) : [0,1] = R, t € [0,1]}, with every loop h; passing through z, such that h,
is the loop (i.e,. map) f, h; is the loop g, and derivatives of hs(s) of all orders in ¢
exist for all t € [0,1] and all s € [0, 1]. All loops passing thrdugh z that are mutually
homotopic form a homotopy class based at z.

The collection of all homotopy classes based at z forms the fundamental homotopy
group of R at z, II;(R, z). Here the group operation (product) of two classes F' and
G from II;(R, z) is defined as the class containing the loop obtained by combining
any two loops f € F and g € G (here by combining we simply mean traversing the
loop f first, returning to the point z, and then traversing the loop g; the resulting
loop will be denoted by f o g). It can be readily shown (see, e.g., Ref. [1]) that with
such a definition of the group operation, the set of classes II; (R, z) indeed satisfies all
the axioms of a group. The identity element is the class of contractible loops passing
through z, which includes the trivial map f(s) = z (i.e., the loop consisting solely
of the point z). The inverse element F~! for any class F € II, (R, z) is given by the
collection of all loops from F traversed in the opposite direction (i-e., if the loop f
belongs to F, the loop f parametrized as f(s) = f(1 — s) belongs to FY).

From now on, we will restrict ourselves to order parameter spaces R that are
connected (meaning that for any two elements z,y € R, there exists a continuous
map c(s) : [0,1] = R such that ¢(0) = z and ¢(1) = y). All order parameter
spaces that we have considered thus far are connected; the topological classification
of defects for disconnected order parameter spaces R may be obtained by considering

each connected component of R separately. It is readily seen that for any connected
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space R, the two homotopy groups II;(R,z) and II,(R,y) based at any two points
z and y in R are isomorphic: any loop f based at z can be converted to a loop g
based at y by combining f with a loop passing through the points z and y (such a
loop exists by the assumption of connectivity of R), and vice versa; this induces a
one-to-one correspondence of the homotopy classes based at z and y that preserves
the class combination laws. From now on, we shall therefore simply speak about
the fundamental homotopy group II;(R) of R, without reference to a particular base
point.

We now give examples of fundamental homotopy groups for some simple order
parameter spaces. A trivial example is provided by the Heiéenberg ferromagnet, for
which the order parameter space R is the surface S; of a unit sphere. Clearly, any
loop starting at the north pole can be continuously shrunk (i.e., is homotopic to)
the north pole point; that is, IT;(S5) is the trivial group consisting solely of the unit
element. More interesting is the example of the uniaxial nematic: any loop starting
and terminating at the point P in the picture of the projective plane RP; in Fig. 3.5
can be shrunk to the point P; however, any loop starting at P and terminating at
the antipodal point P’ (such as the loop drawn in Fig. 3.5a) cannot be shrunk to a
point. Therefore II;(RP;) is the two-element group Z,. Our last example is that of
the planar ferromagnet: here the order parameter space R is the unit circle S;, and
all loops in R divide into mutually undeformable classes characterized by how many
times (and in what direction) the loop winds around the circle. Therefore I, (S,) is
isomorphic to the group of integers Z.

What is the precise correspondence of the elements of II; (R) and the topologically
distinct classes of point defects in a two-dimensional system with order parameter
space R? Earlier we saw that a point defect configuration may be removed by local
surgery (i.e., is not topologically stable) if and only if the loop in R obtained as the
image of any contour surrounding the defect is contractible to a point. Therefore the
identity element of II;(R) corresponds to topologically trivial configurations, and all

other elements of IT; (R) correspond to topologically stable defects. Do all non-trivial
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elements of I1; (R) correspond to distinct topological defect classes, i.e. to defects that
cannot be deformed into each other by local surgery? To answer this question, we
need to discuss the concept of free homotopy. Earlier, we saw that the process of local
surgery on a given defect configuration can be viewed in the order-parameter space
R as consisting of continuous deformations of loops in R that correspond to contours
surrounding the defect in real space. These deformations do not have to keep any
point of the loop in R fixed. Our definition of II; (R), however, was founded on the
relation of homotopy at z of two loops sharing a common starting point z (“based
homotopy”). Such a restriction was necessary in order to obtain an object with group
structure (as it is not clear how to combine two loops that d6 not share any common
points). To relate directly to the physical process of local surgery, however, we now
define two loops f and g in R to be freely homotopic if there is a family of loops h;,
continuous in ¢, such that hg = f and h; = g; that is, we drop the requirement (
defining based homotopy) that the family of loops h; share a common point.

Any two loops sharing a common point z and corresponding to the same element
of I1; (R) (meaning that they are homotopic at z) are, of course, also freely homotopic.
In certain order parameter spaces R it is, furthermore, possible for two loops to be
freely homotopic to each other, even if they correspond to different elements of IT; (R).
A convenient, if somewhat artificial, example is that of the order parameter space R
consisting of a plane with two holes (Fig. 3.7a). The loops f and g in Fig. 3.7a clearly
cannot be deformed into each other while keeping their common point z fixed; they
therefore correspond to different elements of II; (R, z). Once we relax the requirement
that the loops remain tied to = during the deformation process, however, we may for
example start shrinking the loop f up from z, pass its bottom end above the lower
hole in Fig. 3.7a, and then bring it down on the right-hand side back to the point
z, thus continuously deforming f into the loop g; the two loops are therefore freely
homotopic. We now note that the conversion of f to g can also be achieved by
combining the loop f with the loop ¢ shown in Fig. 3.7a and its inverse: by traversing

first c, then f, and then ¢!, we obtain a loop co f o ¢~ which is homotopic at z to
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Figure 3.7: Free and based homotopy of loops in the order parameter space consisting
of a plane with two holes. (a) The two loops f and g are not homotopic at x.
(b) The loop co f oc™! may be used to show that f and g are freely homotopic.

the loop g (see Fig. 3.7b). In terms of the based homotopy classes F, G, C € II;(R, z),
corresponding to the loops f, g and c, this is expressed by the identity

CFC'=G (3.1)

[where multiplication indicates the group operation in II; (R)].

The construction just given (and its analog for arbitrary order parameter spaces
R) has an important implication: if F' and C are two elements of II, (R), the element
CFC™! corresponds to loops that are freely homotopic to loops from F'; therefore, F’
and CFC™! always represent topologically equivalent defects. For any group II, the
set of elements {CFC~!;C € 1} is called the conjugacy class of the element F. It
can be shown that each element of II falls into exactly one conjugacy class in II (note,
however, that the set of all conjugacy classes of a group II does not necessarily itself
form a group). Our arguments lead us to conclude that topologically distinct classes
of defects in a system with order parameter space R are classified by the conjugacy

classes of the fundamental homotopy group II, (R).
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It is straightforward to see that for any abelian (i.e., commutative) group II, each
of the conjugacy classes contains just one element, and the set of conjugacy classes
is therefore identical to the group II itself (a consequence of the property CFC~! =
CC~F = F for all C,F € II). The examples of fundamental homotopy groups
that we gave earlier—namely, I1,(S;) = I, II;(RP,) = Zs, and II,(S;) = Z—are all
abelian. Consequently, the topologically distinct defect classes in the corresponding
physical systems are classified simply by the elements of these groups. These results
are in agreement with the discussion of topological defects for planar and Heisenberg
ferromagnets in Sec. 3.1, and for uniaxial nematics earlier in_ this section.

If, however, the fundamental homotopy group II;(R) is non-abelian, some of the
distinct elements of II; (R) correspond to topological defects that can be deformed
into each other by local surgery. The physical consequences of such a situation will
be examined in the next section in the context of defects in biaxial nematics.

We are now in a position to discuss the physical meaning of the group operation
in I1; (R) in the context of the topological classification of defects. Consider two point
defects, A and B, located next to each other in a 2D system; we may ask what is the
result of the combination of the two defects—i.e., what type of defect results if the
two singularities are brought together by a continuous process? This question can be
answered by examining the loop h in R corresponding to any contour s, surrounding
both A and B in real space [see Fig. 3.8], and finding the conjugacy class H that
represents s, in the group II;(R). The contour s, can be continuously deformed
into the contour s, shown in Fig. 3.8, consisting of the combination of the contour
s, surrounding the defect A with the contour s, surrounding the defect B. For the
loops h, a, and b in the order parameter space R (traced by the order-parameter
configurations on the contours s, s, and s, respectively), this implies that the loop
h is freely homotopic to the loop a o b. Therefore, the combination of defects A and
B is classified by the conjugacy class of II;(R) containing the element AB, where
A and B are any elements of II;(R) representing loops freely homotopic to a and

b, respectively. In essence, the result of combining two defects is given simply by
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Figure 3.8: Combination of two topological defects. The contours s, and s, surround
the defects A and B, respectively. The contour s, surrounding both defects can be
continuously deformed into the contour s; = s5 © ss.

the group operation in II,(R), keeping in mind that the topological defect classes
correspond to conjugacy classes, rather than elements, of II;(R).

To conclude this section, let us briefly summarize its main points. For an arbitrary
order parameter space R, the fundamental homotopy group II; (R, z) of R at z is de-
fined as the set of based homotopy classes of all loops in R passing through z, with the
group operation induced by loop combination. If R is a connected topological space,
the groups II; (R, z) are isomorphic for all z € R. Classes of freely homotopic loops in
R correspond to topologically distinct point defects in a two-dimensional system with
order parameter space R, and all possible deformations of them by local surgery. If
I1;(R) is an abelian group, the freely homotopic loop classes are given simply by the
elements of IT; (R). If II; (R) is non-abelian, in general a number of elements of II, (R)
corresponds to the same free homotopy class of R, and topologically distinct point
defects are classified by the conjugacy classes of II;(R). The defect combination laws
are determined by the group operation in IT, (R) and the corresponding multiplication
table of the conjugacy classes in II; (R).
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3.3 Topological defects in biaxial nematics

3.3.1 Fundamental homotopy group of the biaxial
nematic order parameter space

Recall that (see Sec. 2) the orientational order of molecules in a biaxial nematic can
be characterized by two mutually perpendicular directors u and b; here +u +b, and
4u X b are the three symmetry axes of the cuboid distribution of molecular orienta-
tions. In the uniazial nematic case, where the orientational order is described by only
dne director u, we saw in the previous section that there is only one class of topolog-
ically non-trivial point defect in 2D, which can be represented by the configuration
in which u rotates around a central point by 180°. The more complicated character
of the order parameter space in the biazial nematic results in a richer structure of
topological defects. There are now three topologically distinct classes of 180° defects:
in defects from the C, class, the principal director u rotates by £180° and the second
director b does not rotate; in C, defects, u does not rotate and b rotates by +180°;
and in C, defects, both u and b rotate by £180° (see Figs. 3.9a-c). In addition, there
is a 4th non-trivial defect class, Cy, where either u or b (or both) rotate by 360°
(Fig. 3.9d). In contrast to the uniaxial case, the 360° defect cannot be removed by
local surgery—an attempt to remove the singularity in the u director in Fig. 3.9d by
rotating u out of the plane merely converts the configuration in Fig. 3.9d to another
singular configuration, where the b director rotates by 360°. (This is also the rea-
son why there is only one topological class of 360° defects, as opposed to three 180°
classes.) |

To prove that the classification of point defects in the two-dimensional biaxial
nematic given in the previous paragraph is complete, and to deduce the defect com-
bination laws, we need to calculate the fundamental homotopy group II;(R) of the
biaxial nematic order parameter space R. In Sec. 2.2, we saw that R is given by the
(three-dimensional) surface of a unit sphere in four dimensions, with each point on the

sphere identified with seven other points related to the first point by +90° and 180°

27



(8.) -+~ = = - = =
~ o= w g V e A =
X ¥ "’f’*\ % PRI  EY
'HARTTNG 1% a e
X 4o N s 7, \
£y \ 4 A"
t 40} /4y
(b) d) b
! ¢ % t
Y 4 : 4 ’ b ‘/,
o ” I 4 4-4--.\-00-0-4-
A Y \‘ wo e » /+\
x <o - » p \
A S » » *
R e ; * A3

Figure 3.9: The 4 species of topological defects in biaxial nematics. The directors u
and b are depicted as long and short rods, respectively. (a) The C; defect, in which
both u and b rotate by 180° (b) The C, defect, in which b rotates by 180°; (c) the
C, defect, in which u rotates by 180°; (d) an example of the C, defect, in which u
rotates by 360°.

rotations abound the coordinate axes of the four-dimensional space. In the uniaxial
nematic case, for which R is the projective plane RP,, we were able to obtain I1; (R)
by simple inspection of the possible types of loops in R. For the biaxial order param-
eter space R, such an approach is less straightforward: we need to consider (g) =28
incontractible loops connecting all pairs of the eight equivalent points, many of which
turn out to be identical. Instead, we formulate below a general theorem that can be
used to calculate I1;(R) for any order parameter space R.

In Chap. 2, we saw that the order parameter space R can in general be represented
as the coset space G/H, where G is the symmetry group of the system before the
phase transition, and H is the residual symmetry group after the phase transition.
We are interested in systems with continuous symmetry, in which case the group G
is a Lie group. Recall that G is called connected if for any two elements z,y € G,

there exists a continuous path connecting them (i.e., if there exists a continuous map
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c(s) : [0,1] = G such that ¢(0) = z and ¢(1) = y). A Lie group G is called simply
connected if any loop in G can be continuously shrunk to a point (i.e., if the first
homotopy group of G is trivial). The following theorem holds:
Theorem: Let G be a connected, simply connected Lie group. Let H be a subgroup
of G, and let H, be the connected component of H (i.e., Hy consists of elements of
H that are connected to the identity element by continuous paths lying in H). Then
the fundamental group II,(G/H) of the coset space G/H is isomorphic to the coset
space H/H,.
The theorem given above can be proved by constructing an explicit relation between
loops in the coset space G/H and continuous paths in G that connect elements in H
to the identity element. A detailed description of the proof is given e.g. in Ref. [1].
In Sec. 2.2, we showed that the biaxial nematic order parameter space R is given
by the coset space SO(3)/D,, where D, is the 4-element symmetry group of a rectan-
gular box. We are not able to directly use the theorem from the previous paragraph
to calculate IT; (R), as the group SO(3) is not simply connected [9]. We may, however,
proceed as follows: We replace the group SO(3) by the special unitary group SU(2),
which contains two copies of SO(3) (more precisely, there exists a 2 to 1 homomor-
phism of SU(2) onto SO(3), given by exponentiating all pairs of matrices from SU(2)
related by an overall sign change). At the same time, we replace the little group D,
by its inverse image (“lift”) D, in SU(2) under this homomorphism. In this way, we
have replaced the coset space SO(3)/D; by the equivalent coset space SU(2)/D,; as
SU(2) is simply connected, we can now use the theorem from the previous paragraph.
As we already discussed in Sec. 2.2, the non-trivial symmetry operations of the group
Dy—namely, the 180° rotations about the z, y, and z axes—are represented in SU(2)
by the Pauli matrices (with an additional factor of i) io, i0,, and io,, respectively,
and by their negatives. The fourth element of D,—the identity operation—is repre-

sented in SU(2) by the unit matrix I, as well as by —I. Therefore, D, is given by
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the eight-element group @
Q ={I,—-1,i04, —i04, 10y, —10y,10;, —i0,}, (3.2)

which is isomorphic to the group of quaternions. Since @ is a discrete group, its
connected component Qg is given simply by {I}, and the coset space Q/Qo is the
group Q itself. We thus obtain the result II,(SO(3)/D,) = Q.

Note that the quaternion group @ is non-abelian: for example, (io;)(ioy) #
(ioy)(iog). To complete the classification of topological defects described by
I1,(SO(3)/D;), we therefore must find the conjugacy classes of Q. It is straightfor-
ward to show that Q has five conjugacy classes, given by {I}, {-I}, {ioz, —i0z},
{ioy, —ioy}, and {io,,—i0.}. (For example, the identity (io;)(ioy)(ioz)™! = —(ioy)
demonstrates that (io,) and —(io,) belong to the same conjugacy class.) We there-
fore conclude that there are four non-trivial topological defect classes in the biaxial
nematic. The conjugacy classes {io,, —io}, {ioy, —ioy}, and {io,, —io.} correspond
to the defect types shown in Figs. 3.9a-c, where the directors rotate by 180°; the
class {—1I} corresponds to the 360° defect in Fig. 3.9d; the class {I} corresponds to

topologically trivial order parameter configurations.

3.3.2 Path-dependent defect combination laws

The combination laws for the four biaxial defect classes are determined by the multi-
plication rules for the conjugacy classes of the quaternion group @ (see the previous
section). The results are given in Table I, and are easily understood. For example,
combining a C; defect with a C, defect results in a configuration where u and b both
rotate by +180°, corresponding to the class C,. The combination of two C, defects
can result in a configuration in which u, as well as b, rotate by either 0° or £360°. If
both rotate by 0°, the resulting configuration is topologically trivial; we denote the
trivial class by Cy. All other possibilities give a configuration from the class C,.

We therefore reach the conclusion that the outcome of the combination of two C;

defects is not uniquely determined by the topological classification scheme (and simi-
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Table 3.1: Combination laws for the 4 distinct classes (C;, Cy, C; and C) of topolog-
ical defects in the biaxial nematic. C, represents a topologically trivial configuration.

Co Co C: c, C.
G| & 6 G, c, e
&) @& G . e C,
.| & € Gal G c,
a,| e G C, CoorCy G,
al & G G, C. CoorCy

larly for C,, and C, defects). Such a property is characteristic of systems characterised
by a non-abelian fundamental homotopy group II;. Both io, and —io, characterize
defects from the class C, (and can be pictured as defects in which u rotates by 180°,
resp. —180°). When the defect configuration corresponding to the element io, is
brought around a loop surrounding a C, defect, it necessarily gets converted into a

configuration of type —io, : this is the meaning of the algebraic equality
(ioy)io(ioy) ™! = —ioy. (3.3)

Two io, configurations combine to give a Cy defect [(i0;)(io;) = —1], whereas a io,
and a —io, configuration combine to a topologically trivial configuration [(—io;)(i0;) =
1]. It is therefore seen that the result of a combination of two C, defects, which is
indeterminate according to Table I, depends on path of approach of the two C; de-
fects among the Cy and C, defects present in the system. Note that this feature is
not present in systems described by an abelian fundamental homotopy group: in any
abelian group G, afa! = 8 for any , 8 € G, meaning that the topological character
of the defect classified by [ is not affected by other defects present in the system.
The four topologically stable defect types {C;, C,, C,, Co} are observed, and

the predicted combination laws confirmed, in the computational investigation of
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the phase-ordering process in two-dimensional biaxial nematic systems described in

Chap. 5.

3.3.3 The non-crossing property of non-abelian disclination lines

So far, we have illustrated the concepts of the topological classification scheme on
the case of point defects in two dimensional systems. In three spatial dimensions, the
fundamental homotopy group classifies linear defects (which should be pictured as ex-
tending perpendicularly to the page in Figs. (3.9a-d)). Linear defects corresponding
to the 4 distinct topological classes C;, Cy, C, and C, were ;ecently observed exper-
imentally [10], and their combination laws were found to agree with those in Table
I. For linear defects, there is (in addition to the property discussed in the previous
paragraph) another significant consequence of the non-abelian nature of the homo-
topy group @, first discussed in [11]. Imagine two line defects, corresponding to the
elements o and 8 of Q, attempting to pass through each other (Fig. 3.10a). We can
continuously deform the defect configuration in Fig. 3.10a to that in Fig. 3.10b. The
defects now have passed though each other, except that they remain connected by an
“umbilical cord”, composed of a double segment of the 3 defect. We can tell if the
connecting cord is topologically trivial or not by finding out if the order parameter
values on a contour surrounding it (see Fig. 3.10b) map into a contractible or incon-
tractible loop in the order parameter space. It turns out that the contour in Fig. 3.10b
can be continuously deformed into the contour corresponding to the group element
afo 187! (see Ref. [1] for detailed drawings of the deformation procedure). If a and
B commute, the result is the identity element of @, corresponding to a contractible
loop, and there is no singular connecting cord. In the case o = io, and 3 = io,, how-
ever, the result is afa~!3~! = —1I, and the defects @ and 8 will remain connected by
a type Cy string. In general, whenever two line defects from two different 180° classes
(i-e., Cy, Cy, or C;) in the biaxial nematic attempt to pass through each other, the
described property of “topological obstruction to defect crossing” should be mani-

fested. A computational investigation of the physical consequences of this property
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(a) (b)

Figure 3.10: (a) Two linear defects attempting to pass through each other. (b) A
continuous deformation of the configuration in (a), showing the possible presence of
a singular string connecting the defects o and 3. See the main text for the meaning
of the dotted contour line.

in quenched three-dimensional biaxial nematic systems is currently in progress.

3.4 Higher homotopy groups

In Sec. 3.2, we saw that the conjugacy classes of the fundamental homotopy group
IT, (R) classify topologically distinct point defects in 2D, as well as topologically dis-
tinct line defects in 3D (with cross-sections—i.e., order parameter configurations in
any plane perpendicular to the defect line—corresponding to the point defects in a
2D system with the same order parameter space R).

There exist, however, topologically stable objects (order parameter configurations)
other than point defects in 2D and line defects in 3D. One example—the monopole
defect in the Heisenberg ferromagnet in 3D—was already discussed in Sec. 3.1. The
topological stability of the configuration in Fig. 3.2 follows from the fact that the
order parameter configuration on any closed surface surrounding the central singular

point covers the whole order parameter space R = S, of the Heisenberg ferromagnet
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exactly once. Clearly, the imzige of such a configuration in R cannot be continuously
deformed (contracted) into a point in R. In analogy with the fundamental (or first)
homotopy group II; (R, z), we define the second homotopy group II(R,z) of R at
T € R as the set of classes of maps of closed 2-dimensional surfaces into R that
are homotopic at z (i.e., are continuously deformable into each other via a family of
maps passing through z). The groups II;(R, z) are isomorphic for all z € R, and we
consequently drop z from the notation.

In the case of the Heisenberg ferromagnet, the based homotopy classes of closed
2-surfaces in R = S; can be labeled by the integer giving the number of coverings,
and the second homotopy group is therefore given by the group of integers: II3(S;) =
Z. The same is true for the uniaxial nematic, where the order parameter space
is the projective plane RP,: the analog of Fig. 3.2 with the magnetization arrows
replaced by (headless) directors represents a topologically stable configuration, called
the “nematic hedgehog”, and the number of coverings of the order parameter space
R = RP; (determining the “topological charge” M of the hedgehog) again classifies
the based homotopy classes of maps of closed 2-surfaces into R, giving II,(RP,) = Z.

It can be shown [1, 2] that unlike II,(R), the group II;(R) is abelian for all R.
Topologically distinct point defects in 3D systems are therefore classified by the el-
ements of II5(R). An interesting complication, however, ensues when topologically
stable line defects are present in the system simultaneously with point defects. For
example, if a radial hedgehog (characterized by topological charge M = 1) in a
3D uniaxial nematic is brought around a closed path surrounding a topologically
stable disclination line, a hyperbolic hedgehog (characterized by topological charge
M = —1) results. This leads to path-dependent combination laws for point defects in
the system. This situation is somewhat analogous to that described in the previous
section for defects characterized by a non-abelian homotopy group, and is the con-
sequence of the action of II;(R) on II3(R) (see, e.g., Ref. [1]). For systems (such as
Heisenberg ferromagnets) in which the fundamental homotopy group I, is trivial, no

such complication occurs, and the combination laws for point defects in 3D are path
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independent.

Of major interest to us will be the application of the second homotopy group to
the classification of topological textures in 2D systems. Consider a 2D system with
homogeneous boundary conditions for the order parameter (i.e., the order parameter
field is uniform at the system boundary or at infinity). The order parameter configu-
ration can then be viewed as a mapping of a closed two-dimensional surface into the
order parameter space R (the whole boundary of the system is mapped onto one point
in R). Mutually undeformable order parameter configurations in such a system are
therefore classified by the second homotopy group II;(R). In the case of the Heisen-
berg ferromagnet, the topologically distinct configurations classified by II5(S;) = Z
(i.e., by an integral topological charge) may be pictured as follows. Restrict the mag-
netization to point “up” (i.e., in the z direction in spin space) on the boundary of
the system. The homogeneous configuration of the system has a topological charge
of 0. The configuration in which the magnetization at the center of the system points
“down” (i.e., opposite to the magnetization direction at the boundary), and interpo-
lates smoothly in between the center and the boundary in the way shown in Fig. 3.11,
covers the order parameter sphere S, exactly once, and thus has a topological charge
of 1. This order parameter configuration is non-singular at all points, and cannot (in
a continuum system) be continuously deformed into the homogeneous configuration
if the boundary condition is kept fixed.

