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Abstract

Soft random solids are formed at an equilibrium phase transition — the gelation

transition — from a liquid to a random solid state, driven by random permanent

chemical linking of the constituent molecules. Such solids are characterized by

their heterogeneous structure and remarkable elasticity. The most prominent

example of soft random solids, rubber, is composed of polymers, crosslinked to

form a network, and has an extraordinarily large reversible deformability.

The first part of this thesis, Chapter 2, presents a simple and physically

intuitive approach to the gelation/vulcanization transition — the so-called cav-

ity method, borrowed from spin glass theory. This cavity approach confirms

results that have been obtained previously via replica mean-field theory, such

as the dependence of the gel fraction and the distribution of localization lengths

on the density of links. It also sheds new light on the physical origin of these

dependences.

In the second part of this thesis, Chapters 3, 4, and 5, spatial heterogeneity

in the elastic properties of soft random solids is examined via vulcanization the-

ory. The spatial heterogeneity in the structure of soft random solids is a result of

the fluctuations locked-in at their synthesis, which also brings heterogeneity in

their elastic properties. Vulcanization theory studies semi-microscopic models

of random-solid-forming systems, and applies replica field theory to deal with

their quenched disorder and thermal fluctuations. The elastic deformations of

soft random solids are argued to be described by the Goldstone sector of fluc-

tuations contained in the vulcanization theory, associated with a subtle form of

spontaneous symmetry breaking that is associated with the liquid to random

solid transition. The resulting free energy of these Goldstone modes can be rein-

terpreted as arising from a phenomenological description of an elastic medium

with quenched disorder. Through this comparison, we arrive at the statistics of

the quenched disorder of the elasticity of soft random solids, in terms of residual

stress and Lamé-coefficient fields. In particular, there are large residual stresses

in the equilibrium reference state, and the disorder correlation functions involv-

ing the residual stress are found to be long-ranged and governed by a universal

parameter that also gives the mean shear modulus.
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Chapter 1

Introduction

1.1 The physics of soft random solids and the

vulcanization transition

1.1.1 Random solids

Random solids, or amorphous solids [1], are well-defined solids from the mechan-

ical perspective. Macroscopically, it costs energy to make a shear deformation

of random solids; however, microscopically, the molecular structures of random

solids exhibit none of the long-range order of crystals, which makes them re-

semble liquids, at least instantaneously.

The physics of random solids is remarkably rich, and spans widely differ-

ent areas of modern physics, such as phase transitions and critical phenom-

ena, nonequilibrium statistical mechanics, the quantum mechanics of electronic

structure, biophysics, etc.

A large category of random solids, generally grouped under the name glasses,

lead to one of the most intriguing problems in modern condensed matter physics [2].

In principle, given a sufficiently high cooling-rate, any liquid can be made into a

glass (i.e., vitrified) [3, 4, 5]. Upon rapid cooling, the supercooled liquid becomes

more and more viscous, and ultimately falls out of equilibrium on experimen-

tally achievable time-scales at the so-called glass temperature Tg. It is still

an open question whether there is an underlying equilibrium thermodynamic

phase transition at the glass transition. The resulting glass phase has striking

physical properties, especially at low temperatures, which exhibit a fascinating

universality in the heat capacity and thermal conductivity.

Our study of random solids focuses on a different category: soft random

solids. Unlike glasses, soft random solids are formed by the permanent random

chemical linking of the constituent molecules, and the transition from liquid

to soft random solid is an equilibrium phase transition, driven by the density

of links. Soft random solids include rubber [6], formed by crosslinked poly-

mer networks, and chemical gels [7], formed by networks of small molecules

connected by covalent bonds. The equilibrium character of the transition to

the soft random solid state enables one to use powerful tools of equilibrium

statistical physics, such as the theory of criticality and symmetry breaking, to
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investigate the transition to, and properties of, the soft random solid state.

These theoretical developments, which we group together under the heading

vulcanization theory [8, 9], may also serve as a simple universal field-theoretic

model of more general classes of random solids, inasmuch as they capture the

basic spontaneous symmetry breaking at the random solidification transition.

Thus, it is not out of the question that they will also shed some light on the

theory of true glasses.

We shall take rubber as our prototype for the discussion of soft random

solids. Rubber is formed by adding permanent crosslinks at random between

instantaneously nearby monomers in melts or solutions of flexible polymers.

When the density of the crosslinks exceeds the percolation limit, an infinite

cluster forms, a nonzero fraction of the polymers become spatially localized (at

least in dimensions greater than two [10, 11]), and the network acquires a rigidity

to shear deformations. 1 This event is commonly called the “vulcanization

transition” [8, 9] or “gelation”. 2

1.1.2 Basics of polymer physics

Linear polymers are the building blocks of rubber. These polymers are very long,

covalently bonded, macromolecules made up of many small groups of atoms [13,

14, 15]. The repeating small groups are called monomers. A typical polymer

can contain 102 ∼ 1010 monomers, and this number of repeating units is called

degree of polymerization NDP . In particular, natural rubber (Hevea rubber) is

a polymer of the isoprene monomer C5H8.

The spatial shape, i.e., the “conformation” of a polymer chain can be excited

by thermal fluctuations, including the motions of bond stretching, bond bending,

torsion, etc. Torsion is the main source of polymer flexibility, and at room

temperature its energy cost is about kBT , where T is the temperature and kB is

Boltzmann’s constant. For a collection of a few adjacent monomers, the relative

motions are usually small. But if the chain is very long, these motions can add

up along the contour length (the maximum length of extension of the polymer),

and reach a considerable amount, as depicted in Fig 1.1. As a result, polymer

chains often appear flexible on length-scales rather larger than the size of an

individual monomer. This flexibility is described by a “persistence length” lp,

beyond which the directional correlation of the polymer contour is lost. In our

discussion of rubbery materials, the contour length of a polymer will be taken

to be much longer than its persistence length, i.e., L ≫ lp, and such polymers

— flexible polymers — appear to be highly flexible, like a silk thread. In other

1This acquisition of rigidity should not be confused with rigidity percolation, which captures
the rigidity of athermal networks [12]. Here, in the case of soft random solids, the shear rigidity
results from entropy of thermal fluctuations of the constituent particles, and is proportional
to temperature.

2Strictly speaking, the name “gelation”has a broader meaning than vulcanization transi-
tion. It also includes the formation of chemical gels by adding random covalent bonds into
systems of small molecules.
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cases there are polymers with L≪ lp, which are called stiff polymers.

lp

Figure 1.1: Local structure (left) and conformation of the whole chain (right)
of a flexible polymer. Only the backbone atoms (denoted by black circles) are
shown in the local structure. A long polymer chain with L≫ lp can be regarded
as a flexible chain.

Beyond the lengthscale lp, we can model the polymer as being perfectly flexi-

ble, which means that all possible conformations of a polymer have equal energy.

Therefore, the conformation of a polymer can be modeled as a non-selfavoiding

random walk (ignoring excluded-volume interactions for the moment), which

gives, via the central limit theorem, for the probability distribution for the end-

to-end vector ~R,

PL(~R) =
( d

2πR2
0

)d/2

e
−

d|~R|2

2R2
0 , (1.1)

where R0 =
√

Llp and L is the total contour length of the polymer. Therefore,

one can characterize the size of the polymer using the root-mean-square end-to-

end distance

√

〈|~R|2〉 = R0 ∝ L1/2, (1.2)

where the exponent 1/2 is the signature of the non-selfavoiding random walk

model for the polymer chains. Such polymer chains, described by the non-

selfavoiding random walk, are called ideal polymers. This exponent also indicates

that the fractal dimension of ideal polymers is 2.

Applying the notions of microscopic statistical-mechanical ensembles, we

know that the number of microscopic states ΩL(~R) consistent with a given end-

to-end vector ~R is given by

ΩL(~R) ∝ PL(~R). (1.3)

3



Thus, the entropy and the free energy of this state are given by

SL(~R) = kB ln ΩL(~R ) = −kBd |~R|2
2R2

0

+ const, (1.4a)

FL(~R) = −T SL(~R) =
kBTd |~R|2

2R2
0

+ const. (1.4b)

Now imagine pulling this polymer by its two ends. The force fL(~R ) that one

needs to exert in order to separate the two ends by ~R is given by

fL(~R ) = −∂FL(~R)

∂ ~R
= −kBTd

R2
0

~R. (1.5)

This is an entropic force, which tends to pull the two ends of a polymer together,

as a result of the suppression (by separation) of the conformational fluctuations

available to the polymer. In short, entropy “prefers” the two ends of a polymer

to be near one aother, so that more microscopic states (i.e., conformations)

can be reached. From Eq. (1.5) we can see that this force is proportional to

temperature T . This is the signature of the entropic elasticity. This entropic

force is actually the basic idea of the classical theory of rubber elasticity [6], as

we shall discuss in Section 1.2.1.

More refined models of polymers take into account the fact that distinct

monomers can not occupy the same region of space. To address this issue one

can include a short-ranged repulsive interaction between pairs of monomers,

which is called the excluded-volume interaction [13, 16, 17]. Thus, between

any two monomers, either on the same polymer or on different polymers, in a

solution or a melt, the potential energy of the excluded-volume interaction can

be modeled as

Vex-vol = v δ(d)(~Ri(s) − ~Rj(t)), (1.6)

where v is the excluded-volume parameter, which is in fact the second virial

coefficient of the short-ranged repulsive interaction [16], and can understood as

representing a small volume-element that is occupied by one monomer. Here,
~Ri(s) stands for the position vector of the monomer at arclength s on polymer

i, and ~Rj(t) for the position vector of the monomer at arclength t on polymer

j. The labeling of monomers using arclength are illustrated in Fig. 1.2.

The statistical physics of a polymer with excluded-volume interactions are

described by the theory of “self-avoiding-walk” [13]. The scaling of the size of

a polymer in the presence of excluded-volume interactions,

√

〈|~R|2〉 ∝ Lν , (1.7)

was studied by Flory using a mean-field approximation [18] that gives ν = 3/(d+

2) (e.g., ν = 0.6 in d = 3). With renormalization-group theory and numerical

4



L

s
~R(s)

Figure 1.2: Illustration of arclength and the position vector of a polymer. The
arclength s is measured from a chosen end of the polymer, and it used as a
coordinate system to label monomers, with 0 ≤ s ≤ L. The position vector in
space of the monomer at arclength s is represented by ~R(s).

simulations, the radius of gyration scaling exponent for the self-avoiding-walk

universality class has been found for d = 3 to be

ν ≃ 0.588. (1.8)

This excluded-volume interaction between monomers is also the reason for the

incompressibility of rubber, as we shall see later.

1.1.3 The vulcanization transition

In 1839, Charles Goodyear (1800−1860) discovered the vulcanization process.

He found that when natural rubber, a viscous liquid, is mixed with sulfur under

heat, an elastic solid is formed. In this vulcanization process the sulfur particles

act as crosslinkers to join together monomers on the polymers of natural rubber,

as depicted in Fig. 1.1.3. The resulting vulcanized rubber overcomes many of

the technological defects of natural rubber, such as permanent loss of shape

after a deformation, and becoming sticky and easily deformed when warm, or

brittle when cold. On the contrary, vulcanized rubber has remarkably stable

elasticity (think of the tires of a car!), and returns remarkably accurately to its

original shape when external stresses are released.

Early studies of gelation date back to the 1940s. The first quantitative

theories of gelation—the mean-field theories — were proposed by Flory and

Stockmayer [19, 20]. They modeled the gelation transition as a percolation

transition on a Cayley tree [21].

The Cayley tree, as depicted in Fig. 1.4, can be built by starting with a

central point (an “origin”) having z (the coordination number) bonds emanating

from it. Each bond leads to another site from which another z bonds emanate.

One of these z bonds connects to the origin, and the other z − 1 bonds lead to

new sites. This operation can be iterated to produce an infinite Cayley tree.

The Cayley tree is a connected, cycle-free graph, and the infinite version of the

Cayley tree, the Bethe lattice, is often used to develop mean-field theories [22].

5



(a) (b)

Figure 1.3: Schematic of the vulcanization process. (a) Two polymers are joined
when the crosslinker, denoted by the black dot, forms a covalent bond between
the nearby monomers on these two polymers. (b) A network of crosslinked
polymers.

To capture the gelation process, one can identify the sites on the Cayley

tree as polymers and the bonds as crosslinks. In the crosslinking process, each

bond has a certain probability p to have been reacted (i.e., connected), so the

corresponding bond in the Cayley tree is present with probability p and absent

with probability 1 − p.

Consider the probability that the tree is connected, which means that there

exists at least one path of bonds that connects the origin to infinity. Let us

start from an arbitrary site (i.e., a “parent” site) that is already connected to

the origin (the “grand ancestor”). The average number of additional bonds the

“parent” forms with its z−1 remaining neighbors (i.e., its “children”) is p(z−1).

If this average number of bonds p(z− 1) is less than unity, each new generation

has, on average, fewer members, and the family can not survive for long. On

the contrary, if this number p(z − 1) is greater than unity, each generation has,

on average, more members, and there forms an infinite cluster in the system.

Therefore, the critical probability of linking, called the gel point pc, is given by

pc =
1

z − 1
. (1.9)

Other quantities of interest can also be found exactly in this model. For example,

near the transition the gel fraction Q (i.e., the fraction of sites that are members

of the infinite cluster) grows linearly with p− pc.

This classical theory of gelation happens to give a rather good estimate of

the gelation threshold pc However, as a mean-field theory, it necessarily breaks

down near the transition, in the sense of giving incorrect values for the various

critical exponents.

A better model for the gelation process is the theory of percolation on a Eu-

clidean lattice (for reviews see Refs. [21, 11, 23]). Percolation and its criticality

have been analyzed using various tools, including the perturbative renormaliza-

tion group via the Potts model [24, 25], conformal invariance (for d = 2) [26, 27],

and numerical simulations [28, 29]. Nontrivial universality classes have been

identified, revealing the rich physics of percolation.
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Figure 1.4: A Cayley tree with coordination number z = 3. Three “genera-
tions” are shown in this plot.

The relation of lattice percolation to vulcanization theory has been discussed

in Refs. [10, 30]. Percolation theory captures the geometrical aspect of the

vulcanization/gelation transition, but vulcanization theory is needed to describe

the thermal fluctuations of the constituent polymers, and thus the structure and

elasticity of the rubbery state that emerges at the transition.

1.2 Elasticity of soft random solids

1.2.1 Basics of rubber elasticity: classical theory

The most remarkable physical characteristic of rubbery material is the extraor-

dinarily large reversible deformability, under the action of comparatively small

stresses. A widely accepted theory explaining rubber elasticity is the classi-

cal theory of rubber elasticity, developed by Kuhn [31], Wall [32], Flory and

Rehner [33], James and Guth [34], and Treloar [35]. The fundamental assump-

tions of the classical theory of rubber elasticity are (as summarized in Ref. [6])

1. The network contains nc chains per unit volume, a chain being defined as

the segment of polymer between successive crosslinks.

2. The root-mean-square end-to-end distance for the whole assembly of chains

in the unstrained state is the same as for a corresponding set of free chains,

and is given by Eq. (1.2).

3. There is no change of volume on deformation.

4. The crosslinks between chains move, on deformation, as if they were em-

bedded in a homogeneous and isotropic elastic continuum (i.e., the affine

deformation assumption).

5. The entropy of the network is the sum of the entropies of the individual

chains, the latter being given by Eq. (1.4a).
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Now consider the elastic free energy cost of a deformation that maps a mass

point at ~r to the new position ~R. This deformation can be expressed using the

deformation gradient Λij(~r) ≡ ∂Ri(~r)/∂rj . For a chain in the network with

initial end-to-end distance ~r, from Assumption 4 we know that its end-to-end

distance in the deformed state is given by

~R = Λ · ~r. (1.10)

(For simplicity we suppose that the deformation Λ is homogeneous.) Here, we

use overhead arrows to denote vectors in d-dimensional space, such as ~r, and

use bold letters to denote rank-2 tensors, such as Λ. Using Eq. (1.4b), we have

for the increase of the free energy of this polymer after deformation, which is

its elastic free energy:

FEL
1 =

kBTd

2R2
0

(

|~R|2 − |~r|2
)

=
kBTd

2R2
0

~r
(

ΛTΛ − I
)

~r. (1.11)

Next, using Assumption 2, one argues that the total elastic free energy in unit

volume FEL is equivalent to the above single-chain elastic free energy FEL
1 , av-

eraged over the distribution of initial end-to-end distances PL(~r), and multiplied

by the density of chains nc, which gives

FEL = nc〈FEL
1 〉PL(~r). (1.12)

(For simplicity, we suppose that the contour length of each chain is L.) With

the distribution given in Eq. (1.1), we have 〈rirj〉PL(~r) = R2
0 δij/d, and thus we

arrive at the free energy density

FEL =
1

2
nckBT Tr

(

ΛTΛ − I
)

. (1.13)

Assumption 3 introduces a constraint on the deformation that enforces incom-

pressibility: detΛ = 1. This allows us to identify the coefficient nckBT as the

shear modulus µ for the classical theory of rubber elasticity:

µ = nckBT. (1.14)

(See discussion in Chapter 4 for elucidation of this point.) Typical values of

the shear modulus of rubber are in the range 104 − 106 Pa, which should be

contrasted with typical bulk moduli of rubber, which are in the range λ ∼
109 − 1010 Pa. By contrast, conventional crystalline materials have bulk and

shear moduli in the range 1010−1011 Pa, values similar to those for the bulk (but

not shear) modulus of rubber [36]. Bulk moduli for both rubbery and crystalline

materials originate in the energetic cost of atomic charge-cloud overlap, as do the

shear moduli of crystalline materials. By contrast the shear moduli of rubbery

materials are, as we have just discussed, entropic in origin.

8



1.2.2 Heterogeneity in the elasticity of soft random solids

The strongest assumption in the classical theory of rubber elasticity is likely to

be the assumption of affine deformations (Assumption 4). It highly simplifies

the real system into a mean-field model with single-chain statistics, and ignores

thermal fluctuations of the crosslinks, interactions and quenched disorder.

In real rubber, firstly, the spatial locations of the crosslinks between poly-

mers fluctuate thermally, as do the locations of other monomers, and these

fluctuations contribute to the total elastic free energy, through phonon modes

of wavelength greater than the typical mesh size in the network. Including

these fluctuations is now known to modify the total elastic free energy in real

rubber [37].

Secondly, there are strong excluded-volume interactions in real rubber. These

are accounted for in a mean-field way via the incompressibility constraint detΛ =

1 in the classical theory. In fact, this interaction has more profound effects via

its interplay with thermal fluctuations [38, 37].

Thirdly, at the instant of crosslinking structural fluctuations are locked into

the system, and thus the system has quenched fluctuations in its structure.

Quenched fluctuation are fluctuations that are present for the lifetime of the

sample’s existence, and can not be excited or relaxed thermally. In the lan-

guage of statistical ensembles, quenched fluctuations are kept the same in each

member of the ensemble of the system, as opposed to annealed fluctuations,

which are excited thermally, and vary across the elements of the ensemble (in

fact, defining the ensemble) [39]. These quenched fluctuations are a reflection of

the thermal fluctuations in the liquid state. For example, some polymers, at the

moment of crosslinking, might happen to be in a stretched state of higher free

energy, while other polymers are in a lower free energy state. The crosslinking

process, which can be modeled as instantaneous, locks in these thermal fluctu-

ations, and the resulting state is necessarily heterogeneous. In particular, each

monomer inhabits a unique spatial environment: some monomers are tightly

constrained by crosslinks, and can move only over small regions of space, while

other monomers are more loosely constrained, and explore larger volumes.

As a result, the structure of rubber is heterogeneous, and so is its elasticity.

This means that the elastic parameters, such as the Lamé coefficients, can vary

from place to place [40]. 3 More interestingly, even in mechanical equilibrium

there are large stresses present in the system, called residual stresses [41]. Phe-

3The Lamé coefficients are defined via the expansion of the elastic free energy F in terms
of the strain tensor [which is defined as ǫij ≡

1

2

(

ΛilΛjl − δij

)

]:

F =
1

2
λ(Tr ǫ)2 + µTr ǫ

2, (1.15)

where the parameter λ and µ are called Lamé coefficients.
The elastic free energy can also be separated into two parts: hydrostatic compression (which

changes the volume but retains the shape of the sample) and pure shear (which changes
the shape but keeps the volume). In linear elasticity, which only linear order terms in the

deformation vector ~u ≡ ~R − ~r in the strain tensor ǫ are kept, the elastic free energy can be
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nomenologically, this heterogeneous elasticity can also be viewed as quenched

disorder, and can be modeled directly, in terms of an elastic free energy in which

there are random elastic parameters, as we shall discuss in Chapter 4.

The statistics of the heterogeneous elasticity will be discussed in Chapters

3,4, and 5.

1.3 Vulcanization theory

1.3.1 Basics of vulcanization theory

The main purpose of vulcanization theory is to provide a theoretical framework

for the study of the criticality of the transition to the soft random solid state,

and the consequent properties of the resulting soft random solid state, espe-

cially its elasticity. This approach is rooted in the pioneering work of Edwards

and co-workers on the semi-microscopic formulation of the statistical mechan-

ics of rubber [16], as well as the Edwards-Anderson theory of spin glasses [42].

These works provide the foundation and physical intuition for the development

of the semi-microscopic theory, the Landau theory, and the renormalization-

group theory of the vulcanization transition by Goldbart and co-workers, who

investigated the criticality of the vulcanization transition, and also elasticity of

the soft random solid state [43, 8, 44, 10].

In this section we shall discuss the Landau theory of the vulcanization transi-

tion, because it captures transparently the universality of the liquid-to-random

solid phase transition and its pattern of spontaneous symmetry breaking. The

corresponding semi-microscopic theory, which was actually developed earlier,

and provided the foundations for the Landau theory, will be discussed in Chap-

ter 3, in a simplified version.

The order parameter of the vulcanization transition is an unusual one. For

the classical statistical mechanics of a many-particle system, one might näıvely

be inclined to use the particle density as an order parameter. However, a simple

particle density can not detect the transition between the liquid and the random

solid state, because the disorder-averaged density is uniform (and has the same

value) in both cases; a subtler order parameter is needed.

This order parameter, which is able to distinguish the liquid and the random

solid stateas, is constructed in the language of the replica method, which we now

briefly review.

written as

F =
1

2
K(Tr ǫ)2 + µTr(ǫ−

Tr ǫ

d
I)2, (1.16)

where the first term describes hydrostatic compression, with the bulk modulus K = λ+2d−1µ,
and the second term describes pure shear, with the shear modulus the same as the Lamé
coefficient µ. For the case of rubber elasticity, because µ ≪ λ we shall not distinguish
between K and λ, and thus the two Lamé coefficients, λ and µ, are often referred to as the
bulk modulus and shear modulus, respectively.
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1.3.2 Brief review of the replica method

The first question to be asked before studying a system possessing quenched

disorder is: what quantities ought to be averaged over the quenched disorder [45,

39, 46]?

For a system with a given configuration of the quenched variables (called

a given realization of the disorder), the statistical mechanics is, in essentially

all cases, impossible to study theoretically, because of the huge number of pa-

rameters involved and the absence of symmetry, moreover, the results are for

a particular realization of disorder, and are not generally helpful. Thus, for a

useful theoretical treatment of systems with quenched disorder, the description

should be in terms of disorder-averaged quantities. But what are the quantities

that should be disorder-averaged?

Loosely speaking, the answer is that one should generally average extensive

variables. This has been illustrated by Brout [47]. Consider a very large system

and divide it up into a large number of subsystems, such that each subsystem

is macroscopic and clearly contains a distinct set of quenched random variables.

Assume that interactions in the system are short-ranged, so that one can ignore

the coupling between the subsystems. Thus, the value of any extensive variable

for the whole system is the sum of this quantity over the subsystems. Given the

large number of subsystems, the average over the subsystems is equivalent to

an average over all possible choices of quenched disorder, according to a given,

physically motivated, probability distribution for the quenched disorder.

Just as in ordinary statistical mechanics, where we know that the relative

fluctuations of the energy around its thermal equilibrium are O(N−1/2), we

expect that the relative sample-to-sample fluctuations of the extensive also go

to zero in the limit of large system. A quantity with this property is said to be

self-averaging. For self-averaging quantities, not only can we expect the same

results in experiments on different macroscopic samples, but we can also expect

a theoretical calculation of the disorder average of the quantity to give the same

answer as experiments would.

Therefore, the appropriate quantity to be averaged over is the free energy

F , not the partition function Z. Moreover, an average of Z is tantamount to

treating quenched and annealed variables on the same footing, and thus would

not reflect the equilibration of the annealed variables in the presence of a fixed

background of quenched variables. We use the square brackets [· · ·] to denote

disorder averages, so that the disorder-averaged free energy [F ] is given by

[F ] =
∑

χ

P(χ)Fχ = kBT
∑

χ

P(χ) lnZχ, (1.17)

where χ indexes the realizations of disorder, and Fχ is the free energy for a

given realization χ. The average over the realizations of disorder is weighted by

some distribution of quenched disorder P(χ), for which a model form has to be
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determined.

The disorder average of the logarithm of the partition function [lnZχ] is

very difficult to perform directly. There are, instead, various indirect mathe-

matical tricks for doing this average, including the replica [48, 42], supersymme-

try [49], and dynamical [50, 51] methods. For a comparison of these methods,

see Ref. [52].

In vulcanization theory, it is the replica method that has primarily been

utilized to deal with the disorder. In this section we briefly review the replica

method. Its basis is the following mathematical identity

xn = en ln x = 1 + n lnx+O(n2)

⇒ lnx = lim
n→0

xn − 1

n
, (1.18)

which can be used to represent the logarithm in Eq. (1.17), so that one has

[F ] = kBT
∑

χ

P(χ) lim
n→0

Zn
χ − 1

n
= kBT lim

n→0

[Zn
χ ] − 1

n
. (1.19)

The essential problem is now to calculate the disorder average of Zn
χ . Recall that

each partition function Zχ = Tr{S}e
−

Hχ({S})

kBT is a weighted sum over all possible

microscopic states {S} in the statistical ensemble for the system. ({S} might

be the collection of conformations of the polymers or, in a magnetic system, the

orientations of the spins.) Thus one can write

Zn
χ = Tr{S1}e

−
Hχ({S1})

kBT Tr{S2}e
−

Hχ({S2})

kBT . . .Tr{Sn}e
−

Hχ({Sn})

kBT

= Tr{S1}Tr{S2} . . .Tr{Sn} e
− 1

kBT
{Hχ({S1})+Hχ({S2})+...+Hχ({Sn})}

. (1.20)

One thus arrives at a formulation in which there are n thermodynamical systems,

or statistical ensembles [but each with the same realization of disorder χ]. They

can also be understood as allowing for the description of n measurements on

the system, each separated from the previous one by a very long time (certainly

much longer than the correlation time of any microscopic dynamics). These

ensembles are called the n replicas. They are evidently decoupled in Eq. (1.20).

