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ABSTRACT

The equilibrium statistical mechanics of classical directed polymers in D+ 1

dimensions is well known to be equivalent to the imaginary-time quantum

dynamics of a quantum many-particle system in D spatial dimensions, with

polymer configurations corresponding to particle world-lines. This equiv-

alence motivates the application of techniques originally designed for one-

dimensional many-particle quantum systems to the exploration of many-

polymer systems, as first recognized and exploited by P.-G. de Gennes [J.

Chem. Phys. 48, 2257 (1968)]. In two dimensions, interactions give rise to

an emergent polymer fluid, and I shall examine how topological constraints

on this polymer fluid (e.g., due to uncrossable pins or barriers) and their

geometry give rise to strong, entropy-driven forces. I shall also apply quan-

tum techniques such as Bethe’s Ansatz and bosonization to shed light on

the structure of the polymer system. These techniques allow us to examine

how polymer system correlations, thermodynamic properties, and response

to impurities are influenced by strong polymer-polymer interactions.

In three dimensions, polymers wind around one another and polymer topol-

ogy may be incorporated via coupling to a Chern-Simons field. As I discuss,

this approach reveals the somewhat reduced role played by interactions in

this higher-dimensional setting, leading to qualitatively different polymer

correlations, thermodynamic properties, and response to impurities.
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CHAPTER 1

INTRODUCTION
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The ensemble of configurations of a set of directed, one-dimensional objects

embedded in (D + 1)-dimensional space can be envisioned as the ensemble

of worldlines of a corresponding set of nonrelativistic quantum-mechanical

point particles evolving in time in D spatial dimensions. In particular,

a standard mapping which we discuss in detail below relates the classical

canonical-ensemble equilibrium statistical mechanics of the set of directed

one-dimensional objects to the imaginary-time evolution of the state of the

corresponding set of point particles. This mapping was introduced and ex-

ploited by de Gennes [1] in order to shed light on the equilibrium structure of

a system of many directed fibrous polymers that are confined to two dimen-

sions, thus providing a scheme for accounting, nonperturbatively, for strong

local polymer-polymer interactions that serve to prohibit configurations in

which pairs of polymers cross one another.

In a parallel development, a suite of powerful techniques—specifically,

Bethe’s Ansatz, bosonization, and quantum hydrodynamics—have been de-

veloped to address the quantum mechanics of one-dimensional systems of

many interacting particles or spins. The aim of the research presented in this

thesis is to employ these advances in quantum many-body (QMB) physics, to-

gether with the de Gennes analogy between the quantum-fluctuating, many-

particle system and the classical, thermally fluctuating directed-polymer sys-

tem, to uncover new information about the equilibrium structure of sys-

tems comprising polymers that are either rigorously prohibited from passing

through one another (i.e., noncrossing) or subject to other interactions, such

as energetic penalizations of crossings, or systems with long-range interac-

tions between polymers. In addition, we apply these advances in technique

to determine the equilibrium forces acting on particles included in interact-

ing polymer systems that serve to exclude the polymers from certain spatial

regions, as well as the effective forces that act between such particles as a

result of their exclusion of polymers. Such constraints force the polymer

system to assume configurations that would otherwise correspond to large

fluctuations. A global theme of the present work is that, due to the reduced

dimensionality of the polymer system, interactions dramatically influence the

structure and correlations that characterize the polymer system, and do so

both, as we shall see, in topologically—and also geometrically—rich settings.

This is a lesson already well known in the quantum-particle domain. We use

the quantum analogy to describe the structure, thermodynamic properties,
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and response to impurities of two-dimensional interacting directed polymer

systems.

We also address systems of directed polymers in three dimensions. We

show that, much like de Gennes’ use of Fermi statistics to account for the

noncrossing condition in 1+1 dimensions, a nonintersecting condition can be

implemented for polymers in 2 + 1 via a transmutation of polymer statistics.

Despite a somewhat reduced role of interactions in this higher-dimensional

setting, polymer interactions and topology serve to strongly modify polymer

behavior and response to strong constraints.

This work is organized as follows. In the remainder of this introduction

(Chapter 1) the polymer system is described and the application of the tech-

niques used here and related techniques to various physical systems is dis-

cussed to motivate the analysis. In Chapter 2, a quantum system is consid-

ered and the mapping between the classical polymer system and the quantum

many-body system is described. In Chapter 3, the response of the system

to a generic strong constraint, or alternately the probability of a large fluc-

tuation, is analyzed. In Chapter 4 the response of a system of noncrossing

polymers to a topological pin which forces some polymers to one side of the

system is given. In Chapter 5 the noncrossing condition is relaxed and the

effect of polymer crossings is considered. In Chapter 6 the consequences of

long-range interactions between polymers are investigated. In Chapter 7 a

polymer system possessing generic interactions is studied through the tech-

nique of bosonization. In Chapter 8 directed polymers in three dimensions

are investigated. Concluding remarks are given in Chapter 9.

1.1 Directed two-dimensional classical polymers in

thermal equilibrium

We consider a system of N two-dimensional (2D) directed lines, indexed

by n = 1, . . . , N , that are noncrossing or otherwise subject to interactions.

Although these lines may generally represent a wide variety of statistical

objects— vortex lines [3, 4, 5, 6], crystalline step edges [7], levels of growing

interfaces [8] or generic “vicious walkers” [9]— we shall typically refer to

them specifically as polymer lines. The configuration of the nth polymer is

described by xn(τ), where τ is the coordinate along the directed axis of the
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Figure 1.1: The paths {xn(τ)} describe a possible configuration of the
directed polymer system. Thermal fluctuations permit the system to adopt
energetically disfavored configurations. When polymers appear to intersect
in the (x, τ) plane, in reality one crosses over the other by exploiting the
presence of a third dimension. From Rocklin et al. [2].

system (which we call the longitudinal direction), and xn gives the location

of the nth polymer in the perpendicular direction (which we call the lateral

direction); see Fig. 1.1. We take the energy cost of the deflections of the

polymers from the longitudinal direction to be

A

2

N∑
n=1

∫ L

0

dτ (∂τxn)2, (1.1)

where L is the extent of system in the longitudinal direction, and A is the

deflection energy per unit length, which penalizes configurations for straying

from the preferred (i.e., longitudinal) direction.

There are a number of possible origins of such an energetic cost. For

polymer lines, the most conceptually simple is tension in the line. Then, for

a line subject to tension of magnitude A, the cost of deflections would be as

given in Eq. (1.1), provided that the polymers remain sufficiently straight, in

a way that we shall define later, to permit us to neglect higher-order gradients

in this expression. Alternatively, one could imagine that the polymers are

of some fixed length Lp slightly greater than L, and one then adjusts the

effective parameter A to enforce the average condition

Lp =

〈∫ L

0

dτ
√

1 + (∂τxn)2

〉
≈ L+ (L/2)

〈
(∂τxn)2

〉
, (1.2)
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where 〈· · · 〉 denotes a thermal expectation value.

Another possibility is for the polymers to couple to a directional field that

causes them to orient in the τ -direction, leading to a deflection energy for

small deflections of the same form as already considered. One possible source

of such a field, at least for polymers in 2 + 1 dimensions, is for polymers

to spontaneously acquire a preferred direction, at which point the average

effect of a polymer’s neighbors could lead to a deflection energy of the given

form [10].

In addition to the deflection energy, we include an interaction V (·) be-

tween the polymers, which we take to be translationally and parity invariant,

and sufficiently short-ranged that it may be taken to operate only between

monomers (i.e., polymer segments) having common τ coordinates. In fact,

we often take the interaction to be purely local, in which case it would take

the form V
(
xn(τ) − xn′(τ)

)
= c δ

(
xn(τ) − xn′(τ)

)
, where δ(x) is the one-

dimensional Dirac delta function. Much of the present work is devoted to

considering polymers that are strictly noncrossing, so that c→∞, although,

as we shall see, many of the results derived therefrom apply more broadly.

Incorporating a generic one-body potential Φ(·), we arrive at the following

energy functional U [·] of a configuration {xn(·)}Nn=1 of the polymer system:

U [{xn(·)}] =
A

2

N∑
n=1

∫ L

0

dτ
(
∂τxn(τ)

)2
+

1

L

N∑
n=1

∫ L

0

dτ Φ
(
xn(τ)

)
+

1

L

∑
1≤n<n′≤N

∫ L

0

dτ V
(
xn(τ)− xn′(τ)

)
. (1.3)

According to this model, in the absence of polymer-polymer interactions

or external potentials the polymer configurations have a thermal distribu-

tion that is Gaussian, in the sense that increments in their deflections [i.e.,

xn(τ + δτ)−xn(τ)] are independent Gaussian random variables having mean

zero and variance δτkBT/A, where T is the system temperature and kB is

Boltzmann’s constant, which we generally set to unity via a suitable choice

of units. We note that we shall not be considering the dynamics of the

polymer system, so we shall not need to take note of the kinetic energy of

the polymer system. Additionally, we characterize the system via conditions

on the configurations of the polymers at their ends, via the distributions

P i({xn}) and P f ({xn}), which respectively give the probability densities for
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the configurations {xn} of the polymer ends at τ = 0 and τ = L.

We take the polymer system to be at thermal equilibrium at inverse tem-

perature β = 1/kBT . Thus, we have for the canonical ensemble partition

function

Z[P f , P i] =

∫
d{Xf

n}P f ({Xf
n}) d{X i

n}P i({X i
n})

×
{xn(L)=Xf

n}∫
{xn(0)=Xi

n}

D [{xn(·)}] e−βU [{xn(·)}], (1.4)

which depends functionally on P i(·) and P f (·). Here, the measures are de-

fined via

d{Xf
n} d{X i

n} ≡
N∏
n=1

dXf
n dX

i
n, (1.5a)

D [{xn(·)}] ≡
N∏
n=1

D [xn(·)] . (1.5b)

If the polymers are indistinguishable, an additional Gibbs factor of 1/N !

is owed in the partition function. To complete the definition of this multiple

path integral we also need to impose some form of lateral boundary conditions

on the polymer configurations; we return to this point in Chapter 2.

As for the thermal expectation value 〈O [{xn(·)}]〉 of a generic observable

(i.e., a functional of the polymer configuration) O [{xn(·)}], this is given by

〈O [{xn(·)}]〉 = Z[P f , P i]−1

∫
d{Xf

n}P f ({Xf
n}) d{X i

n}P i({X i
n})

×
{xn(L)=Xf

n}∫
{xn(0)=Xi

n}

!D [{xn(·)}] e−βU [{xi(·)}] O [{xn(τ)}] . (1.6)

For an observable that depends not on the behavior of the polymers across

their entire length, but only at some position τ = τp, the observable may be

written more simply as
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〈O({xn}, τp)〉 =

∫
d{xn}O({xn}) Pr({xn}, τp), (1.7)

where, as we shall see, the probability Pr({xn}, τp) that the polymers pass

through positions {xn} at time τp will be independent of τp and the longitu-

dinal boundary conditions, provided that τp is sufficiently far from the edges

of the system.

As we have noted above and shall see below, owing to the low dimension-

ality of this thermally fluctuating polymer system, even short-range interac-

tions produce qualitative alterations of the structure and correlations that it

exhibits, relative to those exhibited by its noninteracting counterpart. More-

over, even interactions that are weak, microscopically, are fundamentally

nonperturbative, in that they induce correlations that are long-ranged.

1.2 Physical systems described by directed lines in two

dimensions

Because the model discussed in this introduction describes polymers con-

fined to two dimensions, it applies most readily to polymers adsorbed on a

surface or confined at an interface between two fluids. However, such two-

dimensional models have also at times been applied to three-dimensional

polymer systems. In particular, de Gennes’ original free fermion model of

fibrous polymers has been applied to the hydrocarbon chains of lipid bilay-

ers [11]. Such chains, tens of angstroms in length, interact via an excluded

volume effect.

Although our focus is on polymer systems, our treatment extends to other

physical realizations of two-dimensional systems characterized by fluctuating

linelike degrees of freedom, and it may find the most ready experimental

realizations therein. We now briefly survey such systems.

1.2.1 Crystal surfaces

Consider wandering step edges on a miscut crystal surface such as Sili-

con(111). Such step edges have a preferred direction, an energetic cost to

7



wandering, and do not cross one another. They may thus be mapped onto a

system of noncrossing polymer lines governed by an energy functional such

as Eq. (1.3) and thence to free one-dimensional fermions via the techniques

we shall describe. Indeed, such a mapping has been performed to elucidate

the distribution of step widths [7]. The width of a crystalline terrace is then

mapped onto the distance between two nearest-neighbor fermions. The ef-

fect of the thermal wandering, coupled with the noncrossing condition, is to

increase the likelihood that any given step width is nearer to the average

step width than would be the case for statistically independent (i.e., freely

crossing) lines.

1.2.2 Vortex lines

The quantum analogy has also been applied to systems of flux-carrying vortex

lines in superconductors. The lines are treated as purely classical objects

having a preferred direction and a contact repulsion. The quantum technique

of bosonization (see e.g., Giamarchi [12]) allows the system to be described

via a continuous field, resembling an isotropic elastic medium, while still

preserving the short-distance behavior of the vortex lines. Also present in

such systems are columnar and point-like impurities, and pinning centers

compete with the thermal fluctuations of the lines to produce a rich variety

of phases [3, 4, 5, 6]. We shall discuss the application of bosonization to

polymer systems in Chapter 7.

1.2.3 Kardar-Parisi-Zhang universality class

Consider now the classical problem of particles being deposited on an inter-

face in one dimension. This dynamical process is described by the height

h(x, t) of the interface expressed as a function of position x and time t. The

process is governed by the Kardar-Parisi-Zhang (KPZ) equation [13]

∂h

∂t
= ν ∂2

xh+
λ

2
(∂xh)2 + η(x, t). (1.8)

The first term on the right-hand side describes relaxation of the interface to

a flat profile, e.g. from particles rearranging themselves to minimize surface

8



tension. The second term comes from the tendency of new particles to be

deposited normal to the local orientation (1, ∂xh) of the interface, so that

the steepest portions of the interface receive the most depositions per unit

of lateral distance x. To be specific, the second term is the lowest-order

nonconstant term in the expansion of the area element. The third term is a

Gaussian random variable.

The KPZ equation was originally applied to, among other things, a directed

polymer in two dimensions in a random medium [14, 15], a system closely

related to interacting polymers in a uniform medium. More recently [8], the

KPZ model has been related to one-dimensional bosonic systems, which we

will relate to our directed polymer system.
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CHAPTER 2

FROM CLASSICAL LINES TO QUANTUM
PARTICLES
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2.1 A quantum system

Let us turn now to the consideration of a one-dimensional quantum system of

N nonrelativistic particles each of mass m and having coordinates {qn}Nn=1,

subject to a one-body interaction Φ(qn(t)) and to a (translationally and parity

invariant) two-body interaction V (qn − qn′). For this system, and introduc-

ing the (unsymmetrized) simultaneous particle-position eigenkets |{qin}), a

matrix element of the imaginary-time propagator ({Xf
n}|e−HT /~|{X i

n}) can

be expressed as the following Feynman integral over paths {qn(t)}; (see,

e.g.,Feynman [16]):

({Xf
n}|e−HT /~|{X i

n}) =

{qn(T )=Xf
n}∫

{qn(0)=Xi
n}

D [{qn(·)}] e−SE [{qn(·)}]/~, (2.1)

where the Euclidean action SE is given by

SE =

∫ T
0

dt
{ N∑
n=1

m

2
(∂tqn)2 +

N∑
n=1

Φ(qn)

+
∑

1≤n<n′≤N

V
(
qn(t)− qn′(t)

)}
. (2.2)

The “non-Lagrangian” sign of the interaction term in Eq. (2.2) and the

terminology of the Euclidean action reflect the fact that we are considering

imaginary-time propagation, in which the paths of the Feynman integral are

referred to as imaginary-time world-lines. As usual, the propagator can be

used to construct the transition amplitude between generic initial and final

quantum states |Ψi〉 and |Ψf〉:

〈Ψf |e−HT /~|Ψi〉 =

∫
d{Xf

n} d{X i
n} 〈Ψf |{Xf

n})

×({Xf
n}|e−HT /~|{X i

n})({X i
n}|Ψi〉. (2.3)

In order to relate this quantum-mechanical system to the classical polymer

systems, we make the following identifications. We match the wave functions

11



with the probability distributions, i.e., we choose

({Xn}|Ψi〉 = P i({Xn}), (2.4a)

({Xn}|Ψf〉∗ = P f ({Xn}). (2.4b)

Note that the identification is not between classical and quantal probabil-

ity distributions but, rather, between classical probability distributions and

quantal wave functions. Thus, to be appropriate, the wave functions should

be restricted to being real, non-negative, and integrating to unity. The equiv-

alence between the quantal and classical problems is completed by adding

the following identifications:

T = ~β, (2.5a)

t = T τ/L, (2.5b)

qn(t) = xn(τ), (2.5c)

m = ~2β2A/L. (2.5d)

In order to maintain the analogy to the polymer system, we refer to the

1D quantum system as having a width rather than a length, and denote the

widths of both systems by w. Then we have a result that is central to this

work, viz., that the quantal matrix element of the imaginary-time evolution

operator is equal to the classical partition function of the polymer system:

〈Ψf |e−HT /~|Ψi〉 = Z[P f , P i]. (2.6)

In particular, the imaginary-time worldlines of the quantum particles cor-

respond to the configurations of the directed polymers, and the quantum

fluctuations of the particle system (the strength of which is governed by ~)

correspond to the thermal fluctuations of the polymer system (the strength

of which is governed by 1/β). Strictly speaking, the path integral is defined

only up to a constant factor that depends on a short-distance cutoff. This

factor does not affect the physics of the system at length scales above the

scale of the cutoff. We will discuss this point and its physical consequences

later in this Chapter.

In order to apply many of the techniques of QMB physics it is useful to

impose a choice of quantum statistics upon the initial and final quantum
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states |Ψi〉 and |Ψf〉. The condition that the initial and final wave functions

({Xn}|Ψi〉 and ({Xn}|Ψf〉 be non-negative, so that they may match the poly-

mer end distributions, Eqs. (2.4), precludes the direct choice of fermionic

statistics (although, as we shall see, such statistics can be applied indirectly,

following a Jordan-Wigner–type transformation). Thus, we choose to con-

sider situations in which the polymer endpoint distributions P i and P f are

each symmetric functions—respectively under the exchange of initial end-

points amongst themselves and final endpoints amongst themselves—from

which it follows that the initial and final quantum end states be symmetric

under particle exchange, and hence that they describe identical bosons.

One valuable notion made accessible and sharpened via the tools of one-

dimensional quantum many-body systems (such as bosonization, quantum

hydrodynamics, and Bethe-Ansatz-rooted methods) is that of the emergent

directed-polymer liquid (cf. Kafri et al. [17]). This state is a classical ana-

log of the Luttinger-Tomonaga liquid, which can be exhibited by interacting

QMB systems in one dimension, and is qualitatively distinct from, e.g., the

Landau liquid state of many-fermion systems, i.e., a state that can be ex-

hibited by such systems in higher dimensions. Thus, we shall see, e.g., that

the manner in which density correlations decay spatially in the emergent

directed-polymer liquid resembles the space-time decay of superfluid fluctu-

ation correlations in one-dimensional interacting QMB systems.