We shall see in Chap. 6 that during the phase-ordering process in Heisenberg-
type systems, numerous localized order parameter configurations of the type shown
in Fig. 3.11 are spontaneously generated in the system, and determine its properties
during the late stages of phase ordering.

It remains to discuss the third homotopy group of the order parameter space,
I13(R), defined as the set of homotopy classes of maps of closed 3-dimensional surfaces
into R. In systems with spatial dimension d of physical interest (i.e., d = 1, 2
or 3), the third homotopy group does not classify any topologically stable singular

objects (i.e., defects). However, in analogy with the case of II3(R) in 2D, discussed in
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Figure 3.11: An example of a topological texture of charge 1 in the Heisenberg system
in 2D.
the previous two paragraphs, II;(R) classifies classifies topologically stable, but non-
singular, order-parameter configurations (topological textures) in 3D systems with
homogeneous boundary conditions. While it is possible to define homotopy groups
I1,(R) with n > 3 for any order parameter space R, their physical meaning in ordered
systems of dimension d < 3 has not been, to our knowledge, discussed in fhe literature.
To conclude this chapter, and for further reference, we summarize the results for
the first, second and third homotopy groups for ferromagnetic and nematic systems
in Table 3.2.
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Table 3.2: The homotopy groups II;(R), II;(R), and II3(R) of order parameter spaces
R in planar ferromagnets, Heisenberg ferromagnets, uniaxial nematics, and biaxial
nematics. Here Z is the group of integers; Z, is the two-element group {I,—I}; Q is
the quaternion group; {I} denotes the trivial one-element group.

system 0.p. space R II;(R) II;(R) II3(R)
planar ferromagnet S0O(2) Z {1} {1}
Heisenberg ferromagnet | SO(3)/SO(2) {I} z Z
uniaxial nematic SO(3)/Dw Zy Z - Z
biaxial nematic SO(3)/D, Q {1}
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Chapter 4

Dynamical scaling in phase-ordering kinetics

Several excellent general reviews (e.g. [1, 2, 3]) of the theory of phase-ordering kinet-
ics are available. The purpose of this chapter is more restricted in scope: primarily, it
serves to review the current status of the issue of validity of dynamical scaling during
phase ordering, and thus prepare the reader for the detailed discussion of violations of
dynamical scaling that will be given for specific systems in Chapters 5-7. In Sec. 4.1,
we give a brief, general introduction to the subject of phase-ordering kinetics using
the example of systems with Ising-like (scalar) order parameters, concentrating in
particular on the well-studied case of spinodal decomposition in binary alloys. In
Sec. 4.2, we summarize which systems in spatial dimension two and higher (and with-
out long-range interactions) are currently believed to satisfy or violate the property

of dynamical scaling.

4.1 Introduction to phase-ordering kinetics: Spinodal decomposition
and phase separation in binary alloys

Consider a binary atomic mixture (such as the Fe-Cr alloy) comprising of two com-
ponents A and B. At high temperatures (above a certain critical temperature T;),
the thermodynamically stable phase of the system consists of the components A and
B mixed at the microscopic level. If the temperature is brought below T, the ho-
mogeneous mixture of the two components is no longer thermodynamically stable,

and the system separates into A-rich and B-rich regions. One needs to distinguish
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Figure 4.1: Schematic phase diagram of a binary alloy. The spinodal line is repre-
sented by the dashed curve.

two regions within the coexistence region of the phase diagram (see Fig. 4.1): the
metastable region, in which the homogeneous phase still constitutes a local minimum
of the free energy, and the system must overcome finite energy barriers in order for
the phase separation process to begin; and the unstable region, in which such energy
barriers are absent.

The crossover between the two regions is delineated in the phase diagram by the
spinodal line. In the metastable region, the phase separation process begins by the
nucleation of droplets of A-rich and B-rich regions driven by thermal fluctuations that
are large enough to overcome the local free energy barriers, and by the subsequent
growth of droplets of super-critical size. In contrast, phase separation in the unstable
region begins by the development of small-amplitude, long-wavelength fluctuations in
the relative concentration of A and B. See Ref. [3] for a more detailed discussion of
the phase diagram.

The phase separation process following a rapid quench from the stable (high-

temperature) region to the unstable region of the phase diagram is called spinodal
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decomposition. Spinodal decomposition in binary alloys has been intensively studied
both experimentally and theoretically since the 1950s, initially due to its technological
importance in metallurgy, and later as a process of fundamental interest in the general
context of non-equilibrium statistical physics. The experimental probes used include
neutron and X-ray scattering, as well as electron microscopy. The probe of primary
interest to us will be neutron scattering, which couples to the spatial variations in
the local magnetic moment that are induced by the phase separation process. The
measured scattering intensity at momentum transfer Ak and at time ¢ is proportional
to the structure factor S(k,t), defined as the (spherically averaged) Fourier transform
of the real-space correlation function C(r, t) of the order parameter 9 (r, t); here 9 (r)is
given by the difference in the local concentrations of the A-rich and B-rich phases (that
is, ¥ = 0 for the homogeneous A-B mixture).

For our purposes, it is crucial to distinguish between the early and the late stages
of the spinodal decomposition process. In Fig. 4.2, we show the neutron scattering
data of Katano and Izumi [6] for a wide range of times ¢ after a quench to the unsta-
ble region region of the FeggsCro44 alloy phase diagram. The scattering background
corresponding to the homogeneous phase is subtracted (i.e., S(k) =0 at ¢t =.0). The
development of the peak in S(k) for ¢ > 0 indicates the presence of structure in the
system characterized by a length scale given by 27 /k,,, where kp, is the position of the
maximum. It is seen that, at the earliest times, the growth of S(k) is accompanied
only by weak changes in k,,. This indicates the amplitude growth of the initial fluctu-
ations of the concentration difference 9 of fixed wave-length 27 /ky,, and corresponds
to the initial stages of spinodal decomposition. At later times, kp, starts shifting to
smaller values, indicating the presence of a growing length-scale in the system. This
corresponds to a crossover to the regime in which the amplitude of 1 has locally
achieved its full equilibrium value, and the system is divided into domains consisting
of the stable A-rich (¢ ~ 1) or B-rich (¢ ~ —1) phase, separated by sharp domain
walls at which the order parameter ¢ changes from 1 to —1. The peak position kn

now corresponds to the typical inverse size of the domain, and the decrease of ki,
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Figure 4.2: The structure factor of the binary alloy FepesCro44 at indicated times
after the quench. Figure taken from Ref. [5].

with time corresponds to the gradual coaréerﬁng of the domain pattern.

The dynamics of the spinodal decomposition process may be described theoret-
ically through a suitable equation of motion for the order parameter (r,t). It is
crucial that the equation of motion takes into account the fact that the order param-
eter is conserved: as the total number of atoms of each species is fixed, changes in the
local composition of the alloy occur only through atomic diffusion, and the integral
of 1(r,t) over the system is independent of time. The appropriate dynamical model
for the (coarse-grained) description of the system is the well-known model B (in the
classification of Ref. [4]): The equation of continuity expressing the conservation law

is

0 5

EQL‘-FV'J—O, (4.1)
where the current density j is proportional to the gradient of the chemical potential

. OF

J =y Vs (4.2)

()
Here, F' is the appropriate (coarse-grained) free energy of the system, expressed as

a functional of the order parameter field ¢(r). A simple standard form of F' that
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captures the existence of the phase transition is
F{y(r)} = / dr( Vw + = ¢2 - w‘*) (4.3)

where a is proportional to T,—T, and « and b are (essentially) temperature-independent
coefficients. A thermal noise term of appropriate strength would be added to the right
side of Eq. (4.1) if one wishes to address situations at non-zero temperature; the 7' = 0
limit of the model will be of primary interest to us [5], and we shall therefore omit
the noise term from our formulae. Substituting Eqgs. (4.3) and (4.2) into Eq. (4.1),

we obtain

2 B0t = RV, t) - aw(e,t) — b0, (4.4)

Equation (4.4) was first formulated in the context of spinodal decomposition by Cahn
[7], and is usually called the Cahn-Hilliard equation. Note that the kinetic coefficient
v and the order-parameter rigidity coefficient « in Eq. (4.4) may be set to 1 by
re-defining the units of time and length, respectively.

The nonlinear character of the Cahn-Hilliard equation makes any analytical treat-
ment very difficult. An explicit solution may be obtained only for the very early stages
of spinodal decomposition, where the magnitude of the order parameter v is small
throughout the whole system. In this case, the right-hand side of Eq. (4.4) may
be linearized, and the equation is solved by a function that grows ezponentially in
time. Except perhaps at the earliest times after the quench, such exponential growth
of the order parameter, and consequently of the structure factor, is not observed in
experiments. To treat the late stages of the phase-ordering process successfully, the
non-linearity in Eq. (4.4) must be taken into account. Furthermore, there are no
small parameters in the theory that would permit a perturbative treatment. This
becomes evident once we re-scale Eq. (4.4) using ¢ — gb\/—T/b, r — T\/IT—G) , and
t = tb'/2/(y(—a)%?) (recall that a is negative for temperatures below T;) to obtain

the dimensionless equation of motion
0
5P (E: 1) = V2O(r,8) + 9 (r,1) — ¢°(r, 7). (4.5)
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In Ref. [8], Langer, Bar-on and Miller attempted to take into account the non-
linear term in Eq. (4.5) through a closure-type approximation. Specifically, they
used Eq. (4.5) to derive an equation of motion for the structure factor S(k,t) that
involves higher-order (Fourier-transformed) two-point correlation functions, and then
closed this equation by assuming that the spatial dependence of the higher order
correlations is identical to that of the lowest-order correlation. While this theory
results in improved agreement with experiment in the early-time regime, it does not
capture correctly the features of the asymptotic late-time regime of the phase-ordering
process. _

Progress in the analytical treatment of the late-stage ordering has been made pos-
sible by concentrating on the property of dynamical scaling. The dynamical scaling
hypothesis, introduced independently by several groups (see Refs. [9, 10, 11]), states
that at times long after the quench, there is a single time-dependent characteristic
length-scale L(t) that controls the statistical properties of the system. Stated another
way, the system is statistically self-similar at successive times, up to a rescaling de-
termined by L(t). This implies that the correlation function C(r,t) at different times

t can be collapsed on to a single curve by using the characteristic length-scale:
C(r,t) =T'(r/L(2)). (4.6)
Consequently, the structure factor S(k,t) has the scaling form
S(k,t) = L*(t)g(kL(t)), (4.7)

where d is the spatial dimensionality of the system.

In Fig. 4.3, we show neutron scattering data of Gaulin et al. [12] that demonstrate
the validity of the dynamical scaling form Eq. (4.7) at the late stages of phase separa-
tion in the binary alloy Cug.33Mng67. The time evolution of the position ky, of the peak
of the structure factor in the same data is shown in Fig. 4.4; it is seen that ky ~ t!/3
at late times, implying that the characteristic length scale L(t) ~ kp(t)~! ~ ¢!/3

grows as a power law in the time elapsed since the quench, with exponent 1/3. The
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Figure 4.3: Left: The structure factor of the binary alloy Cug.33Mng 67, with horizontal
axis re-scaled by the position k of the structure factor peak. Right: Collapse of
the the structure factor for times after the quench exceeding 5000 sec., achieved by
rescaling the vertical axis using the length scale k!. Figure taken from Ref. [11].

characteristic length scale is, in the present case, given simply by the typical domain
size in the sample at time ¢. A derivation of the power law L(t) ~ t'/® based on the
equation of motion for the interface between two domains was given first by Lifshitz
and Slyozov [12] for the situation when one of the two components of the binary alloy
is dominant. An argument based on scaling considerations and valid for arbitrary
concentrations was later given by Huse [13]. The validity of the dynamical scaling
hypothesis and the power-law growth of the characteristic length scale has also been
confirmed by numerical simulations (see Ref. [14]).

Recent analytical theories, based on the introduction of auxiliary gaussian fields
(see Refs. [15, 16, 17]), on a renormalization-group-type analysis (see Refs. [18]), and
on energy-scaling arguments (see Refs. [19]), have been successful in predicting a
number of features of the late stages of the phase-ordering process. These theories,
however, assume the validity of dynamical scaling, rather than attempt to derive it.

A systematic treatment of the property of dynamical scaling in the late stages of
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phase ordering remains an open theoretical challenge.

4.2

in spatial dimension two and higher

In the previous section, we introduced the subject of phase-ordering kinetics with the
example of binary alloys. The equation of motion, Eq. (4.4), is also valid for a number
of other systems that are described by a scalar conserved order parameter, such as
Ising ferromagnets, and various binary mixtures. (A notable exception is provided by
the binary fluid system, for which hydrodynamic effects must be taken into account,
so that the simplest equation of motion that can describe the late stages of phase
separation is considerably more complicated). A second important class of systems
1s that described by a scalar but non-conserved order parameter (examples include

antiferromagnets and superfluid He*). For these systems, the equation of motion is

given by

9. _ _
o’ = 7

§F
3(r)
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(i.e., model-A dynamics with the noise term omitted), where F' is again the coarse-
grained free energy, which is commonly taken to have the form of Eq. (4.3). A number
of numerical simulations have demonstrated the validity of dynamical scaling in the
late stages of phase ordering governed by this model.

In recent years, systems described by more complex (i.e., non-scalar) order pa-
rameters have been studied extensively. Depending on the presence or absence of the
conservation law, these systems are again described by Eq. (4.1) or Eq. (4.8), where
the order parameter ¥ has now a more complicated character: for example, the scalar
v is replaced by a vector in the case of planar or Heisenberg ferromagnets, and by a
tensor in the case of nematic liquid crystals.

It was found that, as a general rule, the dynamical scaling hypothesis holds for
these more complicated systems. There are, however, notable exceptions to this rule.
In the remainder of this section, we list the systems for which the validity of the
dynamical scaling property has been disproved or questioned. Naturally, the list is
not complete—a number of systems for which violations of dynamical scaling may be
expected to occur have not yet been extensively studied. We restrict our attention
to systems in spatial dimension two and higher, without long-range interactions, and
undergoing a quench that results in a random initial order parameter configuration
with no bias (i.e., a “critical” quench).

The only two systems (in dimension two or higher) for which an exact late-time
analytical solution to the equation of motion has been found are the conserved and
non-conserved spherical models, i.e., models described by the O(/N) symmetric vector
order parameter in the limit N — oo. It has been shown [21] that dynamical scaling
does not hold in the conserved case, but does hold in the non-conserved case. The
violation of scaling in the conserved case is related to the occurrence, in the result for
the structure factor S(k,t), of two length scales with different growth laws: whereas
the height of the peak of S(k,t) has a time dependence that implies a /4 growth
law, the position of the peak is inversely proportional to (¢/In(t))!/%. Recall (from
Chapter 3) that no topologically stable defects occur in the spherical model in any
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spatial dimension; it is therefore not possible to give an intuitive explanation of the
origins of the scaling violations in terms of the behavior of topological objects.

The situation is different in the case of the non-conserved O(3) symmetric (i.e.,
Heisenberg-type) vector model in two spatial dimensions. It has been shown [22, 23]
that strong violations of dynamical scaling occur in the numerical implementation
of phase ordering in this model. These violations are related to the occurrence of
numerous topological textures—topologically stable, but non-singular objects of vari-
able size. A detailed discussion of the phase-ordering process in this system will be
given in Chapters 6 and 7. '

For the last case that we shall discuss in this section, the question of whether
dynamical scaling is violated is still open. In the numerical investigations of two
systems supporting topologically stable point defects in two spatial dimensions—
namely, in the non-conserved O(2) vector model in 2d (Ref. [24]) and in the 2D liquid
crystal system (Ref. [25])—weak violations of dynamical scaling have been observed.
By “weak”, we mean that the structure factor appears to satisfy the scaling form
Eq. (4.7), but the growth law of the length scale L(t) (the correlation length of the
order parameter) is found to differ from the growth law for the average separation of
topological defects in the system. A more detailed discussion of this behavior in terms
of general properties of point defects in two dimensions will be given in Sec. 5.5.1 of

the following chapter.
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Chapter 5

Phase ordering in uniaxial and biaxial nematic films

5.1 Introduction

When a system is quenched from a high-temperature equilibrium phase, it undergoes
a phase ordering process in which the highly nonequilibrium state, generated during
the quench, slowly evolves towards the low-temperature phase. The process of phase
ordering following the quench has been extensively studied for systems described
by a scalar order parameter (see the discussion in the previous chapter) and, more
recently, also for systems with continuous symmetries. Much of the analytical [1] and
numerical [2, 3] investigations of the continuous-symmetry cases have concentrated on
phase ordering in the O(N)-symmetric vector model. Very recently, nematic liquid
crystals have proven to be useful for experimental investigations of phase ordering
[7, 8, 9], triggering several theoretical investigations [4, 5, 6].

In many experimental and numerical studies it has been observed that dynamical
scaling holds for the static correlation function at late stages of phase ordering in
a variety of systems (see the previous chapter for a more detailed discussion). The
validity of dynamical scaling, however, has repeatedly been questioned [10, 2] for the
case of the 2D O(2) vector model (i.e., the O(2) vector model in 2 spatial dimensions).
In particular, it has been observed that the correlation length (i.e., the length-scale
required to cause the collapse the static correlation function) and the defect separation
length appear to grow in time with distinct power-laws.

In systems where topologically stable defects exist, many of the universal char-
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acteristics of the late stages of phase ordering can be obtained by considering the
properties of the defects and their interactions alone. In O(N) vector systems, uni-
axial nematics, and biaxial nematics, these properties are distinct from one another
[13], and thus one might anticipate differences between the phase ordering of such
systems. The study of ordering in systems described by a nematic order parameter
is therefore of considerable theoretical interest, and should provide insight into the
dependence of the ordering process on the details of order parameter symmetry.

The purpose of this chapter is to report results from a cell-dynamical scheme
(CDS) simulation of phase ordering in two-dimensional samples of uniaxial and biaxial
nematic liquid crystals. By a two-dimensional sample, we mean a film with thickness
that is smaller than the equilibrium correlation length prior to the quench. We
emphasize that while the system has two spatial dimensions, the molecules are allowed
to point in any direction in three-dimensional space and, correspondingly, the order
parameter is a three-dimensional (rank-two symmetric traceless) tensor. We compute
the time-dependence of the correlation function, structure factor, energy density, and
number densities of the topologically distinct defect species. In common with the
2D O(2) vector model, the system supports point defects, and thus the question
of the validity of dynamical scaling is also expected to be relevant here. In the
case of a biaxial nematic, we also study the additional features arising from the fact
that the system supports four topologically non-equivalent defect species, and make
predictions that should be verifiable experimentally by direct optical visualization of
the defects.

This chapter is organized as follows. Following the Introduction, we present, in
Sec. 5.2, the details of our CDS approach. In Sec. 5.3, we give results for the evolu-
tion of the static nematic correlation function, the correlation length and the energy
density, and discuss their implications. In Sec. 5.4, we review the topological classi-
fication of defects in uniaxial and biaxial nematics, give algorithms for finding and
identifying defects, and illustrate the combination laws among defects using events

from our simulation. In Sec. 5.5.1, we present results for the time-dependence of the
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density of defects after quenching to the uniaxial nematic phase, and give a detailed
discussion of the effective growth-exponent for the average defect-separation. Defects
in biaxial nematics have properties qualitatively different from those of uniaxial ne-
matics: there are four topologically distinct species of defects, and their combination
laws are non-Abelian. In Sec. 5.5.2, we present results for the time-dependence of the
populations of the four topologically-stable species, and discuss the physical mecha-
nism that causes certain species to dominate at late times. In Sec. 5.6, we make some
concluding remarks.

We end this Introduction with a summary of our results.v We find that the static
correlation function and structure factor appear to collapse to scaling curves over
a wide range of times. In the uniaxial quench case, the correlation length L (t)
required to achieve collapse grows approximately as a power-law in time, Lo (t) ~
t%eor with an exponent @¢or = 0.407 4 0.005. The average separation between defects,
Laes(t), also grows as a power-law, Lges(t) ~ t%4f, with an exponent @ger = 0.374 £
0.007, distinctly lower than ¢.... As we discuss in Sec. 5.5.1, the discrepancy between
dcor and Pger is inconsistent with the strict collapse of the correlation function, and
thus indicates a violation of dynamical scaling — a violation that is not apparent from
our results for the correlation function alone. The length cha.racterizirig the decay of
the energy density, Le,(t) ~ t%n, has the effective growth exponent ¢e, = 0.320 +
0.007. As we show in Sec. 5.3.4, the discrepancy between ¢e, and @c,r does not, in
fact, indicate the violation of dynamical scaling. The effective growth exponents, ¢c,r,
@get and ey, are significantly smaller than the value of 0.5, suggested by naive scaling
arguments [19]. A similar reduction of ¢¢s has been observed in simulations of the 2D
O(2) vector model [2, 10]. This has been attributed to logarithmic corrections to the
true asymptotic power-law growth of the separation of defects, which was motivated
by an analysis of the mutual annihilation of an isolated defect-antidefect pair [12].
In order to check the relevance of the two-defect problem for scaling properties in
ordering of large nematic systems, we have performed simulations of the annihilation

process of an isolated pair of uniaxial nematic defects. We find that the distance
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between the defects decays as a power-law in the time remaining until annihilation
with the growth exponent of 0.375 & 0.007, consistent with the value of ¢qer given
above. The reduced value of the growth exponent in the two-defect problem can
be explained by arguments analogous to those used in the treatment of the defect-
antidefect annihilation process in Ref. [12].

For the case of biaxial nematics, of the four topologically-distinct species of defects
only two are present in large numbers at late times, giving growth laws with powers
of 0.391 £ 0.007 and 0.366 £ 0.007. We characterize the different stages of ordering
in the biaxial system in terms of the dominant defect-defect reactions. As in the
uniaxial case, we observe a discrepancy between ¢, and the growth exponents of the
defect separations for each species, indicating a violation of dynamical scaling.

Biaxial nematic media provide perhaps the simplest example of an ordered medium
with a non-Abelian fundamental homotopy group [13]. To the best of our knowledge,
phase ordering in such systems has not been previously studied. While the physical
effects of the non-commutative nature of the fundamental homotopy group are ex-
pected to be more profound in three spatial dimensions[14], some consequences are
already apparent in the present work.

The results described in this chapter where obtained in collaboration with Paul
M. Goldbart and Nigel Goldenfeld.

5.2 Cell dynamical scheme for the entire nematic order parameter

We adopt the standard characterization [17] of the nematic order in the vicinity of
the position r at time ¢ in terms of the order paraxﬁeter field Qqp(r,t). This order
parameter is a traceless symmetric second rank tensor, with Cartesian indices (with
a,f,... = 1,2,3). The eigenvalue of Q,s largest in absolute magnitude gives the
degree of orientation in the preferred direction, the corresponding eigenvector iden-
tifying the preferred direction u (i.e., the so-called director, in the uniaxial nematic

case). The difference between the remaining two eigenvalues characterizes the degree
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of biaxiality, with the biaxiality axis b specified by the eigenvector corresponding to
the eigenvalue having the second largest magnitude [15].

Before the quench, the local value of the order parameter (coarse-grained on the
scale of the equilibrium correlation length prior to the quench) is zero. After the
quench, the eigenvalues of Q,p start to grow locally, and the eigenvectors start to
become correlated spatially. We describe the time-evolution of the order parameter
using the time-dependent Ginzburg-Landau equation appropriate for a non-conserved

order parameter:
0 )
5 Qes(r,2) = -mF[Q] | (5.1)

(in which it is understood that only the traceless symmetric part of the right-hand
side is retained), where F[Q] = [ d?zF(Q) and F(Q) is the appropriate free energy
density.