However, once one exchanges the order of the disorder average [· · ·] and the

traces over all n replicas of the microscopic states Tr{Sα}, and carries out the

disorder average, the replicas become coupled. This point will be discussed in

more detail in the following sections, as well as in Chapters 3 and 4.

There have been criticisms of the replica method, mainly with respect to

the analytical continuation of a theory with integer values of n to the n → 0

limit. This limit seems to be risky in that none of the statistical systems in

Eq. (1.20) survives. A discussion of this n→ 0 limit, and the related problem of

the spontaneous breaking of replica symmetry, can be found in Refs. [45, 39, 46].

In vulcanization theory, we are primarily concerned with equilibrium statistical
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mechanics at situations in which replica symmetry remains intact. We believe

that the n→ 0 limit is less risky in this case.

Some simple but illuminating examples of the replica trick are given in Ap-

pendix A.

1.3.3 The order parameter of vulcanization theory

The appropriate order parameter for vulcanization theory should be able to

distinguish the liquid state from the random solid state. As we have discussed

in Section 1.3.1, a simple particle density can not do the job, because the random

solid state does not have the periodic density profile of a crystal. The essential

difference between the liquid state and the random solid state can be described

by random particle localization, i.e., the particles (which can be identified with

either individual monomers or entire polymers) become localized in space in the

random solid state, if they belong to the infinite cluster, while in liquid state

their thermal fluctuations carry them through out the whole space.

Inspired by the semi-microscopic theory of the vulcanization transition (see

Chapter 3), the appropriate order parameter is a function Ω defined on (1+n)d

dimensional replicated space:

Ω(x̂) =
1

N

N
∑

j=1

δ(d)(x0 − c0j ) δ
(d)(x1 − c1j ) · · · δ(d)(xn − cnj ) − 1

V0V n
, (1.21)

where x̂ = (x0, x1, . . . , xn) is a position vector in (1 + n)d dimensional repli-

cated space. The replicas 1, . . . , n correspond to the n replicas as discussed

in Section 1.3.2, and are called “measurement ensembles (or states)”. The ex-

tra replica, 0, called the “preparation state”, arises from the Deam-Edwards

distribution of the crosslinks (i.e., the model for the distribution of quenched

disorder), and will be explained in Chapter 3. The vector cαj represents the po-

sition of particle j (which can be understood as a monomer here4) in replica α.

This order parameter measures the density function of a particle in each of the

replicas, which are then multiplied together, followed by an average over the N

particles. The term 1
V0V n is removed so as to ensure that the order parameter

vanishes in the liquid state. Here, V0 is the volume of the preparation ensemble

(i.e., replica 0), and V is the volume of the n measurement ensembles (repli-

cas 1, . . . , n). The allowance for a change in volume is associated with a small

contraction at the random-solidification transition, which will be discussed in

detail in Chapter 3.

This order parameter is used to construct a field-theoretic description of the

random solidification transition, in which a Landau free energy is proposed on

symmetry grounds, as discussed in Section 1.3.4. Because each replica repre-

4The particles can also be identified as polymers, as discussed in Chapter 3. The differ-
ence is merely one of microscopic details, and becomes unimportant when we look at large
lengthscale physics, e.g., near the vulcanization transition.
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sents a copy of the system having distinct thermal fluctuations, as discussed in

Section 1.3.2, the average of this order parameter weighted by the Landau free

energy corresponds to the following thermal- and disorder-averaged value of the

order parameter:

〈Ω(x̂)〉HΩ
=

1

N

N
∑

j=1

[

〈δ(d)(x0 − c0j )〉χ 〈δ(d)(x1 − c1j )〉χ · · · 〈δ(d)(xn − cnj )〉χ
]

− 1

V0V n
, (1.22)

where 〈· · · 〉χ represents a thermal average in a single copy of the system having a

given realization of disorder χ, and each of these thermal averages corresponds

to a distinct replica. This interpretation of the average order parameter is

discussed in detail in Section 3.3.

In the liquid state, the particles are all delocalized, and thus one simply

has δ(d)(x0 − c0j )χ = 1/V0 and δ(d)(xα − cαj )χ = 1/V (for 1 ≤ α ≤ n). Thus

〈Ω(x̂)〉HΩ
= 0 in the liquid state.

In the random solid state, it is reasonable to hypothesize that the particles

belonging to the infinite cluster are localized. Imagine that we measure the

position of one localized particle, and then measure it again after a very long

time. If the particle is delocalized, the two positions could each be anywhere

in space and are uncorrelated. On the contrary, if the particle is localized, the

two positions are both likely to be found near the mean position around which

the particle fluctuates. In the language of the replica method, all replicas of the

particle under consideration are likely to be found near a common but arbitrary

spatial position. 5 This is because, as we have discussed above, each replica

corresponds to a copy of the same disordered system but with distinct thermal

fluctuations, or measurements of the system separated by very long times. A

particle localized as a part of the infinite cluster fluctuates around its fixed

mean position, which is not changed by thermal fluctuations. Therefore, it is

localized around the same mean position in each replica, thus the mean of the

order parameter 〈Ω(x̂)〉HΩ
becomes nonzero and depends on the correlations of

the densities between the distinct replicas.

From the above discussion, we see that the order parameter, Eq. (3.38), is

able to distinguish between the liquid and the random solid state. A suitable

form the this order parameter in the random solid state, and the pattern of

spontaneous symmetry breaking associated with the liquid-to-random solid state

phase transition, will be discussed in Section 1.3.4.

5Strictly speaking, the localized infinite cluster can undergo global translations or rotations
from replica to replica, and this corresponds to distinct equilibrium states of the field theory,
connected by relative translations and/or rotations of the replicas.
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1.3.4 Landau free energy and spontaneous symmetry

breaking

The symmetry transformations of the vulcanization order parameter can be

expressed explicitly in terms of a scalar field on (1 + n)d dimensional space.

These include translations of the replicas of space

x̂ → x̂′ = x̂+ â,

Ω(x̂) → Ω′(x̂′) = Ω(x̂) = Ω(x̂′ − â), (1.23)

where â ≡ (a0, a1, . . . , an) represents a replicated translation. Similarly, under

rotations of the replicas of space we have

x̂ → x̂′ = Ô · x̂,
Ω(x̂) → Ω′(x̂′) = Ω(x̂) = Ω(Ô−1 · x̂′), (1.24)

where Ô ≡ (O0,O1, . . . ,On) represents a replicated rotation.

The Landau free energy is constructed with the following two considerations:

• The Landau free energy has the full symmetry [Eqs. (1.23,1.24)], and so

does the liquid-state order parameter. Due to random particle localization,

the order parameter in the random solid state has broken symmetry for

the relative translations and rotations between different replicas, but the

symmetry of common translations and rotations of all replicas remains

intact, reflecting the isotropy and homogeneity of the random solid state

at the macroscopic level.

• The particle density in any single replica is kept fixed, due to the strong

excluded-volume interaction (corresponding to the incompressibility con-

dition for rubber).

The first consideration is not hard to understand: as we have discussed in the

previous section, the densities of a localized particle in different replicas are cor-

related (they appear near the same mean position in each replica/measurement);

therefore, any relative translations and rotations would change the state. But

the common translations and rotations of all replicas together is a preserved

symmetry. On the contrary, the liquid state is homogeneous and isotropic, and

is thus invariant not only for common but also for relative translations and

rotations.
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The second consideration puts a constraint on the order parameter:

1

N

N
∑

j=1

〈δ(d)(x0 − c0j )〉χ =
1

V0
,

1

N

N
∑

j=1

〈δ(d)(xα − cαj )〉χ =
1

V
forα ≥ 1,

⇒
∫ n

∏

β( 6=α)=0

ddxβ Ω(x̂) = 0 for all α. (1.25)

This means that the single-replica density is uniform, because any density fluctu-

ations are totally suppressed by the excluded-volume repulsion. Equation (1.25)

is incorporated as a hard constraint on the field theory.

These considerations infer that the Landau free energy H can be written as

H =

∫

dx̂
{r

2
Ω(x̂)2 +

1

2

n
∑

α=0

(

▽α Ω(x̂)
)2 − v

3!
Ω(x̂)3

}

(1.26)

with the constraint Eq. (1.25). As in a typical Landau theory, at the classical

level the phase transition occurs at r = 0. For r > 0 the liquid state is stable,

and it becomes unstable at r < 0. This Landau free energy was originally

derived from a semi-microscopic approach, as a leading-order expansion of the

effective Hamiltonian; see Chapter 3 for details.

Incorporating the constraint Eq. (1.25) is perhaps clearer in momentum

space. We define our Fourier transforms as

Ωp̂ =

∫

dx̂e−ip̂·x̂Ω(x̂),

Ω(x̂) =
1

V0V n

∑

p̂

eip̂·x̂Ωp̂ . (1.27)

Then the constraint (1.25) translates to

Ωp̂ |p̂=0 = 1,

Ωpǫ
α = 0, for p 6= 0, (1.28)

where we have introduced a complete set of orthonormal basis vectors in replica

space {ǫα}n
α=0, in terms of which any vector x̂ can be expressed as

x̂ =

n
∑

α=0

xα
ǫ

α, (1.29)

where the coefficients xα are themselves, d-dimensional vectors. The condition

Ωpǫ
α = 0 (for p 6= 0) is equivalent to Eq. (1.25). Because of this hard constraint

of incompressibility, we shall separate the replicated space into a Lower Replica

Sector (LRS), in which density fluctuations are completely suppressed [as in
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Eq. (1.28)], and a Higher Replica Sector (HRS), which captures the correlations

between distinct replicas, and has the instability at the liquid-to-random solid

transition. The definitions of the LRS and HRS are (in momentum space) as

follows: if a replicated momentum vector p̂ ≡ (p0, p1, . . . , pn) has either no or

only one component pα being nonzero, and has all other components pβ = 0,

then p̂ ∈ LRS; on the other hand, if two or more components of p̂ are non-zero

then we have p̂ ∈ HRS.

Therefore, the only fields Ω(x̂) that feature in the Landaau theory are the

HRS ones (i.e., ones in which the Fourier amplitudes Ωp̂ are nonzero only for

p ∈ HRS), and the LRS ones are completely constrained. In momentum space

the Landau free energy then reads

H =
∑

p̂∈HRS

(r

2
+

1

2
|p̂|2
)

Ωp̂Ω−p̂ − v

3!

∑

p̂1,p̂2∈HRS

Ωp̂1
Ωp̂2

Ω−p̂1−p̂2
, (1.30)

(where for clarity we have omitted the 1
V0V n factors in each of the momentum

summations). It is now apparent that the instability associated with the liquid-

to-random solid transition at r > 0 happens only in the HRS. This indicates

that the phase transition amounts to a change in the correlations among the

distinct replicas.

The stationarity condition for the order parameter Ωp̂ is

0 =
δH

δΩ−p̂
=
(

r + |p̂|2
)

Ωp̂ − v

2

∑

k̂∈HRS

Ωk̂ Ωp̂−k̂ . (1.31)

It is evident that the liquid state Ωp̂ = 0 is always a solution to this stationarity

point equation. From the form of free energy Eq. (1.30), we know that a new

nonzero Ω state will emerge for r < 0. The form of the order parameter (which

has only an HRS part) in the random solid state is hypothesized to be

Ωp̂ = Q

∫

dz

V0

∫

dτ P(τ) e−
|p̂|2

2τ
−ip0·z−i

∑n
α=1 pα·(ζz) −Qδ

((1+n)d)
p̂ , (1.32)

which is parameterized by Q (i.e., the fraction of particles that are localized)

and P(τ) (i.e., the distribution of inverse square localization lengths), where

τ ≡ 1/ξ2 is the inverse square localization lengths, ξ is the localization length,

and δ
((1+n)d)
p̂ is the Kronecker delta function in (1+n)d dimensional momentum

space. This form is probably easier to digest if we transform back to replicated

real space, where it becomes

Ω(x̂)= Q

∫

dz

V0

∫

dτ P(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 {|x

0−z|2+
∑n

α=1 |xα−ζz|2} − Q

V0V n
. (1.33)

By comparing this form with the definition of the order parameter (1.21,3.38),

one can understand the structure of this order parameter form. Q denotes the

fraction of localized particles (i.e., the gel fraction). The density function of a
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particle localized around a random position ζz is given by e−
τ
2 |x

α−ζz|2 in replica

α. 6 Correspondingly, this particle was near position z in the preparation state.

The lengthscale of the thermal position fluctuations of a localized particle is

characterized by a localization length ξ. Here, for historical reasons, we use the

inverse squared localization length variable τ ≡ 1/ξ2. Because the network is

heterogeneous, each particle can have a widely different value of the localization

length. This heterogeneity is characterized by the distribution P(τ), which will

be obtained by solving Eq. (1.31).

Inserting the hypothesized form (1.32) into the stationary condition (1.31),

one gets the stationarity conditions on Q and P(τ). The resulting Q is given by

Q =
2|r|
v
, (1.34)

for r < 0 (naturally, Q = 0 for r ≥ 0); so near the transition, the fraction of

localized particles grows linearly with the control parameter |r|.
The distribution of inverse squared localization lengths satisfies the integro-

differential equation

τ2

2

dP(τ)

dτ
=
( |r|

4
− τ
)

P(τ) − |r|
4

∫ τ

0

dτ1P(τ1)P(τ − τ1). (1.35)

1 2 3 4 5
t

0.1

0.2

0.3

0.4

0.5

ΠHtL

Figure 1.5: The universal function π(t), which governs the scaling of the distri-
bution P(τ) of inverse square localization lengths.

This equation can be simplified by taking the scaling form

P(τ) =
4

|r|π(t), (1.36a)

τ =
|r|
4
t. (1.36b)

6ζ is a scalar parameter corresponding to a uniform contract of the whole volume due to
crosslinking (see the discussion in Chapter 3).
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One then finds that the universal function π(t) obeys

t2

2

dπ(t)

dt
= (1 − t)π(t) −

∫ t

0

dt′π(t′)π(t− t′). (1.37)

Combining with the normalization condition
∫∞

0
dt π(t) = 1, the asymptotic

forms of π, valid for small and large t, can be derived analytically, and have

proven to give a quite accurate solution to Eq. (1.37); see Refs. [8, 43] for

details. The fundamental conclusion is that the function π(t) has a peak at

t ≃ 1 of width of order unity, and decays rapidly both as t → 0 and as t → ∞,

as shown in Fig. 1.5. By combining these features of π(t) with the scaling form,

Eq. (1.36), we see that the typical inverse squared localization length scales as

|r| [see Eq. (1.36b)], and thus the typical localization length ξ scales as |r|−1/2

near the transition to the random solid state.

1.3.5 Applications of vulcanization theory

Vulcanization theory captures the basic pattern of symmetry breaking at the

liquid-to-random solid phase transition. This pattern of symmetry breaking and

the concept of particle localization have universal meaning in the general case of

random solidification transitions, without reference to any microscopic details,

and is not peculiar to randomly crosslinked polymer systems.

The renormalization-group analysis of this vulcanization theory has been

carried out by Peng and Goldbart [10], and subsequently by Peng et al. [53]

and Janssen and Stenull [54]. A 6− ǫ expansion is studied, yielding a nontrivial

fixed-point and critical exponents that are consistent with percolation theory,

but with additional characterization of the thermal fluctuations.

Along these lines, a renormalization-group analysis of the emergence of en-

tropic shear rigidity at the vulcanization transition was studied by Xing et

al. [38]. In this setting, two universality classes were identified and analyzed,

corresponding to phantom elastic networks and dense systems possessing strong

excluded-volume interactions, respectively.

The Goldstone fluctuations in the random solid phase have also been in-

vestigated by Mukhopadhyay et al. [55], and by Goldbart et al. [56]. These

Goldstone fluctuations have been identified with shear deformations, and their

properties have been explored.

Vulcanization theory has also been extended and applied to the elasticity

of liquid crystal elastomers [57], and to glassy correlations and micro-phase-

separation in crosslinked homopolymer blends [58], semiflexible polymers [59],

etc., revealing a rich spectrum of physics that can be investigated via this frame-

work.

In Chapters 3, 4, and 5, we shall study the heterogeneity of the elastic

properties of soft random solids, via an approach that involves identifying the

Goldstone fluctuations, and constructing an interpretation of the Goldstone

19



theory in terms of a phenomenological model of a quenched random elastic

medium.

1.4 Basics of Goldstone fluctuations

1.4.1 Spontaneous breaking of continuous symmetries

Spontaneous Symmetry Breaking (SSB) is one of the most important concepts

in modern physics. It takes place when a system whose Hamiltonian and equi-

librium state are symmetric with respect to some symmetry group makes a

transition to an equilibrium state that is less symmetric. The free energy of the

system has the full symmetry but, by tuning the parameters, the states with

the lowest free energy can become a set of states that break the full symmetry.

This can be illustrated using the mean-field xy [also called O(2) vector]

model. The order parameter of the xy model is a two-component vector, and

can be parameterized as ψ = s(cos θ, sin θ). The symmetry transformation of

this order parameter is ψ → ψ′ = Oψ, where O is a rank-2 orthogonal matrix.

Orthogonality requires that OT = O, and so |ψ|2 is invariant with respect to

this transformation.

The free energy is invariant with respect to this O(2) transformation of the

order parameter, and so the Landau theory is, retaining just the few lowest

order terms,

F =

∫

ddx
{r

2
|ψ|2 +

1

2
| ▽ ψ|2 +

u

4!

(

|ψ|2
)2
}

, (1.38)

where ▽ denotes spatial derivatives, and | ▽ ψ|2 ≡∑d
j=1 ∂jψ ∂jψ.

The equilibrium state of this free energy should be homogeneous in space,

so that the | ▽ ψ|2 is minimized. As a result, the problem simplifies to one of a

free energy of a spatially independent order parameter ψ:

f =
r

2
|ψ|2 +

u

4!

(

|ψ|2
)2
. (1.39)

This free energy has qualitatively different structures for r > 0 and r < 0

(assuming u > 0), as illustrated in Fig. 1.6. For r > 0, the minimum of the free

energy is at ψ = 0, which preserves the O(2) symmetry. On the other hand,

for r < 0 the minimum is on the circle with |ψ|2 = s20 = 6|r|
u . The equilibrium

state of the system, in the thermodynamic limit, can only choose one point on

this circle [60], with an arbitrary value of θ, and thus the O(2) symmetry is

spontaneously broken.

1.4.2 Goldstone modes and generalized elasticity

In the case of SSB in the xy model, the broken symmetry O(2) is a continuous

symmetry. In the language of particle physics, Goldstone’s theorem states that
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Figure 1.6: The potential of the xy model: (a) for r > 0; and (b) for r < 0.

whenever a continuous symmetry is spontaneously broken, new massless scalar

particles appear in the spectrum of possible excitations. There is one scalar

particle — called a Goldstone boson — for each generator of the symmetry that

is broken, i.e., that is not preserved in the equilibrium state [61, 62]. 7

In the example of xy model, the broken O(2) symmetry gives exactly one

Goldstone boson. For example, we may choose the equilibrium state to be

ψ0 = (s0, 0), which means θ = 0, as shown in Fig. 1.7. Obviously, this state

breaks the O(2) symmetry. In fact, a symmetry operation O will move this

state to another equilibrium state on the circle.

With fluctuations around the ground state ψ0, we can write the order pa-

rameter as ψ(x) = ψ0 + δψ(x), which can be parameterized via δs(x) and δθ(x)

(note that the fluctuations can vary in space) as:

ψ(x) = (s0 + δs(x))
(

cos δθ(x), sin δθ(x)
)

. (1.40)

Inserting this order parameter into the free energy Eq. (1.38), and using s20 =
6|r|
u , we find that

F = F0 +

∫

ddx
{ |r|

2
|δs(x)|2 +

1

2
| ▽ δs(x)|2 +

1

2
s20| ▽ δθ(x)|2

}

. (1.41)

It is evident that the field δs(x) has mass |r|, but the δθ(x) field is massless.

Low-energy excitations do not touch δs(x), so the low-energy version of the

theory will be (dropping the unimportant constant equilibrium state energy

part) is given by

F =
1

2
ρθ

∫

ddx| ▽ δθ(x)|2, (1.42)

7In the language of condensed matter physics, “particles”here should be associated with
modes of fluctuations of the system, and “mass”with the inverse of susceptibility (i.e., coeffi-
cient of the the quadratic term in free energy).
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with the stiffness of the Goldstone mode ρθ is given by

ρθ = s20 =
6|r|
u
. (1.43)

δs

ψ0

δθ

F

Figure 1.7: Fluctuations around the ground state ψ0 in the broken symmetry
phase of the xy model. The fluctuation δψ consists two sectors, a massive sector,
δs, in which the potential increases quadratically with |δs|; and the massless
Goldstone sector, δθ, which is along the “valley” of the potential energy.

The Goldstone mode δθ(x) is massless in this state, and the energy-cost of

its spatial variations is characterized by ρθ. A typical spatial configuration of a

low energy Goldstone type fluctuation is depicted in Fig. 1.8.

Figure 1.8: A typical spatial configuration of a low-energy Goldstone mode.
The arrows represent the local directions of the ψ field.

From this example we see that, for theories possessing Goldstone modes, a

global change of the value of the order parameter cost no energy, and only the
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distortions of the state in space do cost energy. This is similar to the elastic free

energy, in which displacements of the whole elastic medium do not cost energy,

but relative displacements do. In fact, this free energy associated with the

spatial distortion of the Goldstone mode, is called the generalized elasticity [36].
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Chapter 2

Cavity approach to the

random solid state

In vulcanization theory, the mean-field equilibrium state of soft random solids is

specified by two diagnostics: the fraction of localized particles Q and the distri-

bution of localization lengths (or more usefully, the inverse squared localization

lengths) P(τ). Simple equations for Q and P(τ), Eqs. (1.34) and (1.35), follow

from the stationarity of the mean-field free energy with respect to the order

parameter Ω. [Actually, a more precise equation for Q, valid not just near the

phase transition but, rather, for any value of the density of links, is given by

the semi-microscopic model; see Eq. (3.43).] This simplicity suggests that one

should be able to establish a heuristic and physically transparent method, valid

at least at the mean-field level, for characterizing the liquid-to-soft random solid

transition that avoids the powerful but strange mathematical subtleties of the

replica approach.

Such an approach can be established via the cavity method [39, 63] (which

is similar to the Thouless-Anderson- Palmer (TAP) approach [64]). The cavity

method has proven flexible and powerful in the analysis of a variety of other

disordered systems, e.g., spin glasses. The present work is based on the version

used to address spin glasses having finite connectivity [63].

In this chapter, we review our cavity approach to soft random solids [65]. It

is worth mentioning that we view the cavity method as complementing rather

than supplanting the replica method: the latter provides access to the powerful

array of field-theoretic tools beyond mean field.

2.1 Cavity method for crosslinked polymer

networks: vulcanization transition region

We begin by considering a system of vulcanized polymers, as depicted in Fig. 2.1 a.

We characterize the system by the fraction of localized particles (in this case,

polymers) Q, and the statistical distribution N of the squared localization

lengths ξ2 of the localized particles. Here, we follow the notations in Ref. [65],

and use the distribution of squared localization lengths N (ξ2), rather than the

distribution of inverse squared localization lengths P(τ) (where τ ≡ 1/ξ2). The

relationship between the two descriptions will be summarized in the results; see

Eq. (2.18).
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(a)

ξ1

2ξ

(a)

(b)

(b)

Figure 2.1: (a) Snapshot of a crosslinked (open circles) polymer system, in
which a fraction Q of the polymers belong to the infinite cluster (and are thus
localized), and the remaining fraction 1−Q are delocalized. A localized segment
exhibits thermal position-fluctuations over a length-scale ξ (i.e., its localization
length). Due to the heterogeneity of the network, distinct segments have distinct
localization lengths. (b) Coupling of a new polymer (dashed) to the system in
order to probe the distribution N (ξ2). The new polymer has Nc contact points
with the existing network, and crosslinks are introduced independently at these
points.

The first step is to envisage adding a further polymer to the system, as

shown in Fig. 2.1 b. Of all the segments on this chain, 1 we suppose that a

certain number Nc are sufficiently close to segments of the original system to

have a chance of becoming crosslinked to them. We suppose that fluctuations in

this number are sufficiently small that we may neglect them. Next, we consider

a random crosslinking process that results, with independent probability p, in

crosslinks actually being introduced between each of the Nc close pairs. Within

this framework, the probability that exactly k′ crosslinks are introduced is then

given by the binomial formula

(

Nc

k′

)

pk′

(1 − p)Nc−k′

. (2.1)

We now ask the question: What is the probability Pk that exactly k of these

crosslinks are made to localized segments? To answer it, we make the approx-

imation that whether or not the segments of the original system are localized

are independent random events. We refer to the probability of any one such

segment being localized as Q. Then, collecting together the contributions to

this probability, which arise from k′ (k ≤ k′ ≤ Nc) crosslinks being formed, of

which exactly k are to localized segments, we arrive at the formula

Pk =

Nc
∑

k′=k

(

Nc

k′

)

pk′

(1 − p)Nc−k′

(

k′

k

)

Qk(1 −Q)k′−k. (2.2)

1The concept of “segments” refer to portions on a polymer having lengths of order the
persistence length lp, which enable one to view the polymer as freely-joined segments.
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Via a straightforward application of the binomial theorem one can perform this

summation, and hence arrive at the result

Pk =

(

Nc

k

)

(pQ)k(1 − pQ)Nc−k. (2.3)

Let us evaluate these probabilities for the three cases of relevance, viz.,

P0 = (1 − pQ)Nc , (2.4a)

P1 = NcpQ(1 − pQ)Nc−1, (2.4b)

P2 =
1

2
Nc(Nc − 1)(pQ)2(1 − pQ)Nc−2. (2.4c)

Near the transition, which is the regime of prime interest, we have Q ≪ 1. We

also assume that p ≪ 1 and Nc ≫ 1, but Ncp is finite, indicating that the

mean number of crosslinks formed (to either delocalized polymers or localized

polymers in the infinite cluster) is finite, so pQ ≪ NcpQ ≪ 1; then these

probabilities simplify to

P0 ≃ e−NcpQ, (2.5a)

P1 ≃ e−NcpQNcpQ, (2.5b)

P2 ≃ e−NcpQ 1

2
Nc(Nc − 1)(pQ)2. (2.5c)

To arrive at a self-consistent equation for Q (as a function of p and Nc) we

require that the probability of the added polymer being crosslinked to exactly

zero localized segments be 1 −Q, which gives

1 −Q = (1 − pQ)Nc . (2.6)

In the limit pQ≪ 1 this becomes

1 −Q = e−NcpQ. (2.7)

For Ncp < 1, this equation has only one solution: Q = 0, representing the liquid

state; but for Ncp ≥ 1 another solution emerges, in addition to Q = 0, as shown

in Fig. 2.2, representing the random solid state, which has a finite fraction of

particles being localized, and is the stable state for Ncp ≥ 1.