2.2 Eigenfunction expansion of the imaginary-time

propagator

Due to the association of polymer configurations with particle paths, dis-

cussed in the previous subsection, it is the path-integral (i.e., covariant)

formulation of the quantization of the system that is the one most clearly

associated with the physical degrees of freedom of the fluctuating polymer

system. However, the quantum mechanics of the same particle system can

also be formulated in terms of the time-dependent Schrödinger equation (i.e.,

via canonical quantization).

Consider the partition function of a thin longitudinal slice (in the quantum

picture, a time slice) of the total polymer system, stretching from some τ = 0

to τ = `, subject to polymer coordinates {xin} and {xfn} at the boundaries.

13



Over a sufficiently short slice, the tension energy in Eq. (1.3) will dominate

the other terms, and the polymer configurations will be straight lines:

xn(τ) = xin +
τ

`

(
xfn − xin

)
. (2.7)

The tension energy of the configuration is then

A

2

∑
n

∫ `

0

dτ
(
∂τxn(τ)

)2
=
A

2`

∑
n

(
xfn − xin

)2
, (2.8)

and the one-body term in the energy of the configuration is

1

L

∫ `

0

dτ Φ
(
xin +

τ

`

(
xfn − xin

))
≈ `

L
Φ(xin) +

`

2L
Φ′(xin)

(
xfn − xin

)
+

`

6L
Φ′′(xin)

(
xfn − xin

)2
+ . . . (2.9)

with a similar expression for the expansion of the two-body interaction V (xn(τ)−
xn′(τ)). Provided that the length ` of our slice is sufficiently small, we may

concern ourselves only with those configurations where xfn− xin is small, and

so retain only the first term in the expansion. We retain the O
(
xfn − xin

)2

term in the tension energy only because it includes the large prefactor `−1.

Combining these terms, the partition function for this small longitudinal slice

of the polymer system is

exp

[
−βA

2`

∑
n

(
xfn − xin

)2 − β `
L

∑
n

Φ(xin)− β `
L

∑
n<n′

V (xin − xin′)

]
. (2.10)

We now wish to consider how such a partition function changes as one

minutely varies either the length of the slice, `, or the boundary conditions

{xfn}. One may readily show that it obeys the differential equation
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− ∂

∂`
Z
(
{xin}, {xfn}, `

)
≈ (2.11)[

− 1

2Aβ

∑
n

∂2

∂(xfn)2
+
∑
n

β

L
Φ(xin) +

∑
n<n′

β

L
V (xin − xin′)

]
Z
(
{xin}, {xfn}, `

)
.

This is the equivalent of an imaginary-time Schrödinger equation, with

the partition function serving the role of a Green’s function describing the

imaginary-time evolution between two quantum states. Thus, it is straight-

forward to ascertain that the propagator can be expressed in terms of the

expansion

({xfn}|e−Ht/~|{xin}) ∝
∑

k
e−Ekt/~ ψk({xfn})ψ∗k({xin}) (2.12)

over the exact normalized eigenfunctions {ψk} and corresponding energy

eigenvalues {Ek}, with many-body quantum numbers k, of the associated

many-body quantum Hamiltonian

H =
N∑
n=1

p2
n

2m
+

N∑
n=1

Φ
(
xn(τ)

)
+

∑
1≤n<n′≤N

V (xn − xn′). (2.13)

For a system of finite size, the eigenspectrum will consist of discrete energy

levels {Ek} with a finite ground-state energy. An important special case is

made evident via this expansion. Suppose one is concerned with a statistical-

mechanical expectation value involving polymer observables all taken at a

single value of the longitudinal coordinate τ and, moreover, obeying (t, T −
t)� ~/∆E, where ∆E is the spacing between the ground many-body state

|ψgs〉 of the QMB system and its first excited state. The wave functions ψk

decay over longitudinal length scales L/βEk, so that for a sufficiently long

system it can be adequate to retain only the ground state in the eigenfunction

expansion, i.e., to take

e−Ht/~ =
∑

k
|ψk〉 e−Ekt/~ 〈ψk| ≈ |ψgs〉 e−Egst/~ 〈ψgs|, (2.14)

a situation referred to as ground-state dominance. In particular, within the

ground-state dominance approximation and far from the system ends, the
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equilibrium expectation value of the polymer density

〈∑
n

δ
(
x− xn(τ)

)〉
(2.15)

is given, as a function of lateral position x, by the quantum-mechanical

ground-state expectation value of the density operator
∑

n δ(x− q̂n), a result

that holds regardless of the longitudinal boundary conditions on the polymer

configurations. Thus, properties deep in the longitudinal interior of a long

system (i.e., one for which T � ~/∆E) are associated with the ground-state

properties of the quantum system.

Much can be said about the ground state of the general Hamiltonian in

Eq. (2.14) (see argument by Feynman [16], Chapter 11). Our choice of bound-

ary conditions ensures that we need consider only bosonic wave functions.

Clearly, such a wave function can be chosen to be real: if ψ is an eigenstate

of the Hamiltonian, then so are its real and imaginary parts, at least one of

which must be nonzero. Furthermore, the ground state must not generally

have any nodes. Consider a point x = x∗ at which the wave function did

pass from positive to negative (keeping the other coordinates {xi} at some

fixed values). In such a case the absolute value of the wave function would

have the same energy, with a kink at x = x∗. But smoothing out said kink

could lower the kinetic energy while only negligibly increasing the potential

and interaction energies. Thus could the energy expectation be lowered, in-

dicating that ψ was not a true ground state. The exception to this is when

smoothing out the kink would necessarily have a high energy cost— that is,

when the potential or interaction energies diverged at some set of coordi-

nates. For example, an infinite contact repulsion can and will cause the wave

function to vanish whenever two particle coordinates coincide. Nevertheless,

the wave function must be taken to be positive on either side of this crossing,

to ensure Bose symmetry. Thus, we find that the groundstate wave function

is strictly real and nonnegative, an important requirement that permits its

association with a probability distribution in Eq. (2.4). We also find that for

polymers in the interior of a system (where the groundstate approximation

is appropriate) any set of polymer coordinates {xi} has finite probability of

occurring so long as such a configuration has finite energy.
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2.3 Noncrossing polymers

(-w/2 0)

x

( w/2,0)

(x,τ) =
(0,0)

(0,L)

τ

(w/2,0)

Figure 2.1: Snapshot of a configuration for the case of noncrossing
polymers. Such polymers are not permitted to cross one another, but are
otherwise noninteracting. From Rocklin et al. [2].

Our focus is on systems comprising strictly noncrossing polymers. Such

systems do not adopt configurations in which any polymer crosses any other

but, beyond this important element, they are not subject to any polymer-

polymer interactions; see Fig. 2.1. As we shall see in later chapters, QMB

physics techniques enable the study of polymer systems having a wide range

of interactions; we shall show there that in the presence of such interactions

many of the results obtained in this chapter and the next will continue to

hold, at least qualitatively. To enforce noncrossing, the polymers are taken

to feature an infinitely strong excluded-volume effect, so that the partition

function contains only those paths for which xn(τ) 6= xn′(τ) for all n 6= n′.

This restriction can be enforced for the polymer system via the inclusion of

the interaction term

V
(
xn(τ)− xn′(τ)

)
= c δ

(
xn(τ)− xn′(τ)

)
, (2.16)

with c/LA→∞. The corresponding quantum system can therefore be taken

to comprise many identical particles, bosonic in their quantum statistics and

subject to an interparticle interaction having the same form. This system is

known as the hard-core (or impenetrable) point-like boson model. (A finitely

strong interpolymer repulsion corresponds to a quantum Lieb-Liniger sys-

tem [18], as will be discussed in Chapter 5.) We mention that, despite its

short range, this interaction is strong, and we may therefore expect the qual-

itative behavior of noncrossing polymer systems to be replicated in systems

having more general interactions.
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2.3.1 From bosons to fermions

It was demonstrated by Girardeau [19] that any system of interacting, one-

dimensional, bosonic particles for which the wave functions vanish when pairs

of particles coincide in space can be mapped to an equivalent system of

fermionic particles, subject to the same interaction V (xi − xj) whenever

xi 6= xj. Girardeau’s mapping is particularly useful in the case of hard-

core boson systems, as these can be mapped to systems of free fermions.

Thus, as first noted and exploited by de Gennes [1], the noncrossing con-

dition on polymers can be accounted for entirely by the quantum statistics

of fermions, without the need to include any interaction term. We mention

that Girardeau’s mapping preserves the modulus of the quantum wave func-

tion in the position basis; however, the forms of the bosonic and fermionic

momentum-space wave functions are not preserved. This means that the

local density of polymers is correctly described under the mapping but, e.g.,

quantities involving the slopes of polymer configurations—the analogs of the

momenta of the quantum particles—are not. De Gennes applied this free

fermion picture of two-dimensional noncrossing fibrous polymers to describe

the structure of such systems. In particular, he showed that there is a

logarithmic divergence in the “x-ray form factor” (i.e., the longitudinally-

averaged correlator between lateral Fourier components of the density fluc-

tuations of the polymer system), at a length scale associated with the Fermi

momentum of the quantum system (or, equivalently, the mean lateral inter-

polymer spacing).

2.3.2 Fermi statistics from the method of images

When de Gennes first mapped noncrossing lines onto fermion worldlines [1],

he did not first map them onto interacting bosons. Rather, he relied upon

physical insights similar to those developed by Michael Fisher [9] to describe

the paths of “vicious drunks”— i.e., paths of antisocial individuals who wan-

der randomly, with the requirement that their paths never cross. Consider

first of all a single random walker, traveling from the point (xi, 0) to the point

(xf , L), with both x-coordinates positive. In the absence of any interactions

or potentials, we have an unnormalized (normalization will be discussed later

in this chapter) partition function
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Z0(xi → xf ) ∼ exp

[
−Aβ

2L
(xf − xi)2

]
. (2.17)

Now suppose we have a wall located at x = 0, so that only paths where

x(τ) > 0 may be included in the partition function. We wish then to subtract

from our partition function any paths which cross the line x = 0 at least once.

We do this by including an “image” destination at (−xf , L).

Consider any path between xi and xf that crosses x = 0 at least once and

let (0, τ ∗) be the position at which it first does so. Then, the mapping

x(τ)→ x(τ)θ(τ ∗ − τ)− x(τ)θ(τ − τ ∗) (2.18)

takes it uniquely to a path between (xi, 0) and (−xf , L) with the same Boltz-

mann weight (a kink introduced at τ ∗ does not contribute significant addi-

tional cost). Here, θ(·) is the usual Heaviside step function, which takes the

values 0 and 1, respectively, for negative and positive arguments. Alterna-

tively, one can map in the same way any path between (xi, 0) and (−xf , L)

(which will by necessity cross x = 0 at least once) onto one of the paths

between (xi, 0) and (xf , L) which is forbidden by the condition x(τ) > 0.

Thus, there is a one-to-one correspondence between the paths disallowed by

the wall at x = 0 and paths of an unconstrained polymer between (xi, 0) and

(−xf , L). Thus, the partition function of the polymer constrained by the

wall may be obtained by subtracting off paths to this image destination:

Zc(xi → xf ) ∼ Z0(xi → xf )−Z0(xi → −xf ), (2.19)

where Zc and Z0 denote partition functions of polymer systems with and

without the condition x(τ) > 0. Here it is understood that the partition

function is zero if xf < 0, as there are then no valid paths.

Now, rather than a single polymer line and a static wall, we may consider

two fluctuating polymer lines that may not cross one another. Again, we

wish to eliminate from the ensemble any paths where the two polymer lines

touch. Again, this can be done via the method of images:
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Figure 2.2: Part (a) shows on the left a generic polymer configuration
where two polymers cross. On the right, the paths of the polymers have
been exchanged everywhere after the first crossing. This new configuration
has the polymer endpoints exchanged, but has the same Boltzmann weight
as the original path. Polymer configurations which have at least one
crossing have a one-to-one correspondence in this way with equal-weight
configurations with exchanged boundary conditions. Thus, as indicated in
Part (b), the total weight of all noncrossing polymer configurations is equal
to the weight of all polymer configurations (crossing and noncrossing) minus
the weight of all polymer configurations subject to exchanged boundary
conditions. For N polymers, one generates the weight of the noncrossing
configurations by summing over the N ! permutations of the boundary
conditions, adding or subtracting depending on the sign of the permutation.

Zc
(
(x1

i , x
2
i )→ (x1

f , x
2
f )
)
∼ (2.20)

Z0

(
(x1

i , x
2
i )→ (x1

f , x
2
f )
)
−Z0

(
(x1

i , x
2
i )→ (x2

f , x
1
f )
)
.

Here, the paths in the second partition function are

(x1(τ), x2(τ))→ (x1(τ), x2(τ))θ(τ ∗ − τ)− (x2(τ), x1(τ))θ(τ − τ ∗). (2.21)
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Note that such paths have the same Boltzmann weight even in the presence

of interactions and potentials, provided that these are symmetric under the

exchange of polymers.

One can continue this procedure for N polymers, so that the partition

function for N polymer lines which are not allowed to cross is

Zc ({xi} → {xf}) ∼
∑
P

(−1)PZ0 (xi → P ({xf})) , (2.22)

where P ({xf}) is any permutation on the N endpoints {xf}. Thus, we

can enforce the noncrossing condition automatically by considering polymer

configurations without the noncrossing condition but with antisymmetrized

boundary conditions in Eq. (1.4). As noted in Eq. (2.4), the boundary condi-

tions correspond to a quantum wave function (not its squared modulus), so

in the quantum picture we enforce noncrossing precisely by antisymmetrizing

the wave function (i.e., choosing a fermionic wave function). As we will see in

Chapter 8, for polymers in (2 + 1) dimensions the nonintersecting condition

may be enforced by a different set of quantum statistics in higher dimensions.

2.4 Ground state and ground-state dominance

As noted earlier in this chapter, the ground state of the quantum Hamiltonian

plays a key role in the behavior of the polymer system over long distances.

In order to make use of this idea, we now obtain the ground-state wave

function for the many-hard-core boson system, subject to hard-wall boundary

conditions, in a form that is convenient for the subsequent analysis. To do

this, we begin with the ground-state wave function ψpgs({xn}) of a system of

N hard-core bosons on a ring of circumference w, subject to periodic (rather

than hard-wall) boundary conditions (see e.g. [19]); this is given by

ψpgs({xn}) =
2N(N−1)/2

wN/2
√
N !

∏
1≤n<n′≤N

∣∣ sin π

w

(
xn − xn′

)∣∣. (2.23)

Such boundary conditions are appropriate for a system of polymers that lie

on a cylindrical surface and are directed along the cylinder axis. Our aim,

however, is to consider a system of polymers that are confined to a strip with
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hard-wall boundary conditions, and this system corresponds to a quantum

system also subject to hard-wall boundary conditions. To that end, we give

the groundstate wave function of a system of N bosons subject to vanishing

boundary conditions at xn = ±w/2 (see Appendix A):

ψgs({xn}) =
2N

2/2

wN/2
√
N !

( N∏
n=1

cos
πxn
w

) ∏
1≤n<n′≤N

∣∣ sin πxn
w
− sin

πxn′

w

∣∣. (2.24)

The wave function ψgs reflects the inter-polymer repulsion. Although the

corresponding polymers are forbidden energetically only from actually inter-

secting one another, continuity and thermal fluctuations have the combined

effect of “carving out” a spatial region around the polymers so that the prob-

ability of finding one polymer very near another (compared with the mean

inter-polymer spacing w/N) vanishes as the square of the separation. A sim-

ilar effect occurs near the hard boundaries, i.e., at x = ±w/2. The preceding

results pertain to infinitely strong contact interactions. However, as is known

from the work of Lieb and Liniger [18], the physical properties of a system

of bosons subject even to weak contact interactions differ nonperturbatively

from those of a system of free bosons.

Whereas the lateral correlations amongst the polymer segments depend

additionally on the quantum-mechanical energy eigenfunctions, the thermo-

dynamic properties of the polymer system are determined solely by the spec-

trum of energy eigenvalues. The ground-state energy and energy spacing to

the first excited state of the quantum system are, respectively, given by

Egs =
π2

6

~2

mw2
N3 =

π2

6

L

w2β2A
N3, (2.25a)

∆E = π2 ~2

mw2
N = π2 L

w2β2A
N (2.25b)

for N � 1. The partition function of a long system is dominated by the term

exp (−EgsT /~).

Thus, the free energy density of a long system of noncrossing polymers is

given, to leading order, by

F
wL

=
π2

6

(
N

w

)3
1

β2A
. (2.26)
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This is the free energy cost density of imposing the noncrossing condition.

This condition essentially restricts each polymer to a region of width of order

w/N , leading to a strong reduction in entropy and therefore an increase in

free energy. Even a weak inter-polymer repulsion would suffice to generate a

free energy proportional to N3 rather than N .

We conclude this section on ground state dominance by remarking that the

length scale over which the ground-state dominance approximation holds is

τ � L/β∆E, or

τ � w2βA

N
. (2.27)

2.5 Short-distance behavior of the polymer system

The polymer partition functions that we consider in this work contain certain

pathologies that must be controlled via a short-distance regularization. Con-

sider the partition function for a single polymer not subject to interactions

or external potential, which formally reads

Z =

∫
Dx(·) exp

(
−Aβ

2

∫
dτ ẋ2(τ)

)
. (2.28)

To make sense of this object, let us divide the longitudinal coordinate into

M + 1 discrete sections, so that

Z(M) =

∫
d{xm} exp

(
−Aβ

2

M∑
m=0

M

L
(xm − xm−1)2

)
(2.29)

Note that, here, the {xm} are the coordinates of longitudinally separated

segments of a single polymer, rather than the {xn} considered elsewhere

in this work which are laterally separated segments of N different polymers

along the line τ = τp. Proceeding in the manner of time-slicing for a quantum

path integral (see, e.g., Kleinert [20], Feynman and Hibbs [21]), one may

make use of the following mathematical relationship to eliminate the interior

degrees of freedom:
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∫ ∞
−∞

dy exp
(
−C

[
(x− y)2 + (y − z)2

])
=

√
π

2C
exp

(
−C

2
[x− z]2

)
(2.30)

By using this relationship, we see that the partition function for a single

polymer line that travels from x0 to xf and has M − 1 interior segments is

Z(M) =
1√
M !

(
2πL

AβM

)(M−1)/2

exp

(
−Aβ

2L
[xf − x0]2

)
. (2.31)

m=1 m=0 m=2 m=3 m=4 m=5… 

x0 

x5 

l 

Figure 2.3: A configuration of the first five primitive segments of a single
polymer. Although the polymer configurations over longer distances do not
depend on the primitive segment length `, the root mean squared polymer
slope is proportional to `−1.

We see thus that the free polymer fluctuates with a Gaussian distribution that

does not depend on the number of internal segments. The polymer structure

over long distances will not depend on this short-distance behavior.