A homogeneous part of F(Q) adequate for the description of the isotropic-nematic

phase transition can be taken to be [16]
F@=ATrQ*+BTrQ*+C(Tr@*) + E(Tr @*)’, (5.2)

with C > 0, and the quench corresponds to a change in A, from large and pqsitive in
the isotropic phase to negative in the nematic phase. For E = 0, Eq. (5.2) describes a
uniaxial nematic; for E > 0, it describes a biaxial nematic. To construct an effective
numerical scheme for the evolution governed by Eq. (5.1), we use the CDS approach
(see below), in which one must find the fixed points of Eq. (5.1) and Eq. (5.2) must

be ascertained. When diagonalized, Qs can be parametrized (up to a relabeling of

axes) as
2z 0 0
Q=10 —-z-y 0 , (56.3)
0 0 -4y

with z > 0and 0 € y < 3z. (Then 2z is the leading eigenvalue if z < y, %:c
corresponds to the “degree of ordering” S, as usually defined for uniaxial nematics
[17], and y characterizes the degree of biaxiality). The scalar density F;(Q) can be

expressed as a function of z and y.
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U X

Figure 5.1: fixed point diagram for the evolution of the order-parameter magnitudes =
and y following a uniaxial quench. Here I is the unstable fixed point corresponding to
the isotropic phase, S is the saddle fixed point on the “discotic” uniaxial axis y = 3z,
and U is the fixed point corresponding to the stable uniaxial phase.

Finding and characterizing the stationary points of Fj(z,y) yields the fixed point
diagrams shown in Fig. 5.1 and Fig. 5.2. For a uniaxial quench (E = 0), one finds
an unstable fixed point at the origin (z = 0, y = 0), corresponding to the unstable
isotropic phase, and a stable fixed point on the uniaxial line y = 0, corresponding to
the stable uniaxial nematic phase. Furthermore, one finds a saddle fixed point on the
line y = 3z. The line y = 3z corresponds to a uniaxial phase [two of the eigenvalues
in Eq. (5.3) being equal |; however, the eigenvalue largest in absolute value is —4z,
and is therefore negative. This indicates “discotic” nematic ordering — for needle-
like molecules, it would mean that the long axis of each molecule lies, on average,
perpendicular to the “director ” (see Fig. 5.3). Analysis of Fj,(z,y) shows that the
fixed point on the y = 3z axis is always present, being stable in the discotic uniaxial
direction (along y = 3z), and unstable in the biaxial direction (perpendicular to
y = 3z). The implication of this fixed point structure is that the time evolution,
determined by Egs. (5.1) and (5.2), of the order parameter magnitudes z and y is as
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U X

Figure 5.2: fixed point diagram for the evolution of the order-parameter magnitudes
z and y following a biaxial quench. The flow is directed towards the stable biaxial
fixed point B with the help of the two uniaxial saddle fixed points U and S.

schematically indicated in Fig. 5.1. Similar conclusions were reached in Ref. [6].

For the biaxial quench (E > 0), the stable fixed point on the uniaxial y = 0 axis
changes to a saddle fixed point, and redirects the flow towards the stable biaxial fixed
point, which is located at z > 0 and 0 < y < 3z (see Fig. 5.2). The primary difference
between the uniaxial quench and the biaxial quench thus lies in the different structure
of the fixed points. |

In addition to the homogeneous contribution to the free energy, there is also a
contribution that couples the value of the order parameter in different spatial regions.
In a nematic system, this elastic energy has three indépendent contributions, one each
from splay, bend, and twist [17]. To simplify calculations, the three corresponding
independent elastic constants are commonly taken to be equal (i.e., the so-called one-
constant approximation is often made). In this case, the free energy of a nematic

takes the form
}-(Q) = ]:h(Q) + M(aaQﬂ'Y)(aaQﬁ'y) ’ (5'4)
in which F, is given by Eq. (5.2) and M is the (single) elastic constant. The functional
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(a) (b)

Figure 5.3: Two types of uniaxial nematic ordering resulting in the same overall
preferred direction of orientation (the “director”): (a) In “elongated” ordering, the
long axis of each molecule lies, on average, parallel to the “director”. (b) In “discotic”
ordering, the long axes of the molecules lie, on average, in the plane perpendicular to
the “director”, with random orientations within the plane.

derivative 6 F'/6Q then yields a term V2Q,s in the equation of motion, Eq. (5.1), and
thus the intercell coupling has a purely diffusive character.

We simulate the dynamics of the order parameter Qqz(r,t) using the CDS tech-
nique [18]. The CDS method has proven effective for simulating phase ordering in
systems with O(N) vector order parameters (both nonconserved and conserved; see
Refs. [2, 3]). Recently, ordering of uniaxial nematics in 2 and 3 spatial dimensions
has been studied using CDS techniques [4, 5]. In the case of biaxial nematics, we
encounter a situation in which more then one scalar (i.e., the 2 independent eigenval-
ues of the tensor Qqg) can be constructed from the order parameter (an additional
complication is that a linear constraint, Tr Q = 0, is imposed on the order parameter
components). We shall see below that the CDS approach can be straightforwardly
generalized to the present case.

In the CDS approach, the system is divided into cells of the size of the equilibrium

59



correlation length before the quench, and each cell is characterized by a value of the
order parameter QQ,5. As we are concerned with a quench from a high temperature,
immediately after the quench the values of Q,p in each cell are independent (i.e,
spatially uncorrelated), identically distributed random variables. Each time step of
the evolution of the Qo4 field is divided into two sub-steps: single-cell evolution, and
intercell coupling.

In the single-cell evolution step, which reflects the homogeneous contribution to
the free energy, we must assign a new value Qpew to the order parameter in a given
cell as a function of the old value in that cell Q4. By usix_lg symmetry arguments
one can show that the most general symmetric traceless function Quew of a symmetric

traceless tensor (Quq can be written as

Qnew = f (Tf Qo Ir led) Qoia + g(Tf Qoes Ir led) ledl e’ (5.5)

where f and g are arbitrary (scalar) functions of the two independent scalars Tr Q2
and TrQ%4, and Q%|a; = @ — 31 TrQ? (where [ is the unit matrix) is the traceless
part of Q2.

The choice of the functions f and g is motivated by the form of the homogeneous
free energy, Eq. (5.2). As the asymptotic dynamics of the order parameter is governed
by the fixed point structure of Egs. (5.1) and (5.2), we are free to choose f and
g in any (computationally efficient) way, as long as the map, Eq. (5.5), has the
fixed point structure of Fig. 5.1 or Fig. 5.2. [One can pass from the independent
scalars Tr@? and Tr @® to z and y, as defined above, by using the identities z =
\/Wcos (% arccos(v6Tr Q*/(Tr Q2)3/2)) and y = \/m] The numerical

results in the remainder of this chapter have been obtained using the choice

f(z,y) = Ll.3tanh(z)/z - zg(z,y) (5.6)
9(z,y) = 1/4 (5.7)

in the case of a uniaxial quench, and
 f(z,y) = 1l.3tanh(z)/z — zg(z,y) (5.8)
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g(z,y) = —-1/4+by (5.9)

in the case of the biaxial quench. The parameter b controls the strength of biaxiality.
It is straightforward to check that the choices reflected in Egs. (5.2) and (5.2) give the
fixed point structure of Fig. 5.1 and Fig. 5.2, respectively, with fixed point locations
(z, y) at (0, 0), (0.977, 0), (0.337, 1.011) [in the biaxial case, the location of the third
fixed point depends on the parameter b], and (for the biaxial quench only) at (0.977,
1/4b). The results presented in the remainder of this chapter where obtained using
the choice b = 1, with the exception of the data in Fig. 5.6b, where the value b = 0.5
was used.

Note that Egs. (5.3) and (5.5) imply that 2’ = :r(f(x, y) +zg(z, y)) - 3y%9(z,v),
where z and y are calculated from Qq4, and 7’ is calculated from Qpew. Our choices of
f and g [for both the uniaxial (Egs. /5.2/) and biaxial (Eqgs. /5.2/) quench) therefore
ensure that ' = 1.3tanh(z) for y = 0 — that is, the evolution of the degree z of
uniaxial ordering is (in the absence of biaxiality) given by the standard CDS choice
(see, e.g., Ref. [18]) for the evolution of the order-parameter magnitude. We find
Egs. (5.2b) and (5.2b) to be the simplest computationally-efficient choices for g(z,y)
ensuring the correct properties of the flow in the biaxiality-strength (y) direction.

The intercell coupling contribution to the CDS evolution resulting from the elastic

contribution to the free energy in Eq. (5.4) can be expressed as

Qnew = Qo + D (Qold - ((Q))) (5.10)

Here, Qpew is the value of @ in a certain cell after the update, D is a parameter

reflecting the elastic coupling, and the term ((Q)), defined by

(@) =T Q+53Q, G.11)

arises from a discretization of the Laplacian that retains nearest (nn) and next nearest
(nnn) neighbor terms [18].
The quenches that we are considering are envisaged to start at high temperatures,

at which the equilibrium phase is the disordered, isotropic phase. We take as the

61



initial condition for our CDS simulation a configuration representative of this phase, in
which Q is zero in each cell, apart from small, uncorrelated, isotropically distributed,
random fluctuations. Specifically, the random initial order parameter in each cell was
obtained by generating 3 random numbers that add to zero (i.e., 3 eigenvalues of
Q) from a uniform distribution of width 0.2, and then rotating the resulting diagonal
matrix using random Euler angles. To summarize the scheme, we start with a random
initial configuration (satisfying periodic boundary conditions), and then repeatedly
apply the steps specified in Egs. (5.5) and (5.10), using the appropriate map, i.e.,
Eq. (5.2) or (5.2). |

The results presented in the remainder of this chapter were obtained in runs using
a variety of choices of the diffusion constant D (in the range D = 0.1 to 0.5). Higher
values of D were found to be more advantageous for accessing the asymptotic regime
in a given number of time steps. It was, however, necessary to use lower values of D in
the detailed investigation of the evolution of the populations of the topological defects
because, at the early stages of ordering, values of D ~ 0.5 lead to the presence of a
number of cells where the eigenvalue largest in absolute value is negative (that is, the
corresponding points in Fig. 5.1 and 5.2 lie above the line y = z), which invalidates
the notion of a topologically stable defect (see Section 5.4.1 ). We found that by
“hardening” the random initial configuration (i.e., allowing it to evolve for a small
number of time steps with D set to zero, so that the order parameter magnitudes z and
y approach the fixed point without affecting the orientation of the order parameter),
and subsequently using the value D = 0.1 to evolve the system, we were able both
to ensure that thesis3.texthe topological defects are well-defined even at the earliest
stages of ordering and to access the asymptotic late time regime.

We are concerned with quenches to zero temperature, so that thermal fluctua-
tions play no role in the dynamics. It was, however, commonly observed in previous
numerical investigations of zero-temperature quenches that freezing into metastable
configurations can occur (e.g., Ref. [12]). Therefore, to test whether freezing effects

were influencing our simulation, we performed a limited number of runs in the pres-
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ence of noise (i.e., a small-amplitude random configuration was added to the order
parameter at each time step). The results were observed to be insensitive to noise,
up to noise strengths capable of spontaneously generating numerous defect pairs. All
results in the asymptotic regime were observed to be independent of the chosen value
of D and the system size (with the exception of the transition in the rate of change

of the effective growth exponents, mentioned in the following Section).

5.3 Correlation function, structure factor and energy density.
5.3.1 Collapse of the correlation function and the structure factor.

In its usual formulation, the dynamical scaling hypothesis [1, 11] states that at late
times of phase ordering, there is a single time-dependent characteristic length-scale
L(t) that controls the statistical properties of the system. Stated another way, the
system is statistically self-similar at successive times, up to a rescaling determined
by L(t). It will be crucial in the detailed analysis of the data from our simulation
to distinguish two statements which are often taken to be consequences of dynamical
scaling:

(a) The correlation function C(r,t) at different times ¢ can be collapsed on to a

single curve by using the characteristic length-scale Lo (2):
C(r,t) = O(r/Leor (t)) (5.12)

where I'(y) is a scaling function.

(b) The length scale L (t) used to obtain the collapse of the correlation function
determines the characteristic length-scale of all time-dependent macroscopic quanti-
ties in the system. Thus, the energy density of the system as well as the number
density of point defects present decay as Lo (t) ¢, where d is the spatial dimension-
ality of the system.

We shall see in our simulations of the 2D nematic system that statement (a) is

apparently very well satisfied over a wide range of times, but that statement (b) is
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rather strongly violated. A detailed discussion of whether this indicates a breakdown
of dynamical scaling will be given in Secs. 5.3.4 and 5.5.1.

The characteristic length scale L., (t) is usually assumed to grow asymptotically
as a power law of time, Lo (t) ~ t?=r for ¢t large. It should be noted that such an
assumption does not, in principle, follow from the dynamical scaling hypothesis. The
length-scales investigated in our simulation grow as approximate power-laws at late
times. However, the growth exponents for these length-scales differ and, moreover, are
significantly lower than the value ¢, = 0.5, which is usually observed in experiments
on phase ordering in systems with nonconserved order parameters. The latter issue
is discussed in detail in Sec. 5.5.1.

We now present the results for the correlation function and the structure factor
from our simulation. For the tensorial nematic order parameter Q,s(r,t), a scalar
correlation function can be defined by
(Tr[Q(0,1) Q(r,)])

(TrQ(0,t)?)

where (- --) denotes averaging over the positions (i.e., 0), and over the orientations

Cr,t) = , (5.13)

of r. The correlation function is normalized so that C(0,t) = 1. We define the

correlation length Lo () at time ¢ through

C(r,1)

] e (5.14)

Figure 5.4 shows the correlation functions C(r,t) obtained from our simulation of
ordering in a biaxial system at a sequence of times. In Fig. 5.5, data from Fig. 5.4
are rescaled using the correlation length defined by Eq. (5.14). We see that a good
collapse of the correlation function is obtained in the range of times 200 < ¢ < 5000. A
collapse of similar quality is also obtained for the correlation function in the uniaxial
system. We have, in addition, calculated the structure factor S(k,t) [i.e., the spatial
Fourier transform of C(r,t)], and used the correlation length defined by Eq. (5.14) to
check the validity of the scaling form

S(k,t) = L2, (£)g(kLeor(2)) - (5.15)
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Figure 5.4: Correlation function C(r,t) at specified values of time t following the
biaxial quench. The data were obtained by averaging over 68 configurations of a
256 x 256 system, with diffusion constant D=0.1.

The resulting scaling functions g(kLco(t)) for the uniaxial and biaxial quenches are
plotted in Figs. 5.6a and 5.6b. (The “tail” of g(y) (i.e., the asymptotic behavior of
g(y) in the y > 1 region) will be discussed in more detail in Sec. 5.3.4). The quality
of the collapse of our data for both the correlation function and the structure factor
is entirely comparable to the quality of collapse obtained in simulations of ordering
in systems where the validity of dynamical scaling has not been questioned (see, e.g.,
Ref. [18] for the Ising system in 2 spatial dimensions, or Ref. [10] for the O(3) vector
model in 3 dimensions). In this sense, our data are consistent with the validity of the

statement (a), given above.
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Figure 5.5: Collapse of the data for C(r,t) from Fig. 5.4. Inset: time-dependence of

the correlation length L., defined by C(r,t) =1/2
r=Lcor(t)

5.3.2 Effective growth exponents for the correlation length and energy
length.

We now consider the time-dependence of the correlation length and the energy density.
The inset in Fig. 5.5 shows the growth of the correlation length Leo(t). This log-log
plot indicates a crossover from a non-power law growth of Lo (t) at small ¢ to an
approximate power-law growth at ¢ > 200, the later range of times corresponding to
times where the good collapse of the correlation function is observed. The slope of
the best-fitting straight line, giving the growth exponent, is ¢cr = 0.41. In Fig. 5.7,
we plot the elastic free energy of the system, [(8aQs)(8a@p,) d*z, as a function of
time. Asymptotically, the elastic free energy decays approximately as t~06, giving
power-law growth for the energy length-scale Len(t) [defined as the inverse square

root of the elastic free energy] with exponent ¢, = 0.32.
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Figure 5.6: The collapsed structure factor scaling function g(kLcor) = S(k,t)/L2,.(t)
for (a) uniaxial and (b) biaxial quenches. In both cases, the average was performed
over 100 configurations of a 100 x 100 system, with the diffusion constant D=0.1. A
straight line with slope —4 is plotted in both Fig. 5.6a and Fig. 5.6b to demonstrate

the validity of the Porod law, g(y) ~ y~* for y large (see section IIL.C).
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Figure 5.7: Log-log plot of the elastic free energy per cell F(t) versus time ¢t. (Averaged
over 68 configurations of a 256 x 256 system).

To determine the value of the growth exponent for both cases in a more reliable
way, we calculate the effective growth ezponent qﬁ(t), defined as

- dln L(t)
¢(t) am()

(5.16)

in the considered time range [with L(t) taken to be either L (t) or Ley(t)]. The
true (asymptotic) power-law exponent ¢ is obtained by extrapolating the effective
exponent qg(t) to very large values of t or, equivalently, to very large values of L(t).
We have attempted to match our data for qg(t) on to two candidate extrapolation

formulas:

~ a

(1) = ¢+é, (5.18)



with ¢, a and A constant. The validity of relation (5.17) would imply that
L(t) = —% + bt (5.19)
throughout the considered time range, while the relation (5.18) would imply that
L(t) =ct®exp(— A/t) (5.20)

(where b and c are arbitrary constants).

We find that our data for the effective growth exponents of both the correlation
length and the energy length fit Eq. (5.18) significantly better than Eq. (5.17) [see
Figs. 5.8 and 5.9]. As ¢t > 1 in the considered time range, we can rewrite Eq. (5.20)
as

L(t) = ct® (1 - é) =ct? — cAt*™! (5.21)

which (by analogy with critical phenomena having a “critical point” at ¢ = o0)
corresponds to a power-law behavior together with the leading analytic correction.
The extrapolation formula (5.18) is thus perhaps more natural than (5.17).

The effective exponents dBCO,(t) and qgen (t) are plotted as a function of 1/t in Fig. 5.8
(for the biaxial quench case) and in Fig. 5.10 (for the uniaxial quench case). The
figures show a sharp transition in the rate of change of both effective exponents at
the time t ~ 2000. (The transition is less sharp in the uniaxial quench data, because
the average was performed over a smaller number of configurations than for the biaxial
case). We found that in a system of smaller size, i.e. 100 x 100, a similar transition
occurred at a lower value of ¢ [and therefore L(t)], indicating a connection between this
transition and finite-size effects. At the same time, increasing the diffusion constant
D in the CDS scheme to values larger then D = 0.1 seemed partially to suppress the
transition, indicating that the rapid lowering of the growth exponents may be due to
the onset of freezing. [The likelihood of freezing at late times was observed to depend
on the value of the diffusion constant in CDS simulations for scalar systems [18])].
To determine the asymptotic growth exponents we therefore used data only from the

time range 200 < ¢ < 2000.
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Figure 5.8: Effective growth exponents for the correlation length (upper curve) and
the energy length (lower curve) in the biaxial quench case, plotted to fit the extrap-
olation formula (15b).

In the biaxial-quench case, the extrapolation formula (5.18) yields (see Fig. 5.8)
the asymptotic exponent values ¢cor = 0.403 + 0.003 for the correlation length, and
@en = 0.320 £ 0.005 for the energy length. A similar analysis for the uniaxial quench
(see Fig. 5.10) gives ¢cor = 0.407 £ 0.005 and @e, = 0.325 £ 0.007, consistent with the
biaxial values. Statement (b) in Sec. 5.3.1 (i.e., the presence of a single characteristic
length scale) is therefore violated in the considered time range. We are thus confronted
with two questions: (i) why is @e, significantly lower than ¢.or; and (ii) why are both
&cor and @, different from the value 0.5, suggested by the diffusive character of the
equation of motion (5.1) and by scaling arguments [19]? The second question can
be inost naturally addressed by investigating in detail the process of annihilation of
a pair of defects, as will be discussed in Sec. 5.5.1. The first question is addressed

below. First, however, we need to discuss in some detail the form of the structure

70



0-44 . L ] .3 T L4 Ll » L] i 1 ]
€ 043 s 9
[ i J
c °°
S 042 ¢t . .
> L ° d
e 041
£ X B 00%0 “1
o 040 o -
2 ol o '
£ 0.39 ° ; .
g L o p
w 0.38 } o -

0.37 " L 1 A Il i 1 " L
000 005 0.0 0.5 020 0.5
1/L,, (1)

Figure 5.9: Effective growth exponent @ (t) for the correlation length in the biaxial
case, plotted to fit the extrapolation formula (15a).

factor scaling function g(y).

5.3.3 The “tail” of the structure factor

We see in Figs. 5.6a and 5.6b that the function g(y), obtained by collapsing the
structure factor using the correlation length [see Eq. (5.15)], decays asymptotically
as y~* at large y. This is readily understood by generalizing the arguments leading
to the “Porod law tail” ie., g(y) ~ y~ ™+ in the case of the O(N) vector model
in d dimensions [20, v21]. For y = kL (t) > 1, the structure factor S(k,t) probes
the order-parameter configurations at length-scale 1/k = L (t)/y much smaller than
the separation between defects, which is of the order of L, (t) (see the note [28]).
Substantial variations of the order parameter over length-scale = Lo (t)/y occur only
in the vicinity of the defect cores, and are not related to inter-defect correlations. It

is therefore possible to calculate the value of S(k,t) for kL(t) > 1 from the order-
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Figure 5.10: Effective growth exponents for the correlation length (upper curve) and
energy length (lower curve) in the uniaxial quench case, plotted to fit the extrapolation
formula (15b). The system size is 256 x 256, and averaging was performed over 35
configurations.

parameter configuration close to the core of an isolated defect. This implies that
S(k,t) = paes (t) u(k) (for kLeor(t) > 1), (5.22)

where pges is the density of defects in the system, and u(k) is a function of k only. Let
us assume for now [22] that the separation between defects scales as the correlation
length Leor(t), 50 that paes o< Leor(t)~@*), where s is the dimensionality of the defect.
Then the validity of the scaling form (5.15) implies that

g(y) = A y @G-, (5.23)

i.e. the scaling function g(y) decays asymptotically as a power law, with the exponent
given by the sum of the dimension of space d and the co-dimension of the defect (d—s).

In the case of the d-dimensional O(N) vector model, the dimensionality of the defects
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is s = d— N, and we recover the result g(y) oc y~(¢+") of [20, 21]. In our 2D nematic
system, which has point defects, the co-dimension is 2 — 0 = 2, yielding g(y) ~ y~*,
in agreement with the results of our simulations (see Figs. 5.6a and 5.6b).

It is of interest to note that at lower values of y (i.e., values less than y = kLcor(t) =~
5), the scaling functions in Figs. 5.6 deviate from the y~* law, seeming instead to
decay with a higher power of y. Similar behavior was observed in simulations [4]
and experiments [9] (see also Ref. [6]) of phase ordering in 3-dimensional uniaxial
nematics, where a final Porod-law decay-exponent of 5 (corresponding to line defects
in 3 dimensions) was approached from above. It was specu_lated that the transient
value higher than 5 was due to the influence of point defects (which in 3 dimensions
give a Porod-law exponent of 6); in our 2-dimensional simulation, however, no defects
(even transient) that would contribute a Porod-law exponent higher then 4 occur, and
it must therefore be concluded that the faster decay of g(y) at intermediate values
of y is associated with inter-defect correlations. This is further indicated by the fact
that deviations from the asymptotic Porod law start to occur at values of y ~ 5 (see
Figs. 5.6), corresponding to correlations probed on the scale of 27”Lm,(t) ~ Leor(t),

i.e., the order of the inter-defect distance.

5.3.4 The energy-length growth exponent

We are now in a position to discuss why it is that the growth exponent ¢., was found
to be significantly lower than @, in our numerical results. To do this, we derive a
formula relating the instantaneous exponents ey (t) and qgcor(t). A similar argument
was given in a qualitative form for the O(2) vector order parameter case in Ref. [21].

We start by noting that

= / &' (3«:Qm) (aan) = ,/ SRS = / & (kL""’(t))zg (kLeor(®))
(5.24)
were we used Statement (a) of the scaling hypothesis in the form of Eq. (5.15).