By identifying that Ncp ≡ η2 is actually the mean coordination number

(i.e., mean number of crosslinks made to one polymer; see the discussion in

Section 3.1), we see that we have arrived at precisely the equation for Q that

was obtained via the semi-microscopic theory and the replica method. The

same equation has been found by Erdös and Rényi in their classical work on

the statistical properties of random graphs [66]. This relation between Q and

η2 is not restricted to the transition region, but Eq. (1.34) is, and it can be seen

as a leading-order expansion of Eq. (2.7). Of course, they are both mean-field
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Figure 2.2: Stable solution of the self-consistency equation for the fraction of
localized particles Q.

relations, and the scaling of the fraction of the localized particles very near

the critical point would only be given correctly by a renormalization-group (or

other, more accurate) analysis, as in Ref. [10].

The second step is to arrive at a self-consistent equation for N (ξ2) (as a

function of p, Nc, and ξ2). To achieve this we address the probability that the

segment at arclength σ on the added polymer has squared localization length

ξ2. The arclength σ (1 ≤ σ ≤ 1) measures the distance of the segment from a

particular end of the polymer, as a fraction of the total arclength.

As the segments of the added polymer will only be localized if they are

attached to at least one localized segment of the original system, we should

replace the probabilities Pk by the probabilities conditioned on at least one

crosslink being made to the localized cluster. Thus, we have the conditional

probabilities (for k ≥ 1):

P̂k =
Pk

1 − P0
. (2.8)

In particular, we are interested in two cases: the polymer being linked with

one segment to the localized cluster P̂1, or being linked with two segments to

the localized cluster P̂2. With the assumption that pQ ≪ 1, we know that

P̂1 ≫ P̂2 ≫ P̂3 · · · , so we only keep the first two orders and put P̂1 = 1− a and

P̂2 = a, where a is a small parameter, O(NcpQ).

Consider the case in which the added polymer is crosslinked at its arclength

σ1 to a single segment of the original system, and let the squared localization

length of that segment in the original system be ξ21 , as depicted in Fig. 2.1 a.

Furthermore, suppose that the added chain has Gaussian statistics. Then, by

the elementary properties of random walks, the mean-square spatial separation

of segments separated by arclength |σ−σ1| is given by |σ−σ1|R2
g, where R2

g is the

mean squared end-to-end distance of each chain. Thus, if N is the distribution

for the squared localization length of the segment of the original system, to

which the new chain is crosslinked at arclength σ1, the distribution of the square
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localization length ξ2 for the segment at arclength σ on the new chain will be

given by

∫

dξ21 N (ξ21) δ
(

ξ2 − (ξ21 + |σ − σ1|R2
g)
)

= N (ξ2 − |σ − σ1|R2
g). (2.9)

Now, supposing that the addition to the squared localization length, |σ−σ1|R2
g,

is small compared with the squared localization lengths that feature with ap-

preciable weight in N (ξ2), i.e., the size of the polymer is much smaller than the

typical localization length, Eq. (2.9) approximates to

N (ξ2 − |σ − σ1|R2
g) ≃ N (ξ2) − |σ − σ1|R2

g N ′(ξ2). (2.10)

(a)

σ

σ

ξ

ξ1

1

(a)

(b)

σ

σ

σ

ξ

1

1
2

2ξξ

(b)

Figure 2.3: (a) The added polymer is attached at a single segment to the infinite
cluster (i.e., the shaded region). (b) The added polymer is attached at two
segments to the infinite cluster.

Next, consider the situation in which the added polymer is crosslinked at

its pair of arclengths σ1 and σ2 to two segments of the original system, these

segments having respectively squared localization lengths ξ21 and ξ22 , as shown

in Fig. 2.1 b. In fact, as the probability that the added chain has two crosslinks

to localized segments of the original system is (in the limit of interest) much

smaller than the probability that it has one crosslink, we shall not need to keep

track of the arclength locations of the crosslinks; in this situation it will be

adequate to treat the added chain as a point object. Then, as this object is

attached to two localized objects, it is pinned more sharply than either of them,

this parallel form of pinning giving rise to a smaller square localization length

ξ2, via the formula

ξ−2 = ξ−2
1 + ξ−2

2 . (2.11)

So, assuming that ξ21 and ξ22 are independent [and thus governed by the joint
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distribution N (ξ21)N (ξ21)], the resulting distribution of ξ2 is given by

∫

dξ21 N (ξ21)

∫

dξ22 N (ξ22) δ
(

ξ2 − (ξ−2
1 + ξ−2

2 )−1
)

. (2.12)

We now put these results together to construct the distribution of squared

localization length for segment σ of the added chain, arriving at the consistency

equation of the distribution of square localization lengths:

N (ξ2) =(1 − a)
(

N (ξ2) − |σ − σ1|R2
g N ′(ξ2)

)

+ a

∫

dξ21 N (ξ21)

∫

dξ22 N (ξ22)δ
(

ξ2 − (ξ−2
1 + ξ−2

2 )−1
)

. (2.13)

Finally, we average over the segment σ of the added chain, as well as the location

σ1 of the crosslink, using

∫

dσ

∫

dσ1 |σ − σ1| =
1

3
, (2.14)

thus arriving at the self-consistent equation obeyed by the distribution of squared

localization lengths:

N (ξ2) =(1 − a)
(

N (ξ2) − 1

3
R2

g N ′(ξ2)
)

+ a

∫

dξ21 N (ξ21)

∫

dξ22 N (ξ22) δ
(

ξ2 − (ξ−2
1 + ξ−2

2 )−1
)

. (2.15)

Observe that by integrating both sides over ξ2, and invoking the property that

N (ξ2) vanishes in the limits ξ2 = 0 and ξ2 → ∞, we recover the normalization

condition that
∫

dξ2N (ξ2) = 1.

The scaling property of N (ξ2) shows up via the following change of depen-

dent and independent variables:

ξ2 → t ≡ 2

3

1 − a

a

R2
g

ξ2
, (2.16a)

N (ξ2) → π(t) ≡ 3

2

a

1 − a

ξ2

R2
g

ξ2N (ξ2), (2.16b)

under which Eq. (2.15) becomes

t2

2

dπ(t)

dt
= (1 − t)π(t) −

∫ t

0

dt′π(t′)π(t− t′). (2.17)

This is precisely Eq. (1.37). Comparing the scaling in Eq. (2.16) and (1.36), we

identify that the parameter |r| in the Landau theory corresponds to 6a
(1−a)R2

g
(to

leading order in pQ).

In addition, the relation between the distribution of the squared localization
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lengths and the inverse square localization lengths is given by

N (ξ2) = τ2P(τ). (2.18)

Notice that the cavity method allows us to compute corrections to Eq. (2.17)

perturbatively in 1/R2
g.

2.2 Cavity method for the randomly linked

particle model: arbitrary link-densities

The cavity approach can be extended to a simpler model network. Consider

a system composed of N point-like particles undergoing Brownian motion at

a certain temperature T . A liquid-to-random solid transition can be triggered

by introducing random covalent bonds between particles that are nearby in

the liquid state. This model can capture the essence of the chemical gelation

transition and, in fact, in a coarse grained view it also characterizes the vulcan-

ization transition exhibited by long flexible polymers; see the detailed discussion

in Chapter 3. We shall call this model the Randomly Linked Particle Model

(RLPM); see Refs. [65, 67, 68, 69].

In the RLPM, the random covalent bonds are modeled as springs of zero-

rest-length (see the discussion of this assumption in Section 3.1). Thus, the

probability distribution φ of the separation of the two particles linked by this

bond ~ci−~cj is Gaussian and characterized by a length-scale b (which scales with

temperature as b ∼ T 1/2):

φ(~ci − ~cj) ∝ e−
|~ci−~cj |2

2b2 , (2.19)

where ~ci and ~cj are the position vectors of particles i and j. This model is

sufficiently simple that the analysis of it need not be restricted to the critical

region and can be extended to any density of links.

To approach the statistics of the RLPM using the cavity method, we consider

the process of adding a new particle. The combinatorics of the bonding follows

the form taken for the system of crosslinked polymers; we simply need to convert

the notion of contact points into spherical regions of a certain radius in which the

likelihood of particles being bonded to one another is concentrated. This sphere

is centered on the new particle and, on average, includes Nc of the existing

particles. Then, bonds are randomly introduced, with probability p, between

the new particle and some of the Nc existing particles that are nearby. Thus,

the foregoing combinatorics continues to apply, and we arrive at the formula

for the probability of having exactly k bonds with the infinite cluster given in

Eq. (2.3). As a consequence, we obtain the foregoing result for the fraction of

the infinite cluster Q, Eq. (2.7).

The physics of the localization length is, in fact, simpler for the RLPM. When
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the new particle is connected via a spring of length b to one localized particle,

its localization length Ξ1 is given by Ξ2
1 = (ξ2 + b2). When it is connected in

parallel via identical springs to k localized particles, its localization length Ξk

is given by

1

Ξ2
k

=
k
∑

j=1

1

ξ2j + b2
. (2.20)

To construct the distribution of the square localization length of the new par-

ticle, we shall average over all possible numbers of bonds, weighted by their

corresponding probabilities. These probabilities follow from the probabilities

Pk given by Eq. (2.3), but normalized by a factor Q−1 because the new particle

will only be localized if it is bonded to at least one particle in the infinite clus-

ter. Hence, we arrive at a self-consistency equation for SLL distribution for the

RLPM:

N (ξ2) =

∞
∑

k=1

P̂k

∫

dξ21 N (ξ21) · · · dξ2k N (ξ2k) δ(ξ2 − Ξ2
k), (2.21)

where the conditional probabilities P̂ are given by P̂ = P/Q (for k = 1, 2, 3, . . .).

The distribution of squared localization lengths for the RLPM was obtained pre-

viously by Broderix et al. [69] using the replica method and a Mayer expansion.

To see that the cavity approach result, Eq. (2.21), recovers their result, we take

the limit Nc → ∞ while keeping finite the mean number of bonds from the new

particle (either to the infinite cluster or to delocalized particles), i.e., pNc. In

this limit, the binomial distribution tends to a Poisson distribution:

P̂k →
( (pNc)

kQk−1

k!
e−pNcQ

)

. (2.22)

The result of Broderix et al. [69] then follows from Eq. (2.21) by (i) transforming

to a distribution for the inverse squared localization lengths τ ≡ 1/ξ2, and (ii)

making the identifications κ = b−2 and c = pNc (i.e., the mean of coordination

number).
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Chapter 3

The semi-microscopic

approach: the randomly

linked particle model
The randomly linked particle model (or RLPM) is a convenient minimal model

of soft random solids, inasmuch as it adequately captures the necessary long-

wavelength physics. It can be viewed as a simplified version of the vulcanization

theory [43, 56], with the microscopic details, such as the polymer chain confor-

mations, being ignored. Nevertheless, it is able to reproduce the same univer-

sality class as vulcanization theory at the liquid-to-random solid transition. For

the study of elasticity, we shall consider lengthscales on which the system is a

well-defined solid (i.e., scales beyond the “localization length”, as we shall see

later in this Thesis). These lengthscales are much larger than the characteristic

linear dimension of an individual polymer.

3.1 The model

The RLPM consists ofN particles in a volume V . In order to study the elasticity,

including bulk deformations, this volume V is allowed to fluctuate under a

given pressure p. The positions of these particles in this fluctuating volume

are denoted by {cj}N
j=1. The particles in the RLPM interact via two types of

interactions: the excluded volume interaction between any two particles (either

direct or mediated by a solvent) [13, 16, 17], and the attractive interactions

between the particles that have randomly been chosen to be linked. Thus, the

Hamiltonian can be written as

Hχ =
ν2

2

N
∑

i,j=1

δ(ci − cj) +
M
∑

e=1

vL

(

|cie
− cje

|
)

. (3.1)

Here, the label e indexes the links in a given realization of the quenched disorder,

from 1 to the total number of links M . Between each pair that is being linked

there is a attractive potential energy vL, which we term a soft link (as opposed

to the usual hard constraints of vulcanization theory).

The particles of the RLPM can be identified with coarse-grained polymers or

small molecules, and the soft links, can be identified with Gaussian molecular

chains or covalent bonds that bind the small molecules to one another. For
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Gaussian chains, the potential can be modeled as

v
(GC)
L (|r|) =

kBT |r|2
2a2

, (3.2)

i.e., a harmonic attraction, or a “zero rest-length” spring, of lengthscale a be-

tween the two particles. In making this coarse-graining one is assuming that

microscopic details (e.g., the precise locations of the crosslinks on the polymers,

the internal conformational degrees of freedom of the polymers, and the effects

of entanglement) do not play significant roles for the long-wavelength physics.

In part, these assumptions are justified by studying more detailed models, in

which the conformational degrees of freedom of the polymers are retained [8].

For chemical gels, the links are covalent bonds, and can be modeled as

v
(CB)
L (|r|) =

k

2

(

|r| − l
)2
, (3.3)

i.e., as springs of rest-length l, representing the (mechanical) equilibrium length

of the bond.

In the following discussion, we shall use the Gaussian chain potential, Eq. (3.2)

for simplicity. For the long-wavelength physics, the difference between these two

potentials is a microscopic detail and can be ignored [see the discussion below

Eq. (3.34)].

From the discussion above, the RLPM can be regarded as either a caricature

of vulcanized rubber, or as a model of a chemical gel, or other soft random solid.

It is a model very much in the spirit of lattice percolation, except that it natu-

rally allows for particle motion as well as particle connectivity, and is therefore

suitable for the study of continuum elasticity and other issues associated with

the (thermal or deformational) motion of the constitute entities.

Equation (3.1) is a Hamiltonian for a given realization of quenched disorder

χ ≡ {ie, je}M
e=1, which describes the particular random instance of the linking

of the particles. These links are the quenched disorder of the system, which

are specified at synthesis and do not change with thermal fluctuations, because

there is a wide separation between the timescale for the linked-particle system to

reach thermal equilibrium and the much longer timescale required for the links

themselves to break. Therefore, in these systems we treat the links as perma-

nent. Later, we shall apply the replica technique [39], which can appropriately

deal with both the quenched and the annealed variables.

For a given volume and a given realization of disorder χ we can write the

partition function for the RLPM, Zχ, as

Zχ(V ) ≡
∫

V

N
∏

i=1

dci exp
(

− Hχ

kBT

)

= ZL(V )

〈

M
∏

e=1

∆(0)
(

|cie
− cje

|
)

〉H0

1

, (3.4)

where H0 ≡ ν2

2

∑N
i,j=1 δ(ci − cj) is the excluded volume interaction part of the
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Hamiltonian, and ZL(V ) ≡
∫

V

∏N
i=1 dci exp

(

−H0/kBT
)

is the partition func-

tion of the liquid in the absence of any links. The issue of the Gibbs factorial

factor that is introduced to compensate for the overcounting of identical configu-

ration is a genuinely subtle one in the context of random solids (for a discussion,

see Ref. [8]). However, our focus will be on “observables” such as order param-

eter, rather than on free energies, and thus the omission of the Gibbs factor is

of no consequence. The factor

∆(0)
(

|cie
− cje

|
)

≡ e−
|cie

−cje
|2

2a2 (3.5)

is associated with the link-induced attractive interaction term in the Hamilto-

nian. The average, 〈· · ·〉H0
1 taken with respect to a Boltzmann weight involving

the excluded volume interaction Hamiltonian H0, is defined as

〈· · ·〉H0
1 ≡ 1

ZL(V )

∫

V

N
∏

i=1

dci e
−

H0
kBT · · · . (3.6)

The corresponding Helmholtz free energy is then given by

Fχ(V ) ≡ −kBT lnZχ(V ). (3.7)

To perform the average of the free energy over the quenched disorder, we

shall need to choose a probability distribution that assigns a sensible statistical

weight P({ie, je}M
e=1) to each possible realization of the total number M and

location {ie, je}M
e=1 of the links. Following an elegant strategy due to Deam

and Edwards [16], we assume a version of the normalized links distribution as

follows:

P(χ) =

(

η2V0

2N∆
(0)
0

)M
Zχ(V0)

M !Z1
, (3.8)

where V0 is the volume of the system at the instant the links are made, and η2

is a parameter that controls the mean total number of links. The Zχ(V0) factor

is actually the partition function, as given in Eq. (3.4), and can be regarded

as probing the equilibrium correlations of the underlying unlinked liquid. The

factor ∆
(0)
0 =

(

2πa2
)d/2

is actually the p = 0 value of the Fourier transform of

the ∆(0) function defined in Eq. (3.5), and we shall see later that these factors

ensures that the (mean-field) critical point occurs at η2 = 1. The normalization

factor Z1 ≡ ∑

χ

(

η2V0

2N∆
(0)
0

)M
Zχ(V0)/M !. The calculation for Z1 is straightfor-

ward, and is given in Appendix B.

The Deam-Edwards distribution can be envisaged as arising from a realistic

vulcanization process in which the links are introduced simultaneously and in-

stantaneously into the liquid state in equilibrium. Specifically, it incorporates

the notion that all pairs of particles that happen (at some particular instant)
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to be nearby are, with a certain probability controlled by the link density pa-

rameter η2, linked. Thus, the correlations of the link-distribution reflect the

correlations of the unlinked liquid, and it follows that realizations of links only

acquire an appreciable statistical weight if they are compatible with some rea-

sonably probable configuration of the unlinked liquid.

The factor
(

η2V0

2N∆
(0)
0

)M
/M ! of the Deam-Edwards distribution introduces a

Poissonian character to the total number M of the links, which are modeled to

be the product of a Poissonian chemical process of linking. The factor Zχ(V0)

assures that the probability of having a given random realization of links is

proportional to the statistical weight for, in the unlinked liquid state, finding

pairs that are to be linked being essentially co-located with on another, to within

the shape exp
(

− |cie
− cje

|2/2a2
)

.

As a result, the mean number of links per particle is given by [M ]/N = η2/2.

Thus, η2 = 2[M ]/N is the average coordination number, i.e., the average number

of particles to which a certain particle is connected. For a detailed discussion

of the Deam-Edwards distribution, see Ref. [16].

With this distribution of the quenched disorder, we can perform the disorder

average of the Helmholtz free energy via the replica technique, thus obtaining

[F ] ≡
∑

χ

P(χ)Fχ(V )

= −kBT
∑

χ

P(χ) lnZχ(V )

= −kBT lim
n→0

∑

χ

P(χ)
Zχ(V )n − 1

n
. (3.9)

We now insert the Deam-Edwards distribution to get

[F ] = −kBT lim
n→0

∑

χ

(

η2V0

2N∆
(0)
0

)M

Zχ(V0)

M !Z1

Zχ(V )n − 1

n
. (3.10)

This disorder-averaged free energy differs from the form traditionally obtained

via the replica technique, in that there is an extra replica Zχ(V0), which orig-

inates in the Deam-Edwards distribution. We shall call this extra replica the

0-th replica, and note that it represent the preparation state of the system.

The summation over the realizations of the quenched disorder χ can be

performed, following the calculation in Appendix B; thus we arrive at the form

[F ] = −kBT lim
n→0

1

n

(Z1+n

Z1
− 1
)

, (3.11)

which can also be expressed as

[F ] = −kBT lim
n→0

∂

∂n
lnZ1+n (3.12)

35



where

Z1+n ≡
∑

χ

(

η2V0

2N∆
(0)
0

)M

M !
Zχ(V0)Zχ(V )n

=ZL(V0)ZL(V )n

〈

exp
( η2V0

2N∆
(0)
0

N
∑

i6=j

n
∏

α=0

∆(0)
(

|cαi − cβj |
)

)

〉H0

1+n

. (3.13)

Notice that here the preparation state (replica 0) has a fixed volume V0 because,

for convenience, we have assumed that the linking process was undertaken in-

stantaneously in a liquid state of fixed volume, whereas the measurement states

(replicas 1 through n) are put in a fixed pressure p environment, the volume V

of which is allowed to fluctuate. In the latter parts of this Thesis, we shall set

the pressure p to be the average pressure measured at the preparation state at

V0. In particular, for a given volume of the liquid state in which the links are

made, the average pressure is given by

p = −∂FL(V0)

∂V0

∣

∣

∣

T
, (3.14)

where we have introduced the Helmholtz free energy of the unlinked liquid

FL(V0) ≡ −kBT lnZL(V0). Supposing that the excluded volume interactions are

so strong that the density of the unlinked liquid is just N/V0 and all fluctuations

of the density are suppressed, we have for the mean-field value of Helmholtz free

energy in the unlinked liquid state:

FL(V0) = −NkBT lnV0 +
ν2N2

2V0
. (3.15)

Therefore, the mean pressure in the unlinked liquid state is given by

p =
NkBT

V0
+
ν2N2

2V 2
0

. (3.16)

As mentioned above, we shall keep this pressure in the measurement states

(replicas), and let the volume V fluctuate, in order to obtain an elastic free

energy that can describe volume variation, in particular, by choosing the pres-

sure p to be exactly the mean pressure in the liquid state, we shall obtain an

elastic free energy that takes the state right after linking, which has the same

volume V0 as the liquid state, as the elastic reference state. This issue about

state right after linking and the elastic reference state will be discussed in detail

in Section 4.1.

Through this construction, we are in a position to learn about the bulk

modulus of the system, and to characterize the volume change caused by linking,

which has the effect of eliminating translational degrees of freedoms.

To establish an appropriate statistical mechanics for the fixed-pressure en-

semble, we shall make the following Legendre transformation of the Helmholtz
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free energy, which leads to the Gibbs free energy G(p, T ):

p = −∂F (V, T )

∂V

∣

∣

∣

T
, (3.17a)

G(p, T ) = F (V, T ) + pV, (3.17b)

where in Eq. (3.17b) the volume V takes the value (in terms of p) that satisfies

Eq. (3.17a), which is the volume that minimizes the Gibbs free energy with a

given pressure p.

In the following sections, we shall first calculate the disorder average of the

Helmholtz free energy, and then make this Legendre transformation to obtain

the disorder-averaged Gibbs free energy, and this will allows us to develop a

detailed exploration of the elasticity of the RLPM.

3.2 Field-theoretic description

We shall use field-theoretic methods to analyze the disorder-averaged free energy

[F ] and, more specifically, the replicated partition function Z1+n. To do this,

we introduce the replicated density function

Q(x̂) ≡ 1

N

N
∑

j=0

n
∏

α=0

δ(d)(xα − cαi ), (3.18)

where x̂ ≡ (x0, x1, . . . , xn) is a shorthand for the (1+n)-fold replicated position

d-vector. For convenience, we introduce a complete orthonormal basis set in

replica space {ǫα}n
α=0, in terms of which a vector x̂ can be expressed as

x̂ =
n
∑

α=0

xα
ǫ

α. (3.19)

Note that the components are themselves d-vectors.

The replicated partition function can be written as a functional of the repli-

cated density function Q as

Z1+n =

∫

V0

N
∏

i=1

dc0i

∫

V

n
∏

α=0

N
∏

j=1

dcαj e
−

HQ[Qp̂]

kBT , (3.20)

with

HQ[Qp̂] ≡− Nη2kBT

2V n∆
(0)
0

∑

p̂

Qp̂Q−p̂∆
(1+n)
p̂ +

ν2N2

2V0

∑

p

Qpǫ
0Q−pǫ

0

+
ν2N2

2V

∑

p

n
∑

α=1

Qpǫ
αQ−pǫ

α , (3.21)

where Qp̂ is the Fourier transform of Q(x̂), which is defined in Eq. (3.18), and
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the factor

∆
(1+n)
p̂ =

(

∆
(0)
0

)1+n
e−a2|p̂|2/2 (3.22)

is the replicated version of the Fourier transform of the function ∆(0)(x), which

is defined in Eq. (3.5).

The first term on the right hand side of Eq. (3.21) arises from the attractive,

link-originating, interaction part [see Eq. (3.13)]; the next two terms represent

the excluded volume interaction in H0, for the 0-th replica and for replicas 1

through n, respectively.

Because the excluded volume interaction is very strong, and thus the den-

sity fluctuations in any single replica are heavily suppressed. This has been

discussed in the construction of the Landau theory, in Section 1.3.4, where one

can separate the order parameter into HRS and LRS. With this separation, we

can rewrite the effective Hamiltonian as

HQ[Qp̂] = − Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Qp̂Q−p̂∆
(1+n)
p̂ +

ν̃2
0(p)N2

2V0

∑

p

Qpǫ
0Q−pǫ

0

+
ν̃2(p)N2

2V

∑

p

n
∑

α=1

Qpǫ
αQ−pǫ

α , (3.23)

where we kept the LRS for the moment, and with the renormalized coefficients

ν̃2
0(p)N2

2V0
≡ ν2N2

2V0
−
Nη2kBT∆

(1+n)
p̂

2V n∆
(0)
0

,

ν̃2(p)N2

2V
≡ ν2N2

2V
−
Nη2kBT∆

(1+n)
p̂

2V n∆
(0)
0

. (3.24)

We suppose that ν2N
kBTV ≫ η2 (i.e., the excluded volume repulsion is very strong,

relative to the attractive effects of the links), so these coefficients ν̃2(p)N2

2V are

always positive and large, relative to the energyscale of the HRS that we are

interested.