However, this does not mean that the short-distance behavior can be ig-

nored entirely in the determination of thermodynamic properties of the poly-

mer fluid. Let us define the short-distance portion of the partition function

for N polymers with a short-distance cutoff ` ≡ L/M . Then, the portion of

the partition function dealing with the short-distance behavior is
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Z` ≡
(

2π`

Aβ

)NL/2`
. (2.32)

This factor is not connected to the structure of the polymer lines {xn(τ)} over

distances long compared to `, but it does influence thermodynamic observ-

ables that depend on temperature or the tension parameter. For example,

the mean squared deflection 〈ẋ(τ)2〉 of a free long polymer line is given by

〈ẋ(τ)2〉 = − 2

βLN
∂A lnZ =

1

Aβ`
. (2.33)

Thus, if we try to take ` → 0 we find that short-distance polymer deflec-

tions diverge. That is, the closer we examine an ideal polymer line within our

model, the steeper its slope seems to be. More generally, the short-distance

behavior of polymers encoded in the short-distance portion of the partition

function Z` will depend on polymer interactions V (xn−x′n) and on one-body

potentials Φ(xn), and it is this prefactor that must be inserted to make the

eigenfunction expansion of Eq. (2.12) an equality:

Z = Z` ({xfn}|e−Ht/~|{xin})

= Z`
∑

k
e−Ekt/~ ψk({xfn})ψ∗k({xin}). (2.34)

Now incorporating the noncrossing condition through the use of the fermionic

wave functions as discussed earlier in this chapter, we have a mean squared

polymer deflection

〈ẋ(τ)2〉 = − 2

βLN
∂A ln [Z` exp (−EgsT )] =

1

Aβ`
− π2

3

(
N

w

)2(
1

βA

)2

. (2.35)

It is this expression that must be small in order to justify the form of the

tension energy in Eq. (1.3).

Without taking the short-distance behavior into account, we would have
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Figure 2.4: A configuration of the first five primitive segments of a single
polymer near to the hard wall of its container. Because polymer segments
cannot cross this wall, a configuration that includes x∗4 is not permitted,
whereas x4 is. Note that the configurations eliminated by the wall have on
average greater polymer deflections than those permitted, so the wall
decreases, e.g., 〈(x3 − x4)2〉 and therefore decreases the average slope of
polymer lines in its vicinity. Similarly, noncrossing polymers decrease the
average slopes of their neighbors (and see their own average slopes reduced
in turn). Even polymers with a finite contact interaction see this effect,
with configurations with steep slopes crossing more neighbors and thus
suffering a finite energetic penalty.

only the second term on the right-hand side of Eq. (2.35) and thus suppose

that the noncrossing condition led to negative polymer tension energy, an

impossibility. In fact, the noncrossing condition merely decreases the average

polymer slope (as do hard walls). This is because the polymer configurations

eliminated (or energetically discouraged, for finite contact interactions) tend

to be the ones having the greatest slopes; see Fig. 2.3.

Let us return to the partition function originally obtained for the system of

noncrossing polymers (i.e., the one not including the short-distance behavior,

which led to the free energy density obtained in Eq. (2.26)):

Z ≈ exp(−EgsT ) = exp

(
−π

2

6
N3L

1

βA

1

w2

)
. (2.36)

We can now interpret this expression for the partition function either as

the fraction of total polymer configurations (weighted by their Boltzmann

factors) that are noncrossing or as the probability that a system of non-

interacting polymers would spontaneously assume a configuration in which
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no polymer line crossed another. As one would expect, this probability be-

comes exponentially small as either the length of the system, the density of

polymers, the temperature, or the number of polymers is increased.
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CHAPTER 3

LARGE FLUCTUATIONS AND STRONG
CONSTRAINTS IN THE POLYMER

SYSTEM

28



3.1 Introduction to large fluctuations

We turn our attention now to a series of related questions central to this

work. Consider a line τ = τp deep in the interior of the system. Denote

the positions at which the N polymers cross this line as {xn}. Let C denote

some constrained class of these positions {xn}. For example, C might denote

configurations where all polymers crossed the line τ = τp on the left side of

the system (xn < 0) or the configurations where, on this line, no polymer

came within some distance a of another (|xn − xn′ | > a). We will focus

on constraints that are strong in the sense that any polymer configuration

consistent with them is exponentially less likely than the dominant polymer

configuration (i.e., an almost uniform polymer density) of the unconstrained

system.

For any constraint C, we may ask: what is the free energy cost of imposing

the constraint C on the polymer system? Equivalently, we may ask: what

is the probability that an unconstrained system will assume spontaneously

a configuration consistent with C? In either case, we may ask: when the

polymer system obeys the constraints embodied in C what is the polymer

structure on and around the line τ = τp?

Let us begin by constructing the partition function of a polymer system

confined to pass exactly through some set of coordinates {xn} on the line

τ = τp:

Z({xn}) = 〈Ψf |e−H(T −tp)/~|{xn}〉〈{xn}|e−Htp/~|Ψi〉. (3.1)

Making the ground-state approximation in describing the evolution from t =

0 to t = tp and from t = tp to t = T , one obtains

Z({xn}) ≈ 〈Ψf |Ψgs〉〈Ψgs|Ψi〉e−T Egs/~ |〈Ψgs|{xn}〉|2 . (3.2)

We recognize the first portion of this partition function as the partition func-

tion pertaining to the unconstrained polymer system. We may then write a

partition function for the polymer segments on the line τ = τp as separate

from the bulk of the polymers:
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Z({xn}) =

∫
d{xn}

∣∣〈{xn}|Ψgs〉
∣∣2. (3.3)

We may use this partition function to determine the probability that the

coordinates {xn} satisfy the constraint. Equivalently, we may construct the

partition function of the constrained system:

ZC =

∫
C
d{xn}

∣∣〈{xn}|Ψgs〉
∣∣2. (3.4)

Here, the integration is only over those coordinates {xn} consistent with the

constraint C. The normalization of the groundstate wave function ensures

that the unconstrained partition function is unity and that the constrained

partition function gives the probability that the constraint is obeyed sponta-

neously.

We may interpret our system now as describing a one-dimensional classical

system of particles subject to some interaction and external potential. Then,

we may write our partition function as

ZC =

∫
d{xn} exp (−βU({xn})) ; (3.5)

βU({xn}) = − ln |〈Ψgs|{xn}〉|2 . (3.6)

Let us consider systems whose quantum wave functions are of a modified

product form, so that the effective energy of a configuration takes the form

βU({xn}) =
∑
n

f(xn) +
∑
n<n′

g(xn, xn′). (3.7)

This form is sufficiently general that it includes polymers which are non-

interacting, noncrossing, or subject to long-range interactions [22]. It also

encompasses a wide variety of lateral boundary conditions: periodic (for

which f(·) is constant and g(·, ·) depends only on the relative coordinate),

hard-wall, and a confining harmonic potential.

Note that the effective potential and interaction are not the bare potential
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or interaction of the actual polymer lines as given in Eq. (1.3). Consider for

example the wave function of noncrossing polymers subject to hard walls at

x = ±w/2 from Eq. (2.24). The effective potential is

f(x) = −2 ln
(

cos
πx

w

)
, (3.8)

and the effective interaction is

g(x, x′) = −2 ln
∣∣ sin πx

w
− sin

πx′

w

∣∣. (3.9)

Rather than polymers which experience a uniform potential on −w/2 <

x(τ) < w/2, we see a particle system which has a unique potential minimum

at x = 0 and actually diverges as x approaches the walls. This is from

the bulk of the polymers, which we have integrated out. Ignoring for the

moment interactions, the partition function is proportionate to the number

of polymer configurations (with their Boltzmann weights) which pass from

τ = 0 to τ = L without violating the constraint −w/2 < x(τ) < w/2.

And indeed, this number is greatest for those paths which obey x(τp) = 0

(this follows simply from the fact that x = 0 is the most likely place to find

the polymer). The number of allowed configurations becomes vanishingly

small as x(τp) is brought to either wall due to the large number of nearby

polymer segments at x(τp ± `), x(τp ± 2`), . . . that would be confined by the

wall. Taking into account the finite short-distance cutoff ` would lead to an

`-dependent finite value for f(±w/2).

Similarly, the contact repulsion embodied in the noncrossing condition be-

comes a long-range repulsion. The closer two particles at x and x′ are brought

to each other, the more likely it is that the corresponding polymers would

encounter one another at some “earlier” or “later” τ . For polymer systems

whose quantum wave functions vanish as a power law as two coordinates are

brought close to one another, the effective interaction g(·, ·) is logarithmic

repulsion at short ranges. This is the same as a two-dimensional Coulomb in-

teraction between particles of like charge (though recall that our particles are

confined to a one-dimensional line, not the two-dimensional plane). For this

reason, we refer generally to the classical system subject to potentials and
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interactions of the form given in Eq. (3.7) as having charge. This does not

indicate, of course, that the polymers themselves necessarily have an electri-

cal charge, any more than the quantum picture indicates that the polymers

behave nonclassically.

This form permits us to determine any number of statistical observables

provided that they are confined to some line τ = τp. For example, the free

fermion wave function may be used to determine the terrace width distribu-

tion [7], that is the probability that two nearest neighbor lines xn and xn+1

are separated by a given width. However, we shall focus on large fluctuations

and strong constraints.

3.2 Large numbers of polymers

For systems of only a few polymers, one may evaluate the integrals in Eq. (3.4)

directly. We are interested in the opposite limit, in which the number of

polymers is sufficiently large that their distribution resembles a continuous

density. To this end, we may write the partition function of our effective 1D

classical system as

ZC =

∫
Dρ(·)d{xn} δ̂

[
Nρ(x)−

∑
n

δ(x− xn)

]
exp (−βU0 [ρ(·)]) ;

βU0 [ρ(·)] =

∫
dxNρ(x)f(x) + (N2/2)

∫
dxdx′ρ(x)g(x, x′)ρ(x′), (3.10)

where δ̂ [·] is the functional version of the Dirac delta function. Performing

the functional integration in ρ(·) would exactly recover our original partition

function in terms of the individual particle coordinates. Instead, we make

use of the Fourier representation of a Dirac delta function and introduce an

auxiliary field K(·) so that

δ̂

(
Nρ(x)−

∑
n

δ(x− xn)

)
(3.11)

∼
∫
DK(·) exp(i

∫
dxK(x)

(
Nρ(x)−

∑
n

δ(x− xn)

)
.
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With this transformation, the partition function becomes

ZC =

∫
Dρ(·)DK(·)

(∫
dxe−iK(x)

)N
× exp

(
iN

∫
dxK(x)ρ(x)− βU0 [ρ(·)]

)
. (3.12)

Until now, our introduction of the auxiliary field has been exact. Now, we

make a saddlepoint approximation in K(·) and retain only the configuration

which satisfies the first-order conditions. This approximation is best when the

number of particles is large, so that the set of particle coordinates most closely

resembles a continuous density distribution. The saddlepoint approximation

yields

ρ(x) =
e−iK(x)∫
dxe−iK(x)

. (3.13)

Using this relationship to eliminate K(x), one obtains the effective poten-

tial energy of the continuous density distribution:

βU [ρ(·)] = (3.14)∫
dx [Nρ(x) ln ρ(x) +Nρ(x)f(x)] + (N2/2)

∫
dxdx′ρ(x)g(x, x′)ρ(x′).

The first term arises in the method of collective coordinate [23]. It is es-

sentially a statistical degeneracy factor [24], appropriate when we consider

length scales such that the number of polymers in any region is large. Ad-

ditionally, our definition of the density profile (enforced by the Dirac delta

function) introduces the additional requirements

ρ(x) ≥ 0, (3.15)∫
dx ρ(x) = 1. (3.16)

As before, the interaction g(·, ·) suggests a Coulomb-type repulsion, but now

one that acts on a continuous fluid. For this reason, we refer to the energy
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functional in Eq. (3.14) subject to the requirements in Eq. (3.15) as the

charged fluid model. This model also describes the statistics of the eigenvalues

of certain ensembles of random matrices, as discussed in Appendix B.

3.3 Introduction of a constraint

We now wish to impose some additional constraint C on the density profile

ρ(·) inherited from the constraint on the original particle coordinates. To

this end, we include an additional source term −Ns(x)ρ(x). The factors of

N in the exponent suggest that we may treat this functional integral via

the functional version of Laplace’s method, and therefore via finding the

maximum of the leading term of the exponent. Retaining only the dominant

contribution (that from interpolymer interactions), the first-order conditions

thus obtained are

N

∫
dx′g(x, x′)ρ(x′) = s(x). (3.17)

For a clean polymer system without any constraint or varying potential,

s(x) is merely a constant, an effective chemical potential used to fix the

number of polymers. Alternatively, s(x) can represent a continuous potential

that acts on the polymers only on the line τ = τp. However, as we will discuss

more fully in the next chapter, s(x) can be chosen to represent a topological

constraint on the polymers. If certain polymers are required to pass through

certain portions of the line τ = τp, then even in the absence of a true potential

s(x) can assume different values on the different portions of the τ = τp into

which the topological constraint partitions the system. The different values

s(x) serve as Lagrange multipliers that fix the number of polymers passing

through each region.

3.4 Enforcing positive polymer density

There is no guarantee that the solution of this integral equation in Eq. (3.17)

will obey the positivity required of the density profile. How do we reconcile

the positivity condition with the first-order conditions?
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Let us briefly consider some separate well-behaved function B({zi}) by

means of example. We wish to maximize this function over the variables {zi}
subject to the constraint that all zi are nonnegative. Thus, basic calculus

tells us that at the point {z∗i } that maximizes B(·) (if such a point exists)

either ∂B/∂zi = 0 or zi = 0 for all zi. The functional equivalent applicable

to our system is simply this: for any x either the first-order conditions of

Eq. (3.17) are obeyed or the constraint ρ(x) ≥ 0 is satisfied with equality

(i.e., ρ(x) = 0).

So, we may proceed thusly: First, we shall simply attempt to satisfy the

first-order conditions on ρ(·), while ignoring the positivity requirement. As

we will see, though, this can result in density profiles that violate positivity.

If this occurs, we will assume that the true profile that minimizes energy

subject to positivity includes at least one gap, a region of finite width in which

polymer density is zero. We then go back to our first-order conditions and

assume the existence of a gap, and exclude this region from the integration

in Eq. (3.17). If this results in a profile which satisfies positivity we may

adjust the size and width of the gap so as to minimize the energy of the

configuration. If this second set of profiles also violates positivity, then we

must include assume the existence of at least two separate gaps, and continue

in this fashion until positivity is eventually achieved. We will discuss this

procedure in more detail for the particular case of the pin, discussed in the

next chapter.
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CHAPTER 4

TOPOLOGICAL PINS CONSTRAINING
THE POLYMER SYSTEM
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4.1 Constraints on the partition function due to a

single pin

(-w/2,0)

( )

x

(x,τ) =
(0,0)

(0,L)

τ

(w/2,0)

Figure 4.1: A topological obstruction (a pin), located at (x, τ) = (xp, τp).
Thermal fluctuations cannot carry a polymer across this pin, so a fixed
number of polymers NL pass to one side of the pin, and the remainder
NR ≡ N −NL pass to the other side. From Rocklin et al. [2].

In the previous chapter, we considered a generic polymer system subject

to a generic constraint. We now specialize to the concrete example of a

system of noncrossing polymers subject to a pin. As we shall see, the pin

renders the system nontrivial, topologically. By a pin we mean a region of the

polymer system, sharply localized near the point (x, τ) = (xp, τp), at which

the one-body potential experienced by any polymer segment is taken to be

so large and repulsive that the polymers never cross it during the course of

an experiment:

Φp(x, τ) = cpδ(x− xp)δ(τ − τp); (4.1)

cp →∞.

Because polymers cannot cross over the pin, it serves as a topological con-

straint and, because the polymers are directed and have no free ends, it

partitions the configuration space of the polymer system into sectors labeled

by the number NL of polymers that have the property that as they pass

through the line τ = τp they obey −w/2 < x(τp) < xp; see Fig. 4.1. Then,

the corresponding number of polymers that pass the pin on its other side

[i.e., obey xp < x(τp) < w/2] is given by NR ≡ N −NL. We note that on the

line τ = τp the mean polymer densities to the left and right of the pin are,

respectively, ρL = NL/
(
(w/2) + xp

)
and ρR = NR/

(
(w/2)− xp

)
. Evidently,
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the constraint created by the pin eliminates polymer configurations from the

thermal ensemble, and thereby reduces the entropy of the system. For a

generically located pin, the only configurations remaining in the ensemble

correspond to large fluctuations of the original system. The pin therefore

raises the free energy of the system and, as a result, there is generically an

equilibrium force on the pin.

To determine the increase in the free energy due to the presence of the

pin, it is convenient to analyze the partition function of the polymer system,

restricted to having NL polymers constrained to pass on one side of the pin

(as described more precisely in the previous paragraph), normalized by the

unrestricted partition function. This amounts to computing Eq. (1.7) with

the observable O({xn}) given by

δ
(
NL,

N∑
n=1

θ
(
xp − xn)

)
, (4.2)

where δ(N,N ′) is the Kronecker delta function (i.e., 1 for N = N ′ and 0 for

N 6= N ′) and θ(·) is the usual Heaviside step function, which takes the value

0 and 1, respectively, for negative and positive arguments. We now set about

computing this free energy increase, as well as the impact of the pin on the

spatial variation of the polymer density.

4.2 The charged fluid model with a pin

As discussed in the previous chapter, the polymer segments {xn} on the line

τ = τp behave as charged particles, with thermal fluctuations of the polymer

lines at “earlier” and “later” τ generating long-range repulsion driving the

segments away from one another and from the walls of the system. For a large

number of polymers we may treat these segments as a continuous polymer

density Nρ(x) on the line τ = τp. The effective energy of a polymer system

may be expressed as in Eq. (3.14). For the particular case of noncrossing

polymers contained within hard walls, whose correlations are are encoded in

the wave function in Eq. (2.24), the charged fluid energy functional is
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βU [ρ(·)] =

∫ π/2

−π/2
dx [Nρ(x) ln ρ(x)− 2Nρ(x) ln |cosx|] (4.3)

−N2

∫ π/2

−π/2

∫ π/2

−π/2
dxdx′ρ(x) ln |sinx− sinx′| ρ(x′),

where, to shorten the equations, we have set the width of the system equal

to π.

We now impose on this system the constraint associated with the pin. In

terms of the original polymer coordinates, this is

−π/2 < x1, . . . , xNL
< xp < xNL+1, . . . , xN < π/2. (4.4)

In terms of the polymer density, this constraint is

∫ xp

−π/2
dx ρ(x) = NL/N ; (4.5)∫ π/2

xp

dx ρ(x) = NR/N. (4.6)

In addition, we have the standard requirement that the polymer density be

nonnegative:

ρ(x) ≥ 0, for − π/2 < x < π/2. (4.7)

4.3 Obtaining the density profile

We now apply the functional version of Laplace’s method in order to ob-

tain the density profile which minimizes the energy functional subject to the

constraint. Because of the factors of N in the energy functional, for large

numbers of polymers the fluctuations around this dominant density profile

should be small. Including now a source term that will allow us to enforce

the pin constraint, as discussed in Chapter 3, the first-order condition which

the dominant density profile ρ̄(·) obeys are
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∫ π/2

−π/2
dx ρ̄(x) ln |sinx− sinx′| = sL + (sR − sL) θ(xp − x′). (4.8)

Here, sL and sR are the effective chemical potentials to add particles (i.e.,

polymer segments) on the left and right sides of the pin, respectively. These

parameters may be adjusted in order to enforce the pin conditions of Eq. (4.5).

It is important to note that this condition is only obeyed at values of x′ for

which ρ̄(x) is strictly greater than zero.

In the absence of the pin constraint, sL would be equal to sR and the

condition would be trivially satisfied via a uniform polymer density profile

(short-distance behavior such as Friedel oscillations near the walls are av-

eraged out over the length scales embodied in ρ(x)). This uniform density

profile is also the correct mean density profile in the presence of a pin for

the exceptional case in which the pin demands that the average polymer

densities on the two sides of it be equal to one another (i.e., for the case in

which ρL = ρR = 1/π). We refer to such a constraint as an equilibrium pin.