Next, we use the Porod law form, Eq. (5.23), for g(y) in the range of distances
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Leor(t) > 7 > €, where £ is the core size of the defects. In the range of distances
between Lo (t) and the system size, g(y) has a weaker dependence on y (except for
a narrow range, discussed in the previous subsection), and its contribution is not
important for large L. (t). By integrating Eq. (5.24) from £ to L(t), we obtain the
asymptotic [large L. (t)] expression for the free energy

Eeo & Leor(t) ™2 In (Leor (2)/€) - (5.25)

This implies that

d(nEa) _ d(n Leoe(t)) d(ln Ea) _ - 1 ).

d(lnt) d(nt) d(lnLeyr) :¢c°r(t)(-_2+ln(Lc0,/£)

Therefore, the effective growth exponent @, (t) for the characteristic energy length is

(5.26)

depressed with respect to the correlation length exponent ¢or(t), according to

_ q‘SCOT(t)
210 (Leor (0)/€) °

In Fig. 5.11 we compare the prediction of Eq. (5.27) to the measured value (see Fig. 4)

Pen(t) = Boor () (5.27)

of the effective exponent de, (t), for the plausible value of the core size £ = 0.5 lattice
spacings (direct inspection of the order parameter magnitudes in the vicinity of defect
locations in our simulation shows that the core size is less than, but of the order of,
one lattice spacing). Considering the crudeness of the argument leading to (5.27), the

agreement of Eq. 5.27 with our data is quite satisfactory.

5.4 Properties of topological defects in
uniaxial and biaxial nematics

5.4.1 Topological classification of nematic defects

Certain features of the late stages of phase ordering may be understood in terms
of the properties of topological defects present in the system [25]: the exponent
and amplitude of the asymptotic power-law decay of the structure factor can be

calculated from the configuration of the order parameter around a single defect [20]; in
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Figure 5.11: Comparison of the measured values of the energy length growth exponent
en(t) (shown as o) to the values predicted by formula (23) (shown as squares); the
measured values of the correlation length growth exponent ¢cor(t), used in formula
(23), are shown as crosses (+, upper curve).

syStems for which dynamical scaling holds, the time-dependent characteristic length-
scale is given by the separation of defects; and logarithmic corrections to power-law
scaling of the average defect-separation can be attributed to the form of the inter-
defect forces [12]. It is therefore important to understand in detail the properties of
topological defects in the system at hand. In this subsection, we briefly review the
main consequences of the classification of topologically stable defects in uniaxial and
biaxial nematics [13] (see Chapter 3 for a more complete discussion). In SubSec. 5.4.3
we illustrate these consequences with data from our simulation. The time evolution of
the number densities of defects during phase ordering in our system will be analyzed
in detail in Sec. 5.5.

For the unambiguous topological classification of order-parameter configuration,
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it is necessary that the invariants constructed from the order parameter avoid certain
values. In the O(NN) vector model, this amounts to avoiding zeros in the magnitude of
the vector. In the context of the nematic order parameter, it is furthermore necessary
that the order parameter magnitudes z and y (defined in Sec. 5.2) are restricted to
lie either in the region z > y [“needle-like” ordering, Fig. (5.3a] or in the region z < y
[“discotic” ordering, Fig. (5.3]. In order to develop the topological classification,
it is sufficient to impose the condition that throughout the system the values of
the order parameter magnitudes z and y are appropriate constants. What remain
are orientational degrees of freedom, two for the uniaxial case (as specified by a 3-
dimensional “headless” unit vector, i.e., the director) and three for the biaxial case.
In our simulations, we ensure the applicability of the topological classification, even
at the earliest stages after the quench, as discussed at the end of Sec. 5.2.

We first discuss defects in the uniaxial nematic. Consider the order-parameter
configuration in a 2D system in which the director rotates by 360° around a central
point (Fig. 5.12a). Such a configuration is singular (in the sense that the free energy
density diverges at its center), but it is not topologically stable: by continuously
rotating the director out of the plane (i.e., by “escaping into the third dimension”) we
can arrive at the nonsingular (i.e., finite free energy density) configuration, as shown
in Fig. 5.12b. The singular configuration in Fig. 5.13 (in which the director rotates
by 180°) is, however, topologically stable: in the process of attempting to escape into
the third dimension, an even more singular configuration with a (semi)infinite line
defect would be generated. More generally, any configuration in which the director
rotates by an even multiple of 180° can be continuously deformed into the trivial
configuration, shown in Fig. 5.12b, in contrast with configurations having a rotation
of an odd multiple of 180°, which can be deformed into the configuration in Fig. 5.13.
Note, in particular, that configurations with rotations of +180° (clockwise) and —180°
(counterclockwise) can be deformed into each other. Thus, for the 2D uniaxial nematic
system there exists only one class of topologically stable point defect, exemplified by

the order parameter configuration shown in Fig. 5.13. (This class contains all defects
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(a) (b

Figure 5.12: (a) A configuration of the director corresponding to the 360° defect in a
uniaxial nematic. (b) By rotating the director at each location out of the page, one
can smoothly deform the configuration in Fig. 11a to the defect-free configuration in
Fig. 11b, with the director everywhere perpendicular to the page.

Figure 5.13: A configuration of the director corresponding to the 180° defect in a
uniaxial nematic. An attempt to escape from such a configuration by rotating the
director at each location out of the page inevitably results in a singular line extending
from the defect center to infinity, separating regions where the director rotates out of
the page in opposing directions.
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obtainable by continuous distortions, including those in which the director is rotated
out of the plane.)

The combination law for two stable defects is also readily obtained: colliding two
+180° configurations results in a configuration with either 360° or 0° rotation, both
of which are topologically trivial. Therefore, any two stable defects can mutually
annihilate upon colliding. In more formal language, the properties discussed above
are a consequence of the fact that the first homotopy group of the uniaxial nematic
order-parameter space is the 2-element group Z; = [{0, 1} under addition modulo 2].
The elements 0 and 1 correspond to the topologically trivial class of configurations,
and to the stable defect class, respectively. The defects combine according to a law
given by the group operation 1 +1 = 0.

Next, we discuss defects in biazial nematics, for which the situation is more com-
plicated. Here, the first homotopy group of the order-parameter space II; (giving the
classification of point defects in a 2D system) is the non-Abelian 8 element group of

quaternions, which can be represented as
I, = {1, -1, 404, —i04, 10y, —i0y,10;, —10, } , (5.28)

where o) are the Pauli matrices, and the group operation corresponds to matrix mul-
tiplication. For a non-Abelian II;, the classes of topologically nonequivalent defects
are given by the conjugacy classes of I1; (see, e.g., [13] for a detailed discussion). The

quaternion group Eq. (5.28) has 5 conjugacy classes:

Co = {1}, (5.29)
Cy = {-1}, (5.30)
C: = {iog, —ios}, (5.31)
Cy, = ({ioy,—ioy}, (5.32)
C, = {io,,—i0,}. (5.33)

Thus there is a topologically trivial defect class (Cy), and 4 nontrivial defect classes

(50,0,,.,03,,0,). These are characterized by the winding numbers of the uniaxial axis
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classes in Eq. (5.4.1), were observed experimentally in a biaxial nematic; their com-
bination laws were found to be in agreement with those in Table I. We are not aware
of any published experimental work on defects in effectively two-dimensional biaxial

nematics.

5.4.2 Defect-finding algorithms

To keep track of the evolution of the large populations of defects present during phase
ordering (and to distinguish the 4 species of defect in biaxial nematics), an effective
defect-finding algorithm based on the topological properties vof the defects is needed.
Before illustrating the defect properties discussed above (as we do in SubSec. 5.4.3) ,
we present the defect-finding algorithms used in our simulation. This can also serve
to illuminate further the topological classification scheme. The present subsection
may be skipped by the reader interested primarily in the results without impairing
the understanding of the remainder of the chapter.

Consider first the case of the uniaxial nematic. The order-parameter coset space
is a sphere with antipodal points identified (reflecting the inversion symmetry of the
director), i.e., the projective plane RP,. If we trace a loop around the center of any
topologically unstable singular configuration (eg., as in Fig. 5.12a), we generate a
contractible loop in the order parameter space (Fig. 5.14a). In the case of a topolog-
ically stable configuration (eg., Fig. 5.13), we generate a non-contractible loop in the
projective plane (Fig. 5.14b), connecting two antipodal points on the sphere. Thus,
we arrive at the following algorithm for deciding whether a (uniaxial) stable defect
is located inside the region spanned by the cells with coordinates (z,y), (z + 1,y),
(z+1,y+1), (z,y+1): we find the uniaxial direction in the cell (z,y) and choose as
our starting point one of its intersections with the order-parameter sphere (Fig. 5.15).
The uniaxial direction in the cell (z+1, y) has two intersections with the-order param-
eter sphere; we choose the point that is closer to the starting point as the next point
of the loop in the order-parameter space. This amounts to assuming that the new

uniaxial direction was reached by rotating through the smallest possible angle, so as
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Figure 5.14: Contractible (a) and non-contractible (b) loops connecting two identical
points (P and P’) in the uniaxial nematic order parameter space RP;.
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Figure 5.15: The algorithm for finding defects in a uniaxial nematic (see Sec. 5.4.2
details). The diameters AA’; BB', CC', DD’ correspond to the uniaxial directions
of the order parameter in cells (z,y),(z+1,y),(z+ 1,y + 1), (z,y + 1), respectively.
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to minimize the cost in free energy. We continue with the cells (z+1,y+1), (z,y+1),
again choosing the point on the order-parameter sphere closer to the previous point.
We close the path by again looking at the two intersection points in the cell (=, 9)z if
the original starting point is closer to the point assigned to the cell (z,y + 1) then we
classify the configuration as not topologically stable; if the antipodal point is closer
then we classify the configuration as having a stable defect located at the intersection
of the cell boundaries. In a previous work on phase ordering in uniaxial nematics
[5], vortices were sought by considering whether the total angle of rotation of the
uniaxial direction projected on to one of the three perpendicular planes was 180°.
For a configuration in which the director in all cells lies in 6ne plane, as in the case
of an isolated defect (as in Fig. 5.12), the two algorithms are equivalent; for other
configurations, however, the “projection” algorithm can be unreliable. We find that
our “topological”algorithm can consistently identify all defects, even when the the
interdefect separation is of the order of one lattice spacing.

For biaxial nematics, we can distinguish the three 180° defect classes by applying
the uniaxial algorithm twice, once to the uniaxial direction u and once to the biaxial
direction b: e.g., the C, defect will give a u-loop that returns to the starting point,
and a b-loop that ends at the antipodal point. The 360° defect (class Cy) cannot be
found using this algorithm. This is a consequence of the fact that the biaxial nematic
order parameter coset space is not simply a direct product of two projective planes.
Thus, for this case, we use the “projection” algorithm on a 4 x 4 array of cells: if the
total rotation of the projection (on at least two planes) of two of the u, b, and ux b
directions in the 12 boundary cells is +360°, and if no 180° defects are found inside
the 4 x 4 array, then we identify the center of the array as a C, defect (see Fig. 5.16).
Note that to consider a 2 x 2 array would be inadequate because the total rotation
in a 4-cell path is, by definition, at most 180°; a 3 x 3 array cannot be used, because
the 360° rotation is in that case tied to the existence of two 180° defects inside the
array. The algorithm that we use for finding the Cy defect is thus less robust than
that which we use for finding the other defect types. As we shall see in the next
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Figure 5.16: A typical configuration of the uniaxial or biaxial direction of the order
parameter in the 4 x 4 array with a Cg defect in the center. Notice that no Cy, C,,
or C, defects are presents in the array.
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section, however, the C defect is present at late times only in very small numbers,

and its influence is not important for our primary conclusions.

5.4.3 Results illustrating the topological classification scheme

We now illustrate the properties of defects in uniaxial and biaxial nematics that we
discussed in SubSec. 5.4.1 using results from our simulation. Defects in nematic films
can be observed experimentally via birefringence patterns in light transmitted through
films situated between crossed polarizers (i.e., Schlieren patterns). The intensity of
transmitted light is minimal when the projection of the director on to the polarization
plane is parallel to the transmission axis of either polarizer; the 180° (resp. 360°)
defects are therefore identified as intersections of two (resp. four) dark brushes in the
transmitted pattern [23]. In Figs. 5.17a-c, we show the Schlieren patterns obtained
for configurations generated in our simulations at a sequence of times after a uniaxial
quench [24]. As these figures show, the process of ordering occurs through the mutual

annihilation of the numerous 180° defects.
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a) ¢t = 500 b) ¢ = 1000

¢) t = 2000

Figure 5.17: Intensity of light transmitted through a uniaxial nematic film situated
between crossed polarizers (the Schlieren pattern). We show a system of size 100 x 100
at times ¢t = 500, t = 1000, and ¢ = 2000 after the quench. The defects appear in the
pictures as the intersections of two bright and two dark lines.
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In Figs. 5.18a-e, we exhibit the locations of defects, found using the defect-finding
algorithms discussed above, in a typical sequence of configurations following a biaxial
quench in a small system. Defects from each of the four topologically stable classes
are present in the system. The observed two-defect events confirm the topological
combination laws given in Table I (as described in the captions to Figs. 5.18). Oc-
casionally, “many-defect”events, where a number of neighboring defects interact in
a way not uniquely separable into two-defect events, are observed; the frequency of
these events can be decreased by reducing the diffusion constant in the CDS map to
values below D = 0.1. '

It can be seen from Table I that the defect number parities p;, p; and ps3, defined
by

p1 = (nz +ny) mod 2, (5.34)
p2 = (ny +n;) mod 2, (5.35)
ps = (nz +n;) mod 2 (5.36)

are conserved during all reactions amongst defects. Here n;, n, and n, respectively
denote the number of defects from classes C,, Cy and C;; as (p; + pz + p3) mod
2 = 0, only two of the 3 parities are independent. In our simulations the parities,
Egs. (5.4.3), were observed to be conserved in all reactions, regardless of the number
of participating defects. In addition, the parities obtained from the total numbers
of defects present in the whole system must be even, as we have adopted periodic
boundary conditions. The reason for this is that opposite edges of the boundary of
the system map on to identical (closed) curves in the order parameter coset space, but
are traversed in opposite senses; the loop consisting of the boundary of the system
therefore maps into a contractible loop in the coset space. Thus, the configuration
of the system, as a whole, is topologically trivial, which for the nematic implies that
the parities, Egs. (5.4.3), are even. This property of the global parities is confirmed
in Table II, which gives the numbers of C; ,C, and C, defects founds during a typical

run in a system of size 256 x 256.
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Figure 5.18: Defect configurations in a biaxial system of size 10 x 10 at specified
times since the quench. The symbols e, *, + and ¢ correspond to defects from classes
Cz, Cy, C; and C,, respectively. In the following description of the figures, we refer
to the horizontal coordinate as z, and to the vertical coordinate as y, both starting
from the left bottom corner of each figure (thus z,y = 1,...,10). Note that the
boundary conditions are periodic. The diffusion constant value of D=0.1 was used
in this simulation. (a) The configuration at t=17 time steps since the quench. The
system contains 4 type C, defects, 16 type Cy defects, and 14 type C, defects. (b)
The configuration at the next time step (¢t=18). The C, defect at (z,y) = (1,5)
annihilated with the neighboring C, defect. Two C, defects in the center region
combined to produce a C, defect. The C, defect at (z,y) = (5,8) and the C, defect
at (z,y) = (6,8) combined to a C, defect. (c) The configuration at t=44. All the
C; defects have decayed from the system. (d) At the next time step (t=45), the
C, defect at (z,y) = (9,10) disintegrates into the C, defect and the C, defect at
the neighboring site (z,y) = (9,1). (e) Configuration at the next time step (¢t=46).
The C; defect immediately re-combines with the C, defect at (z,y) = (9,1). The net
result of the last two reactions is a C, — mediated jump of the C, defect from the site
(z,y) = (9,10) to the neighboring site (z,y) = (9,1). The C, defect at (z,y) = (9, 1)
undergoes annihilation with the C, defect at (z,y) = (8,1) at a later time.
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Table 5.2: Numbers of defects in the C;,Cy, C; and C, classes at time t after the
quench to the biaxial nematic phase in a 256 x 256 system (the value of D = 0.1 was
used in the simulation).

t|n(Cz) n(Cy) n(C:) n(Co)'

0| 14925 11503 15039 0

5| 10093 12787 14577 1

10 | 6393 12949 12141 5
20| 2758 10542 8866 13
40 589 6157 5357 14
100 25 2495 2359 24
200 1 1439 1235 9
399 2 840 676 3
795 0 514 394 7
1585 0 326 244 5
2819 2 200 146 X
5012 0 130 116 6

5.5 Evolution of the defect populations

In this section, we present results for the time evolution of the total number of defects

in each of the topologically inequivalent defect classes.

5.5.1 Results for the uniaxial quench; growth law for the separation be-
tween defects.

In uniaxial nematics there is only one class of stable defects. In Fig. 5.19 we
show the number of such defects as a function of time since the uniaxial quench, in a

system of size 256 x 256, averaged over 35 sets of initial configurations. In the inset we

1The number of Cy defects which can be found at early times is reduced due to the high density
of the 180° defects—see Section 5.4.3.
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Figure 5.19: Log-log plot of the number of defects in a uniaxial system (size 256 x 256,
averaged over 35 configurations) as a function of time t since the quench. Inset:
the effective growth exponent quef(t) of the average separation between the defects,
plotted to fit the extrapolation formula (15b).

plot the effective growth exponent @qes(t) for the average inter-defect distance Lges (%)
versus 1/t, in the interval where the correlation function collapses. The intercept with
the JJdef-a.)ds gives the asymptotic growth exponent @ger = 0.374 £ 0.005 (see formula
(5.18) and the discussion in Sec. 5.3.2). The growth exponent obtained from the
number of defects differs from the exponents obtained from the correlation function
and the energy density (see Sec. 5.3.1), giving another indication of the violation of
Statement (b) of the dynamical scaling hypothesis, at least over the range of times
studied.

It has been found in all published numerical studies of phase ordering in 2D sys-
tems with point defects (e.g., Refs. [2, 4, 5, 10]) that both the correlation length
and (where studied) the separation of defects grow more slowly than the t!/2 power

growth law that is suggested by dimensional analysis [19]. This issue was addressed
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theoretically for the O(2) vector model in Ref. [12], by starting from the equation of
motion for an isolated defect-antidefect pair, which follows from equating the attrac-
tive and frictional forces acting on each defect. The elastic attractive force was taken
to be Fyy ox —1/D, where D is the separation of the defect pair. The frictional force

was taken to be Fy o vIn(R/£), where R is the size of a defect, £ is the size of its

14D

5 is its velocity. For an isolated defect-antidefect pair, R ~ D. By

core, and v =
equating F,, and Fy Yurke et al. obtained an implicit formula for the dependence of

the separation D on the time remaining before annihilation 7:

T

1/2
In (D(r)/£) - 1/2} '

D(7) = const X [ (5.37)

Yurke et al. then argued that the same expressions for the elastic and frictional forces
acting in an isolated defect-antidefect pair may be used in a modification of the
arguments in Ref. [19] to obtain an expression, identical to Eq. (5.37), for the growth
of the average separation between defects in a system undergoing phase ordering. In
this scenario, 7 is (up to an undetermined, but small, additive constant) the time
elapsed since the quench, and D is the average separation of defects, Lqef, S0 that one

obtains
t

1/2
In (Laer(t)/€) — 1 /2] '

Equation (5.38) implies that Lges grows asymptotically as ¢/2, but that the effective

Lget (t) = const x [ (5.38)

growth exponent Paet = dln Ly /dlnt approaches the value 1/2 only slowly and
from below, due to the logarithmic term. It was indeed observed in the numerical
simulations reported in Ref. [12] that, for both the annihilation of an isolated defect-
antidefect pair and for phase ordering of a large system after a quench, (];def () was
significantly smaller than 1/2, and tended to increase with increasing separation of
defects.

It is important to recall that in the system investigated in our simulations, the
2D (uniaxial) nematic, the director can point in any direction in the 3-dimensional

space, in contrast to the restriction on the order parameter of the 2D O(2) vector
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model to lie in the plane. The late-time features of phase ordering, however, are
governed primarily by the point defects moving in 2-dimensional space, which are
present in both models. For this reason, it is appropriate to compare our results
to the conclusions of Ref. [12]. (We note, parenthetically, that the 2D O(3) vector
model does not support any topologically stable singular configurations, and it’s phase
ordering exhibits features [27] strongly different from the phase ordering in the 2D
nematic).

Equation (5.38) implies that the effective growth exponent for the average defect
separation is given by

dlnLae(t) ¢ const
dint  Laer(t)? 21n (Laet(t)/€) o)

Due to the unknown constant in Eq. (5.39), it is not possible (even with the knowledge
of the core size, £ ~ 0.5 lattice spacings, from Sec. 5.3) to compare the numerical
value of the effective growth exponent ¢ger ~ 0.374 in our simulation to the expression
(5.39). Although Eq. (5.38) predicts an increasing effective exponent @get(t), the value
obtained from our data is essentially constant over the interval during which collapse
of the correlation function occurs (Fig. 5.19).

~ A crucial assumption made in deriving Eq. (5.38) is that the average separation of
the numerous defects during the phase ordering of a large system is determined solely
by the forces acting in the two-defect problem. In order to address the validity of this
assumption, we simulated the annihilation process of two isolated uniaxial nematic
defects (see Fig. 5.20). During this simulation, we found it advantageous (in order to
be able to reduce the influence of the discrete character of the lattice by averaging over
multiple runs) to add a random order parameter configuration of reduced amplitude
(up to 10% of the full order parameter magnitude) at each time step. We stress that
this noise was added solely to obtain a meaningful averaging procedure; no pinning
effects were observed in the studied time range upon eliminating the noise. The
measured distance between the two defects D is shown in Fig. 5.21 as a function of

time remaining to annihilation 7. The power law D o >3 is observed over the range
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a) T = 3265 b) 7 = 465

Figure 5.20: Schlieren patterns showing two approaching uniaxial defects at times
t=3265, t=465, t=30 before annihilation, and one time step after annihilation. The
system size was 100 x 100; the value of the diffusion constant was D=0.3; weak noise
(10% of the order parameter magnitude) was added at each time step.
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Figure 5.21: The distance D(t) between two annihilating uniaxial defects as a func-
tion of time ¢ remaining till annihilation. A weak value of noise (10% of the order
parameter magnitude) was used to permit averaging over 20 events. The value of the
diffusion constant was D=0.3.

of distances 2 < D < 10, corresponding to the range in which the effective exponent
@aer =~ 0.375 was observed in the phase ordering simulation (Fig. 5.19). We therefore
reach the conclusion that the time-dependence of the distance between two isolated
annihilating defects does indeed determine the growth-rate of the average separation
between defects during phase ordering.

Around an isolated pair of uniaxial nematic defects, it is energetically advanta-
geous for the director to lie in a single plane. The treatment of the annihilation
process of two defects is then identical to the treatment for the 2D XY model case in
Ref. [12](with the constant in Eq. (5.37) divided by 4, due to the change in the wind-
ing number of the defects). Our data (Fig. 5.21) do not, however, show the increase
of the effective exponent @qef(t), with increasing D, predicted by Eq. (5.37). This

increase should be visible even in the comparatively narrow range of D covered in our
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simulation. This we take as an indication that the forces acting on the defects in our
simulation are not completely described by the forces Fy o v In(D/€) and Fy x 1/D,
assumed in the derivation of (5.37). In particular, the influence of a weak pinning
potential at the centers of the cells would become more pronounced with increasing
D, since the interaction energy of two vortices decreases with increasing distance.
The presence of a pinning force would therefore tend to decrease the effective growth
exponent ¢g.s with increasing D, possibly offsetting the increase of ¢g.s predicted by
Eq. (5.37).

It should be noted that the arguments leading to Eq. (5.39) do not make any
assumptions about the correlation function — in particular, our finding that the cor-
relation length (as defined in Sec. 5.3.1) and the average separation of defects scale in
a different way (@eor = 0.407 & 0.005 versus @ges = 0.374 £ 0.007) does not invalidate
Eq. (5.39).

We now discuss the implications of the observed inequality: @cor > Pder- This
inequality is, strictly speaking, incompatible with the collapse of the correlation func-
tion and structure factor [i.e., Statement (a) in Sec. 5.3.1]. The reason is that the
number density of defects pyet appears in Porod’s law, Eq. (5.22), which is valid inde-
pendently of the collapse of the structure factor. The density pqer must decay as the
(square of the) separation between defects (and not any other length, such as L,,).
In order that Eq. (5.15), expressing the collapse of the structure factor, be compatible
with Eq. (5.22) it is therefore necessary that the lengths L., and Lges have a common
time-dependence. We have not been able to identify why L., and Lges differ. How-
ever, it is plausible that the origin of the discrepancy lies in the relevance of additional
degrees of freedom beyond the defect positions.