The Hamiltonian (3.24) can be analyzed using a Hubbard-Stratonovich (HS)

transformation (for details see Appendix C). Via this HS transformation, the

interactions between particles can be decoupled. Thus, we arrive at a field-

theoretic formulation of the replicated partition function:

Z1+n =

∫

DΩp̂

n
∏

α=0

DΩα
p e

−
HΩ[Ωα

p ,Ωp̂]

kBT , (3.25)
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where the effective Hamiltonian is given by

HΩ[Ωα
p ,Ωp̂] =

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂ +

ν̃2
0N

2

2V0

∑

p

Ωpǫ
0Ω−pǫ

0

+
ν̃2N2

2V

∑

p

n
∑

α=1

Ωpǫ
αΩ−pǫ

α −NkBT ln z0 . (3.26)

and

z0 =

∫

V0

dc0
∫

V

n
∏

α=0

dcα exp
[ η2

V n∆
(0)
0

∑

p̂∈HRS

Ωp̂ ∆
(1+n)
p̂ eip̂·ĉ

+
iν̃2

0N

V0kBT

∑

p

Ωpǫ
0 eip0c0

+
iν̃2N

V kBT

∑

p

n
∑

α=1

Ωpǫ
α eipαcα

]

. (3.27)

The form of this HS transformation [see Appendix C, especially Eq. (C.5)]

enforce that the averages of the Q field and the Ω field obey the relations

HRS: 〈Qp̂〉HQ
= 〈Ωp̂〉HΩ

, (3.28a)

LRS: i〈Qpα〉HQ
= 〈Ωpα〉HΩ

, (3.28b)

where the two averages are defined as

〈 · · · 〉HQ
≡ 1

Z1+n

∫

V0

N
∏

i=1

dc0i

∫

V

n
∏

α=0

N
∏

j=1

dcαj e
−

HQ[Qp̂]

kBT · · · , (3.29a)

〈 · · · 〉HΩ
≡ 1

Z1+n

∫

DΩp̂

n
∏

α=0

DΩα
p e

−
HΩ[Ωα

p ,Ωp̂]

kBT · · · . (3.29b)

There are also related equalities for higher-order statistical moments, as dis-

cussed in Appendix C.

The leading-order terms in HΩ[Ωα
p ,Ωp̂] can be constructed by expanding

the ln z0 term in Eq. (3.26) in powers of the fields Ωp̂ and Ωpα , and thus we

can obtain the leading-order terms in the Landau-Wilson effective Hamiltonian.

The leading order expansion is

HΩ[Ωpǫ
α ,Ωp̂] =

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

(

1 − η2
∆

(1+n)
p̂

V n∆
(0)
0

)

+
ν̃2
0N

2

2V0

∑

p

Ωpǫ
0Ω−pǫ

0

(

1 +
ν̃2
0N

V0kBT

)

+
ν̃2N2

2V

∑

p

n
∑

α=1

Ωpǫ
αΩ−pǫ

α

(

1 +
ν̃2N

V0kBT

)

+O
(

(Ωpǫ
α)3, (Ωp̂)

3
)

.

(3.30)

For the LRS fields, Ωpǫ
α , we see the coefficients of the corresponding quadratic
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term are always positive (given ν̃2
0 , ν̃

2 > 0, i.e., the excluded volume repulsion

is very strong), so this sector of the field theory does not undergo an insta-

bility. Furthermore, because these coefficients (the masses, in particle-physics

language) are very large [see Eq. (3.24)], the fluctuations of these LRS fields

Ωpǫ
α are heavily suppressed. For this reason, we ignore these fluctuations and,

for all α = 0, 1, . . . , n, we take

Ωpǫ
α |p=0 = 1

Ωpǫ
α |p6=0 = 0 (3.31)

as a hard constraint. This justifies the same constraint we took in construct-

ing the Landau free energy of random solidification transition transitions in

Section 1.3.4, from the microscopic perspective.

Having implemented this constraint, we arrive at the HRS Hamiltonian (the

full form, not the just leading-order expansion):

HΩ[Ωp̂] =
Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂ −NkBT ln z0, (3.32)

where

z0 =

∫

V0

dc0
∫

V

n
∏

α=0

dcα exp
[ η2

V n∆
(0)
0

∑

p̂∈HRS

Ωp̂∆
(1+n)
p̂ eip̂·ĉ

]

. (3.33)

The Landau theory of the vulcanization transition [44] can be recovered by

making an expansion of this HRS Hamiltonian that keeps only the leading-

order terms in the order parameter Ω and the momentum p̂. Up to an additive

constant and an appropriate rescaling of the order parameter, this expansion

reads

HΩ[Ωp̂] =
1

2

∑

p̂∈HRS

(

r + |p̂|2
)

Ωp̂Ω−p̂ − v

3!

∑

p̂1,p̂2∈HRS

Ωp̂1
Ωp̂2

Ω−p̂1−p̂2
, (3.34)

where the potential of the links ∆
(1+n)
p̂ is momentum-expanded. This is precisely

the form of the Landau free energy we discussed in Section 1.3.4, which is

constructed by symmetry argument. In the limit n→ 0, the coefficients becomes

r ∝ η2(1 − η2),

v ∝ (η2)3. (3.35)

It is straightforward to see that the r term leads to an instability for η2 > 1

(in the limit of n→ 0), corresponding to a link density larger than some critical

value, and the lowest unstable modes are long-wavelength modes (i.e., p̂ → 0).

[One should, however, keep in mind that the component p̂ = 0 itself, which

is the 0RS, is excluded from this HRS-only field theory; see Eq. (3.31).] This
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instability corresponds to the liquid-to-soft random solid transition, because the

liquid state corresponds to the Ωp̂ = 0 (in HRS) state and becomes unstable

when the link density parameter η2 exceeds 1.

As discussed in Section 3.1, we have assumed that the potential due to the

soft links is a Gaussian chain potential [see Eq. (3.2,3.5)]. Here, it is evident

that the phase transition from the liquid state to the random solid state is

governed by only the long-distance or small-momentum behavior of the theory,

and we only kept terms to |p̂|2 in ∆
(1+n)
p̂ . Therefore, even if we were to change

to a different potential [e.g., the covalent bond as in Eq. (3.3)], the fact that

its leading-order (in momentum-space) is of the same form, ensures that the

transition would not be affected by this microscopic detail. Furthermore, as we

shall see in subsequent sections, the entropic elasticity of this model network is

a result of thermal fluctuations, and does not depend on any particular choice

of the microscopic interaction.

3.3 Mean-field theory

To see the form of the stationary value of the order parameter in vulcanization

theory, we shall first take a look at its physical meaning.

The properties of the HS transformation, Eq. (3.28a), relate the stationary-

point order parameter Ω to the thermal average of the replicated density function

Q. According to this relation, we have

Ωp̂ → 1

N

N
∑

j=1

eip̂·ĉj − δ
((1+n)d)
p̂ . (3.36)

Here, the δ
((1+n)d)
p̂ removes the 0RS part. Equivalently, in real space we have

Ω(x̂) → 1

N

N
∑

j=1

δ((1+n)d)(x̂− ĉj) −
1

V0V n
. (3.37)

The statistical average of this field, weighted with the HamiltonianHΩ, Eq. 3.32,

is

〈Ω(x̂)〉HΩ
=
〈 1

N

N
∑

j=1

δ((1+n)d)(x̂− ĉj)
〉

HQ
− 1

V0V n

=
[

〈δ(d)(x0 − c0j )〉〈δ(d)(x1 − c1j )〉 · · · 〈δ(d)(xn − cnj )〉
]

− 1

V0V n
, (3.38)

where, on the second line, we have interpreted the average of the replicated

system with the Hamiltonian HQ as follows: One first constructs independent

thermal averages in each replica (denoted by 〈· · · 〉) with a common given real-

ization of disorder χ; one then forms the product over all replicas, and finally

one averages over all realizations of disorder (an average denoted by
[

· · ·
]

).
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This interpretation can be understood from the definition of HQ via Z1+n as in

Eq. (3.20). Recall that Z1+n, as defined in Eq. (3.13), contains (1 + n) thermal

averages of the (1 + n) replicas, represented by the factor Zχ(V0)Zχ(V )n, with

an overall disorder average. This validates the interpretation given in Eq. (3.38)

[and also in Eq. (1.22)]. For a strict proof, see Ref. [8].

The meaning of this order parameter, and the reason why it can distinguish

the liquid state and the random solid state, has been discussed in Sections 1.3.3

and 1.3.4, which lead to the following hypothesized form for the stationary value

of the order parameter in real space:

Ω(x̂) = Q

∫

dz

V0

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 {|x

0−z|2+
∑n

α=1 |xα−ζz|2} − Q

V0V n
,

(3.39)

which is parameterized by Q (i.e., the fraction of particles that are localized)

and P(τ) (i.e., the distribution of inverse square localization lengths), where

τ ≡ 1/ξ2 is the inverse square localization lengths, ξ is the localization length.

In addition, the contraction ζ is related to the change of volume as

V

V0
= ζd. (3.40)

We can also write this stationarity point order parameter in momentum

space:

Ωp̂ =Q

∫

dz

V0

∫

dτP(τ)e−
|p̂|2

2τ
−ip0·z−i

∑n
α=1 pα·(ζz) −Qδ

((1+n)d)
p̂ . (3.41)

The parameters that characterize this order parameter, Q and P(τ), have been

obtained by solving the stationarity condition for the Hamiltonian:

δHΩ

δΩp̂
= 0. (3.42)

In particular, the equation for Q is

1 −Q = e−η2Q. (3.43)

For all values of η2, Eq. (3.43) has a solution Q = 0, corresponding to the liquid

state. However, for η2 > 1, an additional root appears, emerging continuously

from Q = 0 at η2 = 1, and describing the equilibrium amorphous solid state.

In Fig. 5.1 we show the dependence of the localized fraction on the link density,

which we characterize by η2. For a detailed discussion and for the stationary-

point distribution of inverse square localization lengths P(τ), see Refs. [8, 43].

The contraction ζ, which is relevant to the elasticity of the random solid

state, can be investigated by inserting this form of the order parameter, Eq. (3.41),

into the Hamiltonian HΩ, Eq. (3.32), and this yields the dependence of the
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Hamiltonian on the parameters Q, P(τ) and ζ. Through a tedious derivation,

and by keeping terms to O(n), we have the following Hamiltonian for the sta-

tionary point (cf. Appendix D):

H
(SP )
Ω =

ν̃2
0(0)N2

2V0
+
nν̃2(0)N2

2V
−NkBT lnV0 − nNkBT lnV

+ nNkBT

{

θ
[d

2

(

ln(2π) + ζ2
)

− lnV
]

− η2Q2

2
· d
2

∫

τ1,τ2

ln
( 1

τ1
+

1

τ2
+ a2

)

− e−η2Q d

2

∞
∑

m=1

(η2Q)m

m!

∫

τ1,...,τ2

ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)

}

. (3.44)

Here, the variable τ̃ is defined as τ̃ ≡
(

1
τ + a2

)−1
. The dimensionless factor θ

in Eq. (3.44) is given by

θ ≡ −η
2Q2

2
+ η2Q− 1 + e−η2Q. (3.45)

We shall see in Chapter 5 that the parameter θ also gives the mean shear

modulus, as well as the ampllitude of the correlations involving the residual

stress fields.

To obtain the disorder-averaged free energy, we shall make the saddle point

approximation:

Z1+n ≃ e
−

H
(SP )
Ω

kBT . (3.46)

Thus, we can get the Helmholtz free energy using Eq. (3.11), and arrive at

[FSP ] = − kBT lim
n→0

1

n

(Z1+n

Z1
− 1
)

= −NkBT
(

1 − η2

2
+ θ
)

lnV −NkBT
θd

2

(

ln(2π) + ζ
)

+
ν2N2

2V

− η2NkB

2
ln ∆

(0)
0 +NkBT

η2Q2

2

d

2

∫

τ1,τ2

ln
( 1

τ1
+

1

τ2
+ a2

)

+NkBT
d

2
e−η2Q

∞
∑

m=1

(η2Q)m

m!

∫

τ1,...,τ2

ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)

, (3.47)

where we have used the mean-field value of Z1 in Eq. (B.3), and we have also

made an expansion for small n of the renormalized excluded volume parameter

ν̃2, using

∆
(1+n)
0 = (∆

(0)
0 )1+n

= ∆
(0)
0

(

1 + n ln ∆
(0)
0 +O(n2)

)

. (3.48)
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In order to study elasticity, we shall need to know the disorder-averaged Gibbs

free energy [G], which is given by a Legendre transformation, Eq. (3.17):

[GSP ] = [FSP ] + pV. (3.49)

We can insert the pressure p, given by Eq. (3.16) and, in the limit ν2N
kBTV ≫

η2 ≫ 1 (in which the coefficient of lnV becomes θ ≃ η2/2 − 1), we arrive at

[GSP ] ≃ν
2N2

2V0

[

2 +
( V

V0
− 1
)2]

−NkBT
θd

2

(

ln(2π) + ζ2
)

− η2NkB

2
ln ∆

(0)
0 +NkBT

η2Q2

2

d

2

∫

τ1,τ2

ln
( 1

τ1
+

1

τ2
+ a2

)

+NkBT
d

2
e−η2Q

∞
∑

m=1

(η2Q)m

m!

∫

τ1,...,τ2

ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)

. (3.50)

By using the relation (3.40), we can obtain the stationary contraction ζ that

minimize the disorder-averaged Gibbs free energy by solving

δ[GSP ]

δζ
= 0. (3.51)

In the limit ν2N
kBTV ≫ η2 ≫ 1, the solution is

ζ ≃ 1 − θV0kBT

η2Nd
. (3.52)

The limit ν2N
kBTV ≫ η2 is the same as the limit taken below Eq. (3.24), indicating

that the excluded volume repulsion is much stronger than the attractive effects of

the links. The limit η2 ≫ 1 indicates that we are concerned with the well-linked

regime (rather than the transition regime). This contraction of the volume

due to introduction of links at a given pressure is a result of the reduction

of the total number of degrees of freedom, i.e., the change of the “osmotic

pressure”. We shall see later that this reduction is consistent with a particular

phenomenological model of a disordered elastic medium that we shall introduce.

3.4 Goldstone fluctuations

3.4.1 Spontaneous symmetry breaking

To characterize the Goldstone family of fluctuations associated with the random

solid state, we shall first look at the pattern of symmetry breaking accompanying

with the transition to this state.

The Hamiltonian (3.32) for the liquid to soft-random-solid transition has

the symmetry of independent translations and rotations of each replica. The

translational invariance of the Hamiltonian can be easily verified by making the
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transformation

x̂ → x̂′ = x̂+ â,

Ω(x̂) → Ω′(x̂′) = Ω(x̂) = Ω(x̂′ − â), (3.53)

where â ≡ (a0, a1, . . . , an) represents a replicated translation. In momentum

space, this transformation reads

Ωp̂ → Ω′
p̂ = eip̂·â Ωp̂ . (3.54)

It is easy to find that by inserting this transformed order parameter back into

the Hamiltonian (3.32) and making a change of variables, the same Hamiltonian

but for the field Ω′ is recovered. Similarly, one can verify invariance under

independent rotations Ô ≡ (O0,O1, . . . ,On) with

Ωp̂ → Ω′
Ô−1·p̂

. (3.55)

The order parameter in the liquid state (i.e., Ω = 0) has the full symme-

try, and at the transition to the soft random solid state, it is the symmetry

of relative translations and rotations between different replicas that is sponta-

neously broken. However, the symmetry of common translations and rotations

of all replicas are preserved, and this reflects the important notion that, from

the macroscopic perspective the system remains translationally and rotationally

invariant, even in the random solid state. This entire pattern amounts to an

unfamiliar but essentially conventional example of the Landau paradigm.

This broken symmetry of relative translations and rotations between differ-

ent replicas can be understood as a result of particle localization. Because a

delocalized liquid particle can explore the whole volume via its thermal fluctua-

tions, and in thermal equilibrium its positions in each replica are uncorrelated,

the liquid state is invariant, if one translates (or rotates) the replicas in dif-

ferent directions. On the contrary, for a localized particle, its positions in the

various replica are strongly correlated, and therefore the symmetries of relative

translations and rotations are broken.

It is easy to verify that the form of the random-solid-state order parameter,

Eq. (3.39), correstly implements this pattern of symmetry breaking. To see this,

we can use the complete orthonormal basis in replica space defined in Section 3.2,

and define an alternative basis involving a “replica body-diagonal”unit vector

ǫ̂λ ≡ 1
√

1 + nζ2

(

ǫ
0 + ζ

n
∑

α=1

ǫ
α
)

. (3.56)

Relative to ǫ̂λ, we may decompose a (1 + n)d dimensional vector x̂ into its
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longitudinal (λ) and transverse (τ) components:

x̂ = x̂λ + x̂τ , x̂λ = (x̂ · ǫ̂λ)ǫ̂λ, x̂τ = x̂− x̂λ. (3.57)

Note that x̂λ and x̂τ are both (1 + n)d dimensional vectors, but x̂λ has only d

degrees of freedom (given by x̂ · ǫ̂λ), and x̂τ has nd only degrees of freedom.

By this decomposition, the vector ẑ = (z, ζz, ζz, . . .), which characterizes

the mean positions in the stationary state, can be written as

ẑ =
√

1 + nζ2 z ǫ̂λ, (3.58)

which is purely in the ǫ̂λ direction. As a result, the stationary order parameter,

Eq. (3.39), can be written as

ΩSP (x̂) =Q

∫

dz

V0

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 |x̂λ−ẑλ|

2− τ
2 |x̂τ |

2 − Q

V0V n

=Q

∫

dτP(τ)
( τ

2π

)

(1+n)d

2
( 2π

τ(1 + nζ2)

)
d
2

e−
τ
2 |x̂τ |

2 − Q

V0V n
, (3.59)

where in the last line we have integrated out the d-dimensional vector z. It

is evident that this value of order parameter does not depend on x̂λ, which

means that it is invariant under translations in the ǫ̂λ direction, corresponding to

common translations and rotations of all replicas (albeit appropriately contracted

by ζ in replicas 1 through n). This stationary order parameter is schematically

drawn in Fig. 3.4.2 for two replicas. The Gaussian form in the x̂τ direction

indicates a “condensation” between different replicas. This is called a molecular

bound state in Ref. [56].

3.4.2 Goldstone modes

With the pattern of continuous symmetry breaking just outlined, we can write

down the form that the order parameter takes when it is subject to Goldstone

fluctuations:

ΩGS(x̂) = Q

∫

dz

V0

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 {
∑n

α=0 |xα−Rα(z)|2} − Q

V0V n
.

(3.60)

The “Goldstone distortion” of the order parameter is parameterized by the

n functions {R1(z), . . . , Rn(z)}, with the function R0(z) being defined to be z

itself. The stationary form of the order parameter, Eq. (3.39), describes a system

in which the mean positions of the replicas of the thermally fluctuating particle

are located at positions (x0, x1, . . . , xn) = (z, ζz, . . . , ζz). We shall refer to these

positions as the “center of the thermal cloud”. By comparing the undeformed

order parameter (3.39) and the “Goldstone-deformed” one, Eq. (3.60), we see

that the Goldstone-deformed order parameter describes a system in which the

46



mean positions of the replicas of the fluctuating particle are displaced from

(z, ζz, . . . , ζz) to (z,R1(z), . . . , Rn(z)). Thus, Rα(z) (α = 1, 2, . . . , n) represent

the deformed mean positions of the measurement replicas.

We require that the deformations ζz → Rα(z) be pure shear deformations;

this constraint can be expressed as det
(

∂Rα
i (z)/∂(ζz)j

)

= 1. It guarantees that

the Goldstone mode does not excite the LRS (i.e., does not change any single-

replica density), which would be extremely energetically costly, owing to the

large excluded volume interaction. The 0RS has already been removed from

the theory, and one can easily check that it remains zero in this Goldstone-

deformed order parameter. The vanishing of the order parameter in the 1RS

can be verified by taking the momentum-space Goldstone mode and making a

change of variables:

(ΩGS)pǫ
α =Q

∫

dz

V0

∫

dτP(τ)e−
|p|2

2τ
−ip Rα(z) −Qδ

((1+n)d)
p̂

=Q

∫

dRα

V

V

V0

∣

∣

∣

∂z

∂Rα

∣

∣

∣

∫

dτP(τ)e−
|p|2

2τ
−ip Rα(z) −Qδ

((1+n)d)
p̂

= 0. (3.61)

This indicates that the deformed state has the same density as the stationary

point state.

There are two points that we need to clarify about this Goldstone mode.

First, as we have already mentioned, the symmetry broken at the transition

is that of relative translations and rotations of the various replicas, the sym-

metry of common translations and rotations remaining intact. As a result,

the Goldstone mode should be constructed via z-dependent translations of the

order parameter in the x̂τ direction, i.e., the the broken symmetry direction.

However, if we look at the deformation field defined by Û ≡ R̂ − ẑ, we find

that Û = {0, R1(z) − ζz,R2(z) − ζz, . . .} is in fact not in the broken symmetry

direction x̂τ , because it has a x̂λ component, namely,

Ûλ = (Û · ǫ̂λ)ǫ̂λ =
ζ

√

1 + nζ2

n
∑

α=1

Uα(z) ǫ̂λ (3.62)

This Ûλ component is actually redundant. This can be seen by decomposing

the quadratic form |x̂− ẑ − Û |2 as:

|x̂− ẑ − Û |2 = |x̂λ − ẑλ − Ûλ|2 + |x̂τ − Ûτ |2, (3.63)

and noting that in the form of the order parameter (3.60) one can change the

integration variable (which is a d-dimensional vector) from z to

y ≡ z +
1

√

1 + nζ2
Û · ǫ̂λ, (3.64)
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Figure 3.1: (a) Schematic plot of the value of the order parameter (brightness)
at the stationary point, for two replicas labeled by x1 and x2. (b) Schematic plot
of the value of the order parameter (brightness) for a Goldstone deformation of
the stationary point, for two replicas labeled by x1 and x2
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0 1 2 n

z R1(z) R2(z) Rn(z)

Figure 3.2: Example of a Goldstone deformed state. The system in replicas
0 through n are shown. The mean positions of the replicas of a thermally
fluctuating particle are displaced to (z,R1(z), . . . , Rn(z)) in this Goldstone de-
formed state, which characterizes an n-fold replicated deformation field. Here
for simplicity we only show spatially homogeneous deformations, and it is worth
noticing that the volume of the measurement replicas, i.e., replicas 1 through
n, are contracted by a factor ζd.

by which ŷλ ≡ (y, ζy, . . . , ζy) = ẑλ + Ûλ. The Jacobian of this change of

variables is unity, provided that each deformation z → Uα(z) is a pure shear

deformation. 1 With this change of variables the Goldstone-deformed order

parameter becomes

ΩGS(x̂) = Q

∫

dy

V0

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 |x̂λ−ŷλ|

2− τ
2 |x̂τ−Û ′

τ (y)|2 − Q

V0V n

= Q

∫

dy

V0

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 |x̂−ŷ−Û ′

τ (y)|2 − Q

V0V n

≡ Ω′
GS(ŷ) (3.65)

where the transformed deformation field is defined by Û ′
τ (y) = Ûτ (z). With

this change of variables, the order parameter field is transformed to a new field,

Ω′
GS(ŷ) of ŷ, which can be viewed as translated purely in the ŷτ direction from

the stationary point ΩSP (ŷ), because the deformation is R̂′(y) = ŷ + Û ′
τ (y).

Comparing with the deformation before the change of variables, R̂(z) = ẑ+Û(z),

it is evident that the Uλ component is actually removed, and the deformation

field Û only affects the x̂τ direction. Therefore, Uλ is a redundant component

in this field-theoretic description of the Goldstone mode. Note that in these two

forms of the Goldstone mode, Eqs. (3.60) and (3.65), the number of degrees of

freedom of the deformation field U(z) or Û ′
τ (y), are nd, as in U(z) one has the

constraint U0 = 0.

The reason we choose to adopt the form of Goldstone mode (3.60) is that

in the real physical system that we are intending to describe, the preparation

state (replica 0) is not deformed. Although in the field theory the 1+n replicas

are present symmetrically (apart from the contraction ζ), physically, one should

only have Goldstone modes that deform replicas 1 through n, as these are the

replicas associated with the measurement ensembles, on which deforrmations are

actually performed. Therefore, although Eqs. (3.60) and (3.65) are mathemat-

ically equivalent, only Eq. (3.60) describes the physically reasonable Goldstone

1This relation is correct to linear order in U or linear order in n.
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modes.

Secondly, in earlier works [56, 55], the form of the Goldstone deformation

was written as

Ω(x̂) = Q

∫

dτP(τ)
( τ

2π

)

(1+n)d

2

e−
τ
2 |x̂τ−Ûτ (xλ)|2 − Q

V0V n
(3.66)

This form (we shall call it the “old Goldstone deformation”) differs from the

Goldstone deformation we are currently using (“new Goldstone deformation”)

in two ways: (1) In the old Goldstone deformation the deformation field is a

function of xλ (and, as a result, z can be integrated out as in the stationary-

point form). However, in the new Goldstone deformation, the deformation is a

function of z. The new Goldstone deformation is more physical, in the sense

that the deformation field should be defined in terms of the the mean positions

z during thermal fluctuations, not the instantaneous positions of the particles

x̂. In the new Goldstone deformation, it is clear that the mean positions are

deformed, ẑ → R̂(z), but the shape of the thermal cloud, which corresponds

to a “massive” mode, is left untouched. (2) The deformation field in the old

Goldstone deformation lies in the x̂τ direction, whereas the new Goldstone de-

formation has a deformation field in the replicas 1 through n. This has already

been discussed above, as has been the point that they are related by a change

of variables. The new Goldstone structure is more physical, in the sense that

the preparation state (replica 0) cannot be deformed once the sample has been

made.

3.4.3 Energetics of Goldstone deformations

We take the Goldstone-deformed order parameter, in its momentum-space form,

to be

(ΩGS)p̂ = Q

∫

dz

V0

∫

dτP(τ)e−
|p̂|2

2τ
−ip̂·R̂(z) −Qδ

(1+n)d
p̂ , (3.67)

and insert it into the Hamiltonian (3.32). This calculation gives us the free

energy of a deformed state, as in the calculation of the stationary-point free

energy.