Generically, however, the pin has a profound effect on the mean polymer

density.

To analyze the stationarity condition, Eq. (4.8), it is convenient to make

the following transformations of the dependent and independent variables:

ρ̄(x) → Q(s) ≡ ρ̄(x)/ cosx, (4.9a)

x → s ≡ sinx, (4.9b)

so that dx = ds/
√

1− s2, and similarly for x′. In terms of these new variables

the stationarity condition becomes∫ 1

−1

dsQ(s) ln |s− s′| = sL + (sR − sL)θ(s− sp) (4.10)

where sp ≡ sinxp. This form of the stationarity condition must be met at

values of s for which Q(s) > 0.

If we were to ignore the positivity condition that a physically acceptable

density profile Q(·) must satisfy then it would be straightforward to solve

the integral equation (4.10) for all s (by following a technique that we shall,

in fact, eventually adopt; see, e.g., Ref. [25]). However, the result we would
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obtain for Q(·) would be invalid, as it would diverge to negative infinity near

the pin. Thus, we search for a solution that violates the first-order conditions

over one or more segments of −1 < s < 1; within these segments Q(s) = 0

and we refer to any such a segment as a gap.

Nonequilibrium pins necessarily cause compression of the the polymers

either on one side of the pin or on the other. Without loss of generality, we

may take the compressed region to correspond to −1 < s < sp; then the

rarefied region corresponds to sp < s < 1. For the profile that minimizes

the energy functional (4.3), it is physically reasonable to assert that any gap

would form on the rarefied side and, furthermore, that it would lie directly

adjacent to the pin and extend over a region that more strongly disfavors

the presence of polymers, as a result of its proximity to the dense region of

polymers that is created by the pin on the other side of the pin. Indeed, it is

this region that would, in the absence of the positivity condition, acquire a

negative density of polymers. (This assertion will be verified as we proceed.)

Thus, we look for non-negative profiles for which we require Q(s) = 0 for s

lying within the range sp < s < sg. If a gap were to be present anywhere

else, the system free energy could be lowered by moving polymer density into

that gap. Thus, any solution found that (i) has this gap and (ii) elsewhere

satisfies the constraints on ρ̄(x) is the unique minimizer of our effective free

energy.

As we shall see, the formation of a single gap yields a suitable profile (i.e.,

one that satisfies the positivity constraint automatically). What remains,

then, for the case of a single pin, is to determine the value of the density

profile and, in particular, the width of the gap (sg− sp) that together ensure

that the necessary conditions on the profile are obeyed by it. Following the

approach reviewed in Ref. [25], we have that the family of solutions to this

integral equation is given in terms of parameters A0 and A1 by

Q(s)=


(A0 + A1s) sgn(s− sg)√
(1− s2)(s− sp)(s− sg)

,
for − 1 < s < sp

or sg < s < 1;

0, for sp < s < sg.

(4.11)
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Figure 4.2: Transverse variation of the equilibrium directed polymer density
along the line τ = τp for a system subject to a pinning constraint located at
(x, τ) = (−w/4, τp), the location of which is marked by a black dot. The
physical polymer density is the plotted quantity scaled by Nπ/w. Within
the present approximation scheme, a finite gap (i.e., an area of zero polymer
density) extends from the pin. The dashed line represents the equilibrium
polymer density in the absence of a pin. From Rocklin et al. [2].

Transforming back to polymer coordinates, using Eq. (4.9), we thus have

ρ̄(x)=


(A0 + A1 sinx) sgn(sinx− sinxg)√

(sinx− sinxp)(sinx− sinxg)
,

for − π/2 < x < xp

or xg < x < π/2;

0, for xp < x < xg.

(4.12)

The next step in determining ρ̄(x) is to adjust A0 and A1 to ensure that there

is no divergence at x = xg; this requires that A0 + A1 sinxg = 0. Physically,

this choice is motivated by the expectation that the equilibrium density does

not diverge on the rarefied side of the pin. Next, we invoke the normalization

condition and thus determine that A1 = 1/π; and, finally, we adjust xg to

ensure that the pin constraint (4.5) is met. Thus, we arrive at the profile

that dominates the constrained partition function:

ρ̄(x) =


1

π

√
sinx− sinxg
sinx− sinxp

,
for − π/2 < x < xp

or xg < x < π/2;

0, for xp < x < xg.

(4.13)
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Restoring the physical lengths, this becomes

ρ̄(x)=


1

w

√
sin(πx/w)− sin(πxg/w)

sin(πx/w)− sin(πxp/w)
,

for − w/2 < x < xp

or xg < x < w/2;

0, for xp < x < xg.

(4.14)

Note the essential features of this solution for the polymer density along the

line τ = τp, as shown in Fig. 4.2: throughout the width of the system (i.e.,

for −w/2 < x < w/2) the density is non-negative; at the system edges (i.e.,

x = ±w/2) the density is finite; at the pin (i.e., for x = xp) the density

has a square-root divergence approaching xp from the compressed side and

a square-root vanishing approaching xg from the rarefied side; and within

the segment xp < x < xg the density is zero. It is striking that merely as

a result of inter-polymer interactions that are local in the two-dimensional

plane the topological restriction presented by the pin causes the opening up

of a finite gap in the polymer density and, in particular, that the reach of

its impact extends over many times the intrinsic inter-polymer separation,

at least at the level of the present mean-field type of approximation. The

mechanism responsible for this is that—over a longitudinal distance that is

nonzero—the polymers are energetically disfavored from entirely filling in the

gap by the cost in deflection energy they would have to incur to depart from

their long-distance equilibrium positions. Note that while the mean density

ρ̄(x), as calculated within our approach, is zero within the gap, fluctuations

can only increase it, leading to there being a small positive polymer density

within this region.

A closed-form expression for the gap edge xg associated with a partitioning

may be found in terms of elliptic integrals, as in Appendix C. For a pin near

its equilibrium position xe, the pin displacement xp − xe ≡ δ and the gap

xp− xg ≡ γ are both small. Then the gap size is related to pin displacement

to leading order by

δ ≈ γ

2
ln

(
2w

π|γ|
cos2 πxp

w

)
+O(γ). (4.15)

Thus for a pin near its equilibrium position the gap size is sublinear in the
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Figure 4.3: Dependence of the width of the gap that opens in the polymer
density adjacent to a pin on the pin location and polymer density
imbalance. Note that the gap width increases from zero as the pin position
is varied, parametrically, from its equilibrium position. At the equilibrium
position (ρL = ρR), the gap vanishes and the polymer density is spatially
uniform, as it is for a system in the absence of a pin. From Rocklin et al. [2].

pin displacement.

In Fig. 4.3 we show the gap size more generally as a function of the pin

position and the parameter ν ≡ (ρL − ρR)/(ρL + ρR), which we introduce to

characterize the imbalance between the densities on either side of the pin.

When all the polymers are on one side of the pin (in which case ν = ±1) then

the gap size is simply the pin displacement. More generally, the polymers on

the rarefied side expand towards the pin so that the gap is smaller than the

pin displacement.
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4.4 Force on a pin

Having determined the mean density profile on the lateral line through the

pin, viz. ρ(x, τ)|τ=τp , we now return to our formulation of the dominant

contribution to the partition function, and hence the free energy, to de-

termine the increase in the free energy due to the pin, viz. ∆F . To do

this, we begin with the energy functional Eq. (4.3) and seek to compute its

value at the mean density profile. To simplify this computation, we em-

ploy the first-order stationarity condition (4.8) to eliminate the combination

−
∫ w/2
−w/2 dx

′ ρ(x′) ln
∣∣sin(πx/w)− sin(πx′/w)| in favor of sL+(sR−sL) θ(xp−

x). We also use the stationarity condition evaluated at x = ±w/2 to ob-

tain the Lagrange multipliers sL and (sR− sL in terms of the (known) mean

profile. Then, in the resulting expression for ∆F , we use the normalization

of ρ(·) and the constraint on it that the pin introduces, Eq. (4.5), and thus

arrive at the result

∆F(xp, NL, N, T, w) = −N2T

∫ w/2

−w/2
dx ρ̄(x, xp, xg)

×
(

(NL/N) ln 2
(
1 + sin(πx/w)

)
+ (NR/N) ln 2

(
1− sin(πx/w)

))
, (4.16)

We remind the reader that the gap edge location xg is not an independent

variable but is determined in terms of the independent variables, via the pin

constraint, Eq. (4.5).

As a special case, we first consider the situation in which all polymers lie

to one side of the pin, i.e. NL = N , so that the pin can in effect be taken to

be a septum emerging normally from one wall of the system. In this case,

the formula for the free energy increase, Eq. (4.16), simplifies to the explicit

form

∆F = −N
2T

w

∫ xp

−w/2
dx

√
sin(πx/w)− 1

sin(πx/w)− sin(πxp/w)
ln 2
(
1 + sin(πx/w)

)
= −N2T ln

(
[1 + sin(πxp/w)] /2

)
. (4.17)

Remaining with the case NL = N , we note that for mild compressions (i.e,

those obeying (w/2) − xp � w) the force exerted on the pin is Hookean in
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nature:

∆F =
π2

4
N2T

(
(w/2)− xp

w

)2

, (4.18)

as established by making a Taylor expansion of Eq. (4.17) about x = w/2.

On the other hand, for strong compressions [for which (w/2) + xp � w], so

that the polymers are forced through an opening the width of which is only

a small fraction of the full width of the system, we have the form

∆F = 2N2T ln

(
2

π

(
w

(w/2) + xp

))
. (4.19)

Residing, as it does, beyond the linear-response regime, it is not surprising

that this form is non-Hookean. Indeed, a similar term, with N2
L replacing

N2, dominates the free energy for highly compressed systems with polymers

on both sides of the pin.

-wê2 -wê4 wê4 wê2

Pin
position

0.5

1.0

1.5

2.0

2.5

Dimensionless free energy
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Figure 4.4: Increase in free energy as a function of pin position, for various
values of the number of directed polymers NL passing to one side of the
pin. The physical free energy is the plotted quantity scaled by N2T . The
free energy cost due to the pin is less than harmonic for a generic pin that
is near its equilibrium position, and it diverges logarithmically as the pin
nears an edge of the system. The curves plotted here are for pins having
equilibrium (and free energy-minimizing) positions
−.4w, −.3w, −.2w . . . .4w. From Rocklin et al. [2].

In the more general case, in which NR > 0 polymers pass to the right of

the pin, the force on the pin obeys (see Appendix C)
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− dF
dxp

= −πN
2T

w

(
sin (πxp/w)− sin (πxg/w)

cos (πxp/w)

)
. (4.20)

For a pin near its equilibrium position this force is simply proportionate to

the gap size xp − xg, and the above expression may be integrated to obtain

the leading term in the free energy

F ≈ N2T

4

(πγ
w

)2

ln

[
2w

π|γ|
cos2 πxp

w

]
. (4.21)

Note that although the free energy of the pin near its equilibrium position

grows faster than quadratically in the gap size γ it is sub-Hookean in (i.e.,

grows slower than quadratically with) the pin displacement xp − xe. In con-

trast, in the limit in which the pin position approaches the boundary of the

system and highly compresses the polymers, the free energy diverges loga-

rithmically. Fig. 4.4 shows the free energy as a function of pin position for

polymer partitionings corresponding to various equilibrium positions of the

pin.

4.5 Effects of a barrier on noncrossing polymers

x

(-w/2,0)

(x,τ) =
(0 0)

(0,L)

(w/2,0)

(0,0) τ

Figure 4.5: A barrier (i.e., a laterally oriented topological obstruction of
nonzero width) that constrains the number of directed polymers that pass
on either side. By using the techniques developed in the present work one
can readily analyze the effects of such barriers. From Rocklin et al. [2].

The approach we have developed so far addresses the case of a topological

constraint created by an infinitesimally wide pin. We now generalize the
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approach to allow consideration of the case in which the constraint is a barrier

of finite width, so that polymers are prohibited from passing through an

extended line segment (x, τ)|τ=τp (with −w/2 ≤ xLp < x < xRp ≤ w/2), as

shown in Fig. 4.5. We note that the effect of single barrier is, from the

standpoint of directed-polymer statistical mechanics, entirely equivalent to

the effect of a pair of pins, provided that polymers are forbidden from passing

between the pins.

To analyze the situation of a barrier and, in particular, to compute the

change in free energy arising from the presence of this barrier, we return to

the task of minimizing the energy functional (4.3), but we replace the pin

constraints (4.5), by the following ones, appropriate for a barrier in which

precisely NL polymers pass to the left of the barrier and NR pass to its right:∫ xLp

−π/2
dx ρ(x) = NL/N, (4.22a)∫ π/2

xRp

dx ρ(x) = NR/N. (4.22b)

These constraints along with normalization and positivity imply the barrier

condition:
∫ xLp
xRp
dx ρ(x) = 0.

Physically, it is evident that there are two distinct situations. Consider

a barrier of given width, and with a partitioning specified by NL and NR.

Relative to the situation without the barrier, the polymers are compressed

on at least one side of the barrier, and possibly both. Let us focus on a com-

pressed side, at which the polymer density diverges, and imagine shrinking

the barrier into a pin located at xLP . On the other side of the pin, there would

now be a gap in the polymer density, the width of which is determined, as

before, by the pin constraints. Now, imagine widening the pin into a barrier.

As long as the barrier width does not exceed the gap width, the polymer

density profile would not change, remaining at the density profile associated

with a single pin at xLP . In effect, the barrier resides in the gap created by

the pin, so the fact that the barrier width is finite has no impact.

The second situation follows when the barrier width does exceed the width

of the gap created by the pin. Now, both ends of the barrier are in contact

with polymers. Repeating the earlier integral-equation analysis, we find the

resulting density profile (choosing units as before so that w = π) to be given
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Figure 4.6: Equilibrium directed-polymer density along the line containing
a barrier. The physical polymer density is the plotted quantity scaled by
Nπ/w. The spatial extent of the barrier is indicated by the thick line. Note
that for the chosen value of the polymer partitioning, the polymer density
diverges on both sides of the barrier. The dashed line represents the density
of the polymer system in the absence of the barrier. From Rocklin et al. [2].

by

ρ̄(x) =


(A0 + A1 sinx) sgn(sinx− sinxRp )√

(sinx− sinxLp )(sinx− sinxRp )
,

for − π/2 < x < xLp

or xRp < x < π/2;

0, for xLp < x < xRp .

(4.23)

The two constants are now set by the numbers of polymers passing on either

side of the barrier. The area of the “gap” is now precisely the area excluded

by the barrier, and the polymer density diverges on either side of it, as shown

in Fig. 4.6.

Although, in general, the effect of the barrier on the free energy is more

complicated than the effect of a single pin, there is one case that may be

addressed analytically. Consider an extended barrier of width small width b

such that w/N � b � w, whose midpoint would be an equilibrium pin if b

were set to 0. In this case, the equilibrium polymer density on either side of

the barrier resembles the polymer density around a single pin that has been

displaced a distance b/2 from an equilibrium position x = w/2. The free
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energy cost of such a small barrier is then given by

∆F =
π2

8
T

(
N

w

)2

b2. (4.24)

4.6 Effects of multiple pins and/or barriers on

noncrossing polymers

We now have all the tools we need to address multiple pins and even multiple

finitely-wide barriers, as long as we continue to restrict these obstacles to

lying on a common line τ = τp. Consider, then, M pins at the ordered

locations −(w/2) < x1 < x2 < · · · < xM < (w/2), such that N` polymers

are constrained to pass between pin ` (located at x`) and the nearest pin (or

wall) to its left (i.e., at smaller x). N1 and NM+1 respectively denote the

number of polymers passing to the left of the leftmost pin and the right of

the rightmost pin. (We remind the reader that any barrier of finite width

may be treated as an adjacent pair of pins with no polymers passing between

them.) For such situations, the cost in free energy is determined, as usual,

by maximizing the logarithm of the appropriate partition function Z, given

by (choosing here units so that w = π)

lnZ∼
∫
C
dx

∫
C
dx′ ρ(x) ρ(x′) ln

[(
sinx− sinx′

)2
]
, (4.25)

over the density profile ρ(·), subject to the constraints imposed by the pins

and/or barriers. The symbol C now indicates the following collection of

constraints for all `:∫
C`
dx ρ(x) = N`/N, (4.26)

ρ(x) ≥ 0, for − π/2 < x < π/2, (4.27)

where C` indicates that the integration range runs to the ` th obstacle from the

obstacle or wall that precedes it (or, in the rightmost case, from the rightmost

obstacle to the right wall). The barrier constraints are implemented via a

collection of Lagrange multiplier terms, which augment lnZ and are given
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by

M+1∑
`=1

λ`

{∫
C`
dx ρ(x)− N`

N

}
. (4.28)

This is simply a more general form of the source term s(x) discussed in

Chapter 3, with λ` the value of the term for x on the `th interval. As with

the cases already treated earlier in this chapter, functional differentiation—

of the free energy functional augmented by the Lagrange multiplier terms—

yields an integral equation that is solvable for a non-negative, and therefore

physically acceptable, ρ(·), provided we (i) allow for the possibility of gaps in

the polymer density profile, and (ii) determine their necessity and location by

implementing the constraints on the numbers of polymers passing between

the various obstacles. In general, some pins will lie within the interior of

gaps; other pins will have a gap form on one side.

For cases involving more than one or two pins, the process of determining

the gap structure that permits all constraints to be satisfied becomes quite

tedious, but it should always yield a unique result for the density profile that

minimizes the free energy. Moreover, denoting by {pj} the sets of points at

which the polymer density diverges and by {gk} the set where it increases

gradually from zero density, we may continue as before and thus obtain the

mean polymer density in regions outside the gaps as

ρ̄(x) =
1

w

√∏
k[sin(πx/w)− sin(πgk/w)]∏
j[sin(πx/w)− sin(πpj/w)]

. (4.29)

4.7 Longitudinal impact of topological constraints

4.7.1 Classical hydrostatic approach

In describing the effects of a single pin, we have focused specifically on the

equilibrium structure of the polymer system along the line τ = τp which

passes through the pin. To extend our understanding of the effect of topo-

logical constraints away from this line and into the longitudinal direction, it

is useful to develop a treatment that is analogous to hydrodynamics, which

we call a classical hydrostatic approach. This enables us to describe the large
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fluctuations that are present around topological obstructions.

Consider an area of the x − τ plane of width w′ much greater than the

interpolymer spacing and length L′ sufficient for ground-state dominance to

be valid. Let this area be bounded by x(τ) ∈ [vτ − w′/2, vτ + w′/2] (i.e., the

polymers are confined to a parallelogram such that their average slope is v).

We can again map this onto a quantum problem with a time-independent

Hamiltonian, provided we first make the tilt mapping x(τ) → x(τ) + vτ .

To lowest order in v, the effect of this tilt is to increase the free energy per

polymer per unit length by Av2/2. Thus, the free energy density within the

region is given by

F
w′L′

= Aρ
v2

2
+
π2

6

1

β2A
ρ3. (4.30)

We may interpret this quantity as the local free energy density, expressed

in terms of the local polymer density ρ(x, τ) and the local polymer slope

v(x, τ) fields, provided we also require polymer line-length conservation, via

the continuity equation

∂τρ(x, τ) + ∂x (ρ(x, τ)v(x, τ)) = 0. (4.31)

Now, around a topological constraint the polymer density and slope fields

are dominated by configurations that minimize the free energy subject to

the constraints. This minimization leads to the following nonlinear partial

differential equation, obeyed by ρ(x, τ) and v(x, τ), which supplements the

continuity equation:

∂τv + v∂xv =
π2

β2A2
ρ∂xρ. (4.32)

These equations may be combined into a single Hopf equation for the single

complex field w(x, τ):
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∂τw − iw∂xw = 0, (4.33)

w(x, τ) ≡ π

βA
ρ(x, τ) + iv(x, τ) (4.34)

Solutions of the Hopf equation take the form

w(x, τ) = F (x+ i(τ − τp)w(x, τ)) , (4.35)

where F (·) is an analytic function determined by the boundary conditions.