Recall that earlier, in Sec. 5.3, we exhibited the good collapse of the correla-
tion function and structure factor in our simulation. It is thus seen that the direct
comparison of the effective growth-exponents @g¢er and ¢eor presents a more sensitive
diagnostic of the validity of dynamical scaling than do the apparent collapse of the

correlation function and structure factor.
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We remind the reader that the discrepancy between ¢.r and the energy length
growth-exponent ¢, does not necessarily indicate the breakdown dynamical scaling,
as we have explained in in Sec. 5.3. On the other hand, the expression for the difference
between ¢.or and ¢e,, Eq. (5.27), was derived in Sec. 5.3.4 under the assumption that
the structure factor collapses. Given the quality of the apparent collapse and the
smallness of the difference between ¢, and ¢4¢s We anticipate only small corrections
to Eq. (5.27).

The discrepancy between the growth exponents of the correlation length and of
the defect separation was recently observed (Ref. [10]) also in the the 2-dimensional
O(2) vector model. It is interesting to note that the results obtained in Ref. [10],
@cor = 0.42 and @ger = 0.37, are numerically very close to the results obtained by us

in the nematic order parameter case.

5.5.2 Results for the biaxial quench; selection of the prevailing defect
species.

In the biaxial nematic case, we monitor separately the populations of the 4 inequiva-
lent defect classes introduced in Sec. 5.4.1 Figure 5.22 shows the results averaged over
68 initial configurations of a 256 x 256 system. Immediately following the quench,
defects from the classes C,, C, and C, are present in large numbers. We find that the
C; defect population decays rapidly in the initial stages of ordering, and disappears
from the system at the time approximately corresponding to the onset of the regime
in which there is apparent collapse of the correlation function. The C, and C, de-
fects subsequently remain in the system in roughly equal numbers, and determine the
properties of the asymptotic regime. The effective growth-exponent for the C, and
C, defect separation is analyzed in Fig. 5.23 using the method described in Sec. 5.3.1;
we obtain ¢ger = 0.366 £ 0.005 and @ger = 0.391 =+ 0.005, respectively.

The evolution of the Cy (i.e., 360°) defect population requires further clarification.
Our defect-finding algorithm (see Sec. 5.4.2) is able to identify a Cy defect within any

given 4 X 4 array of cells only if there are no 180° defects within the array; at the
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Figure 5.22: Log-log plot of the numbers of the C;, C,, C, and C, defects as a
function of time since the biaxial quench. (Averaged over 68 configurations of a
256 x 256 system)

initial stages of ordering, however, very few such arrays exist in the system, due to
the high density of C;, Cy and C, defects. Accordingly, the detected number of Co
is very small at early times after the quench (see Fig. 5.22), and becomes a reliable
measure of the proportion of 360° defects in a real system only at late times, when
the separation between 180° defects is much larger then the lattice spacing. A more
meaningful quantity, perhaps, is the ratio of the number of C, defects to the number
of the “available” 4 x 4 arrays; this ratio is plotted in Fig. 5.24. The population of Cy
defects appears to decay slightly faster then both the Cy and C, defect populations

at the late times; note, however, that our statistics for the C, defects are rather poor.

We now explain the reasons for the observed rapid decay of the C, population,

and the presence, in comparable numbers, of the Cy and C, defects in the late-time
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Figure 5.23: Effective growth exponents for the separation between C, defects (shown

as o), and between C, defects (shown as +), analyzed using the extrapolation formula
(15Db).

regime. According to Table I, a pair of C;, Cy, or C, defects can annihilate to
give a topologically trivial configuration. These processes indeed occur frequently
in the simulation (see Fig. 5.18). After the system takes advantage of these “decay
channels”, however, two nearby defects of the same species are frequently “screened”
by a defect of a different species located between them. The system can then reduce

the number of defects through the reactions

C:+Cy—C, (5.40)
C:+C,—Cy (5.41)
Cy+C: = Cs. (5.42)

Reactions (5.40) and (5.41) were observed frequently in the simulation; the inverse

reactions C, = C;+C, and Cy — C;+ C, were observed only occasionally, and were
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Figure 5.24: The ratio of the number of C, defects to the number of 4 x 4 arrays of
cells with no 180° defects, plotted as a function of time. The slope of the straight line
is —1.10.

always followed by the annihilation of the generated C, defect, through reactions
(5.41), (5.40), or the inverse of the reaction (5.42), i.e., C; = Cy + C’,. This leads us
to concludev that the reactions C, + Cy — C; and C; + C, = C, are exoergic, whilst
the reaction Cy + C; — C; is endoergic. The system therefore tends to annihilate the
C, defect whenever another defect (of type Cy or C) is found in its vicinity, while the
production of the C, defect is always energetically disadvantageous, which explains
the rapid annihilation of the C, population. It is interesting to note that the C,
defects appear in the system in small numbers even at very late times (see Table II);
the apparent reason is that a Cy or C, defect can use a short-lived creation of the
C, defect to move through the system (see Figs. 5.18c-¢) in order to take part in the
Cy + Cy = C, and C, + C, — C, reactions, which are the dominant decay channels

in the late time regime.
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No decay channel in which the number of Cy defects is reduced without producing
a C; defect (or vice versa) is available, except for the mutual annihilations of two C,
or C, defects; these occur with a probability proportional to the square of number
density of the Cy or C, species, which remain approximately equal, because the two
species were present at roughly equal numbers when the C, defects disappeared from
the system. The numbers of C, and C, defects are thus locked at late times; the
explanation of the slight difference in the effective exponents describing their decay
with time would require a more detailed knowledge of the energetics of the processes
involved, including the reactions involving the catalyst C;. Thus far, we have not
included in our discussion the influence of the Cy (360°) defects. These were present
only in small numbers, even at the later times, when the C, defect-counting algorithm
overcomes the problem discussed earlier in this section. It is also clear from Table I
that the events involving the C, defects cannot change the mechanism of the Cy, and
C, species selection, discussed above. The tendency of the Cy defect population to
decay at a rate faster than the decay rate of the C, and C, defect populations at
late times is readily understood: in addition to the decay channels Cy + C, — Cy
and Cy + C, = C,, occurring at rates tied to the number densities of the C, and C,
defects, Cy can decay through the exoergic processes Cy — Ci+C; (where i = z,y, 2)
and the (very rare) process Cy + Cy — C.

In recent work Kobdaj and Thomas [29] investigated the energies and interactions
of non-abelian point defects topologically equivalent to the Cj, Cy, and C, defects in
biaxial nematics. The gradient part of the energy density used in [29] is equivalent to
the one-constant elastic free energy adopted in our simulations. Kobdaj and Thomas
show that if one neglects the core energies (which depend on the homogeneous part
of energy), the energy of the C, defect exceeds the sum of energies of a Cy defect and
a C; defect. This is consistent with the mechanism for the selection of defect species

presented in the previous paragraphs.
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5.6 Summary and conclusions

Detailed analysis of our results showed that dynamical scaling is violated throughout
the studied time range. To reach this conclusion, we had to compare the growth laws
for the correlation length and for the average separation between topological defects.
Studying the correlation function alone does not indicate the violation of dynamical
scaling. We also showed that the observed discrepancy between the growth exponents
of the correlation length and of the characteristic length determined from the energy
density does not necessarily indicate a violation of dynamical scaling.

In order to explain why the growth exponents observed in our simulations were
significantly lower than 0.5, we studied the annihilation process of an isolated pair
of uniaxial nematic defects. Our results show that the lowered value of the effective
growth exponent ¢4 for the average separation of defects may be understood by
analyzing the forces acting on the point defects, similarly to the treatment of phase
ordering in the O(2) vector XY model in [12].

The analysis discussed in the preceding paragraph suggests that the effective
growth exponent @qer should approach the value of 0.5 in the regime where the aver-
age separation between defects becomes much larger than the size of the defect cores.
In this regime we expect that the growth exponent for the correlation length, ¢cor,
also reaches the value of 0.5, and the correlation function truly collapses. The differ-
ence between ¢, and the growth exponent for the energy length (@), analyzed in
Sec. 5.3.4, is predicted to vanish in this regime [see Eq. (5.27)]. We therefore expect
that in the late stages of the phase ordering of a sufficiently large nematic system,
dynamical scaling will hold, and that all characteristic length-scales in the system
will grow as a power law of time with the growth exponent equal to 0.5. Due to
the logarithmic corrections to the true asymptotic values of the growth exponents,
studied in Secs. 5.3.4 and 5.5.1, however, it is not presently possible to access the true
scaling regime in computer simulations.

An important ingredient missing from the analysis of the behavior of the growth
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exponents is an explanation of the discrepancy between the growth exponents for
the average separation of defects and for the correlation length. An analytical and
numerical analysis of the role of degrees of freedom other than the defect coordinates
in the phase ordering process is currently in progress [14].

In Secs. 5.4 and 5.5.2, we studied the properties of the 4 topologically distinct
species of defects present in a biaxial nematic during the phase ordering process.
The topological character of the defects and the defect interactions observed in our
simulations agree with the predictions of the topological classification scheme. Of the
4 allowed defect species, only 2 were observed in large numbers at late stages of the
ordering process. We proposed a mechanism for the selection of the prevailing defect
species, based on the combination laws following from the topological classification

scheme. It would be interesting to test these predictions experimentally.
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Chapter 6

Kinetics of phase ordering with topological textures

6.1 Introduction

Recent work has shown [1] that many features of phase ordering in systems support-
ing topologically stable singular defects (for example, in systems described by the
O(N) vector model in d dimensions with d > N [2], or in two and three-dimensional
nematic liquid crystals [3]) can be understood theoretically by investigating the dy-
namics of the numerous topological defects generated during the quench. In systems
where topologically stable singular objects cannot occur (for example, in the O(N)
model system in dimension d < N), such an approach cannot be used. A special
and interesting case is that of the O(N) model system in N — 1 spatial dimensions,
which supports topologically stable, but non-singular objects—topological textures.
In the present chapter, we report results from an investigation of the role played -
by topological textures during the phase ordering of an O(3) vector model system
in two spatial dimensions. This system has been previously investigated by Toyoki
[4], who calculated the time dependence of the order parameter correlation function,
and by Bray and Humayun [5], who investigated the decay of the free energy in the
system. A detailed analysis of the phase ordering process in terms of the behavior of
the topological objects present in this system, however, has not been previously given
[6]. The results described in this chapter were obtained in collaboration with Wojtek
J. Zakrzewski.
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6.2 The discretized non-linear O(3) sigma-model and
the simulation method

The model investigated in our simulations is the non-linear O(3) sigma-model on a
two-dimensional lattice. The order parameter m is correspondingly a 3-component
vector with unit magnitude; the local value of the order parameter m(r,?) will be
referred to as the spin. The phase-ordering simulation is started with randomly ori-
ented spins, corresponding to the configuration generated immediately after a quench
to zero temperature. The configuration is then evolved using the dissipative dynam-
ical equation

% =V?’m - (m-V’m)m, (6.1)
where the second term on the right hand side enforces the constraint m-m = 1.
To adequately describe the phase-ordering process, Eq. (6.1) must be regularized on
a scale given by the order parameter coherence length [7]; we effectively impose the
regularization condition by considering Eq. (6.1) on a discrete lattice. We evolved
Eq. (6.1) using the technique developed in Ref. [8] (based on the 4th order Runge-
Kutta method) appropriately adapted to our case. The spatial discretization step
was taken to be dz = dy = 0.1, the time step was dt = 0.0002, and we worked with
periodic boundary conditions. We used system sizes between 252 and 512 lattice

units, and our longest runs reached times ¢ = 40.

6.3 The two corr{peting processes: topological charge annihilation
vs. single-texture unwinding

We now briefly review the concept of a topological texture [9]. The spin configuration

of a single texture in an infinite continuum system is given by

dazx 4ay 72 — 4q?
— r) = —— r) = ———os.
T2 4 402 my (r) T2 + 4a?’ i1 {£) T2 + 402

The orientation of the spin changes from up in the center of the texture (r = 0) to

ma(r) = (6.2)

down at the boundary of the system (r = 00), going through a vortex-like configu-

ration with spins pointing radially outwards on the circle 7 = 2a. It is easily seen
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that the spin configuration (6.2) covers the order parameter space (given in our case
by the unit sphere in three dimensions) exactly once, corresponding to a topological
charge of one (see Chapter 3 for a discussion of topological stability of the texture
configuration). It is possible to show that the configuration (6.2) (or any global rota-
tion thereof) has the minimum energy (with energy density taken as z-(Vm)?) of all
configurations with topological charge one. The value of the minimum total energy is
E = 1. By an antitesture, we mean a configuration similar to (6.2), but with m,(r)
replaced by —m,(r). This configuration wraps around the spin sphere once, but in
the opposite sense compared to (6.2), corresponding to topological charge —1.

The crucial quantity for our investigation of the role of textures and antitextures
in the phase ordering process is the topological charge density q(r)

giz] = 4—17r-m- (6;m x 0,m) (6.3)

which, when integrated over the whole system, gives the total topological charge. For
the single texture configuration (6.2), the topological charge density has the form
g(r) = 14a?/(r? + 4a?)?, and exhibits a pronounced peak at r = 0 with half-width
1.287 - a. For a single antitexture, ¢(r) is of the same form, only negative.

In Fig. (6.1) a-c, we plot the topological charge density at a progressive series of
times in a section of a system undergoing phase ordering. The plots exhibit numerous
well defined peaks and antipeaks, corresponding at later times to rather well sepa-
rated textures and antitextures of varying sizes. The average separation between the
textures (or antitextures) grows, and at the latest time, the system is strongly “in-
termittent” in the sense that the topological charge density differs significantly from
zero only within very well localized regions, with the spin configuration practically
homogeneous in between. Note that the “typical” texture size does not appreciably
increase with time.

A detailed inspection of series of plots similar to Fig. (6.1), taken at closer values
of time, reveals that the variations in topological charge density decay through two

distinct processes: single texture (or antitexture) unwinding, and topological charge
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(a)

(b)

Figure 6.1: Surface plots of the topologit88 charge density ¢(r) in a 85 x 85 section
of a phase ordering system at time (a) t=0.0356, (b) t=0.126, and (c) t=1.59. The

horizontal scale is in units of one lattice spacing.



annihilation. The first process appears as a growing isolated peak in topological
charge density, and corresponds to a localized configuration of type (6.2) with de-
creasing size a. Such a process would conserve the total topological charge and the
total energy of the texture in a continuum system; in a discrete system, however,
this conservation is strongly violated once the texture size decreases to several lattice
spacings. Eventually, the texture comes (up to a global rotation) close to the extreme
configuration where the spin points up at the center lattice point, and down every-
where else; such a configuration has only 1/27 of the original texture energy. This
configuration is followed by a flip of the central spin, and the complete disappearance
of the texture [10]. The size a of the shrinking texture in oﬁr simulation varied very
roughly as 7!/4, where 7 is the time remaining to the flip.

The second process visible in the topological charge density plots is the mutual
annihilation of overlapping regions of positive and negative topological charge density
(overlapping in the sense that they are not separated by a region where g(r) = 0).
In Fig. (6.2), we show the evolution starting from a slightly overlapping texture -
antitexture pair. The height of the two peaks decays, and the overlap of the regions
of positive and negative g(r) increases with time. The peaks initially move slightly
together, but later move significantly apart [11]. It is important to realize that this
“texture-antitexture annihilation” process differs radically from the process of anni-
hilation of a singular defect with it’s antidefect (e.g. a vortex and an antivortex in the
2d O(2) model), where the singular cores keep their identities and gradually approach.
In the texture-antitexture annihilation, the total charge enclosed by each of the re-
gions of positive and negative q(r) gradually decays to zero, and the annihilation of
topological charge occurs independently of whether a complete texture and antitex-
ture are present. In contrast to this, the mechanism of unwinding (discussed in the
previous paragraph) occurs only if the unwinding region encloses a total topological
charge close to 1 or —1.

In order to assess the relative importance of the two processes discussed above

during phase ordering, we investigated the time dependence of the quantities @, and
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Figure 6.2: The process of topological charge annihilation, starting from an overlap-
ping full texture and antitexture. The plots show ¢(r) for (a) ¢ = 0 (initial configu-
ration) and (b) ¢t = 3.0. Note that the vertical scale is different in (a) and (b). The
quantity P = [ d*r|q(r| decays from 1.54 in (a) to 0.89 in (b).

@ -, defined by

Qs = [#rmaxig(r),0], Q- = [ d’rminfg(r),0] (6.4)

where the integral is over the whole system. In a system with well separated tex-
tures and antitextures, Q4 counts the number of textures, Q)_ counts the number of
antitextures, @ = Q4 + @ gives the total topological charge, and P = Q4+ — Q-
counts the total number of topological objects in the system. Figure (6.3) shows that
at late times, the the total topological charge Q = Q4+ + (- varies only in sharp
steps of size —1 or +1, corresponding to an unwinding of a single texture, resp. an-
titexture. The steps are also visible in the corresponding Q4 (%) or Q_(t) curve (see
Fig. (6.3)). Note, however, that while the Q(t) curve is flat, the Q4 (¢) and Q_(t)
curves decay significantly in between the unwinding steps. This demonstrates that

the process of topological charge annihilation, as defined in the previous paragraph,
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Figure 6.3: Time dependences of the quantities @_(t) (lower curve), Q(t) (middle
curve), and @, (t) (upper curve) during phase ordering of a system of size 252 x 252.
Inset: Time dependence of gmaz(t).

takes place. The relative importance of the unwinding and annihilation processes in
a given time range is given by the ratio of the number of steps in the Q(t) curve to
the total drop of the integrated absolute topological charge density P = Q4 —Q-. In
the time interval between ¢t = 3 and t = 30, this ratio is p = 0.45, showing that in this
time range, unwindings and the annihilation processes play almost equally important
roles. At earlier times, it is difficult to calculate the ratio p, as the total topological
charge @ of a large system no longer exhibits well separated steps. A lower bound
for p, however, may be still obtained by counting the sharp peaks (see the inset in
Fig. (6.3)) occurring in the curve gq;(t), where guq, is defined as the maximum of

|g(r)| over the whole system. Each peak corresponds to the final stages of shrinking
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and consequent flipping of a texture or antitexture; however, if two textures unwind
at almost the same time in two different parts of the system, only one peak may be
visible. Comparing the number of peaks with the drop in P(t) in the time interval
from ¢ = 0.5 to t = 1.0 gives p > 0.25. This is consistent with the expectation that
since the textures and antitextures are better separated as ¢ increases [see Fig. (6.1)],

p should increase with time.

6.4 Violations of dynamical scaling

We now present results averaged over 14 runs in a system of size 512, evolved until
t = 1.6. Longer runs in systems of size 252 gave similar results. The total topological
charge (Q was approximately conserved and close to zero (|Q(t)] < 5 at all ). In
Fig. (6.4), we plot the integrated absolute charge P = Q. —Q_, the free energy E, and
their difference. The asymptotic equality of £ and P indicates that at late times, the
system is well separated into textures and antitextures, each of energy 1. Note that the
inequality E(t) > P(t) is satisfied at all times; this is consistent with the well known
[12] global inequality E > |Q| being valid inside each region containing a texture or
an antitexture [13]. Both P and E decay asymptotically as ¢~0-84*002 indjcating that
the average separation D(t) between topological objects (textures or antitextures)
grows as t%32%£001 Note that this differs significantly from the dimensional analysis
prediction of a length scale growing as t'/2, and points towards the presence of scalihg
violations. In contrast, the difference E(t) — P(t), characterizing topologically trivial
spin variations, decays asymptotically as ¢~9-92£0-03 [see the inset in Fig. (6.4] which
agrees much better with the dimensional analysis result. The onset of the approximate
power-law regime for P(t) occurs at ¢t ~ 0.02, corresponding to the time after which
well formed textures and antitextures are seen in the topological charge density plots.

We calculated three separate correlation functions: the spin-spin correlation C (75 %)
(m(x,t)-m(x+r, t)), the topological charge density correlation Cy(r, t) = (g(x, t)q(x+
r,t))/{q(x,t)q(x,t)), and the correlation of the absolute topological charge density,
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Figure 6.4: Time dependences of the integrated absolute charge P(t) and the free
energy E(t) = [d?r .-(Vm)? during phase ordering of a system of size 512 x 512,
averaged over 14 initial conditions. The dashed line has a slope of —0.64. Inset: The
decay of the difference E(t) — P(t). The solid line has a slope of —0.92.

Co(r:t) = (p(x,t)p(x + 1,1)) /(p(x,t)p(x,t)) (here p(x) = |g(x)| — (|g]), and (..) de-
notes averaging over the whole system). We define the length scales L(t), L,(t) and
Ly(t) as the half-widths of the central maxima of the correlation functions C(r,t),
C,(r,t) and Cy(r,t), respectively. We find that these length scales grow differently
from each other (see the inset in Fig. (6.5)) and from the average separation of topo-
logical objects D(t), indicating that dynamical scaling is violated. The half-widths
Lqy(t) and Ly(t) do not grow as power-laws of time, but rather as alog(bt), where a
and b are constants. The half-width of the spin-spin correlation, L(t), grows much

faster, and at late times fits the power law L(t) oc $0-38£002 [14],
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We furthermore find that each family of the correlation functions individually does
not collapse onto a universal curve, providing a further indication of the violation of
dynamical scaling. In Fig. (6.5), we show an attempt to collapse the correlation
functions C(r,t), C,(r,t) and Cy(r,t) using the lengths L(t), L,(t) and L,(t). The
lack of collapse is most readily apparent in the topological charge correlation C,(r, t)
[15]. A more detailed discussion of our results for the topological correlation functions

will be given separately.
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Figure 6.5: The rescaled correlation functions C(r/L(t)), Cq(r/Le(t)) and Cp(r/Ly(t))
at specified times (see the main text for definitions). Inset: growth of the length scales
L(t), Ly(t) and Ly(t) (note that the graph is semilogarithmic).
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6.5 Conclusions

In conclusion, we have characterized the phase ordering kinetics in the investigated
system in terms of the distinct processes of single-texture unwindings and topological
charge annihilation, and demonstrated that dynamical scaling is strongly violated.
Most of the methods developed in this chapter should be equally well applicable to

phase ordering in systems with topological textures in higher dimensions.
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Chapter 7

Dynamical multi-scaling in quenched Skyrme systems

7.1 Introduction

In the previous chapter, we investigated the phase ordering process in the two-
dimensional O(3) non-linear o-model, and found that dynamical scaling was strongly
violated in the time range studied. We diagnosed the violations of scaling by com-
puting several distinct length scales characterizing the system and showing that they
grow differently in time, as well as by showing that it is not possible to achieve to
collapse of our data for the correlation functions of either the order parameter and
or the topological charge density. We also found that at late times after the quench,
the order parameter variations in the system are predominantly due to the presence
of numerous topological textures and antitextures—non-singular, but topologically
stable objects of variable size. The late stages of phase ordering were found to occur
through two distinct processes—topological charge annihilation, and single-texture
(or single-antitexture) unwinding. It is natural to ask whether the scaling violations
are a direct result of the competition of these two distinct processes during the evolu-
tion of the system. In the present chapter, we eliminate the texture unwindings from
the system through appropriate modifications of the free energy, and study how the
behavior of the system is affected when only topological charge annihilation occurs.
The results described in this chapter were obtained in collaboration with Andrew
D. Rutenberg and Wojtek J. Zakrzewski.