After a lengthy calculation (see Appendix E), we arrive at the energy of the

Goldstone deformed state:

H
(GS)
Ω = H

(SP )
Ω +HΨR

Ω . (3.68)

Here, we use the shorthand ΨR(z1, z2) ≡ (R̂(z1)− R̂(z2))
2 − (1+n)(z1 − z2)2 to

denote the deformation. H
(SP )
Ω is the Hamiltonian for the stationary point, as

given in Eq. (3.44), and the term HΨR

Ω accounts for the increase in the energy

50



due to Goldstone deformation, which is

HΨR

Ω = −NkBT
θd

2
ζ2 +

1

2

∫

dz1dz2K1(z1, z2)ΨR(z1, z2)

− 1

8kBT

∫

dz1dz2dz3dz4K2(z1, z2, z3, z4)ΨR(z1, z2)ΨR(z3, z4), (3.69)

where the functions K1(z1, z2) and K2(z1, z2, z3, z4) are bell-shaped functions of

the distances (z1−z2) and (z1−z2), (z2−z3), (z3−z4), as shown in Fig. 3.3. The

fluctuations are independent of the centers of mass, (z1 + z2)/2 for K1(z1, z2),

and (z1 + z2 + z3 + z4)/4 for K2(z1, z2, z3, z4). The forms of K1(z1, z2) and

K2(z1, z2, z3, z4) are given in Appendix E.

K (z ,z ) = 

K (z ,z ,z ,z ) = 

1 21

2 1 2 3 4

z2 z4

3zz1

z2 z4

3zz1

z4z2

3zz1

z1 z2

Σ

+ ΣΣ+

Σ

Figure 3.3: Diagrams for the function K1(z1, z2) and K2(z1, z2, z3, z4). In these
diagrams, the wavy lines represent Gaussian potentials between the two points
on the scale of localization length, averaged over the probability distribution of
localization length, represented by the summation in the diagrams. The straight
lines represent delta functions. The full expression is listed in Appendix E.

Alternatively, in order to compare with the phenomenological elastic free

energy that we shall discuss in Chapter 4, the energy of the Goldstone defor-

mations can be written in the form

H
(GS)
Ω = H

(0)
Ω +H

(R)
Ω . (3.70)

In this form, we are separating the Hamiltonian into two parts. H
(0)
Ω gives

energy of the “state right after linking”, which is a state that has not been

allowed to contract after the links were made, and thus has the same volume

and shape as the liquid state. In the state right after linking, the mean positions

of the replicas of the thermally fluctuating particle (i.e., the centers of the

thermal cloud) are located at positions (x0, x1, . . . , xn) = (z, z, . . . , z). The

other part of the Hamiltonian is the elastic energy of the deformation from this

state, HR
Ω . This is different from the separation in Eq. (3.68), in which one has

the stationary point energy H
(SP )
Ω and the energy increase due to Goldstone
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deformations HΨR

Ω . The relation between these two separation is given by

H
(0)
Ω = H

(GS)
Ω − h(ζ),

H
(R)
Ω = HΨR

Ω + h(ζ), (3.71)

where h(ζ) accounts for the energy of the stationary point, measured with re-

spect to the state right after linking, which is actually the elastic energy of the

contraction ζ, i.e.,

h(ζ) =
ν2N2

2V0

( V

V0
− 1
)2

+NkBT
θd

2
(ζ2 − 1). (3.72)
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Chapter 4

Phenomenological theory

for the elasticity of soft

random solids

4.1 Phenomenological nonlocal elastic free

energy

As we discussed in Section 1.2.1, in the classical theory of rubber elasticity [6]

rubbery materials are modeled as incompressible networks of entropic Gaussian

chains, and the resulting elastic free energy density is given by

f =
µ

2
Tr ΛTΛ (4.1)

for uniform deformations r → Λ · r. Incompressibility is incorporated via the

constraint detΛ = 1. For the shear modulus µ , the classical theory gives the

result nckBT , where nc is the density of effective chains in the network.

The phenomenological model that we now discuss is in the spirit of the clas-

sical theory of rubber elasticity. However, to account for the heterogeneity of

the medium, we need to introduce the additional feature of quenched random-

ness into the model, and thus the entropic Gaussian chains are of heterogeneous

length and density.

Inspired by the form of the energy of Goldstone fluctuations determined

from the RLPM in Section 3.4.3, we choose the following elastic free energy Γ

associated with a deformation R(z) of the soft random solid state that maps

the mass point at z to the new location R(z):

Γ =
1

2

∫

dz1 dz2G(z1, z2)
(

|R(z1) −R(z2)|2− |z1 − z2|2
)

+
λ0

2

∫

dz
{

det
(∂Ri(z)

∂zj

)

− 1
}2

, (4.2)

where G(z1, z2) is a nonlocal harmonic attraction that serves to pull the two

“mass points” (i.e., coarse-grained volume-elements) at z1 and z2 toward one

another. G(z1, z2) originates in the entropy of the molecular chains of the het-

erogeneous network, and we model it as “zero rest-length” springs having ran-

dom spring coefficients. Notice that G(z1, z2) is a coarse grained consequence

of many molecular chains and, more importantly, is an entropic effect and does

not depend on the choice of precise form of microscopic attractive interactions.
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WE take the kernel G(z1, z2) to be a quenched random function of the two

positions, z1 and z2, symmetric under z1 ↔ z2. We assume that the disorder

average ofG(z1, z2) isG(0)(z1−z2) ≡ [G(z1, z2)], i.e., is translationally invariant.

Furthermore, we define the fluctuation part of G(z1, z2) to be G(1)(z1, z2) ≡
G(z1, z2)−G(0)(z1 − z2). In the following analysis, we assume that G(1) ≪ G(0)

in order to make a necessary perturbative expansion.

In the second term in Eq. (4.2), the determinant of the deformation gradient

tensor Λij(z)[≡ ∂Ri/∂zj ] captures the change of the volume and, correspond-

ingly, the parameter λ0, which we take to be large, heavily penalizes density

variations. This large λ0 results from a competition between (i) repulsions

(either direct or mediated via a solvent, e.g., excluded volume), and (ii) inter-

molecular attractions and external pressure.

In discussion of elasticity that follows, we introduce the notion of “reference

space” and a “target space” for any deformation R(z). The reference space, la-

beled by the d-dimensional vector z, is the space before the deformation, whereas

the target space, labeled by the d-dimensional vector R(z), is the space after

the deformation.

4.2 Relaxation for a given realization of

disorder

The free energy Γ provides a natural description of the heterogeneous elastic-

ity of soft random solids. However, the stable state is not R(z) = z (i.e.,

the state R(z) = z does not satisfy the stationarity condition δΓ/δR(z) = 0).

There are two reasons two reasons for this instability. First, the attraction G

causes a small, spatially uniform contraction [the fractional volume change being

O(1/λ0)]. Second, the randomness of G additionally destabilizes this contracted

state, causing the adoption of a randomly deformed stable state. We denote this

relaxation as z → z̃ ≡ ζz + v(z), in which ζ describes the uniform contraction

and v(z) describes the random local deformation. This relaxation process can

be understood in the setting of the preparation of a sample of rubber via in-

stantaneous crosslinking: crosslinking not only drives the liquid-to-random solid

transition but it also generates a uniform inward pressure, as well as introducing

random stresses, as shown in Fig. 4.1 As a result, immediately after crosslinking

the state is not stable, but relaxes to a new stable state, determined by the par-

ticular realization of randomness created by the crosslinking. In the following

discussion, we shall name the state R(z) = z the “state right after linking”, and

the state R(z) = z̃ ≡ ζz + v(z) as the “relaxed state”. The state right after

linking, here, is the same as the onejust defined below Eq. (3.70), which has the

energy H
(0)
Ω in RLPM, because they both describe the state that has undergone

no deformation since being linked.

By writing the relaxation as z → z̃ = ζz + v(z) we are making the approx-
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(a) (b) (c)

Figure 4.1: Schematic plot of the relaxation process under a fixed pressure. (a)
The liquid state with no linking. (b) The state right after linking. Crosslinks are
added to the system, and a infinite cluster is formed. This state is not stable,
because of the inward pressure and local stresses. (c) The relaxed state. The
system undergoes a uniform contraction and random local deformations that
release the unbalanced stress introduced by crosslinking.

imation that the contraction ζ is homogeneous and the random deformations

v(z) are pure shear, which means that any randomness in the bulk deformation

is ignored. This can be understood by looking at the orders of magnitude of the

deformations. The uniform contraction is of order O(G(0)/λ0), and the random

local shear deformations are of order O(G(1)/G(0)). The random local bulk de-

formations is, however, of order O(G(1)/λ0), and is thus much smaller than the

other two deformations, given the assumption that the fluctuations of the shear

modulus are much smaller than the mean (the shear modulus corresponds to

G, as we shall see later), and the shear modulus is much smaller than the bulk

modulus.

With these assumptions, we can insert the form R(z) = z̃ = ζz+v(z) into the

stationarity condition, and solve for the relaxed state, which is characterized by

ζ and v(z). As we have just discussed, for the contraction, only the homogeneous

part is considered, so the variational equation for ζ assumes G(1) = 0 and thus

v(z) = 0, and so stationarity requires

∂Γ

∂ζ
= 0. (4.3)

Thus, for the present model, Eq. (4.2), we have

0 =
∂

∂ζ

{1

2

∫

dz1dz2G
(0)(z1, z2)(ζ

2 − 1)|z1 − z2|2 +
λ0

2

∫

dz
(

ζd − 1
)2
}

= V0

(

dρζ + λ0

(

ζd − 1
)

dζd−1
)

. (4.4)

By solving this equation to leading order in ρ/λ0, we obtain

ζ ≈ 1 − (ρ/dλ0), (4.5)

where

ρ ≡ 1

d

∫

dz2 (z1 − z2)
2G(0)(z1 − z2). (4.6)
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As we shall see below, ρ is actually the mean shear modulus.

The stationarity condition for the random local deformations v(z) is

δΓ

δva(z)
= 0, (4.7)

and for the present model, Eq. (4.2), this condition reads

2(ζza + va(z))

∫

dz2G(z, z2) − 2

∫

dz2G(z, z2)
(

ζz2,a + va(z2)
)

−λ′0∂a

(

∂ivi(z)
)

= 0. (4.8)

Here, the last term, λ′0∂a

(

∂ivi(z)
)

is associated with a density variation, and

arises from the variation of the second term in the elastic free energy (4.2),

which is λ0

2

∫

dz
{

det
(

∂Ri(z)/∂zj

)

− 1
}2

. (In the following discussion we shall

call this the “bulk term”in the elastic free energy), and we have made the

definition λ′0 ≡ ζ2d−2λ0; see Appendix F for the expansion.

The stationarity equation (4.8) for v(z) can be solved perturbatively by

assuming that G(0) is of zeroth order and that G(1) and v(z) are of first order;

see Appendix F for the calculation. In momentum-space, the result is

~vp =
pT · ~fp

2Dp
+

pL · ~fp

λ′0|~p|2 + 2Dp
, (4.9)

where p is the d-dimensional momentum vector. The notation ~fp, Dp are given

in Appendix F. The definitions of the projection operators pL and pT are

defined as,

pL
ij ≡ pipi/p

2,

pT
ij ≡ δi,j − pipi/p

2. (4.10)

We use bold letters to denote d-dimensional rank-2 tensors, and add an overhead

arrow [such as ~v] to denote vectors, when needed.

4.3 Elastic free energy expanded around the

relaxed state

In order to obtain a description of the elasticity of the relaxed state, which

is stable and thus relevant for experimental observations, we re-expand the

phenomenological elastic free energy (4.2) around the relaxed state z̃. This

amounts to taking the relaxed state z̃ ≡ ζz + v(z) as the new reference state,

and deriving the elastic free energy for deformations relative to this state.

To do this, we study the free energy for the following elastic deformation:

z → R(z) = z̃ + u(z) (4.11)
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where u(z) is a deformation away from the relaxed state. We make the following

change of variables z → z̃(z):

z → z̃ ≡ ζz + v(z), (4.12)

which has the Jacobian factor

J (z) ≡
∣

∣

∣

∂z̃i

∂zj

∣

∣

∣
≃ ζd

(

1 + ζ−1∂jvj(z)
)

. (4.13)

With this change of variables, the free energy is expressed as

Γ =Γ0 +
1

2

∫

dz̃1dz̃2J (z1)
−1J (z2)

−1G̃(z̃1, z̃2)

×
(

∣

∣z̃1 + ũ(z̃1) − z̃2 − ũ(z̃2)
∣

∣

2 −
∣

∣z̃1 − z̃2
∣

∣

2
)

+
λ0

2

∫

dz̃J (z)−1
{

J (z)det
(∂z̃i + ũi(z̃)

∂z̃j

)

− 1
}2

, (4.14)

where we have made the definitions

G̃(z̃1, z̃2) ≡ G(z(z̃1), z(z̃2)), (4.15a)

ũ(z̃) ≡ u(z(z̃)), (4.15b)

R̃(z̃) ≡ z̃ + ũ(z̃), (4.15c)

with z(z̃) denoting the mapping of the mass point z̃ in relaxed state back to the

mass point z in the state right after linking, i.e., the inverse of the z̃(z) mapping.

The change of the free energy due to a different reference state is defined as Γ0

is defined as Γ0 ≡ 1
2

∫

dz1dz2G(z1, z2)
(

|z̃1− z̃2|2−|z1−z2|2
)

, which is a constant

for a given realization of the randomness.

In order to obtain a direct description of the elastic energy relative to the

relaxed state, we expand the quenched random nonlocal kernel in the relaxed

state, G̃(z̃1, z̃2), defined in Eq. (4.15a), for G(1) ≪ G. This calculation is given

in Appendix G.1, and in momentum space the result is

G̃p̃1,p̃2
≃ G

(0)
p̃1,p̃2

+G
(1)
p̃1,p̃2

− i
(

p̃1 · ~v(p̃1+p̃2)G
(0)
p̃2

+ p̃2 · ~v(p̃1+p̃2)G
(0)
p̃1

)

. (4.16)

where ~v is the random local deformation field defined in Section 4.2, and is

related to G via Eq. (4.9). In this expansion, G̃ is directly expressed in terms

of G̃.

We then expand the elastic free energy as a power series in the small defor-

mation ũ(z̃) away from the relaxed state z̃. The calculation of this expansion is

given in Appendix G.

As we shall show in Chapter 5, the statistics of the quenched randomness

in this phenomenological theory can be determined via a comparison with the

RLPM. Through this comparison, we found that, the lengthscale of the nonlocal
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kernel G is actually the typical localization length, which is small compared to

the lengthscales on which our theory of elasticity applies, because the deforma-

tions in this theory are associated with Goldstone fluctuations in the RLPM,

which feature lengthscales much larger than the typical localization length.

Thus, it is reasonable to make a local expansion of the elastic energy relative

to the relaxed state, and obtain a local form of elasticity, in terms of the strain

tensor ǫ. The resulting form of the elastic free energy, which we shall call “the

local form of the elastic energy relative to the relaxed state”, is in the form of

Lagrangian elasticity, (which is introduced in Section 1.2).

The advantage of this local form of the elastic energy, as will be seen in

Section 5.3, is that one can extract the large-distance behaviors of the correlators

of the elastic parameters, which turn out to be universal.

and this continuous description can be obtained by making a local expansion

on the nonlocal term in (4.14).

The calculation for this local expansion is given in Appendix G, and the

resulting local form of elastic energy is

Γ =

∫

dz̃
{

Tr(σ(z̃) · ǫ̃(z̃)) + µ(z̃)Trǫ̃(z̃)2 +
λ(z̃)

2
(Trǫ̃(z̃))2

}

, (4.17)

where the strain tensor relative to the relaxed state is defined as

ǫ̃ij ≡ 1

2

(∂ũj

∂z̃i
+
∂ũi

∂z̃j
+
∂ũl

∂z̃i

∂ũl

∂z̃j

)

, (4.18)

and the heterogeneous elastic parameters, namely the residual stress σ, the

shear modulus µ, and the bulk modulus λ, are given in momentum space, by

σij,p̃ = − ∂2

∂q̃i∂q̃j

∣

∣

∣

q=0
G

(1)
p̃−q̃,p̃ + iδij

ip̃ · ~fp̃

|p̃|2 − fa,p̃

|p̃|2
(

p̃ip
T
ja,p̃ + p̃jp

T
ia,p̃

)

, (4.19a)

µp̃ = ρV0δp̃ − ip̃ · ~fp̃

|p̃|2 , (4.19b)

λp̃ =λ0V0δp̃ + 2
{ ip̃ · ~fp̃

|p̃|2 − ρV0δp̃

}

, (4.19c)

where in the expression for σij,p̃ we have only kept terms to leading order in the

momentum p̃ (see Appendix G for the derivation). 1 It is worth mentioning that,

to leading order in the momentum p̃, this residual stress satisfies the stability

condition p̃iσij,p̃ = 0, because the reference state of this elastic free energy, the

relaxed state, is a stable state. This will also be shown more directly in the final

results in Section 5.3.

1To be consistent with the RLPM, we have used finite-volume versions of the Fourier
transform and Kronecker delta function in momentum space; we shall take the continuum
limit later, in the final results in Section 5.3.2. Strictly speaking, the differentiations in
Eq. (4.19a) should be understood as difference quotients instead.
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4.4 Nonaffine deformations for a given

realization of disorder

Because of the quenched disorder present in the elastic parameter G of our phe-

nomenological model, Eq. (4.2), upon the application external stress, the system

will respond by adopting a strain field that is nonaffine (i.e., characterized by

a strain tensor that is inhomogeneous in space). Such non-affine deformations

reflect the quenched randomness in the elasticity, and can be derived for a given

realization of disorder and a given macroscopic deformation by external stress.

Because the deformation is the quantity that is directly measurable in experi-

ments, it is useful to derive the relationship between the nonaffine deformations

and the quenched randomness in the elastic parameters. Then, by comparing

with the RLPM, we shall obtain a statical description of the nonaffine deforma-

tions, as in Section 5.4.

To study nonaffine deformations, it is convenient to take the “state right

after linking” [i.e., the state R(z) = z as in Eq. (4.2)] as the reference state,

and to re-derive the relaxation in presence of a given deformation Λ. This is

equivalent to applying the deformation Λ to the relaxed state, and then letting

the system further relax for this given deformation, as shown in Fig. 4.2. The

relaxed state for this given deformation Λ, which we term the “relaxed deformed

state”, is described by the deformation z → z̃Λ(z). We suppose that

z̃Λ(z) = ζΛ · z + vΛ(z). (4.20)

For simplicity, we assume that the deformation Λ is pure shear (i.e., detΛ = 1).

Next, we use the two stationarity conditions, Eqs. (4.3,4.7) to solve for the

relaxed deformed state. The stationarity equation (4.4) for the homogeneous

contraction ζ, is unchanged, so we still have ζ ≈ 1 − (ρ/dλ0). For the stability

equation for the random local deformations vΛ, we follow a similar expansion

to the one in Eqs. (F.1) and (F.2), arriving at

2(ζΛaizi + (vΛ)a(z))

∫

dz2G(z, z2)

−2

∫

dz2G(z, z2)(ζΛaiz2,i +(vΛ)a(z2))−λ′0Λ−1
ia Λ−1

jb ∂i∂j(vΛ)b(z) = 0. (4.21)

As with the derivation given in Section 4.2, we can solve this equation pertur-

batively, to leading order in G(1) and vΛ; see Appendix H for details. The result

is

(vΛ)p =

{

pT
Λ

2Dp
+

pL
Λ

λ′0t1|p|2 + 2Dp

}

· (fΛ)p, (4.22)

where pT
Λ and pL

Λ, defined in Appendix H, are the deformed versions of the

projection operators.
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state right
after linking

relaxed state

deformed state
(unrelaxed)

relaxed
deformed state

deformation

deformation

re−relaxation

relaxation

relaxation

Figure 4.2: Illustration of the relaxed deformed state. Theoretically, the relaxed
deformed state can be reached via two routes: in the first one, the upper route
in this plot, one applies the deformation Λ on the already-relaxed state, and
let the system re-relax while keeping the external deformation Λ to the relaxed
deformed state; the second one, the lower route in this plot, one deforms the
system before relaxation is allowed, and then lets the system relax while main-
taining the deformation Λ. These two routes reache the same final state, the
relaxed deformed state, which characterizes the nonaffine deformations that the
system undergoes under external deformation. For convenience of calculation,
we use the lower route to determine the nonaffine deformations.

in the literature the nonaffine deformations are often characterized by the

“nonaffine deformation field” wΛ, which is defined in momentum-space as

(wΛ)p ≡ Λ−1 · (z̃Λ)p − z̃p = Λ−1 · (vΛ)p − vp , (4.23)

where z̃ denotes the relaxed state of the undeformed system (as discussed in

Section 4.2), and z̃Λ is the relaxed deformed state.

Inserting the solution of vΛ into the expression for nonaffine deformation

field, Eq. (4.23), we have

(wΛ)p = 2iζ
{ λ′0|p|2

(λ′0|p|2t1 + 2Dp)2Dp
g−1 − λ′0|p|2

(λ′0|p|2 + 2Dp)2Dp
I
}

· pL · Sp,

(4.24)

where

Sp ≡ ∂

∂p1,a
G

(1)
p1,0 −

∂

∂p2,a

∣

∣

∣

p2=0
G(1)

p1,p2
, (4.25)

and

g = ΛTΛ. (4.26)
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In the incompressible limit, we have

(wΛ)p ≃ 2i
{ 1

2Dpt1
g−1 − 1

2Dp
I
}

· pL · Sp . (4.27)

4.5 Disorder average of the phenomenological

model via replica method

To make a comparison with the RLPM, and thus to obtain information about

the statistics of the nonlocal kernel G that characterizes the disorder present in

the phenomenological model, we shall use the replica method to calculate the

elastic free energy of the phenomenological model, averaged over some as-yet

unspecified distribution of quenched disorder.

We follow a recipe similar to the one used in Section 3.1 [see Eq. (3.9)]. The

elastic free energy, Eq. (4.2), contains the random ingredient G. As with the

RLPM, the physical quantity to be disorder-averaged is the free energy at a given

pressure, but now with the deformations R(z) as thermally fluctuating field.

Therefore we need to take Γ, defined in Eq. (4.2), as the effective Hamiltonian,

because it is the elastic energy for a given deformation field specified by R(z),

and then calculate the free energy at a given temperature, via the partition

function

ZG =

∫

DRe−ΓG(R(z))/kBT , (4.28)

with Γ depending on the quenched randomness through its nonlocal kernel G.

The Gibbs free energy is related to this partition function via G = −kBT lnZ,

and G is the quantity that should be averaged over the quenched disorder. Note

that it is the Gibbs free energy, instead of Helmholtz free energy, that is related

to this partition function Z, because in the elastic energy Γ one has a fixed

pressure, which is accounted for by the bulk term, the volume being allowed

to fluctuated. The disorder average of the Gibbs free energy can be completed

using the replica technique:

[G] = −kBT

∫

DGPG lnZG

= −kBT

∫

DGPG lim
n→0

Zn
G − 1

n

= −kBT lim
n→0

∂

∂n

∣

∣

∣

n→0
[Zn

G], (4.29)

where we have used [· · ·] ≡
∫

DGPG · · · once again to denote a disorder average

but this time over the values of the quenched random kernel G, weighted by

an as-yet unknown distribution PG. In the present setting we do not have a

“zeroth replica”, as such a replica arises from the Deam-Edwards distribution

of the links, and this is not the type of quenched disorder that we have in
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mind. Rather, in the present setting we regard the distribution of disorder

PG as a physical quantity that is unknown but is to be determined through a

comparison with the analysis of the Goldstone fluctuations of the RLPM. The

replica partition function is then given by

Zn ≡ [Zn
G]

=

∫

DGPG Z
n
G

=

∫

DGPG

∫ n
∏

α=1

DRαe−
∑n

α=1 ΓG(Rα(z))/kBT

=

∫ n
∏

α=1

DRα e−Γn/kBT , (4.30)

where we are functionally integrating over the configurations of the n-fold repli-

cated displacement fields: Rα. We have also introduced the effective, pure

Hamiltonian Γn that governs the replicated deformation fields

Γn ≡ −kBT ln[e−
∑n

α=1 ΓG(Rα(z))/kBT ]. (4.31)

where [· · ·] denote disorder average weighted by PG. The exponential and the

logarithm function in Eq. (4.31) can jointly be expanded via the cumulant ex-

pansion, and thus we arrive at the form

Γn = − kBT
{

−
[

n
∑

α=1

ΓG(Rα(z))/kBT
]

c

+
1

2

[

n
∑

α,β=1

ΓG(Rα(z))ΓG(Rβ(z))/kBT
]

c
− · · ·

}

, (4.32)

where [· · ·]c are connected statistical moments (cumulants) given the probability

distribution of the disorder PG, and the omitted terms are O((Γ/kBT )3). The

elastic energy for a given realization of disorder G and a given deformation field

R(z) is given in Eq. (4.2); inserting this form we have

Γn =
λ0

2

∫

z

n
∏

α=1

(

|∂Rα| − 1
)2

+
1

2

∫

z1,z2

[G(z1, z2)]cΨR(z1, z2)

− 1

8kBT

∫

z1,z2,z3,z4

[G(z1, z2)G(z3, z4)]cΨR(z1, z2)ΨR(z3, z4) +O(Ψ3
R),

(4.33)

where we remind the reader of the definition of ΨR, first given in Section 3.4.3:

ΨR ≡ (R̂(z1) − R̂(z2))
2 − (1 + n)(z1 − z2)

2. (4.34)

This effective, pure Hamiltonian Γn has precisely the same form as the energy

of the Goldstone fluctuations (3.69), derived microscopically from the RLPM.
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Thus, the RLPM actually provides a derivation of the phenomenological model

we proposed in Section 4.1, and justifies, from a microscopic perspective, the

phenomenological elastic free energy (4.2) with its quenched randomness. There-

fore, the probability distribution PG of the quenched randomness in Eq. (4.2)

is contained in the RLPM. By comparing the two schemes, i.e., Eqs. (3.69)

and (4.33), we arrive at a statistical description of the quenched random elastic

parameters in the phenomenological model, as we shall show in Chapter 5.
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Chapter 5

Determining the elastic

quenched disorder

5.1 Comparing the Gibbs free energies of the

randomly linked particle and

phenomenological models

The RLPM is a semi-microscopic random network model, our analysis of which

led to the disorder-averaged Gibbs free energy (3.12, 3.17):

[G] = −kBT lim
n→0

∂

∂n
lnZ1+n + pV, (5.1)

with

Z1+n =

∫

DΩ e
−

HΩ
kBT . (5.2)

The functional integration here is over all possible configuration of the order-

parameter field Ω. By contrast, in the phenomenological model, the replicated

partition function Zn involves a functional integration over the n-fold replicated

deformation field Rα, as in Eq. (4.30). The equivalence between the RLPM

and the phenomenological model is revealed by noting that, in the random solid

state, the Boltzmann weight in Eq. (5.2), i.e., e
−

HΩ
kBT , only acquires considerable

value at the stationary point ΩSP and the Goldstone deformed states ΩGS , and

decreases steeply for other sectors of fluctuations. This enables us to make

the following approximation (up to a multiplicative constant from the Jacobian

factor associated with the change of functional integration variables)

Z1+n ≃ e
−

H
(SP )
Ω

kBT

∫

DRe−
H

(GS)
Ω

kBT , (5.3)

with H
(SP )
Ω and H

(GS)
Ω given in Eqs. (3.44) and (3.69).