Printed by Mathematica for Students

Figure 4.7: Variation of the equilibrium directed-polymer density over the
(x, τ) plane in the vicinity of a pin constraint. The physical polymer
density is the plotted quantity scaled by Nπ/w. Note that the gap (i.e., the
region in which the present approximation scheme gives zero for the
polymer density) is roughly triangular in shape, as shown by the unshaded
area of the inset. The divergence in the polymer density occurs only at
precisely the location of the pin, depicted by a black dot in the inset. From
Rocklin et al. [2].

We have already obtained the dominant density profile ρ(x, τp). This pro-

file serves as a boundary condition on the Hopf equation for the τ > τp

region of the plane (or for the τ < τp region). By symmetry, it is clear that

ρ(x, τp+τ ′) = ρ(x, τp−τ ′) and v(x, τp+τ ′) = −v(x, τp−τ ′). In particular, we

have that v(x, τp) = 0, serving as our second boundary condition at τ = τp.

Provided that the pin is far from the boundaries of the system, the boundary
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conditions there are simply that the polymer density field is uniform and

the slope field vanishes. Thus, the analytic function F (·) is fully determined,

and w(x, τ) may be obtained throughout the plane, at least numerically. The

polymer density resulting from a pin at x = −0.06w with the partitioning

NL = .74N is shown in Fig. 4.7. We note that the divergence in the polymer

density at the pin immediately subsides but the gap persists over a finite

range in the longitudinal direction. At large longitudinal distances, however,

the polymer density profile returns to the uniform distribution of the pin-less

system.

As the free energy expression Eq. (4.30) is obtained by ignoring contribu-

tions associated with certain higher-gradient terms, the density profile thus

obtained is expected to be quantitatively incorrect in the vicinity of any

pins, because there the polymer density diverges and one expects the short-

distance details of the inter-polymer interaction to control such divergences.

Indeed, for a broad class of systems, nonlinearities can lead to shock-wave

behavior even for initially fairly smooth density profiles [26], and even more

readily for the divergent behavior around a pin.

4.7.2 Connection to quantum hydrodynamics

In the previous subsection we have used a hydrostatic description of the poly-

mer system to describe the polymer density away from the line τ = τp. One

may also address polymer density for τ 6= τp in the quantum particle sys-

tem language. This corresponds to determining the imaginary-time evolution

of the quantum system away from the time τ = τp in a manner consistent

with the initial density profile ρ̄(x) at τ = τp. As this profile differs sub-

stantially from the equilibrium density profile for the pin-less case (i.e., a

uniform density profile) the equivalent quantum system can be regarded as

having undergone a large quantum fluctuation.

Systems of nonlinear equations analogous to hydrodynamical equations

have been used to describe the evolution of one-dimensional systems of in-

teracting particles around large fluctuations [27]. In terms of the particle

54



density and velocity fields, ρ(x, t) and v(x, t), these equations read

∂tρ+ ∂x (ρv) = 0, (4.36a)

∂tv + v∂xv = m−1∂x ∂ρ (ρE(ρ)) , (4.36b)

where E(ρ) is the ground-state energy per particle, expressed as a function of

the density ρ. In the quantum case, these equations come from minimizing

the instantonic action whose dominant terms are the local internal energy

density (ρE(ρ)) and the kinetic energy (v2ρ/2) associated with the large

average local velocity. For the polymers, the competing physical quantities

are the internal energy density and the local energy cost of large average

polymer slopes.

For a system of free fermions E(ρ) = (~2π2/6m)ρ2. In this case, the quan-

tum hydrodynamical equations are identical to the classical hydrostatic ones

for noncrossing polymers, Eqs. (4.31), (4.32), provided we make the familiar

parameter identifications of Eq. (2.5). Indeed, we were led to the direct, clas-

sical hydrostatic approach after doing the mapping to the quantum particle

system and following the quantum hydrodynamical approach to such systems

developed by Abanov and co-workers; see, e.g., Refs [27, 26].

The analogy to quantum hydrodynamics also illustrates how the response

to a topological obstruction depends on the length of the polymer system. A

qualitative analysis of large quantum fluctuations indicates that the proba-

bility P (R) of a large fluctuation over a length scale R has the form P (R) ∼
exp(−αR2); see Ref. [27]. This corresponds to our finding in this work that

when the pin displacement is small (compared to the overall system size)

and all polymers lie on one side of the pin the free-energy cost is quadratic

in the displacement. However, when the finite temperature of such a quan-

tum system is taken into account, the probability of a fluctuation becomes

P (R) ∼ exp(−γR). The analog of a finite temperature in the quantum sys-

tem is a finite length in the polymer system. For a system in which the pin

coordinate τp is located near enough to another system feature, such as an-

other pin or an end of the system, the ground-state dominance approximation

fails, and one instead finds that the free-energy cost of the pin would increase

linearly with the displacement of the pin from its equilibrium position. Thus,

a longitudinally short system, or one having longitudinally distributed pins,

can display a super-Hookean response when a pin is displaced a small amount
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from its equilibrium position.

We remark that although the polymer system we have been exploring is

formally equivalent to its quantum analog, the polymer system is more readily

controllable. Large quantum fluctuations are, due to their rarity, difficult to

observe. In contrast, the probability of occurrence of the equivalent large

thermal fluctuations of the polymer system can be measured indirectly, via

the entropic force on a pin, which has the useful effect of forcing the system

to assume what would otherwise be rare configurations.
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CHAPTER 5

CROSSING POLYMERS
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In previous chapters, we enforced the noncrossing condition xi(τ) 6= xj(τ)

for all i 6= j by including an infinite repulsive contact potential. We now

wish to relax the noncrossing condition and allow for a nonzero density of

polymer crossings. Let us then consider a system with a finite contact repul-

sion between polymers, so that two polymer lines may cross, albeit with an

energetic penalty:

U [{xn(·)}] =
A

2

N∑
n=1

∫ L

0

dτ
(
∂τxn(τ)

)2

+2c
∑

1≤n<n′≤N

∫ L

0

dτ δ
(
xn(τ)− xn′(τ)

)
, (5.1)

where δ(·) is the one-dimensional Dirac delta function and 2c, which has

units of energy, is a positive parameter that describes the effective contact

repulsion between polymers.

5.1 Origin of contact repulsion

Some of the physical systems we consider, such as step edges on a crys-

talline surface, are truly two dimensional. Polymers, in contrast, exist in

three dimensions and can, in principle, cross over each other. Let us then

parametrize our polymer configurations by paths through three dimensional

space r(τ) ≡ (x(τ), y(τ)). As before, x(τ) ∈ (−w/2, w/2) but now polymers

are permitted to move in a narrow band such that y(τ) ∈ (−ε/2, ε/2), with

ε� w. Suppose further that polymers have an effective diameter d such that

the ensemble permits only configurations that for all n, n′ and at all τ obey

|rn(τ)− rn′(τ)|2 ≥ d2. (5.2)

We wish to integrate out the polymer degrees of freedom associated with

the small third dimension and thereby restore our effectively two-dimensional

picture of polymer configurations. In particular, let us integrate out two

polymer coordinates yn and yn′ at some particular value of τ . If |xn − xn′| ≥ d

each of the two polymer coordinates may occupy any point on (−ε2, ε/2)

58



t

(a)

x

y

(b) w(c)(b) ( )

ε d

t y

x x

Figure 5.1: (a) A configuration of two directed lines of finite thickness d
less than the thickness ε of the system in the y-direction. The polymers
interact via an excluded-volume effect. (b) The projection of the
configuration shown in (a) onto the x− τ plane. Because the width of the
system in the x-direction is much greater than its thickness in the
y-direction, we may neglect the additional tension energy associated with
deflections in the y-direction. (c) Cross-sections of the configuration in the
plane transverse to the preferred direction of the polymers. Because of the
excluded volume effect, there are fewer ways to vary the y-coordinates of
the polymer segments in the configuration in the bottom panel than in the
configuration in the top panel. This leads to a finite effective entropic
repulsion between polymer configurations in the x− τ plane. Prepared for
Rocklin et al. [28].

(ignoring edge effects at y = ±ε/2). In contrast, if xn = xn′ , then any value

of yn restricts yn′ to a thickness ε− d in the y-direction (see Fig. 5.1). Thus,

upon integrating out the third dimension we ought to reduce the weight of a

polymer configuration {xn(·)} by a factor of

ε(ε− d)

ε2
(5.3)

whenever one polymer crosses over another. We may take the number of

polymer crossings to be proportional to

∑
n<n′

∫ L

0

dτ δ
(
xn(τ)− xn′(τ)

)
, (5.4)

provided that we assume some cutoff length scale such that ẋ(τ) remains

finite at a crossing. Then, we obtain an effective contact repulsion from this

entropic effect, yielding the energy functional in Eq. (5.1) with parameter
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2c = −T ln(1− d/ε), (5.5)

with T the temperature in units of energy. Note that in the limit that polymer

width d approaches the thickness ε of the system in the third dimension, the

condition that no polymer crossings occur is recovered.

In addition to the geometrical effects discussed here, we note that the con-

figurations of polymers discussed here are also subject to topological effects

associated with how they wind around one another. In Chapter 8, the effects

of polymer topology will be considered.

5.2 Quantum picture

The analog of the polymer system with a contact repulsion as in Eq. (5.1) is

a one-dimensional gas of bosons interacting via a contact potential. Such a

system is governed by the Lieb-Liniger Hamiltonian:

Ĥ = − ~2

2m

∑
n

∂2

∂x2
n

+ 2c
∑
n<n′

δ (xn − xn′) . (5.6)

This is an integrable system, with each eigenstate of the Hamiltonian char-

acterized by a set of N quasimomenta {ki} [18].

Because the bosons are free particles when they do not coincide, an eigen-

state of the Hamiltonian has the Bethe Ansatz form (for periodic boundary

conditions) when x1 < x2 < . . . < xn:

ψ({xn}) =
∑
P

eiθP exp

(
i
∑
n

kPn xn

)
, (5.7)

where the {kn} are sets of quasimomenta associated with each eigenstate of

the Hamiltonian. The P index the N ! permutations on the quasimomenta,

and eiθP is a phase factor associated with permutation P .

As Lieb and Liniger show by integrating the Schrödinger equation from

xn = xn+1 − δ to xn = xn+1 + δ with δ → 0, the phase factor θn associated

60



with exchanging kn and kn+1 is

eiθn =
i (kn+1 − kn)− c
i (kn+1 − kn) + c

. (5.8)

This gives us N equations in N unknowns, which have solutions for certain

sets of {kn}, corresponding to the eigenstates of the Hamiltonian. Notice

that for c = 0 the quasimomenta are merely the momenta of a system of free

bosons. For c → ∞ the hardcore bosons function as free fermions and the

phase factors ensure that the wave function vanishes when any two particle

coordinates coincide. For a finite repulsion strength c, the quasimomenta as-

sociated with the ground state of the system may be obtained via an integral

equation (or a set of equations, for a finite number of particles). They lie

in some band kn ∈ (−K,K), where K is less than the Fermi momentum of

the corresponding system of free fermions. However, there is still an abrupt

drop in the density of quasimomenta at K, just as there is at a true Fermi

surface, so that the the logarithmic divergence in the x-ray form factor found

for a system of strictly noncrossing (i.e., c = ∞) polymers by de Gennes at

wave vector k = 2πN/w [18] will instead occur at some lesser value that is

dependent on the interaction strength.

5.3 Effect of crossings on polymer statistics

Having thus formulated the partition function of our polymer system we

may determine the thermodynamic properties of the long polymer system

(long so that the ground-state approximation is appropriate) in much the

same way that Lieb and Liniger calculated various quantum observables of

the Bose gas [18]. It is important to recall that when extracting polymer

observables that depend on the polymer slopes, one must take into account

the short-distance component of the partition function,

Z` =

(
2π`

Aβ

)NL/2`
, (5.9)

as well as the behavior encoded in the ground state of the Lieb-Liniger model.
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As discussed in Chapter 2, the free energy per unit are of the long poly-

mer system may be obtained from the ground-state energy of the quantum

system, resulting in

F
wL

=
1

wL

(
− 1

β

)
lnZ =

1

2β

N

w`
ln

(
Aβ

2π`

)
+

1

2

(
N

w

)3
1

β2A
e(γ) (5.10)

where e(·) is the dimensionless energy function that Lieb and Liniger de-

rive via the Bethe Ansatz technique. In terms of polymer parameters, the

dimensionless interaction parameter, γ is

γ = 2c
(w
N

)
β2A (5.11a)

= −
(w
N

)
Aβ ln (1− d/ε) . (5.11b)

γ ≈
(w
N

)
Aβ

(
d

ε

)
(5.11c)

In the limit γ → ∞, one has e(γ) → π2/3, recovering the result of strictly

noncrossing polymers. Note however that this is not the high-density limit.

Although the free energy per unit area increases with increasing polymer den-

sity, increasing polymer density decreases γ, indicating that the free energy

of the high-density system depends more on the polymer deflections than

on the polymer crossings. Given the entropic origin of our contact repulsion

from Eq. (5.5), we also have that γ is inversely proportional to temperature.

At low temperatures, the polymers are restricted to configurations with few

crossings, whereas for high temperatures they cross more freely, although

still less often than would truly noninteracting polymers.

One may in a similar way obtain the areal density of polymer crossings,

1

wL

〈∑
n<n′

∫
dτδ (xn − xn′)

〉
= − 1

2β

1

wL

∂

∂c
lnZ =

1

2

(
N

w

)2

e′(γ). (5.12)

As shown in Fig. 5.2, this quantity diverges as the interaction strength c is

reduced to zero. This is true only when does not take the short-distance

polymer cutoff length ` into account, so that polymers can wander back
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and forth across one another an arbitrary number of times within a short

distance. Taking the finite slope set by ` into account implies a residual

density of polymer crossings in the noninteracting limit

∼
(
N

w

)2
1√
Aβ`

. (5.13)

We saw in Chapter 2 that the noncrossing condition reduced the aver-

age slope of polymers below what it would be for noninteracting polymers

by eliminating from the ensemble certain configurations that tended to have

steep polymer slopes. Now, with a finite contact repulsion, those same config-

urations have more polymer crossings and therefore suffer a greater energetic

penalty, again reducing the average polymer slope:

〈ẋ2(τ)〉 = − 2

β

1

NL
∂A lnZ =

1

Aβ`
− 1

β2A2

(
N

w

)2

(e(γ)− γe′(γ)) . (5.14)

One may also obtain the energy density, which includes both the deflection

energy and the crossing energy:

1

wL

〈
U [{xnτ}]

〉
= (5.15)

1

wL
(−∂β lnZ) =

1

2β

N

w`
+

1

2

(
N

w

)3
1

β2A

(
2γe′(γ)− e(γ)

)
.

Note that the second term, coming from the increase in interaction energy,

includes a portion that comes from the temperature-dependence of the effec-

tive interaction strength as in Eq. (5.11a).

One may also obtain the pressure on the walls containing the polymers at

x = ±w/2 and y = ±ε/2. In the x-direction, the pressure Px is given by

Px =
1

εL

1

β
∂w lnZ =

(
N

w

)3
1

β2Aε
e(γ). (5.16)

In the y-direction, on the other hand, the effect of interactions is to generate

a Py given by
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Figure 5.2: Basic (scaled) characteristic quantities of the polymer system
are plotted as a function of the dimensionless parameter γ that describes
the strength of polymer-polymer interactions. Both the free-energy density
(blue line) and the reduction in the squared polymer slope 〈ẋ2(τ)〉 (red
line) monotonically approach their noncrossing values for strictly
noncrossing polymers as γ is increased. The yellow line, depicting the areal
density of polymer crossings, diverges for small γ and approaches its own
noncrossing value (i.e., zero) for large γ. Prepared for Rocklin et al. [28].

Py =
1

wL

1

β
∂ε lnZ =

1

β
N
L

`
+

1

2β

(
N

w

)2

e′(γ)
d

ε(ε− d)
. (5.17)

The second term on the right-hand side is simply the expected number of

polymer crossings from Eq. (5.12) multiplied by the entropic cost of ensur-

ing that the polymers pass around rather than through each other at each

crossing separately. In addition to this term, there is the pressure that would

persist even in the limit d → 0 from the confinement of each polymer seg-

ment separately to a thickness ε. This term is simply that associated with

confining each of NL/` polymer segments separately to a thickness ε.

The free-energy cost density associated with the interaction is shown in

Fig. 5.2. For a sufficiently long system, any interpolymer interaction, no mat-

ter how weak or short-range, suffices to generate a free energy that strongly

modifies the behavior of the system as compared to a system of free poly-

mers. As we have already seen for strictly noncrossing polymers, polymers

with generic interactions have profoundly different physics in reduced dimen-

sions than do free polymers.
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5.3.1 Thick polymers

Previously, we considered polymers of nonzero diameter that were narrow

enough to cross over one another, (i.e., d < ε). Alternatively, one could

return to the case of polymers whose effective thickness is too great to allow

crossings, d ≈ ε, while still taking into account the finite thickness of the

polymers. In this case, the noncrossing condition becomes the more stringent

−w/2 < x1 − (d/2) < · · · < xj − d(j − (1/2)) < · · · < w/2−Nd (5.18)

That is, not only do the polymer paths not cross, they never come within

one polymer diameter of one another, or within one half-diameter of a wall.

This problem is readily solved by mapping the problem onto one of strictly

noncrossing but zero-diameter polymers via x′j = xj − d(j − 1/2). Then, the

finite-diameter polymer system is equivalent to a zero diameter one with a

system width narrower by Nd. This leads to the free-energy density

F
wL

=
π2

6

N3

w (w −Nd)2

1

β2A
. (5.19)
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CHAPTER 6

POLYMERS WITH LONG-RANGE
INTERACTIONS
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In Chapter 3 we constructed a formalism that applied to polymer systems

whose quantum ground states were of a modified product form which included

both one-body and two-body terms. This class of systems does not include

the crossing polymers of Chapter 5, and we have as yet applied the analysis

only to systems of noncrossing polymers without any other interactions. We

now wish to extend this class as much as possible. To this end, let us consider

the Schrödinger equation for the ground state of a translationally invariant

quantum system

Hψ({xn}) =[
−

N∑
n=1

~2

2m

∂2

∂xn
2 +

∑
1≤n<n′≤N

V (xn − xn′)

]
ψ({xn}) = Eψ({xn}), (6.1)

where in this chapter we shall take V (·), the general interpolymer interaction,

to be parity invariant, V (x) = V (−x), and to forbid polymer crossings, i.e.,

V (0) = ∞. Following Sutherland [22], we may ask which such interactions

produce a groundstate wave function of the product form, which, as we saw

in Chapter 3, corresponds to a one-dimensional classical system with a long-

range two-body interaction.