In Sec. 6.3, the process of single-texture unwinding was found to be the conse-
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quence of the lattice discretization, with the lattice unit corresponding physically to
the coherence length of the order parameter. As discussed in the previous chapter, the
lattice has the effect of lowering the energy of smaller textures (i.e. textures spread
over a smaller number of lattice sites), and therefore destabilizes the textures towards
shrinking. Similarly, it was found in [1] that textures are destabilized and unwind in
the two-dimensional Heisenberg model (differing from the non-linear O(3) o-model
by permitting variations in the magnitude of the order parameter). In general, the
texture shrinking can be understood as coming from modifications to the basic form

of the free energy
) . = /d2r (Vm)? /d2'r (0;m;i0;m; + Bym;0,m;) , (7.1)

which effectively induces higher-order gradient terms in the energy density given in
Eq. (7.1), and thus breaks the invariance of Eq. (7.1) with respect to the texture
size. It is clear that if the coefficient of the leading higher-order gradient term is
negative—thus reducing the energy if order parameter gradients are large—the tex-
tures will be destabilized towards shrinking. We can thus prevent the textures from
unwinding by adding a fourth-order gradient term having a sufficiently large positive
coefficient. In general, it is difficult to achieve real stabilization (i.e., invariance with
respect to the size) of the textures in this way, and we shall instead work with weakly
ezpanding textures. The replacement of texture shrinking by texture expansion iS a
significant qualitative change, as now the absolute value of the topological charge (the
quantity P of the previous chapter) can decay only through mutual annihilation of
regions of positive and negative charge, and the system no longer tends to increase
order parameter gradients at any fixed location. We shall see that this leads to very

significant modifications in the (multi-)scaling properties of the system.
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7.2 The Skyrme term

What fourth order gradient term should be added to Ee to prevent the unwinding

events? A natural candidate for the stabilizing energy E; to be added is
61
By= / d*r |(9;m x 8,m)[?, (7.2)

where 0, is a positive constant. The energy E is (in the sense explained in Refs. [2, 3])
the precise analog of the Skyrme term [4] used to stabilize topological textures in the
SU(2) model in three spatial dimensions. In that model, with solely the (Vm)2-
type term in the energy density, the textures would be unstable towards shrinking
even in the continuum [5]. The Skyrme term ensures a fixed non-zero size of the
textures (called skyrmions in this model); these are then identified with baryons in a
corresponding quantized relativistic field theory [4].

In our case, the addition of the term Eq. (7.2) (with a sufficiently large value
of 6,) will make textures weakly unstable towards expansion rather than stabilizing
them in size; however, that will be sufficient for our purposes. It is possible to
stabilize a given texture in the two-dimensional O(3) system by adding a third term
of form E, = —g [d*>r m(r) - u (with g > 0), where u is a unit vector giving the
orientation of m at the center of the texture. This corresponds to a coupling of the
order parameter m to an external field pointing in a fixed direction; the dynamics and
interactions of skyrmion-like objects in such models [6] have been extensively studied
in Refs. [2, 7, 8, 9]. However, the addition of such a term to our model would break the
global O(3) symmetry, thus significantly modifying the nature of the phase ordering
problem. [A visible consequence of such symmetry breaking would be that as textures
generated during the quench have random orientations of the order parameter m = u
at the texture centers, coupling to a constant external field B would stabilize some of
the textures (those with u pointing approximately anti-parallel to B), but destabilize
even more strongly the others (with u approximately parallel to B).] We therefore
content ourselves with using solely the Skyrme term Eq. (7.2), and having weakly

expanding textures.

120



It is useful to note the following explicit relation of E,, as defined in Eq. (7 .2), to
the second moment of the topological charge density ¢(r). The quantity

4rq=m- (0,m X O,m) (7.3)

is simply the projection of the vector ;m x d,m on the direction given by the unit
vector m. As m-m = 1, we have ,m - m = §,m - m = 0; therefore the vector
d;m x 9,m is parallel to m, and has the same magnitude as m - (§,m x 9,m).

Consequently, we have
(8;m x 8,m) - (3;m x 8;m) = |m - (;m x Jym)|?, (7.4)
i.e., the Skyrme term Eq. (7.2) can be alternatively expressed as
E, =67 / &Lrg¥(r). (7.5)

The term E; can therefore be used as a local approximation to the Coulomb energy in
the investigation [10] of the dynamics of skyrmionic excitations [11] in the quantum
Hall effect, where the topological charge g is equivalent to the electric charge of
electrons carrying the magnetization m. (Note that in the quantum Hall effect model,
it is appropriate also to add the term E, = g [ d*r m(r) - B, where B has the direct
physical significance of the external magnetic field). We shall not be concerned with
the physics of quantum Hall systems in this chapter; however, the identity Eq. (7.5)
still provides useful insight into the nature of the Skyrme term, and, furthermore,
permits to check the consistency of our results for the scaling of the moments of the

topological charge density (see Sec. 7.4).
7.3 Phase ordering with Skyrme dynamics

We now present numerical results for phase ordering in the presence of the Skyrme
term. As in the previous chapter, we use purely dissipative dynamics: the equation
of motion is obtained from Om(r,t)/0t = —d(Ee + Es)/0m(r,t), with E. and E,
given by Egs. (7.1) and (7.2), respectively, and with the variation with respect to
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m(r,t) carried out subject to the constraint m - m = 1. We performed simulations
on systems with size 512 x 512, using the numerical method briefly described in
the previous chapter. The programming code for the evolution of the equation of
motion was developed by Wojtek J. Zakrzewski. Values of the parameter 6, in the
Skyrme term Eq. (7.2) investigated by us were in the range 0 —0.012. For most of the
non-zero 6; values, only one or two runs were performed, and the error bars for our
measurements are therefore greater than in the case 6; = 0, where we averaged over
10 to 14 different initial conditions. The statistical accuracy achieved in our 6, > 0
results is nevertheless sufficient to demonstrate the profound.inﬂuence of the Skyrme
term on the phase-ordering process.

In Fig. 7.1, we show a series of plots of topological charge density in a phase-
ordering system with 6, = 0.012, at times ¢t = 0.0356, 0.126, and 1.59 after the quench.
The plots should be compared to Fig. 1 in the previous chapter, where the topological
charge density was plotted for the same times in a system with §; = 0. It can be
seen that at t = 0.0356, the system with the stabilizing Skyrme term in fact appears
more “random” than the system with no Skyrme term, where individual textures
and antitextures can already be discerned. However, at ¢ = 0.126, the configuration
of the Skyrme system is already visibly more smooth than the configuration of the
non-Skyrme (6; = 0) O(3) system, and this difference grows even more pronounced
at t = 1.59. It is seen that in the Skyrme system, no sharp peaks, corresponding to
incipient unwinding textures or antitextures, occur at the later two times, and the
Skyrme term with 6; = 0.012 therefore appears adequate for preventing the singular
unwinding events in the time range of interest. To verify this, we plot (in Fig. 7.2) the
time dependencies of the maximum of total energy density ena, for runs in systems
with Skyrme amplitudes 6, = 0.0039, 6; = 0.006, and 6, = 0.012. The sharp peaks
in emax(t) with a gradual build-up on the left side, corresponding to the gradual
shrinking of a small texture or antitexture, followed by a sharp drop on the right
side, corresponding to its final unwinding, do occur at early times in each run. There

is, however, a crossover to a regime where no unwindings are observed, and epmayx(t)
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(a)

(b)

(c)

Figure 7.1: Surface plots of the topological charge density ¢(r) in an 85 %85 section of a
phase-ordering system with Skyrme-term amplitude §; = 0.012. The plots correspond
to configurations at time: (a) t=0.0356, (b) t=0.126, and (c) t=1.59 after the quench.
The horizontal scale is in units of one lattice spacing.
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Figure 7.2: The maximum enay of total energy in a system of size 512 x 512 as a func-
tion of time t. The three curves correspond to three different runs with Skyrme-term
amplitudes 6; = 0.0039 (full line), #; = 0.006 (dashed line) and #; = 0.012 (dotted
line). Inset: total topological charge @ for the runs with 6; = 0.0039 (upper curve)
and 6, = 0.012 (lower curve).

exhibits only slow oscillations. The crossover time is smaller for higher values of 6,;
for §; = 0.012, the crossover occurs at ¢t ~ 0.2 which, as we shall see, corresponds
approximately to the time where a new (multi-)scaling regime develops in the system.
The inset in Fig. 7.2 shows the time dependencies of the total charge @ in the system
for ; = 0.0039 and #;, = 0.012; it is seen that the time at which Q(t) saturates
to a constant value corresponds to the time at which the peaks in emax(t) stopped
occurring for each of the 6; values. This is again consistent with topological charge

annihilation (which conserves Q) being the only active mechanism for eliminating
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topological charge variations in the system at the later times. (Below we shall refer
to the corresponding time range for a given non-zero 6; value as the “pure annihilation
regime”, or “the regime with prevented unwindings”.)

We have thus confirmed that adding the Skyrme term Eq. (7.2) with 6; = 0.012
is sufficient to prevent unwindings in the system at late times . Does a Skyrme term
of such strength dominate the energetics of the whole system? It can be seen from
Fig. 7.3 that the answer is negative. Both the exchange energy E.x and the Skyrme
energy E; decay as power laws of time after ¢ = 0.2; however, Eg is smaller than E, by
a factor of 20 at the beginning of the power-law regime, and the ratio further increases
with time, because the exponent ¢, in E; o t~% is larger than the exponent @ey in
E.. « t~%=_ In this sense, the exchange energy dominates the Skyrme energy at late
times, and we have achieved our goal of stabilizing the textures against unwinding by
adding a “small” corrective term.

Eliminating the unwindings, however, does have a profound influence on the scal-
ing properties of the system. This can already be seen from the fact that ¢ex =
0.5 + 0.05 in Fig. 7.3; recall that for the case §; = 0, we obtained (in the previous
chapter) ¢ex = 0.64 £ 0.02. In Fig. 7.4, we compare the exchange energies for runs
in systems with #; = 0, 0.0039, 0.006, and 0.012. It is seen that by increasing 6,, the
onset of the time when E,, starts to drop significantly is shifted to higher times; for
0, = 0.012, E is still at its initial value at time ¢ = 0.02, when the E¢y curve for the
pure O(N) system has already entered the scaling regime with ¢ex = 0.64. A sharp
drop in Eg occurs at later times, though, followed by an apparent power-law regime
with ¢ex = 0.5 £ 0.05, for all the runs with non-zero 6;. The time of the crossover
into the final power-law regime occurs earlier for larger 6, values, and approximately
corresponds to the time characterizing the beginning of the unwinding-free regime in
Figs. 7.2. While the behavior in the intermediate regime (in the approximate range
t = 0.02-0.2) depends strongly on the value of 6;, the late-time regime, once entered,
is similar for all non-zero values of #,. The data presented point towards the existence

of a new, annihilation-dominated scaling regime, with properties distinct from those
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Figure 7.3: The exchange energy E., (upper solid curve) and Skyrme energy E; (lower
solid curve) for a run with 6; = 0.012. The straight lines have slopes —0.5 (upper
dashed line) and —0.8 (lower dashed line).

of the scaling regime in the non-Skyrme system. In the next section, we develop a
systematic technique for studying the change in the (multi-)scaling properties, based

on a detailed analysis of the distribution of the topological charge density.

7.4 Scaling of the moments of the topological charge density — the 3,
curve

In the previous chapter we have seen that, at late times, non-Skyrme O(3) o-model
exhibits a power-law dependence on time for various quantities—total energy, total

positive charge, and the correlation lengths—that characterize the system. In contrast
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Figure 7.4: Exchange energies E,, for runs with Skyrme-term amplitudes 6, = 0,
0.0039, 0.006, and 0.012.

to the usual case of dynamical scaling, however, these characteristic length scales have
distinct growth exponents. We shall refer to this situation as “multi-scaling” in the
present section; in fact, it will be seen that a good correspondence holds to what is
usually called multi-scaling in equilibrium statistical physics.

In the system with a non-zero Skyrme term, we saw in the previous section that
at least one of the growth exponents—corresponding to the exchange energy Eex—
changed significantly compared to the non-Skyrme O(3) o-model case. Rather than
just repeating the analysis of the correlation lengths—which is of limited use as the
correlation functions do not collapse, leading to ambiguities in the definition of the

corresponding characteristic length scales—we now attempt to develop a different
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general method for characterizing multi-scaling in phase-ordering systems. In the
present section we apply this method to the two-dimensional O(3) o-model with
and without Skyrme term, and in Sec. 7.6 we give a more general discussion of its
usefulness for the study of phase ordering in other systems.

We are motivated by the techniques used to study multi-scaling in equilibrium
and steady states. Recall that a fractal system [12] is characterized by self-similarity
and the lack of a characteristic length scale in the system. This leads to non-trivial
power-law scaling of appropriate quantities in terms of the measuring length scale [
(“the yardstick”). A multifractal system [13] can be characterized through anomalous
scaling properties of the various moments of the investigated quantities. A well-known
physical example is that of the scaling of the moments of the velocity gradients (in
the inertial range) in hydrodynamic turbulence [14]. Here the n‘" moment of the
velocity gradient (averaged over the whole system) scales as {*~, where [ is the length
scale on which the gradient is measured. There are indications that ¢, is not directly
proportional to n in turbulent systems (thus violating the well-known Kolmogorov
scaling form ¢, = n/3). The system can then be characterized as a multifractal, and
appropriate techniques, such as the “f(a) spectrum” [15, 16], may be used to study
it’s physical properties, starting from the information about the values of ¢,. In the
case of phase-ordering kinetics, the system of course does not, at any.given time, have
a fractal or multifractal character. However, the system is characterized by growing
values of the characteristic length scales (such as the correlation length of the order
parameter) as the system evolves. If dynamical scaling is violated, and multiple
characteristic length scales growing differently in time occur, one may expect that
the techniques of multifractal analysis may be useful, if one replaces the “measuring
yardstick” [ by the inverse time 1/t elapsed since the quench.

This leads us to consider the scaling, in time, of the various moments of a suitable
quantity in our evolving system. The natural quantity to investigate in the context

of the O(3) o-model is the topological charge density g(r). We define the set of
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exponents G, by the relation

(lg(x,t)|") ~ 2P, (7.6)

where (- --) denotes, as usual, spatial averaging over the whole system at the time ¢
after the quench. Since g(r,t) is a density in a two-dimensional system, exponents
characterizing the growth of a length scale may be extracted as (3,/2n. For a system

characterized by a single length-scale, we therefore expect

where ¢ is the growth exponent as usually defined in phase ordering. For systems
with multiple characteristic length scales, deviations from a straight line are expected
in the B, curve. The precise connection between the shape of the 3, curve and the
property of dynamical scaling as usually defined in phase ordering will be clarified
later in this section and in Sec. 7.6.

In Fig. 7.5, we show the results for the (3, curve in the pure O(3) o-model, obtained
from the same simulation runs as those analyzed in the previous chapter. [The data
shown are for n in the range —1/2 < n < 10; we have also calculated (|q(r,t)|") for
even lower negative n values, but found that the statistical error of the corresponding
B exponent diverges for n < —1.] Not surprisingly, the 3, curve obtained deviates
from a straight line. A striking feature, however, is that while for low moments
(n < 2), the relation 8, = n/3 holds at least approximately [corresponding to the
power law Eo ~ t~2/3 exhibited in Fig. 4 of the previous chapter], the (3, curve
saturates and approaches a constant value of approXimately 1.5 for high moments
n. This is also seen directly in Fig. 7.6, showing (|g(r,t)|") as a function of time for
n > 1 — the curves with the highest n values are approximately parallel to each other
in the log-log plot.

As the high moments of ¢(r) are dominated by regions where the topological
charge density is large in absolute value, we may expect that the behavior of 3, at

large n is strongly influenced by the single-texture (or single-antitexture) unwinding
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Figure 7.5: Growth exponents 3, for the n'" moment of the topological charge density
[see Eq. (7.6)]. Shown are the f, curves for a system with no Skyrme term (obtained
by averaging over 10 runs in a 512 x 512 system) and with Skyrme-term amplitude
6; = 0.0039 (obtained from a single run in a 512 x 512 system). The error bars are
shown only when they exceed the size of the data point symbol. The full line has a
slope of 2/3.

events, where |g(r)| reaches it’s maximum possible value for a short interval of time.
If that is the case, we should see significant changes in the 3, curve for systems where
unwindings are prevented by the Skyrme term. This is confirmed in Figs. 7.5 and 7.7,
showing the 3, curve for the Skyrme term amplitudes #; = 0.0039 and 6; = 0.012.
It is seen that preventing the unwindings has the effect of straightening the curve,
and for §; = 0.012, we obtain a 3, curve close to a straight line with slope 0.4,

corresponding to approximate scaling with a growth exponent close to ¢ = 0.2. Some
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Figure 7.6: Time dependence of the moments of the topological charge density
(lg(r,t)|™) for n > 1 in a system with no Skyrme term. The full lines are power-law
fits with exponents given in Table 7.1.

scaling violations still rema.in——fecall that in Fig. 7.3, we observed a growth law, with
exponent ¢ = 0.25 £ 0.02, of the length scale corresponding to the exchange energy
E.. However, the extent of the scaling violations as defined by the (3, curve appears
to be dramatically reduced.

The values of 3, obtained from runs in systems with Skyrme term amplitudes'
6, = 0, 0.0039, 0.006, and 0.012 are listed in Table 7.1. It appears that (at least
in the runs investigated) increasing 6; beyond 0.006 does not significantly alter the
results for (3, in the fitted time range, and that an approximately straight (rather than
saturating) (3, curve is therefore a general characteristic of the regime with prevented

unwindings. It is difficult to judge from only several runs of limited length if the true
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Figure 7.7: The 3, curve for §; = 0.012. The full line shows the two-length-scale
prediction of Table 7.2 with ¢g = 0.185 and ¢p = 0.23. '

asymptotic (late-time) (3, curve is indeed a straight line throughout the measured
range of n. In fact, we shall argue below that it consists of two straight segments
with differing slopes.

In Ref. [1], the second (n = 2), as well as the first (n = 1), moments of the
topological charge density were calculated, and a simple two-length-scale picture
for relating the values of their growth exponents to the growth exponents of the
correlation lengths was developed. We now generalize the scaling argument given in
[1] to obtain a prediction for the shape of the 3, curve investigated in this section.
The arguments given below are independent of any information about the correlation

functions. In Sec. 7.5, we shall attempt to relate the conclusions of this section to the
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Table 7.1: Growth exponents 3, [defined in Eq. (7.6)] for the indicated values of the
Skyrme-term amplitude 6;. The errors stated correspond to the standard error of
the least squares fitting procedure in the power-law regime in each indicated run.
For 6; = 0, the results were obtained from averaging over 10 runs in a system of
size 512 x 512 up to t = 5.6. For each of the remaining 6, values, only one run was
performed.

n l Bn for 6, =0 B, for 6; = 0.0039 | B, for 6, = 0.006 | B, for 6; = 0.012
| -0.5 0.390 + 0.005 0.28 £ 0.01 0.32 £+ 0.02 0.31 + 0.01
-0.25 || 0.190 £ 0.002 0.135 + 0.004 0.155 + 0.005 0.147 + 0.006
0.25 0.177 £ 0.002 0.121 + 0.001 0.137 + 0.003 0.133 £ 0.005
0.5 0.340 + 0.003 0.225 + 0.001 0.254 £+ 0.005 0.25 £+ 0.01
1 0.621 £ 0.005 0.388 + 0.002 0.447 £+ 0.007 0.46 = 0.01
2 1.004 + 0.007 0.65 £+ 0.02 0.78 + 0.01 0.83 £ 0.02
3 1.21 + 0.01 0.94 £+ 0.06 1.15 £ 0.01 1.19 + 0.02
5 1.35 £ 0.02 1.5+0.1 1.93 + 0.04 1.94 + 0.03
7 1.39 + 0.02 2.0 0.2 2.7+ 0.2 2.72 + 0.06
10 1.45 = 0.04 24+ 0.2 3.8 £ 0.6 39+0.1

data for the order parameter and topological charge correlations.

Picture the system as divided into regions of size D, each containing a texture or
anti-texture of size R. Figures 1 of the present and previous chapters suggest that
at late times such a picture is qualitatively correct. As a first approximation, let us
represent each texture as a circle of radius R, with constant topological charge density
¢ = 1/7R? inside the circle, and ¢ = 0 outside the circle. The n'* moment (n > 0)
of the topological charge density per unit area is then given by wR2?(1/wR%)"/D?,
and scales as R2~2"D~2, We now show that provided n > 1/2, this scaling result is
unaffected by allowing for a smooth profile of the texture. Inside each region of size

D, we have a texture with topological charge density profile approximately given by
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the ideal Belavin-Polyakov solution [17] for an isolated texture centered at r = 0:

2
q(r) = %(Tz—jﬁT)g (7.8)
The n'" moment of ¢(r) per unit area is now given (omitting time-independent mul-
tiplicative factors) by D=2R?" [P rdr (r> + 4R?)~?". For n > 1/2, the integral is
dominated by the regions of small r, so that we may replace D by oo in the up-
per bound and obtain [5°rdr (r? + 4R?)™?" ~ R*"*2, giving the previously derived
scaling result (|g(r,t)|") ~ R?272"D~2. For n < 1/2, on the other hand, the inte-
gral [P rdr (r? + 4R?)~?" is dominated by the large-r regions, and the length scale
determining it’s scaling is the upper cutoff D, giving (|q(r,t)|*) ~ R?*D~*". In the
marginal case, n = 1/2, we obtain [[° r dr (r?+4R?)~! ~ log(D/R), and consequently
(la(r,t)|'/?) ~ RD~2log(D/R).

The scaling arguments given above is applicable to the configuration of a system

at any given time t. If we now assume that the length scales D and R grow as

power-laws with exponents ¢p and ¢g, i.e.,
D(t) ~ t*® and R(t) ~ t%®, (7.9)

and use the scaling expressions from the previous paragraph, then we obtain the
following predictions for the exponent S, for the growth of (|q(r,t)|*): Bn = 2n¢r +
2(¢p — ¢r) for n > 1/2, and (B, = n(4¢p — 2¢R) for n < 1/2. In the case n =
1/2, simple power-co.unting gives 812 = 2¢p — ¢r; however, at any finite ¢ the
presence of the logarithmic term log(D/R) ~ log(t) will tend to suppress the effective
growth exponent below the true asymptotic value of 2¢p — ¢g. [Note that for the
consistency of this argument, and some other arguments given above, it is necessary
to assume that the characteristic separation D(t) between textures grows (at least
asymptotically) faster than the characteristic texture size R(t); it is seen from Figs. 1
of the present and previous chapter that such an assumption is indeed justified.]
Our predictions based on the two-length-scale picture are summarized in Table

7.2. In order to compare these predictions to the measured (; curves, we proceed as

134



Table 7.2: Predictions for the scaling of the moments of the topological charge density
based on the two-length-scale argument [see the text following Eq. (7.8)]. The second
column gives the scaling of the n'® moment of topological charge density in terms of
the characteristic separation D between textures and the characteristic texture size
R; the third column gives the growth exponent (3, defined by Eq. (7.6), assuming
that the length scales D and R scale according to Eq. (7.9).

moment scaling in terms of R, D | 3, value in terms of ¢p, ¢r
n>1/2 R*"2npD—2 2neégr + 2(ép — @r)
n=1/2 D~%log(D/R) < 2¢p — ¢r
n<1/2 RAnp)—in n(4¢p — 20R)

follows. We first calculate the exponents ¢p and ¢r from the measured 3, values for
two selected moments n, and then check how the remaining [, values compare with
the predictions of Table 7.2. The most natural moment to use to obtain ¢p is n = 1:
by definition, (Jg(r,t)|) gives the number of textures and antitextures in the system
(assuming that no multiply-charged topological objects occur), and consequently the
growth exponent for the average texture (or antitexture) separation D(t) is given by
¢p = (1/2. Which value of n should be used to obtain ¢g is a matter of choice; we
use n = 2, i.e., we take ¢y = (B — 2¢p)/2. It is expected that the half-widths L,
and L, of the topological correlation functions Cqy(r,t) and Cy(r,t) should provide a
good indication of the characteristic texture size, and their scaling can therefore be
used as a check of consistency. '

We first apply this approach to the runs with single-texture unwindings prevented.
We use the values of (3, measured in the system with Skyrme term amplitude 6, =
0.012 (Table 7.1). We obtain ¢p ~ 0.46/2 = 0.23 and ¢g ~ (0.83 —20.23)/2 = 0.185.
Using these values in the expressions for (3, given in Table 7.2 yields the full curve
shown in Fig. 7.7. A very good agreement with the the data for (3, is observed
throughout the measured n range. Note that the measured value $;,2 = 0.25 £ 0.01
is slightly lower than the predicted value of 0.275, as expected from the influence of
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the logarithmic term in (|q(r,%)|}/2) ~ R(t)D~2(t) log[D(t)/R(2)].