In our phenomenological model, introduced in Section 4.1, the disorder-

averaged Gibbs free energy is given by

[G] = −kBT lim
n→0

∂

∂n

∣

∣

∣

n→0
Zn (5.4)

64



with

Zn =

∫

DRe−Γn/kBT (5.5)

where Γn is given in Eq. (4.33).

The Gibbs free energies, for the RLPM, and for the phenomenological model,

are supposed to be equal, up to an additive constant, because they both capture

the Gibbs free energy of a soft random solid system with elastic deformations.

It is this equality that we shall now exploit to characterize, via the RLPM, the

distribution of quenched disorder PG in the phenomenological model. Actually,

we can directly identify the Hamiltonian Γn with H
(GS)
Ω , because the functional

integrations over the replicated deformation fields Rα are common to both the

RLPM and the phenomenological model, in the sense that the deformation

z → Rα(z), in both the RLPM and the phenomenological model, takes the

state right after linking as the reference state. Therefore, we have the relation

Γn = H
(R)
Ω . (5.6)

Notice that, here, the RLPM Hamiltonian is H
(R)
Ω , not HΨR

Ω , because it is H
(R)
Ω

that is the energy measured from the state right after linking, which matches

the definition of reference state in the phenomenological theory, whereas HΨR

Ω

is the energy measured from the stationary point, which differs from the state

right after linking by the energy of associated with the contraction h(ζ), given

in Eq. (3.72).

By the comparison Eq. (5.6), we arrive at the following determination of

the quenched-disorder characteristics of the phenomenological model (LHS) in

terms of the elastic properties of the RLPM (RHS):

[G(z1, z2)]c = K1(z1, z2), (5.7a)

[G(z1, z2)G(z3, z4)]c = K2(z1, z2, z3, z4), (5.7b)

λ0 = ν2n2
0, (5.7c)

where n0 ≡ N/V0 is the number-density of the particles in the preparation

state. The functions K1(z1, z2) and K2(z1, z2, z3, z4) are defined in Appendix

E. Essentially, K1(z1, z2) is a Gaussian shaped function of the separation |z1 −
z2|, averaged over distribution of localization lengths. The four-point function

K2(z1, z2, z3, z4) has a combination of Gaussian and delta-function factors in

the separations of the six pairs formed by the four points {z1, z2, z3, z4}. It is

shown in Figure 3.3.
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5.2 Disorder averages of the elastic parameters

In this section we shall determine the disorder averages of the position-dependent

elastic parameters that characterize the elastic energy relative to the relaxed

state. These elastic parameters, including the nonlocal kernel G̃, the residual

stress σ and the Lamé coefficients µ and λ, are determined for any particular re-

alization of the elastic parameters G and λ0, as shown in Section 4.3. Thus, the

elastic parameters of the heterogeneous elasticity relative to the relaxed state

may be described via the statistical characterization of the quenched random

parameters G and λ0 that we have just obtained; see Eqs. (5.7).

First, we determine the disorder average of the nonlocal kernel in the relaxed

state G̃. To do this, we note that the nonlocal kernel of the relaxed state, G̃, is

related to G via Eq. (4.15a); the leading-order expansion of this relationship is

given in Eq. (4.16). By taking the disorder average on both sides of Eq. (4.16),

we find that only the first terms on the RHS survives, because other terms are

all linear to the fluctuation part of G and this vanishes upon disorder–averaging.

Thus we find that the disorder average of G̃ is given by

[G̃(z1, z2)] = [G(z1, z2)] = K1(z1, z2), (5.8)

which means that the disorder average of G̃ is the same as the disorder average

of G. It is worth noting that, as expected, because K1(z1, z2) is independent of

the center of mass 1
2 (z1 + z2) coordinates, the disorder average of the nonlocal

kernel [G̃(z1, z2)] is translational invariant, depending only on |z1 − z2|. This is

a consequence of the macroscopic translational and rotational invariance of the

random solid state discussed in Section 3.4.1.

Second, we determine the disorder averages of the position dependent elastic

parameters in the local form of the elastic energy relative to the relaxed state,

including the residual stress σ, the shear modulus µ, and the bulk modulus λ.

These elastic parameters are related to G and λ0 via Eqs. (4.19) for any given

realization of disorder. Thus, as with the nonlocal kernel, we obtain the disorder

averages of these elastic parameters, via the statistics of G.

The disorder average of the residual stress σ is straightforwardly seen to

vanish:

[σij(z)] = 0. (5.9)

Thus, the residual stress is a quenched random field with zero mean. As for the

shear modulus µ, its disorder average is given by

[µ(z)] = ρ = −1

d

∫

dz2G
(0)(z − z2)|z − z2|2 = n0kBT θ, (5.10)

with θ given in Eq. (3.45). This mean shear modulus is linear in temperature T ,

reflecting its entropic nature, a result that confirms this aspect of the classical
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theory of rubber elasticity. As for the disorder average of bulk modulus λ, it is

obtained via Eq. (5.7c), which gives

[λ(z)] = ν2 n2
0 . (5.11)

As one might expect, the mean bulk modulus depends on the particle number

density n0 and the strength of the excluded volume interaction ν2. The disorder

average of the these three elastic parameters of the local form of the elastic

energy relative to the relaxed state, [σij(z)], [µ(z)], and [λ(z)], are spatially

all homogeneous aanisotropic in space; this is also a result of the macroscopic

translational and rotational invariance of the random solid state as discussed in

Section 3.4.1.

5.3 Spatial correlations of the quenched

random elastic parameters

5.3.1 Disorder correlator of the nonlocal kernel

The nonlocal kernel G̃ characterizes the quenched random nonlocal interactions

in the relaxed state. The statistics of G̃ can be described via its statistical

moments. In Section 5.2, we already determined the disorder average of G̃; in

the present section we determine the disorder correlator of G̃.

To do this, we use Eq. (4.16), which relates G̃ to any given random configu-

ration of G. Using the disorder correlator of G, Eq. (5.7b), we then arrive at the

disorder correlator of G̃. The resulting disorder correlator, [G̃(z̃1, z̃2)G̃(z̃3, z̃4)],

is a combination of Gaussian and delta-function factors in the separations of

the six pairs formed by the four points {z̃1, z̃2, z̃3, z̃4}. The derivation and the

momentum-space expression of the result for this disorder correlator is given in

Appendix I.1.

The universal characteristics of [G̃(z̃1, z̃2)G̃(z̃3, z̃4)] are revealed by investi-

gating its large-distance behavior, i.e., with the two pairs {z̃1, z̃2} and {z̃3, z̃4}
far apart, but keeping z̃1 near z̃2, and z̃3 near z̃4, because G̃(z̃1, z̃2) describes

a short-distance attraction characterized by the scale of the typical localization

length. This is the major reason for adopting the local description of elasticity,

introduced in Section 4.3. This large-distance behavior is analyzed by deriving

the correlations of the elastic parameters in the local form of the elastic energy

relative to the relaxed state, as we shall now discuss.

5.3.2 Disorder correlators of the elastic parameters in

the local form of the elastic energy

As already discussed in Section 5.3.1, one can extract the large-distance behavior

of the disorder correlators of the heterogeneous elasticity in the relaxed state,
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via the local form of the elastic energy. The elastic parameters in the local form

of the elastic energy, including the residual stress σ, the shear modulus µ, and

the bulk modulus λ, are related to any given configuration G via Eq. (4.19).

Using these relations and the disorder correlator of G, Eqs. (5.7b), we arrive at

the disorder correlators of the elastic parameters. The details of this calculation

are given in Appendix I.2; we summarize the results in Table 5.1.

σkl,p′ µp′ λp′

σij,p θAijkl −2θpT
ij 4θpT

ij

µp −2θpT
kl ν −2ν

λp 4θpT
kl −2ν 4ν

Table 5.1: Long-wavelength variances and covariances of the elastic properties
of soft random solids in the relaxed state. The entry in row R and column C,
when multiplied by n0(kBT )2V0δp+p′ , yields the connected disorder correlator
[R(p)C(p′)]c ≡ [R(p)C(p′)] − [R(p)] [C(p′)].

The disorder correlator [σσ] features the tensor Aijkl, which is defined as

Aijkl ≡ 2pT
ijp

T
kl + pT

ikp
T
jl + pT

ilp
T
jk . (5.12)

where the projection operator pT is defined in Section 4.2. The stability con-

dition on the residual stress field σ requires that its Fourier transform vanishes

when contracted with the momentum p. It is straightforward to see that this is

obeyed by the disorder correlator [σσ] given in Table 5.1, owing to the structure

of A.

Ηc
2

QHΗ2L

ΘHΗ2L

ΝHΗ2L

0 1 2 3 4 Η2

0.5

1

1.5

2

Figure 5.1: Plot of Q, θ and ν as functions of the links density parameter η2.

The parameters θ and ν, on which the disorder correlators in Table 5.1
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depend, are given by

θ ≡ −η
2Q2

2
+ η2Q− 1 + e−η2Q, (5.13a)

ν ≡ −3

2
η2Q2 + (η2Q)2 + η2Q− 1 + eη2Q. (5.13b)

The dependence of θ and ν on the density of links η2 is shown in Fig. 5.1. The

asymptotic behaviors of θ and ν are as follows:

θ =

{

2
3 (η2 − 1)3, for η2 & 1;

η2/2, for η2 ≫ 1;
(5.14)

ν =

{

14
3 (η2 − 1)3, for η2 & 1;

η4, for η2 ≫ 1.
(5.15)

Although the connected disorder correlators of the elastic parameters in-

crease with the density of links η2, it is worth noting that the relative fluctu-

ations are decreasing functions of η2. For example, the relative fluctuation in

shear modulus, defined as [µµ]c/[µ]2, scales as

[µµ]c
([µ])2

∼ ν

θ2
, (5.16)

as shown in Fig. 5.2. This is a decreasing function in the density of links η2,

which means the relative fluctuations in the shear modulus actually decrease as

more links are added. A similar relation for the bulk modulus also holds.

0 1 2 3 4 Η2

50

100

150

ΦHΗ2L

Figure 5.2: Plot of the function φ(η2) = ν
θ2 , which characterizes the relative

fluctuations in the shear and bulk modulus, and also the connected correlatior
of the non-affine deformations, as will be shown in Section 5.4.

It is interesting to look at the real-space behavior of disorder correlators of

the elastic parameters in the local form of elastic energy. First, it is easy to

see that the disorder correlators [µ(0)µ(r)], [λ(0)λ(r)] and [µ(0)λ(r)] are short-

ranged in real space: more precisely, they are proportional to δs(r), i.e., to a
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Dirac delta-function that has been smoothed on the scale of the short-distance

cutoff. This cutoff should be taken to be the typical localization length, in order

to validate the Goldstone-fluctuation framework for elastic deformations, be-

cause the Goldstone fluctuations in the RLPM are long-wavelength, low-energy

excitations of the random solid state, which do not touch lengthscales shorter

than the typical localization length.

By contrast, those entities involving the residual stress have a more inter-

esting behavior: in three dimensions and at large lengthscales we have

[σij(0)σkl(~r)]c =
(kBT )2n0θ

π|~r|3 Bijkl,

[σij(0)µ(~r)]c = − (kBT )2n0θ

π|~r|3
(

pL
ij(~r) − pT

ij(~r)
)

,

[σij(0)λ(~r)]c =
2(kBT )2n0θ

π|~r|3
(

pL
ij(~r) − pT

ij(~r)
)

, (5.17a)

where pL
ij(~r) and pT

ij(~r) are, respectively, longitudinal and transverse projection

operators in real space, and are given by

pL
ij(~r) ≡

rirj
|~r|2 , pT

ij(~r) ≡ δij − pL
ij(~r). (5.18)

The tensor Bijkl has a complicated structure comprising terms built from projec-

tion operators of ~r, together with various index combinations, and also depends

on the large-momentum cutoff, which can be identified with the inverse of the

typical localization length. The dependence on the large-momentum cutoff is

a result of keeping only terms of leading order at small momentum p in the

calculation of the disorder correlators given in Table 5.1, which enables us to

extract the small-momentum behavior in momentum-space, which corresponds

to the large-distance behavior in real-space. To Fourier-transform back to real-

space, we need a large-momentum cutoff to control the divergence. It turns out

that the leading-order behaviors of the real-space disorder correlators [σµ]c and

[σλ]c at large-distance are independent of this large-momentum cutoff; however,

the disorder correlator [σσ] does depend on it.

5.4 Statistics of nonaffine deformations

In this section we calculate the statistics of the nonaffine deformations of the

soft random solid state. In Section 4.4 we discussed why soft random solids

undergo nonaffine deformations in presence of the given shear deformation Λ,

and explained how to characterize these deformations in terms of the nonaffine

deformation field wΛ.

The nonaffine deformation field is related to any given nonlocal random

kernel G via Eq. (4.24). It is straightforward to see that the disorder average of

the nonaffine deformation field vanishes, i.e., [wΛ] = 0: it is proportional to the

70



fluctuation part of the quenched random nonlocal kernel G(1).

Next, we calculate the disorder disorder correlator of the nonaffine deforma-

tions. For convenience, we take the incompressible limit, i.e., λ0 → ∞, in which

the nonaffine deformation field wΛ is given by Eq. (4.27). Using Eq. (4.27) as

well as the disorder correlator of the nonlocal kernel [GG]c, the disorder corre-

lator of the nonaffine deformation field wΛ is found to be

[(wΛ)p · (wΛ)−p]c =
1

|~p|2n0
ν

θ2

( t2
t21

− 1
)

, (5.19)

where

t1 ≡ Tr(pLg−1), (5.20a)

t2 ≡ Tr(pLg−1g−1), (5.20b)

g ≡ ΛTΛ. (5.20c)

The dependence of the connected disorder correlator of the nonaffine deforma-

tion field [wΛwΛ]c on the density of links comes through the factor φ ≡ ν/(θ2),

which is shown in Fig. 5.2. It is evident that, as the density of links increases, the

system has smaller relative fluctuations in its elasticity, i.e., the relative fluctu-

ations in the elastic moduli decreases, and thus the nonaffine deformations also

decrease, which makes the system less heterogeneous.

The disorder correlator of the nonaffine deformation field, Eq. (5.19), is

consistent with the disorder correlator of the nonaffine deformations given in

Ref. [70]. In Eq. (3.22) of Ref. [70], the disorder correlator of the nonaffine

deformation u′ (which corresponds to vΛ in our notation) is found to depend on

the random local elastic modulus Kijkl in momentum-space as

[u′(q)u′(−q)] ∝ γ2

q2
∆K(q)

K2
, (5.21)

where γ represents the appropriate components of the externally applied defor-

mation (i.e., components of Λ in our notation), ∆K represents components of

the variance of the elastic-modulus tensor, and K represents components of the

average of the elastic moduli. The consistency is revealed by taking Eq. (5.19)

above, and recalling that [µ] ∼ θ and [µµ]c ∼ ν, and therefore our disorder

correlator of the nonaffine deformation field can be written as

[(wΛ)p(wΛ)−p]c ∝ 1

|p|2
[µµ]c
[µ]2

, (5.22)

which exhibits the same dependence on the mean and variance of the quenched

random elastic modulus as Eq. (3.22) of Ref. [70].

Transforming the disorder correlator of the nonaffine deformation field (5.19)

back to real space, we found that the large-distance behavior of the disorder

correlator of the nonaffine deformation field [wΛ(0) · wΛ(r)]c is proportional to
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|r|−1 in three dimensions, which is also long-ranged.

5.5 Concluding remarks

The heterogeneous elasticity of soft random solids has been investigated via

a semi-microscopic approach. By starting with the randomly linked particle

model, which is a version of vulcanization theory that studies random networks

of particles connected by soft links, we have established a field-theoretic de-

scription of the liquid-to-random solid state transition, and analyzed the corre-

sponding pattern of spontaneous symmetry breaking and associated Goldstone

fluctuations. We have identified these Goldstone fluctuations as being related

to shear deformations of the random solid state and, via this identification,

we have obtained a statistical characterization of the quenched randomness ex-

hibited by the heterogeneous elasticity of soft random solids, which features a

random nonlocal kernel describing attractive interactions between mass-points.

The heterogeneous elasticity studied via the Goldstone fluctuations in the

RLPM is a description of the elastic properties of the state right after linking

(i.e., an elastic free energy that takes the state right after linking as its elastic

reference state). We have shown that, after linking, the system relaxes to a

stable state for any given realization of disorder (i.e., for any given heterogeneous

configuration of the elastic parameters in the state right after linking), and

this relaxed state, which is a state of mechanical equilibrium, is actually of

experiential relevance for soft random solids. By solving for the relaxed state

for any given realization of disorder, and expanding the elastic free energy for

deformations relative to this relaxed state, we have obtained an elastic free

energy relative to the relaxed state (i.e., taking the relaxed state as the new

elastic reference state). The statistical description of the quenched randomness

in this elastic free energy can then be determined, as we have shown.

The first statistical moments of the quenched random elastic parameters

(i.e., the disorder averages of the elastic parameters), unveil the basic homo-

geneous macroscopic properties of the heterogeneous elastic medium. We have

found that the disorder average of the nonlocal kernel of attractive interactions

is characterized by the typical localization lengthscale of the RLPM, which is

a scale much smaller than the lengthscale of the elastic deformations that we

are considering. Thus, it is reasonable to make a local expansion of the elastic

energy, relative to the relaxed state. The resulting local form of the elastic en-

ergy is a version of Lagrangian elasticity, featuring heterogeneous (i.e., spatially

randomly varying) residual stress and Lamé coefficients. The disorder average

of the residual stress vanishes. The disorder average of the shear modulus is

found to be proportional to temperature, reflecting the entropic nature of the

shear rigidity of soft random solids. The disorder average of the bulk modulus

depends on the particle number density and the strength of the excluded volume

interaction. In particular, the disorder averages of these elastic parameters of
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the relaxed state are all translationally and rotationally invariant, reflecting the

macroscopic translational and rotational invariances of the soft random solid

state.

The second statistical moments of the quenched random elastic parameters

(i.e., the spatial correlations of these elastic parameters) characterize the fluc-

tuations of the quenched randomness in the elastic properties. The disorder

correlators of the elastic parameters that appear in the local form of the elastic

energy relative to the relaxed state exhibit interesting universal behaviors. In

particular, the disorder correlators involving the residual stress are found to be

long ranged, and governed by a universal parameter that also determines the

mean shear modulus, but the disorder correlators of the shear and bulk moduli

are short ranged.

Because of the heterogeneity present in the elasticity of soft random solids,

upon upon the application external stress, the system responds by adopting

a strain field that is nonaffine (i.e., a strain field that is characterized by an

inhomogeneous deformation gradient). We have also obtained a statistical de-

scription of these nonaffine deformations. The disorder average of the nonaffine

deformations vanishes, and their disorder correlator is also found to be long

ranged.

So far, we have studied the first two statistical moments of the quenched

random elastic parameters of soft random solids. The whole probability distri-

bution of the quenched random elastic parameters can also be explored using

the formalism presented here via the RLPM, and one can also go beyond the

local limit of the elasticity theory.

This model of heterogeneous elasticity of soft random solids may also be

applied to the study of liquid crystal elastomors, in which the constituent poly-

mers in the random network possesses (or are capable of exhibiting) liquid-

crystalline order [71, 72]. In liquid crystal elastomers, the strain field is coupled

to the liquid-crystalline order, and this produces a rich collection of interest-

ing phenomena, such as spontaneous sample-shape deformation upon change of

temperature, exact soft modes in the elasticity, etc. The interplay of the hetero-

geneity in the random network and the liquid-crystalline order has interesting

consequences: e.g., it can give rise to a polydomain structure in liquid crystal

elastomers. The present formalism of heterogeneous elasticity of soft random

solids can also provide a framework for the study of the effect of quenched

disorder in liquid crystal elastomers [57].
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Appendix A

Illustrative examples of the

replica trick

In this Appendix, we list two interesting examples to which the replica trick can

be applied, confirming results that have been obtained by conventional methods.

The first example is to apply the replica trick on the following integral:

J ≡ −
∫ ∞

0

e−x lnx dx. (A.1)

This integral gives the Euler−Mascheroni constant γ, which is originally defined

as

γ = lim
m→∞

{

n
∑

k=1

1

k
− ln(m)

}

(A.2)

and has the numerical value γ = 0.577216 . . ..

We can apply the replica trick

lnx = lim
n→0

xn − 1

n
, (A.3)

and define the following sequence of integrals

I(n) =

∫ ∞

0

e−xxndx = Γ(n+ 1). (A.4)

Using this sequence, we have

J = − lim
n→0

1

n
(I(n) − I(0))

= − lim
n→0

1

n
(Γ(n+ 1) − Γ(1))

= −Γ′(1) ≡ γ. (A.5)

So this “difficult” integral J can be calculated from a limit involving “easy” in-

tegrals I(n).

The second example concerns a thermodynamic system with the following

Hamiltonian

H =
1

2
x2 + r x (A.6)
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where x is an annealed variable, which thermally fluctuate, and r is a quenched

random variable. For an arbitrarily given r, the partition function is given by

Z(r) =

∫ ∞

−∞

dx e−
1
2 x2−r x =

√
2π e

r2

2 , (A.7)

where we have ignored the β = kBT factor. The free energy for this given r is

then

F (r) = − lnZ(r) =
1

2
ln(2π) +

1

2
r2. (A.8)

Choosing the following Gaussian distribution of the quenched random variable

r

P(r) =
1√

2πR2
e−

r2

2R2 , (A.9)

which gives ([· · ·] denotes disorder average)

[r] = 0, [r2] = R2, (A.10)

we have the disorder averaged free energy

[F ] =
1

2
ln(2π) +

1

2
R2. (A.11)

Can we obtain this result by using replica trick? Using Eq. (1.19), the

disorder average of the free energy can be written as

[F ] = kBT
∑

χ

P(χ) lim
n→0

Zn
χ − 1

n
= kBT lim

n→0

[Zn
χ ] − 1

n
. (A.12)

In this example the disorder averaged replicated partition function is

[Z(r)n] =

∫

drP(r)

∫

dx1dx2 · · · dxn e−
1
2

∑n
α=1(x

α)2−r
∑n

α=1 xα

. (A.13)

We can change the order of the disorder average and the thermal average, per-

form the disorder average first, and get

[Z(r)n] =

∫

dx1dx2 · · · dxn e−
1
2

∑n
α=1(x

α)2+ R2

2 (
∑n

α=1 xα)2

=

∫

dx1dx2 · · · dxn e−
1
2 xαMαβxβ

(A.14)

where the n× n matrix M is defined as

Mαβ ≡ δαβ −R2. (A.15)

Assuming that the eigenvalue spectrum of matrix M is positive definite, which
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is true for integer n, and 1 − nR2 > 0, we have

[Z(r)n] = (2π)n/2(detM)−1/2 (A.16)

It is easy to calculate the eigenvalues of M , so the determinant

detM = (1 − nR2) · 1n−1. (A.17)

Expansion at small n gives:

detM ≃ 1 +
n

2
ln(2π) +

n

2
R2 +O(n2), (A.18)

so we have the disorder averaged free energy

[F ] = kBT lim
n→0

[Z(r)n] − 1

n

=
1

2
ln(2π) +

1

2
R2, (A.19)

which agrees precisely with the direct computation [Eq. (A.11)]
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Appendix B

Disorder averaging with the

Deam-Edwards distribution

In this Appendix we calculate the disorder average weighted by the Deam-

Edwards distribution, in particular, we calculate Z1 and Z1+n in Section 3.1.

Firstly, we calculate the factor Z1, which is defined as

Z1 ≡
∑

χ

(

η2V0

2N∆
(0)
0

)M
Zχ(V0)

M !
. (B.1)

The summation over the quenched disorder
∑

χ includes two steps: summation

over the number of links M , and summation over all possible ways of making

these M of links, i.e., assign the M links to different collections of pairs. So

Eq. (B.1) can be written as

Z1 =
∑

M

(

η2V0

2N∆
(0)
0

)M
Zχ(V0)

M !

=
∞
∑

M=0

N
∑

i1 6=j1

N
∑

i2 6=j2

· · ·
N
∑

iM 6=jM

(

η2V0

2N∆
(0)
0

)M

M !
ZL(V )〈

M
∏

e=1

∆(0)
(

|cie
− cje

|
)

〉H0
1

= ZL(V )

〈

∞
∑

M=0

(

η2V0

2N∆
(0)
0

)M

M !