By Bose symmetry, if such a wave function Ψ({xn}) is known within the

sector x1 < x2 < · · · < xN it is known everywhere. Within such a sector,

since Ψ({xn}) > 0 (a condition we found in Chapter 2 to hold generally

providing that the interaction energy does not diverge within a sector) one

may divide by it to obtain

1

2Ψ({xn})

N∑
n=1

∂2

∂xn
2 Ψ({xn}) =

m

~2

[ ∑
1≤n<n′≤N

V (xn − xn′)− E

]
. (6.2)

Now, let us assume that the groundstate wave function has the product

form

Ψ({xn}) =
∏
n<n′

ψ(xn − xn′). (6.3)
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In general, inserting such a form into the left-hand side of Eq. (6.2) will

result in N terms which each separately depend on three particle coordinates,

whereas each term on the right-hand side of the same depends only on two.

Thus, one must have (regardless of the particular form of the interaction

V (·)) that for some function B(·) the terms involving, say, xn, xn′ , xn′′ in the

left-hand side are expressible as

B(xn − xn′) +B(xn′ − xn′′) +B(xn′′ − xn). (6.4)

One can show [22] that this requirement leads to a differential equation for

ψ(·) whose most general solution is the wave function

ψ(xn − xn′) = ϑλ1 (π(xn − xn′)/w|q) , (6.5)

where ϑλ1 (x|q) is the λth power of the Jacobi theta function with parame-

ter q, and w is the width of the system (which we take to obey periodic

boundary conditions). This then is the generic form that permits analysis of

noncrossing polymer lines subject to a long-ranged interaction. Thus, this

form (squared) is the most general form of the interaction g(·, ·) term in

the charged fluid model described in Chapter 3, at least for translationally-

invariant systems. For polymer systems whose quantum analogs do not have

groundstate wave functions of the product form one must include effective

three-body or more interactions in the charged fluid model.

6.1 Long-range interactions

Having identified the general form of product-form wave functions, we now

specialize to q → 0, for which the interaction becomes (first ignoring bound-

ary conditions)

V0(xn − xn′) =
1

2Aβ2

λ(λ− 1)

(xn − xn′)2
. (6.6)

Here, the parameter λ > 0 gives the strength of the interaction, either attrac-
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tive or repulsive. For the attractive case (i.e., λ < 1) we nevertheless retain

the noncrossing condition by assuming some additional short-range repul-

sion. Electrical dipole moments present on the lines lead to an interaction

of this form, as has been noted in the context of crystalline step edges [29].

In addition to this, for the crystalline step edges the elasticity of the crystal

also gives rise to an effective repulsive interaction between step edges of this

form [30].

For periodic boundary conditions with period w, one must include addi-

tional potential terms with images of xn at xn ± w, xn ± 2w, etc. Using the

mathematical identity (see, e.g., [31])

n=∞∑
n=−∞

1

(n+ a)2 =
π2

sin2 (πa)
, (6.7)

this leads to a potential

V0(xn − xn′) =
1

2Aβ2

( π
w

)2 λ(λ− 1)

sin2(xn − xn′)
. (6.8)

The corresponding quantum system is described by the Calogero-Sutherland

model [32, 33]. This model is exactly-solvable. In particular, the (unnormal-

ized) ground-state wave function is then

Ψ({xn}) =
∏
n<n′

|sin [π(xn − xn′)/w]|λ . (6.9)

In the presence of hard walls at x = 0 and x = w, the interaction must

be modified via images to include additional image charges at −xn ± w,

−xn ± 2w, . . ., yielding

V (xi − xj) =
1

2Aβ2

( π
w

)2

×

(
λ(λ− 1)

sin [π(xi − xj)/w]2
+

λ(λ− 1)

sin [π(xi + xj)/w]2

)
. (6.10)

For a system with hard-wall boundary conditions, the groundstate wave
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function is [34]

ψgs({xn}) =

( N∏
n=1

∣∣ cos
πxn
w

∣∣λ)( ∏
1≤n<n′≤N

∣∣ sin πxn
w
− sin

πxn′

w

∣∣λ). (6.11)

Remarkably, for this choice of interpolymer interaction, the quantum wave

function is precisely the λth power of the free fermion one given in Eq. (2.24),

which applies to noncrossing polymers without a long-range interaction. This

means that the free-energy cost per unit area of the interaction is

F
wL

=
π2

6

(
N

w

)3
1

β2A
λ2. (6.12)

There is an additional free-energy cost associated with the normalization of

the wave function, but one may show that it is O(N lnN), and so does not

dominate for large numbers of polymers. This model includes both repulsive

(λ > 1) and attractive (0 < λ < 1) polymer interactions. In the case of at-

tractive interactions, we must assume some additional short-range repulsion

that still prevents the polymers from crossing over one another. Repulsive

(attractive) polymers are less (more) likely to be found near one another than

polymers with only a short-range repulsion, and have a higher (lower) free

energy.

Having determined the free-energy density (or, alternatively, the partition

function) in terms of the interaction parameter λ, all of the polymer observ-

ables found in the previous chapter for crossing polymers may likewise be

readily obtained for the polymers with long-range interactions. The energy

density, which now includes deflection energy and the long-range interaction

V (·) is

1

wL

〈
U [{xnτ}]

〉
=

1

wL
(−∂β lnZ) =

1

2β

N

w`
− π2

6

(
N

w

)3
1

β2A
λ2. (6.13)

Note that regardless of the value of λ the interaction reduces the energy (but

not the free energy) of the polymer system. Repulsive interactions reduce the

deflection energy more than they increase the interaction energy. Indeed, the
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reduction in deflection energy is O(N3), while the interaction energy, positive

or negative, is only O(N2). That reduction in deflection energy comes from

the reduction in average squared polymer slope

〈ẋ2(τ)〉 = − 2

β

1

NL
∂AZ =

1

Aβ`
− π2

3

1

β2A2

(
N

w

)2

λ2. (6.14)

As interpolymer interactions become very attractive (λ → 0), the effect of

the noncrossing condition becomes negligible. In the other limit, of strong

repulsive interactions, the polymers become increasingly more resistant to

deflection.

6.2 Polymer correlations

As discussed in Chapter 2, the density of polymers at a point (x, τ) corre-

sponds to the density of particles in the analogous quantum system at a cor-

responding point in space-time. Thus, one may describe the lateral density-

density correlations of the polymers in terms of the equal-time density-density

correlations of the quantum system. Making the groundstate approximation,

this yields

〈ρ(x)ρ(0)〉 =

∫
dx3 dx4 . . . dxN |Ψ(0, x, x3, x4, . . . , xN)|2 , (6.15)

where we now consider a translationally-invariant system so that the corre-

lation depends only on the relative coordinate x. For certain values of λ, this

correlation may be obtained exactly, and the results are shown Fig. 6.1. The

techniques used to obtain such observables are discussed in Appendix B.

As one can see in Fig. 6.1, in all cases, the probability of two parti-

cles coinciding vanishes. The noncrossing condition, along with thermal

fluctuations, overwhelms even attractive interactions. For attractive inter-

actions, no oscillatory behavior appears. For long-range repulsion or for

no long-range interactions, oscillations in the density correlation appear at

x = ±w/N,±2w/N . . .. In the former case, at these points polymers are

actually more likely to be found than one would have for noninteracting (i.e.,
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Figure 6.1: The density correlations 〈ρ(x)ρ(0)〉 (in units of the squared
average density (N/w)2) are plotted as a function of the lateral separation
(in units of the average polymer spacing w/N) for various values of the
interaction parameter λ. For λ = 1/2 (attractive long-range interactions)
there is no oscillatory behavior. For λ = 1 and λ = 2, corresponding to no
long-range interaction and to long-range repulsion respectively, there are
oscillations in the correlations, in the latter case leading to negative
correlations for x = ±w/n,±2w/n, . . . In all cases, the correlations decay as
∼ x−2.

freely crossing) polymers.

6.3 Large fluctuations of polymers with long-ranged

interactions

Because the particular form of interactions considered yields a ground-state

wave function so similar to that of noncrossing polymers, as found in Eq. (6.11),

the analysis of large fluctuations or strong constraints may be readily gen-

eralized to the class of systems now under consideration. Recall the one-

dimensional model introduced in Chapter 3, which describes the configura-

tion of polymer coordinates {xn} on some line τ = τp. In this model, the

effective interaction is given by

72



βU({xn}) = − ln |〈Ψ({xn})|2 . (6.16)

This means that for the class of interactions we consider, the effective in-

teraction of the one-dimensional model scales as λ but otherwise has the

same functional form. This applies equally when one considers the effect of a

constraint on the polymer system. The free-energy cost of such a constraint

scales as λ, and the polymer distribution on the dominant polymer distribu-

tion ρ̄(x) on the line τ = τp is independent of the interaction λ. The more

general effective interaction in Eq. (6.5) yields a distinct density profile ρ̄(x)

that can nevertheless be addressed via the charged fluid model discussed in

Chapter 3.

As one moves off the line τ = τp the behavior of the polymer system is no

longer governed solely by the ground-state properties of the quantum system,

but the behavior of the Calogero-Sutherland system around a large fluctua-

tion may be treated in a similar manner to a system of free fermions [35, 36].

Thus, the qualitative features of the polymer structure around a pin, includ-

ing the two-dimensional extent of the gap, should persist.
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CHAPTER 7

POLYMERS WITH GENERIC
INTERACTIONS TREATED VIA

BOSONIZATION
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7.1 Introduction to bosonization

Bosonization is a powerful technique in the study of one-dimensional quan-

tum many-body systems in which the microscopic degrees of freedom are

eliminated and the low-energy behavior of the system is characterized by

its dominant long-length scale density fluctuations. Because of the mapping

between polymer lines and quantum particles, bosonization can also be used

to analyze the behavior of systems of interacting directed polymers in two

dimensions.

The bosonization technique applies generally to quantum Hamiltonians of

the form

H =

∫
dx

~2

2m

(
∂xΨ

†(x)
)

(∂xΨ(x))

+

∫ ∫
dx dx′Ψ†(x)Ψ(x)V (x− x′)Ψ†(x′)Ψ(x′), (7.1)

where Ψ†(x) represents either a bosonic or fermionic particle creation oper-

ator. For a full description of bosonization, see, e.g., the book by Giamarchi

[12], whose notation we adopt. The original bosonic creation operator may

be expressed as

Ψ†B(x) =

[
N

w
− 1

π

∂φ

∂x

]1/2 ∞∑
p=−∞

e2ip(Nπx/w−φ(x))e−iθ(x), (7.2)

in terms of the emergent fields φ(x) and θ(x), which respectively correspond

to changes in the polymer density and slope (or, in the quantum case, to the

amplitude and phase of the one-particle creation operator). The emergent

fields obey the bosonic canonical relationship

[∂xφ(x), ∂x′θ(x
′)] = iπδ′(x− x′), (7.3)

where δ′(·) is the first derivative of the Dirac delta function. The polymer

density is
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ρ(x, τ) = [N/w − ∂xφ(x)/π]
∞∑

p=−∞

e2ip(Nπx/w−φ(x,τ)), (7.4)

where the p 6= 0 terms correspond to the short-distance polymer structure.

The benefit of this procedure is that for a wide variety of interactions

in Eq. (7.1), the Hamiltonian governing the low-energy excitations may be

expressed in terms of the emergent bosonic fields as

H =
1

2π

∫
dx

uK

~
(∂xθ(x))2 +

u

K~
(∂xφ(x))2 , (7.5)

where the two Tomonaga-Luttinger parameters, u and K, depend on the

microscopic model. The first, u, plays the role of a renormalized “Fermi

velocity,” which would relate the time and space dimensions of the quantum

system. In the polymer system, it is unitless and relates the lateral and

longitudinal coordinates. The second parameter, K, can be treated via a

rescaling of the fields (φ(x) → φ(x)/
√
K, θ(x) →

√
Kθ(x)) which maps the

system back onto the K = 1 case, which corresponds to the noncrossing

polymers considered in Chapters 2 and 3. In this way, systems with a wide

range of interactions, including those considered in Chapters 5 and 6, can be

mapped onto noncrossing but otherwise noninteracting polymers, the very

system considered in the early chapters. The cost to this rescaling of the

fields is that it destroys the relatively straightforward relationship between

θ(·) and φ(·) (which describe the emergent polymer fluid) and the microscopic

degrees of freedom (the original polymer lines) given in Eq. (7.2).

Although the bosonized Hamiltonian lacks the interpolymer length-scale

w/N explicitly, the definitions of the fields in Eq. (7.2) retain the short-

distance behavior. From this Hamiltonian, the bosonized action follows as

well:

S =
~

2πK

∫
dx dτ

[
1

u
(∂τφ)2 + u (∂xφ)2

]
, (7.6)

associated with which there is a polymer partition function
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Z =

∫
Dφ(x, τ) exp

(
− 1

2πK

∫
dx dτ

[
1

u
(∂τφ)2 + u (∂xφ)2

])
. (7.7)

This partition function characterizes the polymer system in terms of the

configurations of the field φ(x, τ), which is related to polymer density via

Eq. (7.4). The normalization condition that the system contain N polymers

then leads to periodic boundary conditions on φ(x, τ):

φ(w/2, τ)− φ(−w/2, τ) = 0. (7.8)

Alternatively, we could obtain an action solely in terms of the field θ(x, τ),

related to the polymer slope field. Because of the lack of polymer free ends

in the interior of the system, either polymer density or polymer slope fully

defines a given configuration of the system.

7.2 Polymer observables via bosonization

The characterization of the polymer system in terms of the harmonic fluid of

the bosonization approach allows one to obtain the polymer correlations in

the 2D plane. In particular, the density correlations of a large, clean polymer

system are

〈ρ(x+ x0, τ + τ0)ρ(x0, τ0)〉 =(
N

w

)2
[

1 +
K

2π2

(uτ)2 − x2

(x2 + (uτ)2)2 +
∞∑
m=1

Am
cos(2πmNx/w)

(x2 + (uτ)2)2m2K

]
. (7.9)

Note that although the partition function appears isotropic, the polymer

correlations are sharply anisotropic, owing to the preferred direction of the

polymer lines. In particular, the first nonconstant term in Eq. (7.9) indicates

positive (negative) density correlations over longitudinal (lateral) displace-

ments. This correctly indicates that if polymers occupy a point (x0, τ0) they

are also likely to occupy a nearby point (x0, τ0 + δτ) in the preferred direc-

tion, but that there are likely to be fewer polymers at the laterally displaced

nearby point (x0 + δx, τ0) because no polymer line can be at that point and
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at (x0, τ0). The other terms, with nonuniversal coefficients Am, describe

oscillatory changes in the density correlations over lengths of the average in-

terpolymer spacing, w/N ; they are analogous to Friedel oscillations. When

K < 1, as it is for polymers with long-range repulsion, this oscillatory be-

havior is the dominant correlation over long length-scales. For K > 1, as is

the case for polymers with a finite contact repulsion or for noncrossing poly-

mers with a long-range attraction, the non-oscillatory component dominates

instead.

These long-range correlations are characteristic of the clean polymer sys-

tem. One can also consider the object of including columnar or point-like

impurities into the polymer system. This leads to a rich variety of phases

in superconducting vortex arrays in two or three dimensions [3, 4, 5, 6]. A

single column at, say, x = 0 corresponds to a point impurity in the Luttinger

liquid at x = 0.

This is the situation considered by Kane and Fisher in the transport of

interacting electrons in one dimension across an impurity [37, 38]. They

found that when the Luttinger parameter K was greater than one, trans-

mission did not occur at zero temperature, but that for K < 1 electrons

freely cross he impurity. In the polymer context, this result indicates that

for long polymers which cross over one another, columnar impurities could

be freely crossed, but that for noncrossing polymers the column would be

impenetrable. This result shows that the response of the polymers to the

column is entirely determined by interpolymer interactions rather than by

single-polymer effects. This circle of ideas has been applied to vortex lines

subject to a pinning column and point disorder [17], where it was found that

even when the pinning was irrelevant, in the renormalization-group sense,

large numbers of lines could become pinned, with Friedel-type oscillations in

the polymer density around the column.

One may also bosonize a line fluid containing a dynamical linelike impurity.

For example, one may have a polymer system with a single impurity polymer.

If the impurity polymer is much stiffer than the polymers making up the

polymer fluid, this corresponds to a heavy impurity in a Luttinger liquid,

as considered by Castro Neto and Fisher [39]. Applying their analysis to

a polymer system, one finds that the long polymers (corresponding to a

low-temperature quantum system), the effective parameter Ai describing the

stiffness of the impurity line against transverse fluctuations is increased by a
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quantity

1

tβ2

(
N

w

)2

, (7.10)

where t describes the small transmissibility of polymers across the impurity

line. As before, we see that the effect of the polymer fluid on an impurity (in

this case a long impurity line rather than a pin or small barrier) is of order

N2, reflecting the significance of interactions over single-polymer effects.

7.3 Large fluctuations of the bosonized fluid

We now return to the type of issues discussed in Chapters 3 and 4 and ask:

What is the effect of the pin on the bosonized polymer fluid? More generally,

we address the task of determining the probability of a given polymer density

profile ρ̄(x, τp). Let us impose some configuration φ̄(x) of the field φ(x, τ) on

the line τ = τp and in addition require that φ(x, τ) vanish (corresponding to

uniform polymer density) far from this line.

Bosonization is most easily addressed in the infinite 2D plane, and so rather

than considering a system of width w we extend the lateral coordinate x to

any real number, with the requirement that φ(x + w) = φ(x) to enforce

normalization of the number of polymers on |x| < w/2.

As in the wave-function formalism, we search for the dominant polymer

configuration that minimizes the free energy subject to the constraint. Now,

rather than searching for the wave function ψ({xn}) that is the ground state

of a Hamiltonian, we require a configuration of the field to minimize the

bosonized action in Eq. (7.6), i.e., to obey

(
1

u2
∂2
τ + ∂2

x

)
φ(x, τ) = 0 (7.11)

for τ 6= τp. The configuration that satisfies this condition and the boundary

condition is
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φ(x, τ) =
u (τ − τp)

π

∫
dr

φ̄(r)

(x− r)2 + u2 (τ − τp)2 . (7.12)

One may obtain from Eq. (7.7) the free energy associated with this con-

figuration. After performing certain straightforward contour integrals , one

obtains the effective free energy associated with a boundary field φ̄(·):

Fp =
1

π2βK

∫ ∞
−∞

∫ ∞
−∞

dr dr′
φ̄(r)φ̄(r′)

(r − r′)2 . (7.13)

This result applies generally to an infinite system. Now we wish to consider

our system of finite width w by considering a configuration φ̄(r) that is

periodic in w, allowing us to relate these infinite integrals to integrals over

the finite system of width w. Using the mathematical identity of Eq. (6.7)

one finds a potential

Fp =
1

w2βK

∫ w/2

−w/2

∫ w/2

−w/2
dr dr′

φ̄(r)φ̄(r′)

sin2 [π (r − r′) /w]
. (7.14)

In the continuum limit, in which one considers only length-scales greater

than the interpolymer length, one may use N/w − ∂xφ(x)/π ∼ ρ(x) and

integration by parts to obtain the free energy cost of the large fluctuation in

terms of the polymer density on the line τ = τp:

F =
1

βK

∫ w/2

−w/2

∫ w/2

−w/2
dr dr′ρ(r)ρ(r′) ln sin [π (r − r′) /w] . (7.15)

Strikingly, this is the exact expression for the equivalent quantity for the

noncrossing polymers, scaled by 1/K, that was derived from the free-Fermion

wave function in Chapter 4 for systems of noncrossing polymers. This indi-

cates that a wide variety of polymer systems (and other systems of linelike

objects), including those with polymer crossings and with long-range inter-

actions, respond to strong constraints in the same way. In particular, the

density profile around a pin will lead to the same density profile ρ̄(x) already

obtained.
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7.4 Bosonization as linearized hydrodynamics

In this section, we return to the hydrostatic approach used in Chapter 4

to describe the evolution of the polymer density profile in the longitudinal

direction. As we will see, bosonization corresponds to the linearized version

of this theory. Recall that, as in Eq. (4.30), the free energy density of a

region of the polymer system may be expressed in terms of local coarse-

grained polymer density and slope fields in a region of width w′ and length

L′ as

F
w′L′

= Aρ
v2

2
+ ρE(ρ). (7.16)

One may expand this around the equilibrium density as ρ(x, τ) = ρ0 +

δρ(x, τ). The lowest-order nonconstant contributions to the free energy have

the form (following some renormalization of the constant coefficients)

βF =
1

2π

∫ ∫
dx dτ

1

uK
ρ2

0v(x, τ)2 +
u

K
(δρ(x, τ))2 . (7.17)

The continuity condition becomes

∂τδρ(x, τ) + ρ0∂xv(x, τ) = 0, (7.18)

which may be satisfied automatically, provided that we associate the density

and slope with a field φ(x, τ) via

(
δρ(x, τ)

ρ0 v(x, τ)

)
=

(
∂xφ(x, τ)

−∂τφ(x, τ)

)
. (7.19)

Having made this association, we recover the form of the bosonized free en-

ergy from Eq. (7.7). Thus, we see that the bosonization is valid only when

the polymer density fluctuations δρ(x, τ) are small. Indeed, the quantum

techniques used to bosonize the Hamiltonian rely on a linear dispersion,

which is only valid in the limit of low-energy excitations of a generic system.