The predictions of Table 7.2, however, are not consistent with the 3, data for the
pure O(N) o-model with no Skyrme term. It is clear that the n > 1/2 prediction
Bn = 2n¢r +2(ép — dr) can agree with the saturating curve in Fig. 7.5 only if ¢r = 0;
this is, however inconsistent with the data for lower n. [Proceeding as in the 6; = 0.012
case, we would obtain ¢p ~ 0.621/2 = 0.31 and ¢r ~ (1.004 — 20.31)/2 = 0.19,
resulting in a slope of the 3, curve at high n comparable to the 6; = 0.012 case.] To
resolve this apparent contradiction, we now discuss the effects of having a distribution
of texture sizes R. In general, we may expect that a stationary distribution H(R)
of texture sizes develops in the asymptotic ordering regime. By stationary, we mean
that H(R(t),t) depends on ¢ only through the time-dependence in R(t). Let us
assume, for the moment, that H(R) is a power-law, i.e., H(R) ~ R®. There are no
textures smaller than the lattice size, or in general, the coherence length of the order
parameter. We shall denote this ultra-violet cutoff length scale by {. The natural
upper (infra-red) cutoff scale for the texture distribution is given by D. By using the

results in Table 7.2 separately for each single-texture region, we obtain
D D
(lax, 8)|") ~ /{ dR H(R) R** D~? ~ D2 /E dRR®™2 for m > 1/2; (7.10)
D D
(a(x, t)|") ~ /6 dR H(R) R* D" ~ D~ /E dRR**™ | for m < 1/2.(7.11)

It is evident that for any value of a, there exist sufficiently large positive values of n
such that the integral over R in Eq. (7.10) is dominated by small textures. In that
case (i.e., for n > max[1/2, (a + 3)/2]), we obtain (|q(r,t)|") ~ D72(¢"(Cr—o-3)
D~(@n—2-3)) ~, D=2 (recall that £ is independent of ¢, and can be therefore treated as
a constant in our scaling arguments).

The saturation of the 8, curve at large n in Fig. 7.5 can be therefore understood as
a cdnsequence of the texture distribution being dominated by textures of the smallest
possible sizes. For this argument, it is immaterial whether the H(R) distribution has
precisely a power-law form, as assumed above, or not. In essence, we simply apply

the prediction of Table 7.2 for n > 1/2, but replace the general texture size R by the

136



time-independent length scale £, yielding (|g(r,t)|") ~ D=2, and therefore (3, = 2¢p,
independently of n. This predicts that the G, curve for the system with no Skyrme
term should saturate at the value 0.621, while the observed [, values in the range
5 < n < 10 are 1.35 — 1.45, giving a serious quantitative disagreement. One reason
may be our assumption of the stationary nature of the texture-size distribution H(R);
for a more general form H(t, R(t)), it is possible to obtain an asymptotic value of 3,
higher than 2¢p, if the relative proportion of textures of the smallest size increases
with ¢. (See Sec. 7.6 for an example where arguments analogous to those given in
the previous two paragraphs lead to a somewhat better agreement with simulation
results.)

It is interesting to note that for very low moments, satisfying the condition n <
(a —1)/2, Eq. (7.11) implies the scaling relation (|q(r,t)|*) ~ D~*". This can be
expected to be relevant mainly for large negative values of n; we find, however, that
the exponent 3, is not well defined for n < —1, due to the domination of (|g(r,?)|")
by small ¢(r) fluctuations, leaving us unable to check such a scaling law. In the range
(@ —1)/2 < n < max[1/2, (a + 3)/2], it is easy to see that Eqgs. (7.10,7.11) imply
the scaling form (|q(r,t)|*) ~ D®~2"*+!. The values of 3, for n = 0.25 and n = 0.5
from the 6; = 0 column of Table 7.2 are well fit by taking o = —1 and ¢p = 1/3 (see
the straight line in Fig. 7.5). Such value of @ would imply saturation of the 3, curve
for moments n > max(1/2, (o + 3)/2] = 1; it is seen in Fig. 7.5 that the crossover
to saturation indeed starts at n ~ 1. Note, however, that &« = —1 would also imply
(lg(x,t)|™) ~ D~*" for all n < 0, which is not observed. This again suggests that
although the arguments leading to Egs. (7.10,7.11) are useful on a qualitative level,
our Ansatz H(R) ~ R* for the texture size distribution is inadequate.

The analysis presented in Secs. 7.3 and 7.4 suggests the following overall picture of
phase ordering in our implementation of the two-dimensional O(3) o-model. With no
Skyrme term (6; = 0), textures (or antitextures) are not prevented from unwinding,
sharp jumps by %1 are observed in the time dependence Q(t) of the topological charge,

and the occurrence of textures with size R ~ £ is necessarily reflected in the saturation
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of the B, curve for sufficiently high positive moments n. With a sufficiently strong
Skyrme term (f; = 0.006 or 0.012), the singular unwinding events are prevented,
and phase ordering proceeds purely through the annihilation of regions of positive
and négative topological charge density. No small textures occur, the average texture
size R(t) is sharply defined, and the two-length-scale arguments resulting in the
predictions of Table 7.2 may be used. For intermediate 6, values (6; = 0.0036), it is
difficult to analyze our data in terms of either one of these scenarios; it is possible that
at sufficiently late times, a crossover to either the unwinding-free or the unwinding-

dominated regime will always occur.

7.5 Scaling of the correlation functions.

To test whether the straightening of the (3, curve occurring for sufficiently large
Skyrme-term amplitudes #; can be identified with improved scaling in the standard
sense, we have calculated the correlation functions of the order parameter and the
topological charge for the run with 6; = 0.012. The results of our attempt to collapse
the data for the correlation functions at different times are shown in Fig. 7.8, with the
correlation functions C(y), Cq(y), and Cp(y) defined as in the previous chapter. The
correlation functions are taken at somewhat later times than those in Fig. 5 of the
previous chapter (where analogous results for the case 6, = 0 were presented), as the
power-law regime, where scaling may be expected to hold, starts only after t = 0.2
in the 6; = 0.012 case. From a comparison of the two figures, we see that, somewhat
surprisingly, the quality of collapse of any of the correlations is not improved in the
Skyrme case (even taking into account the fact that data in Fig. 7.8 are obtained
from just one run, while the data in Fig. 5 of the previous chapter were obtained by
averaging over 14 runs). The strongest violation of scaling is again observed in the
topological correlation function Cj.

As seen in the inset to Fig. 7.8, the length scales L(t), Lq(t), and L,(t) appear
to be well fit by the form L(t) = alog(bt) throughout a wide time range. It is
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Figure 7.8: The rescaled correlation functions C(r/L(t)), Cq(r/Lq(t)) and
Cp(r/Lp(t)) at the specified times, in a system with Skyrme-term amplitude
6, = 0.012. Inset: the half-widths L(t), L,(t) and Lq(t) on a semi-logarithmic scale.

difficult, however, to distinguish logarithmic growth from a power-law growth with a
small exponent; in fact, the half-widths L,(t) and Lq(t) of the topological correlation
functions in a system with no Skyrme term were fit to a power-law form in Ref. [1],
and it was found that at very late times their growth was consistent with the power
law ¢0-21£002  Tp Fig. 7.9, we re-plot the data from the inset of Fig. 7.8 on a log-log
scale. It appears that a well-defined crossover to a power-law regime for all three
length scales occurs at time ¢t ~ 0.2. While the logarithmic form seems to fit the
data for L(t), Lq(t), and Ly(t) better in the intermediate time range, the coincidence
of the crossover location ¢ ~ 0.2 with the beginning of the unwinding-free regime

(see Sec. 7.3) suggests that the crossover is physical, and that the power-law growth
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Figure 7.9: The half-widths L(t), Ly(t) and Lq(t) from Fig. (7.8) on a log-log scale.
The straight lines have slopes 0.23 (full line) and 0.28 (dashed line).

with global exponent ¢c = 0.28 & 0.03, observed in Fig. 7.9, should be taken as an
indication of the true asymptotic behavior of L(t). For the length scales L,(t) and
Lqy(t), we obtain in a similar way an asymptotic power-law growth with exponents
ér, = ¢r, = 0.22 £ 0.03.

It is tempting to identify the half-width L, of the correlation function Cy(r,t) for
the topological charge density with the typical size of a texture or antitexture in the
system. Such a relation can be expected to be valid if Cq(r,t) is strongly dominated
by the well-separated regions of maxima or minima of ¢(r) (i.e., the central regions of
textures or antitextures). The regions in between the textures, containing fluctuations

of positive and negative g(r), however, also contribute to Cy(r,t). At late times, the
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typical magnitude of ¢(r) in those regions is much smaller than in the texture peaks—
on the other hand, those regions occupy an increasing proportion of the system area.
The relation of L, to the characteristic texture size R is therefore not entirely clear.
With this caveat, we may attempt to identify the growth exponent ¢r used in the
previous section with the growth exponent for L,(t) [or Ly(t)]. The obtained value
of 0.22 4 0.03 is in only approximate agreement with the value ¢g = 0.185 that was
independently given by our analysis of the 3, curve data. It is interesting to note,
however, that the same values of ¢,, and ¢, are obtained in the O(3) model case
with no Skyrme term [1]. This suggests that although (as demonstrated in Sec. 7.4)
the distribution of texture sizes in the §; = 0 and 6; > 0 cases is significantly different,
the “typical” texture size behaves in a rather similar way in both cases.

A further indication of the different character of the texture size distribution in
the non-Skyrme O(N) system and the Skyrme system is provided by our data for
the structure factor S(k,t) [the Fourier transform of the order parameter correlation
function C(r,t)]. While the large-k region of S(k, t) in the system with #; = 0 can be
approximately fit by a power law S(k) o< k=% with the Porod exponent xy = 6+1 [18],
the asymptotic structure factor in the system with #; = 0.012 is approximately fit
by an exponential form, S(k,t) oc e=®®*. This agrees with our picture of the texture
size distribution being dominated by very small textures for §; = 0 (leading to a
singularity in the short-range order parameter correlation, analogously to systems
with singular topological defects [19]), and with the expectation that for 6, = 0.012,

there are no textures of size comparable to the lattice spacing.

7.6 The 3, curve and dynamical scaling in general.

In Sec. 7.4, we saw that studying the growth exponents £, for the moments (|q(r, t)|")
of the topological charge density yielded useful information on the short-scale prop-
erties of the system and on the distribution of the sizes of topological textures and

antitextures during the phase ordering process. We now discuss in greater generality
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the usefulness of the method, and possible applications of it to other phase ordering
systems.

We saw that the shape of the 3, curve depended dramatically on the value of the
Skyrme-term amplitude 6,, with (3, saturating at a finite value for large positive n
in the §; = 0 case, but growing indefinitely and approaching a straight line with a
well-defined slope in the 8; = 0.012 case. At the same time, we concluded in Sec. 7.5
that the straightening of the £, curve was not associated with an improved quality of
collapse of the correlation functions. In what sense, then, is measuring the 3, curve
a useful diagnostic for the investigation of dynamical scaling_?

Let us first define (3, in an alternative way, applicable to any phase-ordering
system. The topological charge density ¢(r) is a meaningful quantity only in the two-
dimensional O(3) model (or in general, in an O(N) model in dimension d = N —1); for
a general system, it is natural to consider instead the usual form of the inhomogeneous
part of the free energy density, given by e(r,t) = |[Vm(r,t)|? in the case of an O(N)

order parameter. We now define the set of exponents (3, through
(IVm(z,t)|") ~ t 7P, (7.12)

[Recall that in the case of the two-dimensional O(3) model, the topological charge
density ¢(r) and the “exchange” energy density e(r) are closely related in the late
stages of ordering; either quantity can be used for the §,-curve analysis in this model.
The scaling arguments presented in Sec. 7.4 were based on the single texture profile
Eq. (7.8); the profile of the energy density e(r) has an identical form [17], and none
of the scaling arguments developed by us is therefore altered if we use the definition
Eq. (7.12).]

It is clear that for large positive n, the (3, values are determined primarily by the
regions with large order parameter gradients, while for n < 1 (and particularly for
n < 0), regions where the order parameter varies slowly contribute the most. The 3,
curve, as a whole, probes the entire range of length scales that characterize the system.

The saturation of 3, for high n is expected to occur if a short time-independent length
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scale comes into play. We saw a corresponding example in Sec. 7.4, where such
a length scale was the minimum possible texture size, approximately given by one
lattice spacing. Generally, in any system where singularities of the order parameter
occur—meaning that significant variations of the order parameter are present on the
scale of the (time-independent) order parameter coherence length—a saturation of
the 8, curve is expected. In addition to the system with unwinding textures, this will
occur in any system with stable topological defects.

To illustrate this, we calculated the §, exponents as defined by Eq. (7.12) for the
case of a two-dimensional uniaxial nematic. Phase ordering in such a system was
studied in detail in [20]; it was shown that the system orders through the mutual
annihilation of numerous point defects, and the average defect separation D(t) was
found to grow as t%-374£0:005 jn the time range investigated. By using the simulation
method described in [20], we have calculated the (3, curve in a system of size 256 x
256, averaged over 20 configurations. The result is seen in Fig. 7.10; the (3, curve
apparently approaches saturation, and the (3, values for 2 < n < 10 are in the
range 0.8 — 1.05. The two-length-scale analysis given for textures in Sec. 7.4 is easily
modified for the present case: instead of Eq. (7.8), we now have the divergent profile
of energy density e(r) around a point defect given by e(r) ~ 1/r2; for all n > 1,
this implies that the integral in (e(r,t)") ~ D2 fED rdrr?" is dominated by the
lower cut-off region r ~ £, where £ is the defect core size, and is therefore time-
independent. This leads to 3, = 2¢p = 0.75 & 0.01 for n > 1, which is not far from
the observed values. For n < 1, we obtain the “usual” scaling prediction 3, = 2n¢p,
which is seen to agree approximately with the data. A crossover between the two
regimes occurs at n ~ 1; the value of (3, is affected by the logarithmic correction in
(e(r,t)) ~ D(t)~2 log[D(t)/€].

In any system with stable topological defects (having a time-independent core
size), we will similarly obtain (for all n higher then some threshold value n,) the
saturation of the 3, curve at 3, = d¢p, where d is the dimensionality of the system

and ¢p is the growth exponent for the average separation between defects. Such
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Figure 7.10: Growth exponents (3, for the n'® moment of the energy density in a
two-dimensional uniaxial nematic, obtained from averaging over 20 configurations in
a 256 x 256 system.

saturation should not be taken as an indication of a violation of dynamical scaling.
For all n < n,, however, the standard one-length-scale prediction 8, = nd¢p is
obtained; any observed deviation from this prediction would indicate the violation of
dynamical scaling.

In any system with topological textures, an analysis similar to that carried out in
Sec. 7.4 will lead to non-trivial predictions with at least two time-dependent length
scales. In addition, if texture unwindings occur, the (3, curve will saturate at a high
enough n. We can therefore expect no saturation for textures in spatial dimension
d = 1, which are unstable towards expansion; saturation is expected for textures in

d = 3 and higher, where textures are unstable towards collapse.

144



In systems with no topological objects, the (3, exponents cannot be predicted
using the type of arguments developed by us in this chapter, as no direct analogs of
the length scales D or R exist. However, it is not expected that the 8, curve will
saturate, and a system satisfying dynamical scaling should therefore obey 3, ~ n for
all n. It would be interesting to see how the violations of dynamical scaling that were
shown to occur in the conserved spherical model [21] are reflected in the shape of the

corresponding [, curve.
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Appendix A

Topological defects and the short-distance
behavior of the structure factor in nematic liquid
crystals

A.1 Introduction

The dynamics of ordered systems containing numerous topological defects has been
the subject of much recent interest, both in the context of phase ordering dynamics
in condensed matter [1, 2] and of the formation of large-scale structures in cosmolog-
ical models [3, 4]. In both cases, the defects are introduced into the system during
a quench from a higher-symmetry phase into a lower-symmetry phase. After the
quench, the system orders primarily through the mutual annihilation of the numer-
ous defects.

The process of phase ordering has been successfully studied experimentally in
systems described by a scalar order parameter (e.g., in binary alloys—see Ref. [5]).
However, analogous experiments were found to be very difficult to perform in systems
with continuous symmetries (such as ferromagnets or liquid He?). In the recent years,
a series of experiments [6, 7, 8, 9] have demonstrated that nematic liquid crystals
provide a system in which phase ordering (following a quench from the isotropic
to the nematic phase) is accessible to experimental investigation. It is therefore of
importance to extend the available theoretical results for phase ordering in O(N)
symmetric vector model systems (e.g., Refs. [10, 11, 12, 13]) to systems described by

the tensorial nematic order parameter.
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The principal quantity of interest in both the theoretical and the experimental
investigations of phase ordering is the structure factor S(k,t), which is the Fourier
transform of the real-space correlation function of the order parameter at a time ¢
after the quench. This quantity, which is directly measurable via the appropriate scat-
tering experiment, characterizes the degree of inhomogeneity of the order parameter
at length scales of order k1.

Only approximate calculations are available for the function S(k,t) in systems
supporting topological defects (see Refs. [10, 11] for the scalar and O(N) vector
models, and Ref. [16] for the uniaxial nematic case). A common feature of both the
experimentally determined [8, 9] and the approximate analytical structure factors,
however, is that S(k,t), the average of S(k,t) over the orientations of k, becomes a
power-law function of & in the region of large k: S(k,t) ~ k~X. In scalar systems, this
power-law behavior has long been understood as arising from sharp changes in the
order parameter across the domain walls present in the system [17, 18]. Recently, Bray
and Humayun [13] presented purely geometric arguments showing that the power-
law behavior in the O(N) vector model comes from the singular variations of the
order parameter in the vicinity of the defect cores. Their approach permits the
determination of not only the exponent x but also the amplitude A in the asymptotic
relation S(k,t) = Ap(t)kX, where p(t) is the number density of topological defects
at time ¢. Their analytical results agree well with data available from numerical
simulations of phase ordering in O(NN) vector model systems [15].

In the present chapter, we calculate analytically the Porod-law exponents x and
amplitudes A arising from topological defects occurring in uniaxial and biaxial ne-
matic systems in both two and three spatial dimensions. We also discuss how our
results may be used to extract information about the defects present in the system
and the degree of biaxiality of the nematic order parameter from the experimentally-
determined structure factor. The results presented here were obtained in collaboration
with Paul M. Goldbart.

This chapter is organized as follows. In Sec. A.2, we give a general discussion of
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the origin of the Porod tail (i.e., the behavior for large wave vectors) of the structure
factor, and briefly review the method used by Bray and Humayun [13] to calculate
the Porod-law amplitudes in the O(NV) vector model. Then, in Sec. A.3, we re-derive
their main results in a simple way, working directly in Fourier space and taking full
advantage of the symmetries of the problem. In Sec. A.4 the simplified method is
used to calculate the Porod tail forms corresponding to hedgehog defects, disclination
lines, and ring defects in a uniaxial nematic system. A case of special interest is that
of a ring defect (disclination loop) in a uniaxial nematic—in Sec. A.4.3, we show
that in this case, two separate Porod regimes exist, having distinct exponents and
amplitudes, arising for length scales larger than and smaller than the radius of the
disclination loop. The presence of two Porod regimes is specific to the nematic case,
and does not occur for ring defects in O(NN) vector model systems. In Sec. A.5, we
generalize our results for the uniaxial nematic to the case of non-abelian defects in
biazial nematics, the dynamics of which has recently been investigated experimentally
[20] and theoretically [19]. The Porod amplitudes depend in this case on the strength
of the biaxiality of the nematic order parameter. In Sec. A.6, we point out an explicit
connection between the total elastic energy (in the one-constant approximation) of a
nematic defect and the Porod amplitude, and argue that deformations of the defect
core region due to defect interactions can only increase this amplitude.

The results described in this chapter were obtained in collaboration with Paul
M. Goldbart.

A.2 The generalized Porod law

Consider an ordered system characterized by a suitable order parameter field. Scat-
tering experiments using an appropriate experimental probe that couples to the order
pa.ré\meter in question (e.g., neutron scattering for ferromagnets, or light scattering
for nematics) permit one to measure directly the structure factor S(k,t), describing

the correlations of the order parameter, via its proportionality to the scattering in-
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tensity. The structure factor S(k,t) is defined as the Fourier transform of the real

space correlation function C(r, t):
S(k, t) = / dr %7 C(r, 1). (A1)

In the case of a system described by the O(NN) vector model order-parameter field
®(r, ), the correlation function C(r,t) is given by

1

C(r,t) = Mo,

/ddx ®(x,t) - ®(x+1,1), (A.2)
where the integration is over the whole system. Here Mo (y) is a normalization factor,
Moy = / d'z ®(x, 1) - B(x,1), (A.3)

to ensure that C(r,t)|r=o = 1. Equivalently, the structure factor may be expressed as

1
O(N)

S(k,t) = &(k, 1) - ®(-k, 1), (A.4)

where ®(k,t) is the Fourier-transformed order parameter,
®(k,t) = / dr %@ (r, 1) . (A.5)

For systems that are isotropic on macroscopic scale (such as a bulk system undergoing
phase ordering), S(k,t) depends on k through the magnitude k£ = |k| only.

Numerous experimental and computational studies have shown that in systems
that support topologically stable defects (walls, lines, or points), the structure factor
S(k,t) decays asymptotically as a power law in k:

S(k,t) ~ BEk™ (k> k). (A.6)

In phase ordering systems the inverse length k, beyond which the power-law regime is
exhibited depends on the time ¢ that has elapsed since the quench, viz., k, decreases
with increasing ¢. Similarly, the time-dependent amplitude B decays with ¢. This

behavior is easily understood for systems with a scalar order parameter, containing
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domain walls, as follows. Consider for simplicity a one-dimensional system with a
kink. Viewed on length scales larger than the kink width (given by the coherence
length of the order parameter), the order parameter abruptly changes from -1 to 1 at
the kink location. For k values smaller than the inverse kink width, we consequently
obtain ®(k,t) in Eq. (A.5) as the Fourier transform of sgn(r), giving ®(k,t) ~ k™,
and therefore due to Eq. (A.4), S(k,t) ~ k~2. For domain walls in dimension d higher
then one, additional factors of 1/k arise due to the spatial extent of the domain
walls, with the result S(k) oc k~(4*)). In regions between the domain walls, the
order parameter does not vary, and therefore there are no extra contributions to the
structure factor for k values larger than the inverse domain size. We therefore obtain
a structure factor that has a power-law form for £~! in the range between the domain
wall separation and the domain wall width. The decrease of the lower threshold k,
with time is then seen to be a consequence of the increase in the average domain
size as the system evolves. For a given value of k£ in the power-law range, S(k,1) is
proportional to the total domain wall area in the system at the time ¢, which similarly
explains the decay of the amplitude B in Eq. (A.6) with time.

Bray and Humayun [13] investigate in detail how the singular variation of the
order parameter around a point or line defect in a system with continuous symmetry
will likewise lead to an asymptotic power-law dependence on & of the structure factor
S(k,t). In this work, they calculate exactly the exponent and the amplitude of the
contribution Ak™X to the structure factor coming from an isolated defect in the O(N)
vector model order parameter configuration. They then argue that in the region of
large k, the structure factor of a system containing a number of topological defects
can be obtained by multiplying A% by the number of defects. The reason is as
follows. Variations in the order parameter on very short scales (probed by S(k,t)
with k large) occur only in the singular regions surrounding the defect cores. It is
therefore appropriate to treat the contribution from each defect independently, and
as coming from a defect with a symmetrical (i.e., equilibrium) configuration, provided

that the configuration in the vicinity of the defect core is not affected by the presence
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of other defects. This last assumption of this reasoning is non-trivial: in fact, it
was argued in Ref. [14] that for the case of point defects in the O(3) vector model
in d = 3, a singular, string-like configuration develops between the defects. It is not
clear, however, to what degree the static calculation in Ref. [14] is relevant to the case
of defect dynamics, and in fact the prediction for S(k,t) based on the assumption
of symmetrical defect cores has been found to be in good agreement with numerical
simulations in several systems [15]. In the calculations we present in Secs. A.3-A.5,
we shall assume that the regions close to the defect cores in a phase ordering system
do possess the structure of an isolated defect, and we shall comment on the nature of
possible corrections to our results in Sec. A.6.