(

N
∑

i6=j

∆(0)
(

|ci − cj |
))M

〉H0

1

= ZL(V )〈exp
( η2V0

2N∆
(0)
0

N
∑

i6=j

∆(0)
(

|ci − cj |
))

〉H0
1 . (B.2)

Mean field approximation on Z1 amounts to taking the number density of the

unlinked liquid to be to be N/V0, which is similar to the calculation that yields

Eq. (3.15), and we arrive at

Z1 = exp
(

N lnV0 −
ν2N2

2V0kBT
+
Nη2

2

)

. (B.3)

Secondly, we calculate Z1+n, which is defined as

Z1+n ≡
∑

χ

(

η2V0

2N∆
(0)
0

)M

M !
Zχ(V0)Zχ(V )n. (B.4)
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The Zχ(V )n factor can be written in terms of replicas

Zχ(V )n =

∫

V

n
∏

α=0

N
∏

j=1

dcαj e
−
∑n

α=0 Hα
0 /kBT

n
∏

α=0

M
∏

e=1

∆(0)
(

|cαie
− cβje

|
)

, (B.5)

where Hα
0 is the H0 (i.e., excluded volume interaction) part of the Hamiltonian

for the α-th replica, as defined in Eq. (3.4).

We define the H0 average for 1 + n replicas

〈· · ·〉H0
1+n ≡ 1

ZL(V0)ZL(V )n

∫

V0

N
∏

i=1

dc0i

∫

V

n
∏

α=1

N
∏

i=1

dc0i e
−

H0
0

kBT
−
∑n

α=1 Hα
0

kBT · · · .

(B.6)

Using this notation we arrive at

Z1+n =

∞
∑

M=0

N
∑

i1 6=j1

N
∑

i2 6=j2

· · ·
N
∑

iM 6=jM

(

η2V0

2N∆
(0)
0

)M

M !
ZL(V0)ZL(V )n

×
〈

n
∏

α=0

M
∏

e=1

∆(0)
(

|cαie
− cαje

|
)

〉H0

1+n

=ZL(V0)ZL(V )n

〈

∞
∑

M=0

(

η2V0

2N∆
(0)
0

)M

M !

(

N
∑

i6=j

n
∏

α=0

∆(0)
(

|cαi − cβj |
)

)M
〉H0

1+n

=ZL(V0)ZL(V )n

〈

exp
( η2V0

2N∆
(0)
0

N
∑

i6=j

n
∏

α=0

∆(0)
(

|cαi − cβj |
)

)

〉H0

1+n

. (B.7)

In this expression the average over the quenched disorder is already performed.
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Appendix C

the Hubbard Stratononich

Transformation

The effective Hamiltonian [Eq. (3.23)] can be analyzed via the Hubbard-Stratonovich

(HS) transformation, which is a powerful method in field theory, and is often ap-

plied to strongly constrained models to decouple interactions, yielding standard

functional integral representations [73, 74].

The version of HS transformation we used in the RLPM can be illustrated

using the following simple example.

Consider a statistical mechanical system with the following partition func-

tion

Z = 〈eJq2+hq〉H0(q) ≡
∫

dq e−H0(q)eJq2+hq, (C.1)

where H(q) = H0(q)−Jq2−hq is the total Hamiltonian for the variable q, with

H0(q) the leading order, and Jq2 being considered as a perturbation (although

it is just a simple quadratic term here, we use it to illustrate the method). The

term hq denotes the coupling with an external field, which can generate the

statistical moments of q via

〈q〉H(q) =
∂

∂h

∣

∣

∣

h=0
lnZ. (C.2)

The Jq2 term on exponential can be decoupled using the following version of

HS transformation

Z =
(J

π

)1/2

e−
h2

4J

∫

dω e−Jω2+hω〈e2Jωq〉H0(q)

=
(J

π

)1/2
∫

dω e−H(ω), (C.3)

with

H(ω) = Jω2 − hω +
h2

4J
− ln〈e2Jωq〉H0(q) . (C.4)

In this form, the partition function is expressed as an integral of the variable

ω, and the quadratic term in the original variable q is already decoupled. If

fluctuations with large q can only appear with very small probabilities, as gov-

erned by H0, one can expand the ln〈e2Jωq〉H0(q) term in a series of q, and obtain

an effective Hamiltonian H(ω) with leading orders in ω, which is in a standard
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form of Landau free energy, and is convenient to analyze.

It is obvious to see that the average ω with statistical weight defined by

H(ω) equals to the average q with statistical weight defined by H(q)

〈ω〉H(ω) =
∂

∂h

∣

∣

∣

h=0
lnZ = 〈q〉H(q). (C.5)

Similarly one can prove that higher order statistical moments of ω and q are also

equal via calculating the derivatives with respect to h. Thus, the field theory of

q can be learned by studying the field theory of ω. In the Hamiltonian H(ω), q

appears in a linear form, therefore, in cases that q is a variable that involves a

summation over many particles, this method allows us to decouple the problem

into a single-particle problem, as will be seen in the following application the

the HS transformation to vulcanization theory.

In RLPM the partition function we are going to decouple is Eq. (3.20)

Z1+n =

∫

V0

N
∏

i=1

dc0i

∫

V

n
∏

α=1

N
∏

j=1

dcαj e
−

HQ[Qp̂]

kBT , (C.6)

with

HQ[Qp̂] = − Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Qp̂Q−p̂∆
(1+n)
p̂ +

ν̃2
0N

2

2V0

∑

p

Qpǫ
0Q−pǫ

0

+
ν̃2N2

2V

∑

p

n
∑

α=1

Qpǫ
αQ−pǫ

α . (C.7)

The field Qp̂ = (1/N)
∑N

j=1 e
−ip̂·ĉj is a complex field, so we need to apply the

following equality for complex variables q and ω

e−J|q|2 =
J

π

∫

d(Reω)d(Imω)e−J|ω|2+2iJRe qω∗

, (C.8a)

e+J|q|2 =
J

π

∫

d(Reω)d(Imω)e−J|ω|2+2JRe qω∗

, (C.8b)

notice that the product Re (qω∗) = (Re q)(Reω)+(Im q)(Imω). We use Eq. (C.8a)

for the HS transformation for the LRS fields, and Eq. (C.8b) for the HS trans-

formation for the HRS field, and arrive at

Z1+n =

∫

DΩp̂

n
∏

α=0

DΩα
p e

−
HΩ[Ωα

p ,Ωp̂]

kBT , (C.9)

with

HΩ[Ωα
p ,Ωp̂] =

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂ +

ν̃2
0N

2

2V0

∑

p

Ωpǫ
0Ω−pǫ

0

+
ν̃2N2

2V

∑

p

n
∑

α=1

Ωpǫ
αΩ−pǫ

α −NkBT ln z0 . (C.10)
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where the NkBT ln z0 is analogous to the ln〈e2Jωq〉H0(q) term in Eq. (C.4).

Using Q−p̂ = (1/N)
∑N

j=1 e
ip̂·ĉj , and Qα

−p = (1/N)
∑N

j=1 e
ip·cα

j , we have

N ln z0 ≡ ln
{

∫

V0

N
∏

i=1

dc0i

∫

V

n
∏

α=1

N
∏

j=1

dcαj exp
[ Nη2

V n∆
(0)
0

∑

p̂∈HRS

Ωp̂
1

N

N
∑

j=1

× eip̂·ĉj ∆
(1+n)
p̂ +

iν̃2
0N

2

V0kBT

∑

p

Ωpǫ
0

1

N

N
∑

j=1

eip·c0
j

+
iν̃2N2

V kBT

∑

p

n
∑

α=1

Ωpǫ
α

1

N

N
∑

j=1

eip·c0
j

]}

=N ln

{

∫

V0

dc0
∫

V

n
∏

α=0

dcα exp
[ η2

V n∆
(0)
0

∑

p̂∈HRS

Ωp̂∆
(1+n)
p̂ eip̂·ĉ

+
iν̃2

0N

V0kBT

∑

p

Ωpǫ
0eip0c0

+
iν̃2N

V kBT

∑

p

n
∑

α=1

Ωpǫ
αeipαcα

]

}

. (C.11)

In this form it is obvious that the N particles are actually decoupled. Notice

that in Eq. (C.9) the functional integrals
∫

DΩp̂

∏n
α=0 DΩα

p have carefully chosen

prefactors [as in Eq. (C.8)], in order to make the integration properly normalized.
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Appendix D

Hamiltonian of the

stationary point

In this Appendix we calculate the Hamiltonian of the stationary point, by in-

serting the stationary point order parameter (3.41) into the Hamiltonian (3.32).

The first term in the Hamiltonian is then

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

=
Nη2kBT

2V n∆
(0)
0

∑

p̂

(∆(0))1+ne−
a2|p̂|2

2

{

Q

∫

dz1
V0

∫

τ1

e−
|p̂|2

2τ1
−ip̂·ẑζ,1 −Qδ

((1+n)d)
p̂

}

×
{

Q

∫

dz2
V0

∫

τ2

e−
|p̂|2

2τ2
+ip̂·ẑζ,2 −Qδ

((1+n)d)
p̂

}

=
Nη2kBTQ

2

2V n∆
(0)
0

(∆(0))1+n

+
Nη2kBTQ

2

2V n∆
(0)
0

(∆(0))1+n
∑

p̂

∫

dz1dz2
V 2

0

∫

τ1,τ2

e

(

1
2τ1

+ 1
2τ2

+ a2

2

)

|p̂|2−ip̂·(ẑζ,1−ẑζ,2)

=
Nη2kBTQ

2(∆(0))n

2V n

+
Nη2kBTQ

2(∆(0))n

2V n
(1 + nζ2)−d/2

∫

τ1,τ2

{

2π
( 1

2τ1
+

1

2τ2
+
a2

2

)}−nd/2

,

(D.1)

where ẑζ ≡ {z, ζz, . . . , ζz}. The sum
∑

p̂∈HRS is changed into
∑

p̂ because the

order parameter we inserted-in has a vanishing LRS. We have also changed

momentum summation into an integral via 1
V0V n

∑

p̂ =
∫

d(1+n)dp̂
(2π)(1+n)d .

The free energy of the system is related to the O(n) term of this Hamiltonian,

as given by Eq. (3.11,3.12). Thus, we can make the small n expansion. It is

straightforward to see that O(1) terms cancel, and the leading order is O(n)

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

=n
Nη2kBTQ

2

2V n

{

lnV − d

2

(

ln(2π) + ζ2
)

− d

2

∫

τ1,τ2

( 1

2τ1
+

1

2τ2
+
a2

2

)}

. (D.2)

Similarly one can also calculate the ln z0 term. Insert the saddle point order
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parameter into z0, and sum (integrate) over momentum p̂ we have

z0 =

∫

V0

dc0
∫

V

n
∏

α=0

dcα exp
{ η2

V n∆
(0)
0

∑

p̂∈HRS

Ωp̂∆
(1+n)
p̂ eip̂·ĉ

}

= e−η2Q(∆
(0)
0 /V )n

∫

dĉ exp
{

η2Q(∆
(0)
0 )n

∫

dz

∫

τ

( τ̃

2π

)

(1+n)d

2

e−
τ̃
2 (ẑζ−ĉ)2

}

,

(D.3)

where τ̃ ≡
(

1
τ +a2

)−1
. Then we can write the exponential in its Taylor expansion

(keeping to all orders) and integrate out ĉ

z0 = e−η2Q(∆
(0)
0 /V )n

V0V
n
{

1 + η2Q(∆
(0)
0 /V )n

+
1

V0V n

∞
∑

m=2

(

η2Q(∆
(0)
0 )n

)m

m!

∫

dz1 · · · dzm

×
∫

τ1,...,τm

m
∏

j=1

( τ̃j
2π

)

(1+n)d

2
( 2π

τ̃1 + τ̃m

)

(1+n)d

2

e
−

τ̃1τ̃2(ẑζ,1−ẑζ,2)2+···

2(τ̃1+···+τ̃m)

}

, (D.4)

where on the exponential, the terms following (ẑζ,1 − ẑζ,2)
2 includes all pairs

between the m variables [there are m(m − 1)/2 terms]. Using (ẑζ,1 − ẑζ,2)
2 =

(1 + nζ2)(z1 − z2)
2 (recall that ẑζ,1 is a (1 + n)d-dimensional vector, and z1 is

a d-dimensional vector), the integration
∫

dz1 · · · dzm can be easily performed,

and we have

z0 = e−η2Q(∆
(0)
0 /V )n

V0V
n
{

1 + η2Q(∆
(0)
0 /V )n

+
1

V n

∞
∑

m=2

(

η2Q(∆
(0)
0 )n

)m

m!

×
∫

τ1,...,τm

m
∏

j=1

( τ̃j
2π

)
nd
2
( 2π

τ̃1 + τ̃m

)
nd
2

(1 + nζ2)
(1−m)d

2

}

. (D.5)

Then − ln z0 is obtained by make small n expansion, using the following equality

ln(x+ ny +O(n2)) = ln(x(1 + n(y/x) +O(n2)))

= lnx+ n(y/x) +O(n2), (D.6)

so we have

− ln z0 = − lnV0 + n
{

− lnV + (η2Q+ e−η2Q − 1)
(d

2

(

ln(2π) + ζ2
)

− lnV
)

− e−η2Q d

2

∞
∑

m=1

(

η2Q
)m

m!
ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)}

. (D.7)

Therefore the small n expansion of the stationary point Hamiltonian H
(SP )
Ω
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to O(n) is given by

H
(SP )
Ω =

ν̃2
0(0)N2

2V0
+
nν̃2(0)N2

2V
−NkBT lnV0 − nNkBT lnV

+ nNkBT

{

θ
(d

2

(

ln(2π) + ζ2
)

− lnV
)

− η2Q2

2
· d
2

∫

τ1,τ2

ln
( 1

τ1
+

1

τ2
+ a2

)

− e−η2Q d

2

∞
∑

m=1

(η2Q)m

m!

∫

τ1,...,τ2

ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)

}

, (D.8)

where the parameter

θ ≡ −η
2Q2

2
+ η2Q+ e−η2Q − 1. (D.9)
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Appendix E

Hamiltonian of the

Goldstone-deformed state

In this Appendix we calculate the Hamiltonian of the Goldstone deformed order

parameter, by inserting the Goldstone deformed order parameter (3.60) into the

Hamiltonian (3.32), following a similar calculation in Appendix D. To yield a

description of elasticity, we shall expand the Hamiltonian for small deformations,

in particular, in a series of the small scalar variable characterizing the replicated

deformation field ΨR(z1, z2) ≡ (R̂(z1) − R̂(z2))
2 − (1 + n)(z1 − z2)

2.

The quadratic term in the Hamiltonian is

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

=
Nη2kBT

2V n∆
(0)
0

∑

p̂

(∆(0))1+ne−
a2|p̂|2

2

{

Q

∫

dz1
V0

∫

τ1

e−
|p̂|2

2τ1
−ip̂·R̂(z1) −Qδ

((1+n)d)
p̂

}

×
{

Q

∫

dz2
V0

∫

τ2

e−
|p̂|2

2τ2
+ip̂·R̂(z2) −Qδ

((1+n)d)
p̂

}

=
Nη2kBTQ

2(∆(0))n

2V n
+
Nη2kBTQ

2(∆(0))n

2V n
V0V

n

∫

dz1dz2
V 2

0

∫

τ1,τ2

×
{

2π
( 1

2τ1
+

1

2τ2
+
a2

2

)}−
(1+n)d

2

e

−
(R̂(z1)−R̂(z2))2

2

(

1
2τ1

+ 1
2τ2

+ a2
2

)

. (E.1)

Now we can expand in small ΨR using the notation ΨR(z1, z2) ≡ (R̂(z1) −
R̂(z2))

2− (1+n)(z1−z2)2. Note that ΨR is not related to the deformation rela-

tive to the stationary point, which is characterized by the mean positions of the

replicas of the particle ẑζ = {z, ζz, . . . , ζz}, instead, it describes deformations

relative to the “state right after linking”(i.e., prior to relaxation), characterized

by the mean positions of the replicas of the particle ẑ = {z, z, . . . , z}, as dis-

cussed in Section 3.4.3 and 4.2. The expansion of the quadratic term is given
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by

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

=
Nη2kBTQ

2(∆(0))n

2V n
+
Nη2kBTQ

2(∆(0))n

2

∫

dz1dz2
V0

∫

τ1,τ2

×
[

2π
( 1

2τ1
+

1

2τ2
+
a2

2

)]−(1+n)d/2

e
−

(1+n)(z1−z2)2

2( 1
2τ1

+ 1
2τ2

+ a2
2

)

×
{

1 − ΨR(z1, z2)

2
(

1
2τ1

+ 1
2τ2

+ a2

2

) +
1

2

( ΨR(z1, z2)

2
(

1
2τ1

+ 1
2τ2

+ a2

2

)

)2

+O(ΨR(z1, z2)
3)

}

.

(E.2)

The small n expansion on this quadratic term is given by:

Nη2kBT

2V n∆
(0)
0

∑

p̂∈HRS

Ωp̂Ω−p̂∆
(1+n)
p̂

=n
Nη2kBTQ

2

2

{

lnV − d

2

(

ln(2π) + 1
)

− d

2

∫

τ1,τ2

ln
( 1

2τ1
+

1

2τ2
+
a2

2

)

+

∫

dz1dz2
V0

∫

τ1,τ2

{

2π
( 1

2τ1
+

1

2τ2
+
a2

2

)}−d/2

e
−

(1+n)(z1−z2)2

2( 1
2τ1

+ 1
2τ2

+ a2
2

)

×
[

− ΨR(z1, z2)

2
(

1
2τ1

+ 1
2τ2

+ a2

2

) +
1

2

( ΨR(z1, z2)

2
(

1
2τ1

+ 1
2τ2

+ a2

2

)

)2

+O(ΨR(z1, z2)
3)
]

}

+O(n2) (E.3)

The calculation for the ln z0 term is similar to the above calculation for the

quadratic term. the expansion in small variable ΨR reads

z0 = e−η2Q(∆
(0)
0 /V )n

V0V
n

{

1 + η2Q(∆
(0)
0 /V )n

+
1

V0V n

∞
∑

m=2

(

η2Q(∆
(0)
0 )n

)m

m!

∫

dz1 · · · dzm

∫

τ1,...,τm

×
m
∏

j=1

( τ̃j
2π

)

(1+n)d

2
( 2π

τ̃1 + τ̃m

)

(1+n)d

2

e
−

τ̃1τ̃2(z1−z2)2+···

2(τ̃1+···+τ̃m)

×
[

1 − τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

+
1

2

( τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

)2

+O(Ψ3
R)
]

}

,

(E.4)

where the summations that we have abbreviated into · · · includes all pairs

formed by {z1, . . . , zm}. We then expand in small n and keep to O(n) in the

ln z0 term, assuming that ΨR(z1, z2) is of O(n), because it contains a summation

86



∑n
α=1. After a tedious calculation we have

− ln z0 = − η2Q(
∆(0)

V
)n − lnV0 − n lnV − η2Q

− ne−η2Q
{

(1 − eη2Q) lnV + η2Qeη2Q lnV0

+
(

eη2Q − 1 − η2Qeη2Q
)d

2

(

ln(2π) + 1
)

+
d

2

∞
∑

m=1

∫

τ1,...τm

ln
( τ̃1 · · · τ̃m
τ̃1 + · · · + τ̃m

)}

− e−η2Q 1

V0

∞
∑

m=2

(η2Q)m

m!

∫

dz1 · · · dzm

∫

τ1,...,τm

m
∏

j=1

( τ̃j
2π

)
d
2

×
( 2π

τ̃1 + · · · + τ̃m

)
d
2

e
−

τ̃1τ̃2(z1−z2)2+···

2(τ̃1+···+τ̃m)

[

− τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

+
1

2

( τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

)2

+O(Ψ3
R)

]

. (E.5)

In order to further simplify the expression, first consider the O(ΨR) terms in

the expansion, − τ̃1τ̃2ΨR(z1,z2)+···
2(τ̃1+···+τ̃m) . The first term has a factor ΨR(z1, z2) ≡

(R̂(z1)− R̂(z2))
2− (1+n)(z1−z2)2 which only involves two variables z1 and z2,

so we can integrate out the other (m− 2) variables, z3, . . . , zm. (Of course, for

m = 2, no integrals are needed.) In total, there are m(m−1)
2 (number of pairs

amoung m variables) such terms. Thus, the O(ΨR) terms in − ln z0 is given by

− e−η2Q 1

V0

∞
∑

m=2

(η2Q)m

m!

∫

dz1 · · · dzm

∫

τ1,...,τm

m
∏

j=1

( τ̃j
2π

)
d
2
( 2π

τ̃1 + · · · + τ̃m

)
d
2

× e
−

τ̃1τ̃2(z1−z2)2+···

2(τ̃1+···+τ̃m)

[

− τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

]

= − e−η2Q 1

V0

∞
∑

m=2

(η2Q)m

m!

∫

dz1 · · · dzm

∫

τ1,...,τm

m
∏

j=1

( τ̃j
2π

)
d
2

×
∫

dc e−
τ̃1
2 (z1−c)2−

τ̃2
2 (z2−c)2−···

[

− τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

]

= − e−η2Q 1

V0

∞
∑

m=2

(η2Q)m

m!

m(m− 1)

2

∫

dz1dz2

∫

τ1,...,τm

( τ̃1τ̃2
2π(τ̃1 + τ̃2)

)
d
2

× e
−

τ̃1τ̃2(z1−z2)2

2(τ̃1+τ̃2)

[

− τ̃1τ̃2
2(τ̃1 + · · · + τ̃m)

]

ΨR(z1, z2), (E.6)

where in the last line here we used the fact that {z1, z2, . . . , zm} are symmetric,

so the m(m−1)
2 terms are identical.

Similarly for the O(Ψ2
R) terms in the expansion in Eq. (E.5), there are terms

involving two points such as ΨR(z1, z2)
2, three points such as ΨR(z1, z2)ΨR(z1, z3),

and four points such as ΨR(z1, z2)ΨR(z3, z4) (Of course, for m = 3 there is no

four point terms, and for m = 2 there is no three or four points terms.) Thus
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the O(Ψ2
R) terms can be written as

[ τ̃1τ̃2ΨR(z1, z2) + · · ·
2(τ̃1 + · · · + τ̃m)

]2

→ 1

4(τ̃1 + · · · + τ̃m)2

[m(m− 1)

2
τ̃2
1 τ̃

2
2 ΨR(z1, z2)

2

+m(m− 1)(m− 2)τ̃1τ̃
2
2 τ̃3ΨR(z1, z2)ΨR(z2, z3)

+
m(m− 1)(m− 2)(m− 3)

4
τ̃1τ̃2τ̃3τ̃4ΨR(z1, z2)ΨR(z3, z4)

]

. (E.7)

Following a similar calculation as in Eq. (E.6), we can integrate out the inte-

gration variables that are not present in ΨR, and obtain the O(Ψ2
R) term in

ln z0.

Summing up the contributions from the quadratic term and the ln z0 term,

we arrive at the Hamiltonian of the Goldstone deformed state

H
(GS)
Ω = H

(SP )
Ω +HΨR

Ω , (E.8)

with H
(SP )
Ω being the Hamiltonian of the stationary point, and the increase of

the Hamiltonian due to Goldstone deformation is given by

HΨR

Ω = −NkBT
θd

2
ζ2 +

1

2

∫

dz1dz2K1(z1, z2)ΨR(z1, z2)

− 1

8kBT

∫

dz1dz2dz3dz4K2(z1, z2, z3, z4)ΨR(z1, z2)ΨR(z3, z4). (E.9)

The first term here, −NkBT
θd
2 ζ

2, is present due to the fact that the expan-

sion variable ΨR(z1, z2) is from the state right after linking, not the stationary

point, as we have previously discussed. Note that HΨR

Ω only involves the energy

of shear deformation, because the Goldstone modes only contains pure shear

deformations, and the energy of volume variations is in the stationary point

Hamiltonian part, which has a variable contraction parameter ζ. The kernels in

Eq. (E.9) are given by

1

2
K1(z1, z2)

=
Nη2kBTQ

2

4V0

∫

τ̃1,τ̃2

(

2π
( 1

τ1
+

1

τ2
+ a2

))−d/2( 1

τ1
+

1

τ2
+ a2

)−1

e
−

(z1−z2)2

2

(

1
τ1

+ 1
τ2

+a2

)

+
NkBT

2V0
e−η2Q

∞
∑

m=2

(η2Q)m

m!

m(m− 1)

2

∫

τ̃1,...,τ̃m

( τ̃1τ̃2
2π(τ̃1 + τ̃2)

)d/2

× e
−

τ̃1τ̃2(z1−z2)2

2(τ̃1+τ̃2)
τ̃1τ̃2

τ̃1 + · · · + τ̃m
(E.10)
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and

− 1

8kBT
K2(z1, z2, z3, z4)

=
Nη2kBTQ

2

16V0

∫

τ̃1,τ̃2

(

2π
( 1

τ1
+

1

τ2
+ a2

))−d/2( 1

τ1
+

1

τ2
+ a2

)−1

× e

−
(z1−z2)2

2

(

1
τ1

+ 1
τ2

+a2

)

δ(d)(z1 − z3)δ
(d)(z2 − z4)

− NkBT

8V0
e−η2Q

∞
∑

m=2

(η2Q)m

m!

m(m− 1)

2

∫

τ̃1,...,τ̃m

( τ̃1τ̃2
2π(τ̃1 + τ̃2)

)d/2

× e
−

τ̃1τ̃2(z1−z2)2

2(τ̃1+τ̃2)
τ̃2
1 τ̃

2
2

(τ̃1 + · · · + τ̃m)2
δ(d)(z1 − z3)δ

(d)(z2 − z4)

− NkBT

8V0
e−η2Q

∞
∑

m=3

(η2Q)m

m!
m(m− 1)(m− 2)

∫

τ̃1,...,τ̃m

( τ̃1τ̃2τ̃3
4π2(τ̃1 + τ̃2 + τ̃3)

)d/2

× e
−

τ̃1τ̃2(z1−z2)2+τ̃2τ̃3(z2−z3)2+τ̃3τ̃1(z3−z1)2

2(τ̃1+τ̃2+τ̃3)
τ̃1τ̃

2
2 τ̃3

(τ̃1 + · · · + τ̃m)2
δ(d)(z2 − z4)

− NkBT

8V0
e−η2Q

∞
∑

m=3

(η2Q)m

m!

m(m− 1)(m− 2)(m− 3)

4

×
∫

τ̃1,...,τ̃m

( τ̃1τ̃2τ̃3τ̃4
8π3(τ̃1 + τ̃2 + τ̃3 + τ̃4)

)d/2 τ̃1τ̃2τ̃3τ̃4
(τ̃1 + · · · + τ̃m)2

× e
−

τ̃1τ̃2(z1−z2)2+τ̃1τ̃3(z1−z3)2+τ̃1τ̃4(z1−z4)2+τ̃2τ̃3(z2−z3)2+τ̃2τ̃4(z2−z4)2+τ̃3τ̃4(z3−z4)2

2(τ̃1+τ̃2+τ̃3+τ̃4) .