Thus, strong constraints such as the pin do not strictly permit bosonization.

81



Bosonization predicts, e.g., the correct profile on the line τ = τp. But it

incorrectly predicts that polymer density grows linearly as one moves longi-

tudinally away from the pin. In fact, we know from the exact techniques of

Chapters 3 and 4 based on the wave function that nonlinear terms lead to

a gap of finite area around the pin. We expect then that the gap structure

is qualitatively as found for noncrossing polymers, with the Luttinger liquid

parameter u describing dilation or contraction of the gap and other features

in the polymer density.

Finally, we note that there are regimes of constraints that are still strong

but that leave the polymer system close enough to equilibrium to justify the

use of bosonization. For example, bosonization may describe the polymer

evolution around the constraint requiring ρ(x, τp) = ρ0 + (δρ0)sgn(x), with

(δρ0) � ρ0. In such a situation, the linearized hydrodynamic equations

and/or bosonization suffice to describe the polymer structure around the

constraint.
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CHAPTER 8

POLYMERS IN 2 + 1 DIMENSIONS
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8.1 Introduction to bulk polymers

In previous chapters, we considered systems of noncrossing directed lines in

1 + 1 dimensions. In Chapter 5 we included a small third dimension so that

polymers could cross over one another. We now wish to consider a fully

2 + 1-dimensional system of nonintersecting polymers. The configuration of

a single polymer line is now given by rn(τ) ≡ (xn(τ), yn(τ)), where the x and

y directions are treated on an equal basis.

The energy of a given polymer configuration from Eq. (1.3) generalizes

readily to the (2 + 1)-dimensional case:

U [{rn(·)}] =
A

2

N∑
n=1

∫ L

0

dτ
(
∂τrn(τ)

)2
+

1

L

N∑
n=1

∫ L

0

dτ Φ
(
|rn(τ)|

)
+

1

L

∑
1≤n<n′≤N

∫ L

0

dτ V
(
|rn(τ)− rn′(τ)|

)
. (8.1)

The one-body potential Φ
(
|rn(τ)|

)
will be chosen to confine the polymers

in a finite area:

rn(τ)2 ≤ R2. (8.2)

This leads to an average density of polymers

ρ0 =
N

πR2
, (8.3)

where unlike in previous chapters ρ0 is an areal density.

The two-body interaction will serve to make the polymers nonintersecting,

the equivalent in 2 + 1 dimensions of the noncrossing condition in 1 + 1

dimensions:

(rn(τ)− rn′(τ))2 ≥ d2. (8.4)

Here, we will take the effective thickness d of the polymer line to be negligibly
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small compared to the average interpolymer spacing.

8.2 Polymer topology

Unlike noncrossing polymers in 1 + 1 dimensions, nonintersecting polymers

in 2 + 1 dimensions have topological properties that describe their entangle-

ment about one another. Consider now a single polymer whose configuration

r(τ) for simplicity we assume to obey periodic boundary conditions in the

longitudinal coordinate:

r(0) = r(L). (8.5)

Now, following Edwards [40] we may define the winding number W of a

configuration as

W [r(τ)] =
1

2π

∫ L

0

dτ
d

dτ
θ(r(τ)), (8.6)

where θ(r(τ)) is the angle of r(τ) relative to the positive x axis:

θ(r) = tan−1
(y
x

)
. (8.7)

The winding number is an integer which counts the net number of times the

polymer configuration circles around the line r = 0. It is topological in the

sense that continuous deformations of the polymer configuration (respecting

the condition that the polymer cannot cross r = 0) cannot change it. It may

be seen that this term is equivalent to the Aharanov-Bohm one governing a

charge following a path r(τ) around a fixed flux through the origin:

A(r) ∼ τ̂ × r

|r|2
, (8.8)

d

dτ
θ(r) = A(r) · ṙ(τ). (8.9)
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This suggests that when we attempt the quantum picture of polymers in

2 + 1 we may be able to account for their interactions via the insertion of

Aharanov-Bohm flux tubes into the polymer lines.

If we wish to require that this winding number have some particular value

W ∗, then it is necessary to insert a delta function into the measure over

polymer configurations:

Dr(·)→ Dr(·)δ (W [r(τ)]−W ∗) . (8.10)

More generally, one may define the winding number between two polymer

configurations rn(τ) and rn′(τ):

Wn,n′ ≡ W [rn(τ)− rn′(τ)] =
1

2π

∫ L

0

dτ
d

dτ
θ(rn(τ)− rn′(τ)). (8.11)

We treat our polymers as being restricted to some particular set of wind-

ing numbers {Wn,n′}. This could be enforced by holding fixed the polymer

endpoints at τ = 0 and τ = L. Even if the ends are not strictly fixed, it has

been shown that for systems of dense directed lines without free ends the

time required for lines to untangle themselves grows very quickly with the

length of the system [41], so that the lines will behave as though they were

topologically restricted over any reasonable experimental lifetime.

Even in the absence of a finite polymer thickness, restricting the polymer

system to a particular topological sector will lead to nonintersecting poly-

mers repelling one another. We saw for noncrossing polymers in 1D that it

was unlikely to find one polymer very close to another because a thermal

fluctuation could drive the polymers across one another, and the noncross-

ing condition forbids that. In contrast, polymers that were far apart could

fluctuate more freely, and so these were more likely configurations.

Now, nonintersecting polymers restricted to a given topological sector suf-

fer a similar penalty when brought close to one another. That is, a ther-

mal fluctuation could alter the winding number Wn,n′ between two nearby

polymers, which is forbidden by the topological restriction. Thus, thermal

fluctuations will drive the polymers apart.

The finite line thickness d has a similar effect. When polymers are close
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to one another thermal fluctuations may bring them within a distance d

of one another— a configuration forbidden by the interaction in Eq. (8.4).

Thus, thermal fluctuations drive polymers of finite thickness apart in 2 +

1 dimensions, even without any topological restriction. Thus we see that

either the restriction to a particular topological sector of {rn(·)} or the finite

thickness of the lines will, in the presence of thermal fluctuations, drive the

lines apart from each other. In contrast, infinitely thin nonintersecting lines

not under any topological restriction are effectively noninteracting in 2 + 1

dimensions, since unlike in 1 + 1 dimensions the fraction of configurations

{rn(·)} of polymers which include an intersection is negligible.

8.3 Quantum picture

As in previous chapters, we shall attempt to describe the the statistics of the

polymer system via the ground state of a quantum Hamiltonian:

H =
1

2m

∑
n

p2
n +

∑
n

Φ
(
|rn(τ)|

)
+
∑
n<n′

V
(
|rn(τ)− rn′(τ)|

)
. (8.12)

As discussed in Chapter 2, the natural ground state of this Hamiltonian, as

in the 1D case, is bosonic, real, and nonnegative. Also as in the 1D case,

we wish to incorporate the interpolymer repulsion by ensuring that the wave

function vanish when any two particle coordinates coincide:

ψ(r1, . . . , r, . . . , r, . . . rn) = 0. (8.13)

In the 1D case, this was accomplished by de Gennes by a trivial mapping

directly onto fermions [1]. Girardeau showed that in 1D a bosonic wave func-

tion could be mapped onto a fermionic wave function simply by including

a fermion-like phase factor −1 whenever any two particle coordinates were

exchanged. We could attempt the same thing for our 2D case, but while

this would indeed require that the wave function vanish when particle coor-

dinates coincide, it would mean that the transformed wave function was no

longer an eigenstate of the Hamiltonian of Eq. (8.12). Indeed, such a trans-
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formation requires us to be able to associate a phase factor of ±1 with any

ordering of the one-dimensional coordinates {xn}, one that changes abruptly

as any xn is brought across another xn′ . The two-dimensional particle co-

ordinates {rn} cannot be said to have any order, and so any phase factor

ought to vary gradually, since any rn can be brought around another rn′ .

Fortunately a transformation exists that achieves Fermi statistics through

gradually-changing phase factors exists [42], the well-known singular gauge

transformation of Chern-Simons theory. For any bosonic eigenstate of the

Hamiltonian in Eq. (8.12), one may define a fermionic one

Ψf ≡ exp

[
iφ
∑
n<n′

θ (rn − rn′)

]
Ψb, (8.14)

where the angle function θ(r) has the same definition as that used to describe

the winding of one polymer around another in Eq. (8.7) and φ is a real

parameter.

Now, let us examine the statistics of our new wave function. Suppose one

exchanges the particles at rn′ and rn by taking them along paths such that

rn′ is rotated by π radians about rn but that the two particles follow the

same path relative to the remaining N − 2 particles. This exchange will take

θn,n′ → θn,n′ +π, but will leave the sum of the other phase factor unchanged,

as well as the original bosonic wave function. Thus, particle exchange yields

Ψf → exp(iπφ)Ψf . (8.15)

Thus, Fermi statistics (and therefore the nonintersection of the polymer lines)

are ensured provided that we choose φ to be an odd integer. For simplicity,

we will focus on φ = 1.

Unlike in the 1D case, the transmutation of the wave function now leads

to a nontrivial change in the energy eigenproblem

H ′Ψf = EΨf . (8.16)

The energy values E are unchanged by the transmutation, but the Hamil-
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tonian is now

H ′ ≡ 1

2m

N∑
n=1

|pn − qAn(rn)|2, (8.17a)

An(r) ≡ φh

2πq

∑
n′(6=n)

∇′nθn,n′ =
φh

2πq

∑
n′(6=n)

τ̂ × (r− rn′)

|r− rn′|2
. (8.17b)

If, in Eq. (8.17a), An(rn) were to depend only on rn, and not on any

{rn′(6=n)}, the Hamiltonian H′ would describe independent particles in a

magnetic field B = ∇ × A. However, as shown in Eq. (8.17b), An does

depend on {rn′(6=n)}, which implies (nonlocal) interactions between all parti-

cles. Eq. (8.17b) states that {An} describes particles that have φ quanta

of fictitious magnetic flux attached (i.e., localized at the position of ev-

ery particle, each quantum carrying h/q flux, where q is a fictitious charge

and units are such that the speed of light is unity). Thus, H′ describes

composite fermions—composed of particles obeying Fermi statistics and flux

tubes [43, 44]. This transmutation of statistics is the Hamiltonian form of

Chern-Simons theory.

Nonintersecting (2+1) D Bose C itNonintersecting 
directed lines

(2+1) D Bose 
particles

Composite 
fermions

Filled lowest 
Landau level

y

t

2D one

x x
y

y 2D one‐
component 
plasma

Figure 8.1: (Sequence of transformations of a liquid of directed polymers
with a spatially extended constraint, shown as a ring (thick line), threaded
by a fixed number of polymers used to obtain the free energy and polymer
density of the constrained system. The directed polymer liquid is
transformed to a two-dimensional one-component plasma, whose the
Coulomb repulsion results from integrating out the long noncrossing chains.

This composite fermion theory has been used in many contexts, including
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discussion of the fractional quantum Hall effect [44, 43], anyon superconduc-

tivity [43] and reptation dynamics in polymer melts [45]. The topological

nature of Chern-Simons field theory has been used to study the winding [46],

writhe [47] and knot invariants [48] of entangled polymers. The Lagrangian

form of Chern-Simons theory involves coupling the Bose particles to a gauge

field and integrating out the gauge field to find an effective fermion the-

ory [42, 49] and naturally leads to the powerful second-quantized Landau-

Ginzburg-Chern-Simons (LGCS) theory in terms of a Lagrangian density

L [50, 49, 51].

Although the composite fermion formulation effectively incorporates the

hard-core restriction, it remains intractable, and thus we are led to take

advantage of a natural approximation (see, e.g., Refs. [43, 44]), which we

now describe. Instead of having an odd number of flux tubes attached to

each particle, we smear the magnetic field associated with one flux tube per

particle uniformly over the area of the system, and gauge-transform away the

remaining flux tubes. In this so-called Average Field Approximation (AFA),

the fermions are non-interacting and subject to a homogeneous magnetic field

∇×A = Bτ̂ , corresponding to one quantum of magnetic flux per particle.

[In the symmetric gauge, A = B
2

(y,−x, 0).] In the language of directed lines,

the magnetic field is equal to the number of lines per unit area ρ0 times a

quantum of flux (i.e., B = ρ0h/q). In this magnetic field, the many-body

ground-state has the energy E = NB~q/2m and the Slater determinant takes

the Vandermonde form [52],

Ψa
f (R) ∝ e−

∑N
n=1 |wn|2/4`2

∏
1≤n<n′≤N

(wn − wn′), (8.18)

where wn = xn + iyn. Strikingly, this wave function in fact closely resembles

the one obtained for noncrossing polymers in 1D. If one sets the {yn} iden-

tically to zero, one would obtain a wave function for 1D fermions (confined

to a harmonic potential rather than bound by hard walls). Within our ap-

proximations, the quantum ground state energy and wave function describe

the long noncrossing directed line liquid. In particular, for its free energy per

unit volume, we obtain the result
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F
πR2L

=
πρ2

0

Aβ2
. (8.19)

the many-body effect of the crowding of the polymers, an effect absent for

free directed lines.

8.4 Large fluctuations and constraints

Proceeding in analogy with the 1+1 dimensional case, we can use the ground-

state wave function to effectively integrate out the bulk of the polymer system

and describe the effective energy of a given polymer configuration {rn} in a

transverse plane τ = τp:

βU({rn}) ≈ − ln |Ψa
f |2 = −2

∑
n<n′

ln |rn − rn′|+ πρ0

N∑
n=1

|rn|2. (8.20)

Interpreted as a potential energy, U describes a two-dimensional one-component

plasma (2DOCP) [53, 54]. In the general case of the plasma, particles of (e.g.,

negative) charge −e live in a uniform background that maintains overall

charge neutrality, and they interact via two-dimensional Coulomb repulsion:

e2 ln(|rn−rn′|). This βU corresponds to a specific value, viz. 2, of the plasma

coupling constant βe2. As in the 1 + 1-dimensional case, integrating out the

bulk polymers gives rise to an effectively long-ranged repulsion between the

polymer segments, even though the original polymer interaction is local. This

term would, by itself, lead to polymers being driven apart by thermal fluc-

tuations until the polymer density dropped to zero. The second term in the

effective energy in Eq. (8.20) serves to counteract this tendency and confine

the N polymer segments to the area r2 ≤ R2.

This completes our reduction of the three-dimensional classical system of

a liquid of noncrossing directed lines to the classical Two-Dimensional One-

Component Plasma (2DOCP), which enables us to compute physical prop-

erties such as the free-energy cost and the equilibrium density profiles asso-

ciated with the imposition of spatially extended constraints. The long-range

planar interactions within the 2DOCP arise from the short-range interactions
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between the fluctuating directed lines, integrated over their length.

We now introduce the ring constraint into the system, as depicted in

Fig. 8.2. The ring is the boundary of the region

r2 < a2 (8.21)

in the plane τ = τp through which some fixed number of polymers pass.

The special case for which no polymers pass through the ring represents the

effect of inserting a solid object, a disk of radius a, into the polymer fluid. We

refer to a general such constraint (not necessarily circular) as encompassing

some simply-connected region D. This is the analog of the pin discussed in

Chapter 4, which fixed some number NL of polymer lines passing through

part of the system. As with the pin, the ring will in general either compress

or rarefy the polymers passing through D, with the opposite effect on the

remaining polymers.

To calculate the free energy and the equilibrium density of directed lines

in the presence of a ring constraint, we analyze the 2DOCP first at the

level of classical electrostatics, and then allow for fluctuations. To minimize

the electrostatic energy, any excess mobile charge is forced up against the

boundary of D. Moreover, on the other side of the boundary, a region fully

depleted of mobile charge (i.e., a gap) opens up, out to a radius within which

the net charge is zero. This electrostatic argument fails for the 1D case used

to consider a pin because the particles are confined to the one-dimensional

line y = 0 which does not have a true interior. For a simply-connected

region of arbitrary boundary D in two dimensions, the charge distribution

may be found by conformally mapping the problem onto one with a circular

boundary.

Similarly, at the level of electrostatic energy minimization one can readily

determine the energy of the charge distribution and, hence, the free energy

cost of the ring constraint ∆F(Q,Q0), in terms of the mobile charge−Q (that

is, the number of polymers passing through the ring) and the background

charge in D, Q0 (≡ πa2ρ0), both in units of e [57]; see Fig. 8.2. For the

special case Q = 0 (i.e., D empty, corresponding to an inclusion) the free

energy cost has a simple form:
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∆F = Q2
0/4 = π2a4ρ2

0/4. (8.22)

This simple electrostatic result is significant for the noncrossing-directed-line

liquid, as it differs qualitatively from the case of a noninteracting directed

line liquid, for which a particle inclusion incurs a free-energy cost linear in

a2ρ0. Instead, as for the case of polymers in 1+1 dimensions, the response of

polymers in 2 + 1 dimensions to a strong constraint grows as N2, indicating

that polymer interactions rather than single-polymer effects dominate the

response of the system to impurities. Not only does the ring displace some

number of polymers proportionate to ρ0, but the cost of displacing each of

these polymers is itself proportionate to ρ0 due to interpolymer interactions.