The discussion in the previous paragraph leads us to the following formulation of
the generalized Porod law for the structure factor of a system containing topological
defects:

S(k,t) ~ Ap(t)k™*, (A.7)

where p(t) is the defect density (i.e., the domain wall area, string length, or number of
point defects, per unit volume of the system), and A is a time-independent amplitude
characterizing the given type of defect. The generalized Porod law is expected to be
valid in the range L(t)™! « k < &1, where L(t) is the average separation between
defects present in the system at time ¢, and £ is the size of the defect cores. Specific
cases exemplifying the validity of Eq. (A.7) will be given throughout the rest of the
Paper. It will be seen that the Porod exponent x is always given by d + ¢, where d is
the dimensionality of the system, and c is the co-dimension of the topological defects
(that is, ¢ = d for point defects, c = d — 1 for string defects, and ¢ = d — 2 for domain
walls). The amplitude A, however, depends in more detail on the order parameter in
question. For example, we shall see that the amplitudes A for the nematic hedgehog

and for the O(3) monopole in d = 3 differ substantially.
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A.3 O(N) symmetric vector systems

The exponent x and the amplitude A of a contribution to S(k,t) from a single de-
fect in the configuration of an O(N) vector model is computed in Ref. [13] by first
calculating the real-space correlation function C(r,t), Eq. (A.2), and then Fourier-
transforming the result to obtain S(k,t). During this calculation, the authors discard
the “analytic terms” (see Ref. [13]), which do not contribute to the power-law part
of the Fourier transform; also, for O(/N) systems with /N even, the calculation is
complicated by the appearance of logarithmic terms in the intermediate result for
C(r,t). We shall show below that the results of Ref. [13] can be obtained in a more
simple way by working directly in Fourier space, i.e., by first Fourier-transforming
the order-parameter configuration, and then using Eq. (A.4) to obtain the structure
factor [21]. Besides being shorter, this method does not discard any terms, and does

not involve any logarithmic terms.

A.3.1 Point defects in O(N) symmetric vector systems

We first perform the calculation for the case of the O(N) vector model system in
d = N spatial dimensions. In this case, only point defects (i.e., hedgehogs) are
topologically stable; the configuration of a stable point defect is described by (see

[22]) |
B(r) = ; . (A.8)

Due to spherical symmetry, the Fourier transform of @(r) takes the form
®(k) = k f(k?), (A.9)

where f is a certain scalar function of the scalar k2. Taking the scalar product of

Eq. (A.9) with k and solving for f allows us to write

®(k) =kk™? / ik re®r = ikk?D F()%?), (A.10)
0 Ia=1
where the function F is defined via
F(\%k2?) = / dip 1 e (A.11)
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i.e., F is the d-dimensional Fourier transform of the Coulomb potential r~!, which
can readily be shown, for k # 0, to be

F(\%?) = (4722‘:”/ ‘r (d; 1) . (A.12)

Evaluating the derivative of F, and inserting it into Eq. (A.10), leads to

(k) = ik(d — 1)(4)@D2T (g;_1) kd—ﬂl (A.13)

The normalization factor Mgy, given by Eq. (A.3), is the volume V' of the system.
It follows from Eq. (A.4) that the structure factor of a single point defect S(k) is then

given by

S(k)=—‘17%(41r)"1‘( 5 =R (A.14)

For a system having p defects per unit volume, the factor V! is replaced by p. The

d+1)2 1

expression A.14 is then seen to be in agreement with the result for S(k) given in
Ref. [13]. It should be noted that by fully exploiting the spherical symmetry at hand,
this method enables us to pass from a calculation involving vector quantities to a
calculation involving only scalar ones. In Sec. A.4.1, we will similarly be able to pass
from a tensorial to a scalar calculation, appropriate for the case of the nematic order

parameter.

A.3.2 Vortex lines in three-dimensional O(2) vector systems

We now turn to the case of line defects in O(V) vector systems, specifically concen-
trating on the physically prominent case of vortex lines in three-dimensional O(2)
vector systems.

In the case of the spherically symmetric point defect in the O(N) vector system,
investigated in the previous subsection, the final result, Eq. (A.14), is independent
of the orientation of the wave vector k, due to the spherical symmetry. In contrast,
the structure factor of a segment of a line defect does depend on the angle between

k and the orientation of the line segment: S(k) is dominated by contributions from
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defect segments that are perpendicular to the vector k, as there are no short-distance
order-parameter gradients in the direction along the defect line. As we shall now
see, the contribution to the structure factor from a straight segment of a line defect
can readily be obtained by using the structure factor of the appropriate point defect
in the planar system that forms the cross-section of the line defect, along with an
appropriate additional factor. As we are ultimately concerned with large systems
that are undergoing phase ordering under isotropic conditions, all orientations of
defects occur with equal probability, and the resulting structure factor will be again
isotropic. A

We therefore begin by considering the structure factor of a single vortex line.
Now, if the orientation of the defect line varies on a scale larger than k! then this
orientation variation does not substantially influence the structure factor at wave
vector k. Thus, for values of k! lying between the core size and the typical orientation
variation length (i.e., the characteristic radius of curvature of the vortex lines) it is
sufficient to consider straight vortex lines, and subsequently average over the their
orientation.

Consider, then, a straight vortex line segment in d = 3 with its core located on
(z,y) = (0,0), and extending from z = —L/2 to 2 = L/2. The order parameter
® does not depend on z, and the configuration of @ in the zy plane is identical to
the configuration of a point defect in the corresponding O(2) vector model in d = 2.

Thus, the structure factor is given by

S(k) = ®(k) - ®(—k) = S® (kg, k,) / 2 g e / e gz (A.15)
-L/2 -L/2

where S®)(k,k,) is the structure factor for the d = 2 point defect configuration.

From Porod’s law in d = 2 we have S® (k;, ky) = A®@ /(K2 + k2)> = A@ [k*sin* 0,

where A®) = 472 and 6 is the angle between k and the defect orientation. Thus, we

may write S*(k), i.e., the average of the structure factor S(k) over all orientations

of the defect, as

A1 7 sing [L/2

Kkt 2Jo  sin?0J 1)

dz k%080 /L/2

S*(k) = de! g5 oef (A.16)

L/2
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We now let L — oo and calculate the structure factor per unit length of the defect,
Su(k) = limf_,00 S*(k)/L. By using the identity

L/2

L/2
! dz' exp(—iuz') = 2wé(u) (A.17)
2

im B2 [ 4 ; /
Jim s z exp(iuz) -

we see that Sy, (k) can readily be evaluated:

Su(k) = WA@% . (A.18)

exemplifying the generalized form of Porod’s law, Eq. (A.7).
We therefore reach the conclusion that the Porod amplitude of a line defect in three
dimensions, A®), can be obtained from the Porod amplitude of the corresponding

point defect in two dimensions, A®, via
A® =7 A@ (A.19)

Specifically, by using the result (A.14) for d = N = 2 (i.e., A® = 47?%) we obtain the
Porod amplitude corresponding to the O(2) line defect in d = 3, viz., A® = 473, in
agreement with Ref. [13].

A.4 Uniaxial nematic systems
A.4.1 Hedgehog defects in uniaxial nematic systems

For the case of nematic liquid crystals the local order-parameter field Qq4(r,t) is a
symmetric, traceless, rank-2 tensor, with Cartesian indices o, 8 = 1,2,3 (see, e.g.,

Ref. [23]). In general we may write
3 1 1
Qap = 551 (uauﬂ - 5505) + 532(1)&(2,3 — 'Uc,’vg) ; (A.20)

where +u is the uniaxial director, b is the biaxial director, v = u x b, and the
amplitudes S; and S, determine, respectively, the strength of uniaxial and biaxial

ordering. For the nematic, the real-space correlation function C(r,t) is defined as

1

G, ) = i

/ PrTr[Q(x, ) Qx +r1,1)], (A.21)
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where Tr[AB| = AapBgsa [cf. Eq. (A.2)], and the normalization factor Myem is given
by
Muen = [ 2 TrQ(x,8) Q(x, )] (A-22)

For the nematic, Eq. (A.4) becomes

S(k, 1) = ——Tr [Q(k, ) Q(=k, 1)]. (A.23)

Muem

A three-dimensional uniaxial nematic system, for which S; = 0, admits topo-
logically stable point defects (i.e., nematic hedgehogs) as well as line defects (i.e.,
nematic disclinations). (For a discussion of topological stability, see, e.g., Ref. [24].)
In the configuration of the nematic hedgehog defect, the “director” points every-
where radially outwards from the center of the defect (up to a global rotation), and
the configuration may therefore be expressed as (see [22])

_3 TaTp 1
Qua(®) =551 (2 = 240p) , (A.24)

with S, independent of r.

The following calculation of S(k) closely mirrors the steps Egs. (A.9)-A.14) in
our O(N) vector model calculation. First, we observe that the Fourier transform of
Qas(r) is itself a symmetric, traceless, rank-2 tensor, and that due to symmetry it

can depend only on the direction k. The general form of such a tensor is
3 1
Qaﬂ(k) = ESI (kakﬂ - gdaﬂ k2) g(k2) ’ (A25)

where g(k?) is an scalar function of the scalar k2. By contracting Eq. (A.25) with
koks and solving for g we can rewrite Eq. (A.25) as

951 2 3 k-r\* ¥ ik
N
= e \Feks 3 ""k (2m)’ 30k + 02 |51

The é-function part corresponds to the forward-scattered beam, and will be dropped

G(AW)] .(A.26)

henceforth, as it does not influence the large-k behavior. The function G is defined
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via
G(\2k?) = / dir =2 ek (A.27)
i.e., G is the d-dimensional Fourier transform of the potential =2, which can readily

be shown to be
22

By
Evaluating the second derivative of G, and inserting it into Eq. (A.26), leads to

GA2K?) = (A.28)

971'251

1
Qaﬂ(k) = —_4]6_5 (kakﬂ - E(saﬂ k2) . (A29)

(From Eq. (A.22) we see that the normalization factor Mpem takes the value 3VS2/2.
Thus, combining Egs. (A.23) and (A.29) gives for the structure factor S(k) of a single

nematic hedgehog defect in a system of volume V

_ 367t 1

A.4.2 Disclination lines in uniaxial nematic systems

We now address the issue of the calculation of S(k) for the case of a disclination line
defect in a uniaxial nematic system. It should be clear from the derivation given in
Sec. A.3.2 that Eq. (A.19), which relates the Porod-law amplitude for a line defect in
d = 3 with that of the corresponding point defect in d = 2, is valid independently of
the order parameter in question and may, therefore, also be used for nematic systems.

In the point defect configuration in a two-dimensional uniaxial nematic (corre-
sponding to the cross-section of a disclination line) the director rotates about the
core by 180° (see, e.g., Ref. [24]). The approach of Sec. A.4.1, which is based on ro-
tational symmetry, cannot therefore be directly applied. It is readily seen, however,
that the calculation of the Porod-law amplitude for the 180° nematic defect can be
mapped on to the corresponding calculation for the 360° defect in the O(2) model
in d = 2. For the 180° uniaxial nematic defect, the order-parameter configuration is
given by Eq. (A.20) with S; = 0 and u(x) = (cos3¢(x),sin $¢(x),0), where ¢(x) is
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the polar angle for the radius vector x in the plane perpendicular to the disclination
line. The correlation function Eq. (A.21) then becomes

o) = BB [ cotlot) ~ ptem 4k (A3

nem 2

351/2) /d2 =cos[p(x) — p(x + 1) + k2, (A.32)

nem
where k; and k, are numerical constants. On the other hand, for the 360° defect
in the O(2) model in d = 2, the order-parameter configuration is given by ®(x) =
(cos ¢(x), sin ¢(x)), and the corresponding correlation function, Eq. (A.2), is

@.(r) = d?z cos X A.
Ol (r) = 57— | = cosloo) — o(x + 7). (A.33)

After Fourier-transforming Eqs. (A.32,A.33) and omitting the J-function term arising
from the constant k; in Eq. (A.33), we obtain that the structure factors of the two
defects are related simply by

(351/2)°Mog)
2Mnem

Using the result S&). (k) = A~14n2k~* (i.e., Eq. (A.14) for d = 2, with the area of the
system denoted by A), and the normalization factors Mo(3) = A, Myem = A3S5%/2,

S (k) = Feghs () - (A.34)

we finally obtain the structure factor S{).(k) for the 180° point defect in a two-

d1mensmnal nematic:
1

T
By using Eq. (A.18) we find that the contribution to the structure factor from a

S& (k) = 3 2= (A.35)

segment of length L of a nematic disclination is given by

L 1
S(k) = Z37T3k5

In a system with numerous disclination lines, the area A in Eq. (A.36) is determined by

(A.36)

D?, where D is the average distance (in the direction perpendicular to the considered
disclination segment) to the next disclination line. It follows that the structure factor
is given by S(k) = p3n3k~5, with the defect density p having the meaning of the total

disclination length per unit volume of the system.
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Figure A.1: Order parameter configuration around a ring defect in a uniaxial nematic
system.

A.4.3 Ring defects in uniaxial nematic systems

Next, we investigate the structure factor for a ring defect formed by a closed-loop
wedge disclination. The configuration of the director around such a defect (up to a
global rotation) is depicted in Fig. A.1. The energetic stability of such a configuration
was Investigated in Refs. [25] and [26]. There, it was found that (provided that cetain
restrictions on the elastic constants in the nematic free energy are satisfied) there
exists an equilibrium radius of the loop, for which the ring defect is stable: a ring of
a larger (smaller) radius will tend to shrink (expand). This prediction was recently
verified in numerical simulations [27]. The existence of a nonzero equilibrium radius
is connected to the fact that at large length-scales (larger than the ring radius),
the nematic ring has the configuration of a topologically stable point defect—the
nematic hedgehog (see Fig. A.1). The singularity associated with the ring defect
cannot therefore be removed by shrinking the ring to zero size; rather, the ring will
stop shrinking at a finite radius Req, where the energy of the ring configuration has

a minimum (and is lower than the energy of a hedgehog). Depending on the values
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of the nematic elastic constants, Ref. [26] predicts Re, in the range 106-10%¢, where
¢ is the nematic coherence length (i.e., £ is of the order of 10-100A).

It is readily seen that the topologically nontrivial nature of the ring defect config-
uration at large scale leads to the presence of two distinct Porod law regimes in the
structure factor S(k) characterizing such a defect. For £ < 1/R, where R is the ring
radius, S(k) probes correlations on length scales larger than R, leading to a power-law

contribution characterizing the nematic hedgehog (Eq. A.30) in d = 3:

Sk = 367r% : (A.37)

For 1//¢ < k < 1/R, the function S(k) probes the configuration in the vicinity of

the disclination core, leading to a power-law characterizing the nematic disclination
of length 27 R, which is, from Eq. (A.36),

S(k) = 6riR— . (A.38)

k5

Therefore, the large-k region of the structure factor measured in a system containing
nematic ring defects of equal size R, separated by an average distance larger than R, is
expected to exhibit a crossover between two power-law regimes with exponents 6 and
5 (Fig. A.2). The crossover point, as defined in Fig. A.2 , is predicted to occur at the
value of k. = 6/R. Note that this allows us to obtain information on the ring defect
size R from un-normalized data for S(k); this is in contrast to the standard use of the
Porod law, where the total string length is extracted from the normalized structure
factor. In principle, the Porod tail crossover may be used to monitor the dynamics of
the population of shrinking (expanding) loops with radii R larger (smaller) than the
equilibrium radius.

It should be noted that the assumption that the ring defects are well separated
(i.e., that the average distance between the rings is larger than their radius) is
important—otherwise, the k=% Porod regime will be suppressed. Based on the ex-
perience from simulations of phase ordering in O(2) vector model systems [28], one

may expect that a configuration satisfying such an assumption will develop in the late
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Figure A.2: Structure factor S(k) of the ring defect configuration in Fig. A.1. The
two Porod regimes, arising for length scales much larger and much smaller than the
ring radius R, are shown as the dashed line (S(k) = 36m*k~%) and the dotted line
(S(k) = 6m*Rk~%), respectively. The solid curve schematically shows the crossover
between the two power-law regimes. The crossover wavevector k., as defined in the
picture, is given by k. = 6/R.

stages of ordering following an off-critical quench in a uniaxial nematic system (to our
knowledge, such a quench has not been investigated experimentally or numerically).

The ring defects in a configuration generated during a critical quench are not
expected to be of uniform size; rather, a wide distribution of ring sizes, spanning the
interval from the core size £ to the average ring separation D, is expected. If the
number density n(R,t) of rings of radius R were known, the structure factor for wave

vectors k such that typical ring separation is larger than k! would be given by [29]

+ Neot (t)ssw% , (A.39)

1
S(k,t) = ng(t)37‘l’3-’-c?
where Ly (t) = [\ dR27Rn(R, t) is the total disclination length in rings with radii
R > 1/k, and Niot (t) = [;/* dRn(R, t) is the total number of rings with radii R < 1/k.
Equation (A.39) could, in principle, be used to extract the size distribution n(R,?)

from a measured structure factor S(k,t).
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Parenthetically, we comment on the differences between the dynamics of nematic
ring defects and of vortex loop defects in the O(2) model in three spatial dimensions.
The O(2) vortex loop defect does not have the structure of a topologically non-trivial
point defect at large length-scales, and is therefore unstable towards shrinking to zero
size. By equating the flux (in number density space) of shrinking vortex loops at a
given scale to the rate of annihilation of the loops and assuming dynamical scaling,
it is possible to derive [30] the R-dependence of the number density of such defects
n(R). In the case of nematic rings, however, n(R) is expected to develop a strong
maximum at the equilibrium ring radius, so that the scalipg approach cannot be
applied directly.

It should be noted, however, that in the experimental investigations of phase or-
dering in nematic liquid crystals [7], numerous disclination loops that are apparently
composed of disclination segments with opposite winding numbers were observed.
Such defects do not have a hedgehog-like structure at large length-scales, and there-
fore behave like O(2) vortex loops (in the sense that only the Porod-law regime with
exponent 5 is exhibited in the structure factor), rather than like the nematic ring
defects investigated in the present section [31]. It is, consequently, not clear to what
degree the calculations in this section are relevant to the recent Porod-tail measure-
ments reported in Refs. [8, 9], in which the value of the Porod exponent was reported
to lie close to 6, even though disclinations, rather than hedgehogs, are believed to

dominate in phase-ordering nematic systems [6, 7, 27, 32].

A.5 Biaxial nematic systems

Thus far, our discussion of defects in nematics has concentrated on the case of uniaxial
systems. It is straightforward to generalize this discussion to the case of biaxial sys-
tems. As there are no topologically stable point defects in a three-dimensional biaxial
nematic [24], we need only consider line defects. Biaxial nematics admits four topo-

logically distinct classes of line defects [24], which are disclination lines distinguished
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by the angles of rotation of the uniaxial director u and the biaxial director b [defined
in Eq. (A.20)] around the defect core. In the C, class of disclinations u rotates by
+180° and b does not rotate; in C, disclinations u does not rotate and b rotates by
+180°; in C, disclinations both u and b rotate by +180°; finally, in C, disclinations
either u or b (or both) rotate by 360°. These four distinct disclination types were
observed experimentally in a thermotropic nematic polymer [20], and their properties
where found to be in agreement with the predictions of the topological classification
scheme.

In the minimum energy configuration for the Cz, Cy, and C; defects, the 180° ro-
tations of the u and b director are uniform [33]. The configuration of a C,, disclination

is correspondingly given (up to a global rotation) by Eq. (A.20) with

abd) = (cos%qb(x),sin%gb(x),ﬂ), (A.40)
b(x) = (0,0,1), (A.41)
V() = (cos(38(x) +3),5in (360 + 5),0), (A.42)

where ¢(x) is the polar angle in the plane perpendicular to the disclination. The
correlation function (A.21) for this configuration can be expressed (up to an additive
constant) as the correlation function (A.32) for the uniaxial nematic disclination,
multiplied by the biaxiality-strength—dependent factor R(3S; + S3)?/4, where R =
352/(352+ S2) is the ratio of the uniaxial (S, = 0) and biaxial (S; # 0) normalization
factors Mpem. The corresponding factors for the case of the C, and C, disclinations
are likewise readily evaluated. By using the result (A.36) for the uniaxial disclination,
we obtain the structure factors per unit length for the biaxial disclinations C,, C,
and C,:
37['22512(351 + 52)2 i
2 4 352+852 k5’
3m?, SiS3 1
2 3524+ 52k5°
37!'2 ?)—Sf (351 - 52)2 1

Skle. = 57 352+ 52 k5 (A.45)

S(k)c. (A.43)

S(k)e, = (A.44)
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It should be noted that in the case 35; = S;, the amplitude in the Porod law for
the C, defect is zero, whereas the amplitudes for the C; and C, defects are non-zero
and equal [see Egs. (A.43)-(A.45)]. This reflects the fact that for 35, = 53, the
order parameter (A.20) describes a uniazial discotic phase [34] with uniaxial axis v.
Correspondingly, the C, configuration in this case does not represent a defect (v does
not rotate), whereas the C,; and C, configurations are equivalent.

It remains to consider the C, disclination. For the case S; > S, (i.e., needle-like

ordering [34]), the minimum energy configuration of type C, is given by Eq. (A.20)

with
ux) = (0,0,1), (A.46)
b(x) = (cos@(x),sin@(x),0), (A.47)
v(x) = (cos (g(x) +7),sin ((x) +7).0) (A.48)

where @(x) is the polar angle in the plane perpendicular to the disclination. The
correlation function (A.21) for the point defect in the planar cross-section through
this disclination can then be expressed as R(2S,/35;)?, By using Eq. (A.18) one

obtains the structure factor per unit length of the Cy disclination:

Sz 1
= 2__ "2
S(k) =12m 37+ 56

For the case S; < S (i.e., discotic ordering [34]) the v director (and not the u direc-

(A.49)

tor, in contrast with the needle-like case) corresponds to the eigenvalue of the order
parameter tensor Q,s largest in absolute value, and the lowest energy configuration

that can be taken by the C, disclination has directors

u(x) = (cos@(x),sin@(x),0), (A.50)
b(x) = (cos(¢(x)+§),sin(¢(x)+§),0), (A.51)
v(x) = (0,0,1). (A.52)

The corresponding structure factor is
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Finally, we note that in a biaxial nematic film (i.e., a system having two spatial
dimensions but three dimensions for the nematic order parameter), C;, Cy, C, and
C), are point-like defects (the dynamics of which was studied in [19]). The Porod-law
amplitudes for these defects are obtained from the amplitudes in the results (A.43)-
(A.45), (A.49) and (A.53) by dividing by 7 [see Eq. (A.19)], and the corresponding

Porod-law exponents take the value 4 instead of 5.

A.6 Corrections to Porod’s law

An interesting question, already alluded to in Sec. A.2, is whether the order parameter
configuration in the vicinity of the defect core is or is not affected by the interactions
with the other defects present in the system. [In other to avoid confusion with the
core region, where the order parameter magnitude is reduced, we shall refer to the
region close to, but outside, the core, as the “central” defect region.] It is important
to distinguish the static and the dynamic effects. In the case of the O(2) model with
the usual gradient free energy given by [ dz%(Vm)?, the minimum energy config-
uration of a collection of defects with fixed locations is obtained simply by taking
the superposition of the angles characterizing the order parameter m around isolated
defects; their central regions are therefore not affected. A deformation does occur,
however, once the defects are allowed to move [35]. For sufficiently slow defect veloc-
ities, this effect may be neglected. The situation is different in the O(3) model case.
Here, Ostlund [14] showed that the energy minimization argument for a monopole-
antimonopole pair leads to the concentration of the gradient energy along a string
connecting the two point defects. We are not aware of any investigation of how this
argument would get modified in a dynamical situation.

Independently of the precise nature of the deformation of the central defect region,
it is possible to make a general argument about it’s effect on the Porod amplitude A.

We use the connection between the gradient free energy E,; and the structure factor
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S(k),
Ea= / dz%(Vm)? = / k2S5 (k). (A.54)

Deforming the symmetrical (m = x/z) order parameter configuration in any smooth
way increases E,;, but cannot change the exponent x in the Porod law S(k) = Ak™X;
Eq. (A.54) then implies an increase in A. We therefore reach the conclusion that a
defect configuration minimizing the free energy of form | dz¢(Vm)? gives the mini-
mum possible value of the Porod amplitude A for the given type of defect. Indeed, it
was found in a numerical investigation [36] of the Porod law from a point defect in the
O(2) model in d = 2 that the amplitude A increased (and the exponent x remained
unchanged) when the defect configuration was deformed.

It should be noted that the direct connection Eq. (A.54) between E,; and S(k)
is valid only if the energy density has the standard (Vm)? form, or in the case of
the nematic order parameter, the simplest possible form (0aQg,)(0aQpy). In the
general case of unequal nematic elastic constants, the Porod amplitude A is no longer

necessarily minimal for the equilibrium defect configuration.
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