(E.11)

Strictly speaking, the kernel K2 should be symmetric under the exchange of

the variables z1 ↔ z2 or z3 ↔ z4. Here to save space we used the above non-

symmetric form. The true symmetric form can be recovered by

K2(z1, z2, z3, z4) → 1

4

(

K2(z1, z2, z3, z4) +K2(z1, z2, z4, z3)

+K2(z2, z1, z3, z4) +K2(z2, z1, z4, z3)
)

. (E.12)
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Appendix F

Relaxation of the

phenomenological elastic

energy
In this Appendix we solve the stationarity condition for the random local defor-

mations v. Firstly we need to calculate the variation of the “bulk term”, which

can be expanded to leading order in small v as 1

det
(∂Ri(z)

∂zj

)

= det
(

ζδij + ∂jvi(z)
)

= ζddet
(

δij + ζ−1∂jvi(z)
)

≃ ζd
(

1 + ζ−1∂ivi(z)
)

. (F.1)

Using this we have

{

det
(∂Ri(z)

∂zj

)

− 1
}2

= (ζd − 1)2 + 2(ζd − 1)ζd−1∂ivi(z)

+ ζ2d−2∂ivi(z)∂jvj(z). (F.2)

Thus, the stationarity equation is

0 = 2(ζza + va(z))

∫

dz2G(z, z2)

− 2

∫

dz2G(z, z2)(ζz2,a + va(z2)) − λ′0 ∂a(∂ivi(z)), (F.3)

where

λ′0 ≡ λ0ζ
2d−2. (F.4)

We take the disorder average of the nonlocal kernel, G(0), to be zeroth order,

and the fluctuation part, G(1), to be first order, thus v(z) is also first order. So

the zeroth order equation is

0 = 2za

∫

dz2G
(0)(z − z2) − 2

∫

dz2G
(0)(z − z2)z2,a , (F.5)

which is automatically satisfied given that G(0)(z − z2) is even in (z − z2).

1A similar expansion but to higher order in v is performed in Eq. (G.11), in terms of the
strain tensor ǫ.
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The first order equation is

0 =ζza

∫

dz2G
(0)(z, z2) + va(z)

∫

dz2G
(0)(z − z2)

−
∫

dz2G
(1)(z, z2)ζz2,a −

∫

dz2G
(0)(z − z2)va(z) − λ′0

2
∂a(∂ivi(z)). (F.6)

This equation can be solved in momentum space. We define the following Fourier

transforms (on a finite volume which is the volume of the state right after linking

V0)

G(0)
p =

∫

dxe−ipxG(0)(x),

G(1)
p1,p2

=

∫

dxe−ip1x1−ip2x2G(0)(x1, x2), (F.7)

so the momentum space stationarity equation is

0 = iζ
∂

∂p1,a
G

(1)
p1,0 − iζ

∂

∂p2,a

∣

∣

∣

p2=0
G(1)

p1,p2
+ (G

(0)
0 −G(0)

p1
)va,p1

+
λ′0
2
p1,ap1,bvb,p1

. (F.8)

Strictly speaking, the differentiation here should be understood as difference

quotient instead because we are using a finite volume version of the Fourier

transform,but for convenience we just write it as differentiation.

This equation can be written in the tensorial form

{

2
(Dp

p2

)

pT +
(

λ′0 +
Dp

p2

)

pL

}

· |p|2 ~vp = ~fp , (F.9)

where

fa,p ≡ −2ζ
(

i
∂

∂pa
G

(1)
p,0 − i

∂

∂p2,a

∣

∣

∣

p2=0
G(1)

p,p2

)

, (F.10)

which is actually the random force in the state that is contracted but not yet

equilibrated for randomness, and

Dp ≡ G
(0)
0 −G(0)

p . (F.11)

I is the d-dimensional identity matrix, and the projection operators in momen-

tum space are defined as

pL
ij ≡ pipi/p

2,

pT
ij ≡ δij − pipi/p

2, (F.12)
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which satisfy the following relations

(pL)2 = pL, (pT)2 = pT, pL · pT = 0. (F.13)

In the following we use bold letters to denote rank-2 tensors, and letters with

an overhead arrow (such as ~v(p)) to denote a vector when needed.

By this decomposition we arrive at the solution to Eq. (F.9)

~vp =
pT · ~fp

2Dp
+

pL · ~fp

λ′0|p|2 + 2Dp
. (F.14)

Notice that the second term is much smaller than the first term, due to the

large bulk modulus λ′0. In the incompressible limit λ0 → ∞, we have

~vp =
pT · ~fp

2Dp
, (F.15)

which is a purely transverse field, meaning that it satisfies pivi,p = 0 or ∂ivi(x) =

0, which is the only deformation allowed in an incompressible media.
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Appendix G

Re-expanding the elastic

energy around the

equilibrium reference state
In this Appendix we re-expand the elastic energy for deformations relative to

the relaxed state z̃ = ζz + v(z), as discussed in Section 4.3. The small variable

in this expansion is the deformation field ũ(z̃) relative to the relaxed state.

Furthermore, to obtain a continuous description of the elasticity, we shall adopt

the notation with the strain tensor

ǫij(x) ≡ 1

2
(Λij(x)Λij(x) − δij)

=
1

2
(∂iuj(x) + ∂jui(x) + ∂iul(x)∂jul(x)). (G.1)

where Λij(x) ≡ ∂Ri(x)/∂xj is the deformation gradient tensor. This strain

tensor transform as a tensor in the reference space labeled by x, and as a scalar

in the target space labeled by R.

G.1 Expanding the nonlocal kernel G̃

in the relaxed state The definition of G̃, as given in Section 4.3, is

G̃(z̃1, z̃2) ≡ G(z(z̃1), z(z̃2)). (G.2)

It can be expanded in small v to yield a direct expression for G̃. In momentum-

space

G̃p̃1,p̃2
=

∫

dz̃1dz̃2e
−ip̃1z̃1−ip̃2z̃2G̃(z̃1, z̃2) =

∫

dz̃1dz̃2e
−ip̃1z̃1−ip̃2z̃2G(z(z̃1), z(z̃2))

=

∫

dz1dz2J (z1)J (z2)e
−ip̃1(ζz1+v(z1))−ip̃2(ζz2+v(z2))G(z1, z2), (G.3)

where in the first line z(z̃1) is the mapping of a mass point z̃1 in the relaxed

state back to the position z(z̃1) where it was in the state right after linking.

Plugging in the expression for ζ and v(z), given by Eq. (4.5, 4.9), and keep to

O((1/λ0)
0), which gives ζ ≃ 1 and J (z) ≃ 1, we can expand v down, and keep
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to first order in G(1) (v is in the same order as G(1)), and arrive at

G̃p̃1,p̃2

≃
∫

dz1dz2
(

1 − ip̃1v(z1) − ip̃2v(z2)
)

e−ip̃1z1−ip̃2z2(G(0)(z1, z2) +G(1)(z1, z2))

≃ G
(0)
p̃1,p̃2

+G
(1)
p̃1,p̃2

− i

∫

dz1dz2
(

p̃1v(z1) + p̃2v(z2)
)

e−ip̃1z1−ip̃2z2G(0)(z1, z2)

= G
(0)
p̃1,p̃2

+G
(1)
p̃1,p̃2

− i
(

p̃1 · v(p̃1+p̃2)G
(0)
p̃2

+ p̃2 · v(p̃1+p̃2)G
(0)
p̃1

)

. (G.4)

G.2 Local expansion of the harmonic attraction

In this section we make a local expansion of the nonlocal term in the elastic

energy of the equilibrium reference state

Γnonlocal =
1

2

∫

dz̃1dz̃2J (z1)
−1J (z2)

−1G̃(z̃1, z̃2)

×
(

∣

∣R̃(z̃1) − R̃(z̃2)
∣

∣

2 −
∣

∣z̃1 − z̃2
∣

∣

2
)

. (G.5)

For convenience of notation, we define the following change of variables

z = z1,

y = z2 − z1,

M(z, y) ≡ G̃(z1, z2), (G.6)

so that the nonlocal kernel in relaxed state, Eq. (4.16), can be written as (in

momentum space)

M̃p̃,q̃ ≃ M
(0)
p̃,q̃ +M

(1)
p̃,q̃ + gp̃,q̃

(

fp̃ · pT · q̃
)

(G.7)

with the definition and leading order in momentum expansion of gp̃,q̃ given by

gp̃,q̃ ≡
i(G

(0)
q̃ −G

(0)
p̃−q̃)

2(G
(0)
0 −G

(0)
p̃ )

≃ i(p̃2 − 2p̃ · q̃)
2p̃2

. (G.8)

The local expansion of Eq. (G.5) is then given by

Γnonlocal =
1

2

∫

dz̃dỹ M̃(z̃, ỹ)
(

∣

∣R̃(z̃) − R̃(z̃ + ỹ)
∣

∣

2 −
∣

∣y
∣

∣

2
)

≃ 1

2

∫

dz̃
(

∂iR̃l(z̃) − ∂jR̃l(z̃) − δij
)

∫

dỹ ỹi ỹj M̃(z̃, ỹ), (G.9)

where the factor J (z1)
−1J (z2)

−1 is ignored because its difference from unity

is of O(1/λ0). Using the strain tensor ǫ̃ij(z̃) = 1
2

(

∂iR̃l(z̃) − ∂jR̃l(z̃) − δij
)

, it is

straightforward to express this term in a local form, which is the standard form

of Lagrangian elasticity.

The complete expression of the local form of elastic energy for deformations
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relative to the relaxed state, including the contribution from the bulk term, will

be calculated in Appendix G.4.

G.3 Expansion of the “bulk term”

The “bulk term” in the elastic free energy Eq. (4.14) is

Γbulk ≡ λ0

2

∫

dz̃J (z)−1
{

J (z)det
(∂R̃i(z̃)

∂z̃j

)

− 1
}2

. (G.10)

The determinant can be expanded using the strain tensor ǫ̃

det
(∂R̃i(z̃)

∂z̃j

)

= det
(

Λ̃(z̃)
)

=
{

det
(

I + 2ǫ̃(z̃)
)}1/2

= e
1
2Tr ln

(

I+2ǫ̃(z̃)
)

= 1 + Trǫ̃(z̃) − Trǫ̃(z̃)2 +
1

2

(

Trǫ̃(z̃)
)2

+O(ǫ̃(z̃)3). (G.11)

Thus we have

Γbulk =
λ0

2

∫

dz̃J (z)−1
{

J (z)det
(∂R̃i(z̃)

∂z̃j

)

− 1
}2

≃ λ0

2

∫

dz̃J (z)−1
{

(J (z) − 1)2 + 2(J (z) − 1)J (z)Trǫ̃(z̃)

− 2(J (z) − 1)J (z)Trǫ̃(z̃)2 + (2J (z) − 1)J (z)(Trǫ̃(z̃))2
}

.

(G.12)

Inserting the solutions of ζ and v, as given in Eq. (4.5, 4.9), into the Jacobian

J (z) ≡
∣

∣

∂z̃i

∂zj

∣

∣, we arrive at

Γbulk =

∫

dz̃
{

Tr(σ′(z̃) · ǫ̃(z̃)) + µ(z̃)Trǫ̃(z̃)2 +
λ(z̃)

2
(Trǫ̃(z̃))2

}

, (G.13)

with the elastic parameters (in momentum space)

σ′
ij,p = δij

{ ip̃ · ~fp̃

p̃2
− ρV0δp̃

}

µp̃ = ρV0δp̃ − ip̃ · ~fp̃

p̃2

λp̃ = λ0V0δp̃ + 2
{ ip̃ · ~fp̃

p̃2
− ρV0δp̃

}

. (G.14)

G.4 Local form of the elastic energy relative to

the relaxed state

Summing up the contributions from the nonlocal term Γnonlocal and the bulk

term Γbulk in the elastic free energy (4.14), we arrive at the local form of the
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elastic energy for deformations relative to the relaxed state

Γ =

∫

dz̃
{

Tr(σ(z̃) · ǫ̃(z̃)) + µ(z̃)Trǫ̃(z̃)2 +
λ(z̃)

2
(Trǫ̃(z̃))2

}

, (G.15)

with the elastic parameters

σij,p̃ = − ∂2

∂q̃i∂q̃j

∣

∣

∣

q=0
G

(1)
p̃−q̃,p̃ + iδij

ip̃ · ~fp̃

|p̃|2 − fa,p̃

|p̃|2
(

p̃ip
T
ja,p̃ + p̃jp

T
ia,p̃

)

, (G.16a)

µp̃ = ρV0δp̃ − ip̃ · ~fp̃

|p̃|2 (G.16b)

λp̃,=λ0V0δp̃ + 2
{ ip̃ · ~fp̃

|p̃|2 − ρV0δp̃

}

. (G.16c)
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Appendix H

Relaxation of the deformed

state and nonaffine

deformations
In this section we solve for the stationarity equation with a given macroscopic

deformation Λ, as discussed in Section 4.4, which yield information about non-

affine deformations. The stationarity condition is given by

2(ζΛaizi + (vΛ)a(z))

∫

dz2G(z, z2)− 2

∫

dz2G(z, z2)(ζΛaiz2,i + (vΛ)a(z2))

−λ′0Λ−1
ia Λ−1

jb ∂i∂j(vΛ)b(z) = 0. (H.1)

We take G(0) to be zeroth order, and G(1) and vΛ(z) to be first order. So the

zeroth order equation is

0 = 2Λaizi

∫

dz2G
(0)(z − z2) − 2Λai

∫

dz2G
(0)(z − z2)z2,i, (H.2)

which is already satisfied given that G(0)(z − z2) is even in (z − z2).

The first order equation is

ζΛaizi

∫

dz2G
(1)(z, z2) + (vΛ)a(z)

∫

dz2G
(0)(z, z2) −

∫

dz2G
(1)(z, z2)ζΛaiz2,i

−
∫

dz2G
(0)(z, z2)(vΛ)a(z2) −

λ′0
2

Λ−1
ia Λ−1

jb ∂i∂j(vΛ)b(z) = 0. (H.3)

We can also solve it in momentum-space, in which the equation is expressed as

0 = iζΛai
∂

∂p1,i
G

(1)
p1,0 − iζΛai

∂

∂p2,i

∣

∣

∣

p2=0
G(1)

p1,p2
+ (G

(0)
0 −G(0)

p1
)(vΛ)a,p1

+
λ′0
2

Λ−1
ia Λ−1

jb p1,ip1,jvb,p1
. (H.4)

This equation can be written in the tensorial form

{2Dp

|p|2 I + λ′0Λ
−T pLΛ−1

}

· |p|2 ( ~vΛ)p = ( ~fΛ)p , (H.5)

where g = ΛT Λ is the metric tensor, and

Dp ≡ G
(0)
0 −G(0)

p , (H.6a)

(fΛ)a,p ≡ −2ζ
(

iΛai
∂

∂pi
G

(1)
p,0 − iΛai

∂

∂p2,i

∣

∣

p2=0
G(1)

p,p2

)

. (H.6b)
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To solve the equation we define the deformed version of the projection operators

pL
Λ ≡ 1

Tr(pLg−1)
Λ−T pLΛ−1, (H.7a)

pT
Λ ≡ I − pL

Λ. (H.7b)

It is easy to verify that

(pL
Λ)2 = pL

Λ, (pT
Λ)2 = pT

Λ, pL
Λ · pT

Λ = 0. (H.8)

Using these deformed projection operators we can write Eq. (H.5) as

{

2Dp

|p|2 pT
Λ +

(2Dp

|p|2 + λ′0r1

)

pL
Λ

}

· |p|2( ~vΛ)p = ( ~fΛ)p, (H.9)

where we have defined

t1 ≡ Tr(pLg−1). (H.10)

It is straightforward to arrive at the solution

( ~vΛ)p =
{ pT

Λ

2Dp
+

pL
Λ

λ′0t1|p|2 + 2Dp

}

· ( ~fΛ)p . (H.11)
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Appendix I

Disorder correlators of

elastic parameters in the

relaxed state

I.1 Disorder correlator of the nonlocal kernel

in the relaxed state

The nonlocal kernel G̃ in the relaxed state is related to the nonlocal kernel G

in the state right after linking via Eq. (4.15a), and in leading order in small v,

as in Eq. (4.16), we have

G̃p̃1,p̃2
≃ G

(0)
p̃1,p̃2

+G
(1)
p̃1,p̃2

− i
(

p̃1 · ~v(p̃1+p̃2)G
(0)
p̃2

+ p̃2 · ~v(p̃1+p̃2)G
(0)
p̃1

)

. (I.1)
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Using this relation, we can derive the correlation function of G̃ from the corre-

lation function of G, which is given in Eq. (5.7b), and we arrive at

[M̃p1,q1
M̃p2,q2

]c

= δp1+p2

{

− Nη2Q2

2kBT

∫

τ1,τ2

( 1

τ1
+

1

τ2
+ a2

)−2

×
(

e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|q1+q2|
2

+ e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|p1−q1+q2|
2
)

/2

+
N

(kBT )2
e−η2Q

∞
∑

m=2

(η2Q)m

m!

[m(m− 1)

2

∫

τ1,...,τm

( τ̃1τ̃2
τ̃1 + · · · + τ̃m

)2

×
(

e−
(τ̃1+τ̃2)|q1+q2|2

2τ̃1τ̃2 + e−
(τ̃1+τ̃2)|p1−q1+q2|2

2τ̃1τ̃2

)

/2

+m(m− 1)(m− 2)

∫

τ1,...,τm

τ̃1τ̃
2
2 τ̃3

(τ̃1 + · · · + τ̃m)2

(

e−
1
2

(

|p1−q1|2

τ̃1
+

|p1−q1+q2|2

τ̃2
+

|q2|2

τ̃3

)

+ e−
1
2

(

|q1|2

τ̃1
+

|q1+q2|2

τ̃2
+

|q2|2

τ̃3

)

+ e−
1
2

(

|p1−q1|2

τ̃1
+

|q1+q2|2

τ̃2
+

|p1+q2|2

τ̃3

)

+ e−
1
2

(

|q1|2

τ̃1
+

|p1−q1+q2|2

τ̃2
+

|p1+q2|2

τ̃3

)

)

/4

+
m(m− 1)(m− 2)(m− 3)

4

∫

τ1,...,τm

τ̃1τ̃2τ̃3τ̃4
(τ̃1 + · · · + τ̃m)2

× e−
1
2

(

|p1−q1|2

τ̃1
+

|q1|2

τ̃2
+

|p1+q2|2

τ̃3
+

|q2|2

τ̃4

)

]

}

+ 2iδp1+p2
q1 · pT

1 · q2
{

− Nη2Q2

2kBT

∫

τ1,τ2

( 1

τ1
+

1

τ2
+ a2

)−1

×
[

tp1,q1

(

e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|q2|
2

+ e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|p1+q2|
2)

/2

− t−p1,q2

(

e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|q1|
2

+ e−
1
2

(

1
τ1

+ 1
τ2

+a2
)

|−p1+q1|
2)

/2
]

+
N

(kBT )2
e−η2Q

∞
∑

m=2

(η2Q)m

m!

[m(m− 1)

2

∫

τ1,...,τm

τ̃1τ̃2(τ̃1 + τ̃2)

(τ̃1 + · · · + τ̃m)2

×
(

tp1,q1

(

e−
(τ̃1+τ̃2)|q2|2

2τ̃1τ̃2 + e−
(τ̃1+τ̃2)|p1+q2|2

2τ̃1τ̃2

)

/2

− t−p1,q2

(

e−
(τ̃1+τ̃2)|q1|2

2τ̃1τ̃2 + e−
(τ̃1+τ̃2)|−p1+q1|2

2τ̃1τ̃2

)

/2
)

+m(m− 1)(m− 2)

∫

τ1,...,τm

τ̃1τ̃
2
2 τ̃3

(τ̃1 + · · · + τ̃m)2

×
(

tp1,q1

(

− e−
1
2

(

1
τ̃2

+ 1
τ̃3

|q2|
2
)

+ e−
1
2

(

1
τ̃2

+ 1
τ̃3

|p1+q2|
2
)

)

/4

− t−p1,q1

(

− e−
1
2

(

1
τ̃2

+ 1
τ̃3

|q2|
2
)

+ e−
1
2

(

1
τ̃2

+ 1
τ̃3

|−p1+q2|
2
)

)

/4
)}

, (I.2)

where we have used the notation M(z, y) ≡ G̃(z1, z2) defined in Appendix (G.2).
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I.2 Disorder correlators of the elastic

parameters in the local form

in this appendix we calculate the disorder correlators of the quenched random

elastic parameters in the local form of the elastic energy of deformations relative

to the relaxed state.

Firstly we calculate the disorder correlator of the residual stress [σσ]c. The

residual stress σ in the relaxed state is related to the nonlocal kernel G via

Eq. (4.19a). Thus the correlator of the residual stress can be expressed as

[σij,p1
σkl,p2

]c

=
∂

∂q1,i

∣

∣

∣

q1=0

∂

∂q2,j

∣

∣

∣

q2=0
[Nj,p1,q1

Nl,p2,q2
]c

− 2

|p1|2
(

p1,kp
T
bl(p1) + p1,lp

T
bk(p1) + p1,bp

T
kl(p1)

) ∂

∂q1,i

∣

∣

∣

q1=0
[Nj,p1,q1

Nl,p2,0]c

+
2

|p1|2
(

p1,ip
T
aj(p1) + p1,jp

T
ai(p1) + p1,ap

T
ij(p1)

) ∂

∂q2,k

∣

∣

∣

q2=0
[Nj,p1,0Nl,p2,q2

]c

− 2

(|p1|2)2
(

p1,ip
T
aj(p1) + p1,jp

T
ai(p1) + p1,ap

T
ij(p1)

)

×
(

p1,kp
T
bl(p1) + p1,lp

T
bk(p1) + p1,bp

T
kl(p1)

)

[Nj,p1,0Nl,p2,0]c (I.3)

where we have defined Nj,p,q ≡ ∂Mp,q

∂qj
, and the notation M(z, y) ≡ G̃(z1, z2) is

defined in Appendix (G.2).

Then we can plug in the disorder correlator [Mp1,q1
Mp2,q2

]c , given in Eq. (5.7b)

(in the form of [GG]). After a tedious calculation, and using the following iden-

tity

m

∫

τ1,...,τ̃m

τ̃2
1

(τ̃1 + · · · + τ̃m)2
+m(m− 1)

∫

τ1,...,τ̃m

τ̃1τ̃2
(τ̃1 + · · · + τ̃m)2

= 1, (I.4)

we arrive at

[σij,p1
σkl,p2

]c = δp1+p2

Nθ

(kBT )2
(2pT

ijp
T
kl + pT

ilp
T
jk + pT

ikp
T
jl). (I.5)

where θ ≡ −η2Q2

2 + η2Q+ e−η2Q − 1 is given in Eq. (D.9).

Following a similar calculation, we also calculated the disorder correlators

and cross-correlators of the quenched random elastic parameters in the local

form of elasticity of the relaxed state. We arrive at the correlators of the shear

modulus and the bulk modulus

[µp1
µp2

]c =ν δp1+p2
N(kBT )2, (I.6a)

[λp1
λp2

]c =4ν δp1+p2
N(kBT )2, (I.6b)
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where the dimensionless parameter

ν ≡ −3

2
η2Q2 + eη2Q − 1 + η2Q+ (η2Q)2. (I.7)

The cross-correlators are given by

[σij,p1
µp2

]c = −2N(kBT )2θ δp1+p2
pT

ij(p1), (I.8a)

[σij,p1
λp2

]c = 4N(kBT )2θ δp1+p2
pT

ij(p1), (I.8b)

[µp1
λp2

]c = −2N(kBT )2ν δp1+p2
, (I.8c)

where θ is defined in Eq. (D.9), and ν is defined in Eq. (I.7).
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[39] M. Mézard, G. Parisi, and M. Virasoro, Spin glass theory and beyond
(World Scientific, 1987).

[40] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press,
1986).

[41] S. Alexander, Physics Reports 296, 65 (1998).

[42] S. Edwards and P. Anderson, J. Phys. F 5, 965 (1975).

[43] H. E. Castillo, P. M. Goldbart, and A. Zippelius, Europhys. Lett. 28, 519
(1994).

[44] W. Peng, H. E. Castillo, P. M. Goldbart, and A. Zippelius, Phys. Rev. B
57, 839 (1998).

[45] K. Binder and A. Young, Rev. Mod. Phys. 58, 801 (1986).

[46] K. Fischer and J. Hertz, Spin Glasses (Cambridge University Press, 1991).

104



[47] R. Brout, Phys. Rev. 115, 824 (1959).

[48] S. Edwards, in R. W. Douglas and B. Ellis, editors, Proceedings of the
Third International Conference on Amorphous Materials (Wiley, New
York, 1970).

[49] K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University
Press, 1997).

[50] C. De Dominicis, Phys. Rev. B 18, 4913 (1978).

[51] H. Sompolinsky and A. Zippelius, Phys. Rev. B 25, 6860 (1982).

[52] J. Kurchan, arXiv:cond-mat/0209399v2 (2002).

[53] W. Peng, P. M. Goldbart, and A. J. McKane, Phys. Rev. E 64, 031105
(2001).

[54] H.-K. Janssen and O. Stenull, Phys. Rev. E 64, 026119 (2001).

[55] S. Mukhopadhyay, P. Goldbart, and A. Zippelius, Europhy. Lett. 67, 49
(2004).

[56] P. M. Goldbart, S. Mukhopadhyay, and A. Zippelius, Phys. Rev. B 70,
184201 (2004).

[57] X. Xing, S. Pfahl, S. Mukhopadhyay, P. M. Goldbart, and A. Zippelius,
Phys. Rev. E 77, 051802 (2008).

[58] C. Wald, P. M. Goldbart, and A. Zippelius, J. Chem. Phys. 124, 214905
(2006).

[59] P. Benetatos and A. Zippelius, Phys. Rev. Lett. 99, 198301 (2007).

[60] C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

[61] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).

[62] J. Goldstone, Il Nuovo Cimento 19, 154 (1961).
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