To improve upon the electrostatic approximation, we take into account the

effect of thermal fluctuations on the polymer density profile. We rely on the

exact solution of the 2DOCP with the appropriate plasma coupling constant,

i.e., 2 [55, 56, 57, 54, 59, 60]. In the limit of a large ring, a � 1/
√
ρ0, the

exact density profile outside the region of constraint depends only on a, ρ

and Q through the combination (Q − Q0)/
√

2Q0 [55]. The layer of excess

mobile charge on one side forms an electrical double layer of thickness of order

1/
√
ρ0; see Fig. 8.2c and Ref. [55]. The region partially depleted of mobile

charge does develop a soft gap, in which the charge is small but nonzero. The

mobile charge density profile progresses smoothly, according to a qualitatively

error-function-like curve, through the boundary region, rapidly approaching

the value that exactly compensates the background charge density ρ0; see

Fig. 8.2c and Ref. [55]. The mobile charge density profile for the depleted side

of the constraint applies to both cases, Q > Q0 and Q < Q0, and similarly

for the excess-charge side. For Q small relative to Q0, the remaining mobile

charge in D forms a droplet whose shape is essentially the density profile of a

system of electrons that fill the lowest Landau level: a flat central profile and

a decay into the soft gap; see, e.g., Ref. [61]. Thus, we have established that

when some fixed portion of the lines of a directed line liquid is constrained

to thread D, the equilibrium density profile in the slice containing D is that

of the correspondingly constrained 2DOCP.

The behavior of the gap formed around the ring differs substantially from

the gap around the pin discussed in Chapter 4. The size of that gap was less
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than the pin displacement as the polymers sagged upward to take advantage

of the extra space on the depleted side of the pin. In 2 + 1 dimensions,

the gap is exactly the size necessary so that the polymer density averaged

over a region including the ring and the gap remains ρ0. And the polymer

density around a pin remained substantially modified over the entire width

of the system. In contrast, the gap fills in over a distance on the order of the

interpolymer spacing 1/
√
ρ0.

Recapping our strategy, we progressed from a three-dimensional liquid of

thermally fluctuating lines, to a two-dimensional quantum many-boson fluid,

to a two-dimensional quantum many-fermion fluid coupled to a Chern-Simons

gauge field, which we treat in the Average Field Approximation to obtain the

filled lowest Landau level picture. The phenomenology of a lowest Landau

level filled with non-interacting fermions is well studied, and suggests various

analogous phenomena for the corresponding hard-core boson fluid. However,

as the AFA is an approximation, these analogous phenomena may be artifacts

of the approximation, and we now use physical intuition to identify any such

artifacts. For example, the quantum Hall effect suggested by the AFA is one

such artifact: the boson fluid does not have broken time-reversal symmetry,

and therefore shows no Hall effect [62, 63] (By Hall effect we mean the occur-

rence of a transverse particle current in response to a longitudinal potential

gradient). A second artifact is suggested by the incompressibility of the

filled lowest Landau level, which would incorrectly imply the incompressibil-

ity of the boson fluid. However, by reinstating the inter-particle interactions

A(r)−Aa(r), for example via the Random Phase Approximation, the com-

pressibility of the boson fluid is restored, as shown in Refs. [62, 63]. In the

context of the directed line liquid, the thermodynamic (areal) compressibility

κ is defined in terms of the free energy density f via κ−1 ≡ ρ2
0 ∂

2f/∂ρ2
0, and

thus, using Eq. (8.19), we obtain κ = Aβ2/2πρ2
0. A particularly notewor-

thy consequence of the residual interactions A(r)−Aa(r) is their ability to

renormalize the effective plasma coupling constant e2/T in the plasma anal-

ogy away from the exactly solvable case, viz. 2. Nevertheless, we expect the

general picture presented here of the energetics and structure of the directed

line liquid in the presence of spatially extended constraints to hold.
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Figure 8.2: (Two-Dimensional One-Component Plasma (2DOCP) with a
spatially extended constraint. The electrostatic approximation predicts a
gap in the mobile charge density and an accumulated surface charge for
cases (A), for which excess mobile charge stays outside of the ring, and (B),
for which excess mobile charge is confined inside the ring. This
approximation also predicts mobile-charge-density discontinuities, which in
the exact solution are smeared out due to thermal fluctuations of mobile
charges around the energy minimum. The exact solution leads to the
density profiles ρ(r)/ρ0 shown for (Q−Q0)/

√
2Q0 = ±4 (thick) and 0

(thin), where −Q and Q0 (≡ πa2ρ0) are the mobile and the background
charges inside the ring, respectively [55, 56]. The inset shows the rescaled
energy cost (4/Q2

0)∆F [top: case (A), bottom: case (B)] [57]. The curves
are valid for macroscopic values of the charge deficiency, i.e., for
not-too-small values of the argument, when ∆F is dominated by
electrostatic energy. In the text, we establish that these profiles
corresponds to the planar distribution of noncrossing directed lines due to a
planar spatially extended constraint. Based on a figure prepared for
Souslov et al. [58].

95



CHAPTER 9

CONCLUDING REMARKS
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Our central aim with this work has been to develop a statistical-mechanical

treatment of macroscopic systems of directed classical polymers and other

linelike objects that are subject to various interactions. This framework

has been developed chiefly by mapping the various polymer systems onto

corresponding quantum systems undergoing imaginary-time evolution. This

mapping allows us to exploit a variety of powerful techniques from quantum

many-body physics to shed light on the associated polymer system. This

framework has allowed us not only to describe the equilibrium structure and

thermodynamic properties of polymer systems, but also how these systems

respond to strong constraints or undergo large fluctuations.

Strong constraints such as the topological pin have the effect of altering

the equilibrium value of the spatial profile of the local polymer density and

reducing the entropy (and therefore increasing the free energy) of directed

polymer systems. Generically, this increase in the free energy gives rise to

forces that act on the constraints (and between them, if there are several of

them).

The determination of the alteration of statistical weight resulting from

the presence of constraints for the polymer system is then ascertained via

consideration of a particular quantum amplitude: the matrix element of the

imaginary-time evolution operator between the many-particle ground state

and the set of states consistent with the constraint. This technique readily

yields results for situations in which the constraints are located collinearly on

a line that runs perpendicular to the direction preferred by the polymers. By

supplementing this technique with a hydrodynamical approach we are able to

establish the form of the polymer density not only along the aforementioned

line on which the constraints lie but also at points away from this line.

The archetypal constraint that we consider is a topological point-like pin,

which fixes the number of polymers that flow to one side of it, generically

compressing part of the polymer system. Strikingly, in the limit of large num-

bers of polymers, in which fluctuations are small and the polymer density

may be approximated as a continuous fluid, we find that the effect of such a

pin is to cause a divergent pile-up of the polymer density on the compressed

side of the pin and a zero-density region (or gap) on the low-density side, the

latter giving way to a continuously rising density beyond the gap. In addi-

tion, via a quantum-hydrodynamical approach we find that the gap opened

by the pin has a nonzero extent in the polymer preferred direction, only
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gradually narrowing and closing. Fluctuations around the dominant density

profile replace the zero-density region by a region of very small polymer den-

sity. We also find for pins that are only mildly displaced from a zero-force

(i.e., equilibrium) position that the force acting on them is sub-Hookean,

growing less than linearly with the displacement via a factor logarithmic in

the displacement, and the gap created by them similarly grows sub-linearly

with the displacement. One can regard these nonlinear responses as resulting

from the effectively long-range interactions between polymer segments that

emerge via short-range interactions between long polymer strands in regions

that reach far from the segments in question.

We have also determined how the form of polymer interactions modifies the

statistical properties of the polymer system. Polymers of nonzero thickness

that cross over one another are related to bosons with a contact interaction

and treated via the Bethe Ansatz technique. We have described how the

effective interaction is related to polymer parameters, and how various sta-

tistical properties of the polymer system may be derived from the quantum

model. Polymers with long-range interactions may instead be described via

the quantum Calogero-Sutherland model. In this case, one finds that the

ground-state wave function is closely related to that for noncrossing poly-

mers, showing that the response of a wide class of polymer systems to strong

constraints mirrors that of noncrossing polymers without any additional in-

teractions.

Bosonization has been developed as a universal technique that applies to

two-dimensional classical statistical systems as well as one-dimensional quan-

tal many-body ones. We have used it to describe the density correlations

of the polymer system and its response to impurities. We have also used

bosonization to show that the response of a generic polymer system to a

strong constraint in some ways perfectly mirrors that of a system of non-

crossing polymers. Care must be taken, however, in applying bosonization

to polymer systems subject to strong constraints.

Finally, we have discussed the response of polymers in 2 + 1 dimensions

to obstructions. We have described how in the quantum picture interactions

may be treated via Chern-Simons theory, just as Fermi statistics enforces

noncrossing in 1+1 dimensions. We have found that there is an effective two-

dimensional statistical model, the Two-Dimensional One-Component Plasma

(2DOCP), which mirrors the form of the one-dimensional model used to de-
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scribe polymers in 1 + 1 dimensions. Although the effective interaction has

the same form (logarithmic), in either 2 + 1 or 1 + 1 dimensions, its effect is

very different due to the differing dimensionality. Gaps still form in depleted

regions but excess polymers build up near the surface of nanoparticle inclu-

sions, rather than modifications to the density profile extending far across

the system.

In conclusion, we have explored the rich behavior of a variety of directed

polymer systems both subject to and not subject to strong constraints.
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APPENDIX A

N FERMION GROUND-STATE WAVE
FUNCTION

Consider a system of N noninteracting fermions moving freely one dimension

on the line segment 0 < x < π and subject to homogeneous (i.e., homoge-

neous Dirichlet) boundary conditions at x = 0 and x = π. The normalized

wave functions associated with the single-particle energy eigenstates of such

a system are given by

φj(x) =
√

2/π sin(jx), j = 1, 2, . . . . (A.1)

In terms of these, the normalized N -particle ground-state wave function of

the N -fermion system may be expressed in terms of a Slater determinant, as

follows:

ψ(x1, . . . , xN) =
1√
N !

det
N×N

[
φj(xk)

]
, (A.2)

where [φj(xk)] is the N ×N matrix having (jk) element φj(xk). Omitting N

factors of
√

2/π, the matrix [φj(xk)] takes the form
sinx1 sinx2 · · · sinxN

sin 2x1 sin 2x2 · · · sin 2xN
...

...
. . .

...

sinNx1 sinNx2 · · · sinNxN

 . (A.3)

To simplify the evaluation of the determinant of this matrix, we add linear

combinations of the rows of the matrix to other rows, a procedure that leaves

its value unchanged. Specifically, we make the replacements

φj(xk)→ φj(xk) + φj−2(xk)− 2 cosxN φj−1(xk),
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where we make the definition φj(xk) = 0 for j < 1. The resulting matrix is

then given by
sinx1 sinx2 · · · sinxN−2 sinxN−1 sinxN

2(cosxk − cosxN) sin ((j − 1)xk)

0
...

0

 . (A.4)

Note, specifically, the vanishing of the elements in the lower N − 1 rows

in the N th column. In evaluating the determinant of this matrix, we may

extract N − 1 factors of the form 2(cosxk − cosxN) from the rows in the

lower left block of the matrix. Thus, we obtain the recursive result, linking

Slater determinants for N -particle and (N − 1)-particle systems:

det
N×N

[
φj(xk)

]
= (−1)N−1 sinxN

×
N−1∏
k=1

(2 cosxk − 2 cosxN)× det
(N−1)
×(N−1)

[
φj(xk)

]
. (A.5)

Next, we apply this relation recursively, and this arrive at the following,

desired form for the N -particle ground-state wave function:

ψ(x1, x2, . . . , xN) =
2N

2/2

πN/2
√
N !

(∏N

j=1
sinxj

)
×

∏
1≤j<k≤N

(
cosxj − cosxk

)
. (A.6)

Note that for a system of hard-core bosons the corresponding ground-state

wave function is simply the absolute value of this fermionic wave function.

101



APPENDIX B

GAUSSIAN RANDOM MATRICES AND
CHARGED FLUIDS

Following Mehta [64], when an N × N Hermitian matrix is drawn from a

random ensemble of Hermitian matrices whose real parameters are Gaussian

random variables, the joint probability density of its eigenvalues {xn} is

PNλ = exp

(
−λ
∑
n

x2
n

) ∏
n<n′

|xn − xn′ |2λ . (B.1)

Here, λ = 1/2, 1, 2 correspond to orthogonal, unitary, and symplectic en-

sembles of matrices respectively. That is, the ensembles are invariant under

orthogonal, unitary and symplectic transformations, respectively.

The integral over such a probability density of eigenvalues may be inter-

preted as the partition function of a one-dimensional system of interacting

particles. This falls within the charged fluid model described in Chapter 3,

with a harmonic confining potential f(·) and a logarithmic interaction g(·, ·)
whose repulsive strength is proportionate to λ. Taking into account the har-

monic potential centered at x = 0 rather than hard walls at x = ±w/2,

this also corresponds to three instances of systems of noncrossing polymers

with attractive interactions, no long-range interactions, and repulsive inter-

actions for λ = 1/2, 1, 2 respectively. Thus we see that the lateral statistics of

polymer segments correspond to the statistics of Gaussian random matrices.

For a system with hard walls and no additional strong constraints, the

equilibrium density of polymers is nearly uniform , with short-ranged Friedel

oscillations near the walls. In contrast, the equilibrium distribution for the

harmonic confining potential is nontrivial. Proceeding in a manner similar

to the one employed in Chapters 3, 4, one may arrive at an integral equation

for the equilibrium polymer density, whose solution is given by Wigner’s

semicircle law [65]
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ρ̄(x) =
1

π

√
2N − x2 θ(2N − x2). (B.2)

That is, the polymers when confined by a harmonic potential rather than

hard walls assume an equilibrium density profile shaped like a semicircle.

One may also derive the n-point density function for the polymer system

by performing integrations over the distribution in Eq. (B.1). The two-point

density correlations, found by Mehta [64], give the lateral density-density

correlations of the polymer system and are plotted in Fig. 6.1. In an infinite

system, the choice of boundary conditions (harmonic or hard-wall) does not

affect the local density correlations.
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APPENDIX C

ELLIPTIC INTEGRAL
REPRESENTATIONS OF THE PIN

CONSTRAINT AND FREE ENERGY

Given the form of the polymer density found in Chapter 4 the pin constraint

Eq. (4.5) may be constructed in terms of the elliptic integral of the third kind

as

NR

N
=

2(sg − sp)
π
√

(1− sp)(1 + sg)
Π

(
1 + sp
1 + sg

,
(1 + sp)(1− sg)
(1− sp)(1 + sg)

)
, (C.1a)

Π(n,m) ≡
∫ 1

0

ds

1− ns2

1√
(1−ms2)(1− s2)

. (C.1b)

We may describe how sg varies with sp for a given partitioning by requiring

that the partitioning given by NR is constant with respect to variations of

sp, so that

dNR

dsp
=
∂NR

∂sp
+
∂NR

∂sg

∂sg
∂sp

= 0. (C.2)

By using Eq. (C.1a), we thus find the result

∂sg
∂sp

=
1 + sg
1 + sp

1−
E
(

(1+sp)(1−sg)

(1−sp)(1+sg)

)
K
(

(1+sp)(1−sg)

(1−sp)(1+sg)

)
 , (C.3)

where K and E are elliptic integrals of the first and second kind, respectively:

K(k) ≡
∫ 1

0

ds√
(1− k2s2)(1− s2)

, (C.4a)

E(k) ≡
∫ 1

0

ds

√
1− k2s2

√
1− s2

. (C.4b)
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For a pin infinitesimally displaced from its equilibrium position, so that

sp − sg ≈ γ cosxp with γ � 1, the right-hand side version of the pin con-

straint (4.5), may similarly be asymptotically expanded in γ to obtain the

condition

π
NR

N
≈
∫ 1

sg

ds√
1− s2

[
1 +

γ cosxp
2

1

s− sp

]
≈ π

2
− xg +

γ

2
ln

[
2 cos2 xp
|γ|

]
. (C.5)

This equation yields the asymptotic relation between gap size and displace-

ment given in Eq. (4.15).

R

G1

G3

G2

G4

-1 sp sg 1

Printed by Mathematica for Students

Figure C.1: The contour Γ used in Eq. (C.10). Branch cuts run from
s = −1 to s = min(sp, sg) and from s = max(sp, sg) to s = +∞. The arc Γ4

has a radius ε which will be taken to zero, and the arc Γ2 has a radius R
which will be taken to infinity. From Rocklin et al. [2].

We turn our attention now to the free energy cost of the pin, Eq. (4.16),

which can be written in terms of the scaled effective potentials φL and φR

experienced by polymers on the left and right side of the pin, respectively, as
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∆F
N2T

=
NL

N
φL +

NR

N
φR, (C.6a)

φL ≡
∫ 1

−1

ds ln [2(1 + s)]Q(s), (C.6b)

φR ≡
∫ 1

−1

ds ln [2(1− s)]Q(s), (C.6c)

with the transformed coordinate s and polymer density Q(s) defined in the

main text; see Eq. (4.9). As we shall see, it is useful to represent φR as an

elliptic integral, and to do this it is necessary to obtain a form without the

logarithm. To this end, we extend s into the complex plane, and make use

of the residue theory result

∮
Γ

ds ln(1− s)Q(s) = 0, (C.7)

where the keyhole contour Γ comprises the segments Γ1, . . . ,Γ4 as shown in

Fig. C.1. Now, the integrand has the form

ln(1− s)Q(s) =
1

π

(
ln |1− s|+ i arg(1− s)

)
×

√∣∣∣∣ s− sg
(1− s2)(s− sp)

∣∣∣∣ eiφ(s), (C.8a)

φ(s) ≡
(

arg(s− sg)− arg(1− s)− arg(1 + s)− arg(s− sp)
)
/2, (C.8b)

which is analytic in the complex plane except on the branch cuts. Note that

although the physical polymer density is zero in the gap, we are allowing

Q(s) to be nonzero but imaginary in the gap, and complex in the complex

s plane. We choose the branch cuts to run from s = −1 to s = min(sp, sg)

and from s = max(sp, sg) to s = +∞, as shown in Fig. C.1.

While the integral along the inner contour Γ4 vanishes as its radius ε goes

to zero, the integral along the outer contour Γ2 (i.e., along |s| = R), does not

vanish. In the limit R� 1 this contour integral becomes
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∫
Γ2

ds ln(1− s)Q(s) ≈∫ 2π

0

(
iReiθdθ

) [
lnR + i (θ − π)

] i

πReiθ
= −2 lnR. (C.9)

Thus, the contour integral of Eq. (C.10) yields

2 lnR ≈
∫ 1

−1

ds ln |1− s|Q(s+ iε) +

∫ R

1

ds
[

ln |1− s| − πi
]
Q(s+ iε)

+

∫ 1

R

ds
[

ln |1− s|+ πi
]
Q(s− iε) +

∫ −1

1

ds ln |1− s|Q(s− iε). (C.10)

Elementary cancellations among parts of these integrals occur, so that upon

taking the limit R→∞, Eq. (C.10 (which is exact in this limit) yields

φR =

∫ ∞
1

ds

[
1

s
−
√

s− sg
(s2 − 1)(s− sp)

]
, (C.11a)

φL =

∫ ∞
1

ds

[
1

s
−
√

s+ sg
(s2 − 1)(s+ sp)

]
. (C.11b)

Using these representations of φL and φR, the free energy may be expressed

in terms of elliptic integrals, although the complete expression is rather com-

plicated. Strikingly, however, a simple result follows for the force on the pin,

−dF/dxp. In particular, by differentiating Eq. (C.6a) we find

1

N2T

dF
dsp

=
NL

N

dφL
dsp

+
NR

N

dφR
dsp

, (C.12)

where

dφL/R
dsp

=
∂φL/R
∂sp

+
∂sg
∂sp

∂φL/R
∂sg

. (C.13)

Thus, by consideration of the elliptic integral representation, it can be shown

that
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1

N2T

dF
dsp

=
sp − sg
1− s2

p

, (C.14)

and from this result follows the force on the pin given in Eq. (4.20).
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