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Abstract

Isotropic-genesis nematic elastomers (IGNEs) are materials that exhibit fascinating prop-

erties such as a remarkable softness in elasticity and do not undergo long-range nematic

ordering, even at low temperatures. These materials are formed via the following process.

Consider a melt or solution of nematogenic polymers, by which we mean long, flexible poly-

mers carrying rod-like units. These units, which are also known as nematogens, and which

give the system the possibility of exhibiting liquid crystallinity, may be integrated along the

polymer chain backbones (the main-chain case) or in groups that dangle from the backbone

(the side-chain or pendant case). An IGNE is formed when the polymers are permanently

and randomly cross-linked to one another in the isotropic state of the nematogens; it is

capable of “memorizing” both the positions of the chain segments and the orientations of

the nematogen units at the instant of cross-linking. In this thesis, we derive a Landau-type

theory of an IGNE, starting from from a microscopic model which consists of dimers that

are randomly, permanently, and instantaneously cross-linked via springs. The Landau-type

theory involves (a) a non-local, network-mediated, nematic-nematic interaction term, and

(b) a random-field term that depends on the local, quenched environmental anisotropy, as

well as the memorization of the random pattern of nematic fluctuations present at the in-

stant of cross-linking. On the basis of this Landau-type theory, we address the following

physical issues associated with the study of IGNEs:

(i) The origin, nature, and stability of a certain equilibrium state (known as the poly-

domain state) of an IGNE. This state is characterized by the presence of a short-ranged,

“anti-correlated” pattern of nematic alignment. By taking the thermal fluctuations of the
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elastomer medium into account, in addition to those of the nematogen orientations, we are

able to predict, for sufficiently strongly cross-linked IGNEs, a novel type of nematic cor-

relation behavior that is both oscillatory and decaying in space. Such oscillatory-decaying

behavior is qualitatively consistent with the anti-correlation pattern observed in recent ex-

periments by the Urayama group [28]. By means of a Gaussian variational analysis, we

also find that the macroscopically isotropic state of IGNEs (of which the polydomain state

is a particular instance) remains stable, at least locally, in the low-temperature regime.

Chapters 2, 3, 4, 7 and 8 provide analyses pertaining to issue (i).

(ii) Next comes the issue of capturing aspects of the memorization capability of an

IGNE theoretically. We show that the IGNE’s memory of the random pattern of thermal

nematic fluctuations present at the instant of cross-linking directly influences the pattern of

nematic alignment that is subsequently “frozen in” to the IGNE via the cross-linking process.

Moreover, we learn that the fidelity of this memorization of the initial fluctuation pattern

depends on the strength (i.e., pervasiveness) of cross-linking as well as the temperature at

which the cross-linking was performed. Chapter 2 contains a study of this memorization

capability of an IGNE.

(iii) The third issue addressed in this thesis pertains to the much softer elastic response of

IGNEs, compared to ordinary elastomers, observed experimentally. We propose a physical

mechanism for elastic softening, in which the softening is driven by fluctuation correlations of

the nematic alignment. Chapters 5 and 6 contain a detailed explanation of this mechanism.
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Chapter 1

Introduction: nematic liquid crystals
and nematic elastomers

This thesis is about the physics of nematic elastomers. To understand what nematic elas-

tomers are, one should first understand what liquid crystals , nematic liquid crystals, and

nematic elastomers are. Accordingly, one purpose of the introduction is to explain these

concepts as simply as possible, making contact with experimentally measurable observables

where possible. In addition, we shall explain why nematic elastomers are objects worthy of

theoretical study, by describing some of the observed physical properties of nematic elas-

tomers. Finally, we shall describe the issues that the thesis aims to address. Being of an

introductory nature, this chapter contains no original contributions by the author. Sec-

tion 1.1 is based on material drawn from Refs. [1, 2], Sec. 1.2 follows Refs. [3, 4, 6, 7], and

Sec. 1.3 is based on Refs. [5, 27].

Figure 1.1: A standard nematogen: p-azoxyanisole (PAA). It can be regarded as a rigid rod
of length ∼ 20Å and width ∼ 5Å. The two benzene rings lie approximately in the same
plane.
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1.1 Nematic liquid crystals

First, we consider liquid crystals. These are systems in which (i) orientational anisotropy

exists, and (ii) positional order, such as that present in a solid crystal, is absent in at least

one direction in space. A liquid crystal that has orientational anisotropy but is devoid of

positional order in any direction is called a nematic liquid crystal. Nematic liquid crystals

typically consist of elongated objects. An example is the molecule p-azoxyanisole (PAA),

which may be viewed as a rigid rod of length ∼ 20Å and width ∼ 5Å (see Fig. 1.1). A second

example is the elongated moleculeN -(p-methoxybenzylidene)-p-butylaniline (MBBA). These

elongated entities are known as nematogens . They are materials that exhibit the nematic

thermodynamic state, for which the rod-like entities tend to be parallel to some common

axis in space over a certain range of temperatures; for example, MBBA is nematic from

∼ 293K to ∼ 320K. At higher temperatures the rods are orientationally disordered and the

liquid is said to be in the isotropic state.

How does one quantify the amount of orientational anisotropy in a nematic liquid crys-

tal? For a start, one may think of using the parameter 〈cos θ〉 =
∫
f(θ) cos θdΩ, where

θ is the angle with respect to a given macroscopic axis, which one can take to be the

direction of macroscopic nematic alignment, and f(θ) is the distribution function that de-

scribes the probability of finding nematogens to be aligned within the infinitesimal solid

angle dΩ ≡ sin θdθdφ around the direction (θ, φ) (where φ is the azimuthal angle around

the alignment axis). However, this parameter is zero in both the isotropic state and the

nematic state. It is zero in the isotropic state because f(θ) is then, by definition, constant,

so that 〈cos θ〉 ∝
∫ 1

−1
cos θ d cos θ = 0. Note that the nematically aligned state whose di-

rection of macroscopic alignment is specified by the unit vector n is not different from the

state whose direction of macroscopic alignment is specified by −n. This is equivalent to

requiring that the distribution function obey f(θ) = f(π − θ). The integral measure over

the unit sphere,
∫
dΩ, is invariant under the transformation θ → π − θ, but cos θ changes

2



sign. Thus, the parameter 〈cos θ〉 is also zero in the nematic state. Thus, an appropriate

parameter for quantifying the amount of orientational anisotropy should take the form of a

higher multipole moment of even order; the first nontrivial one is given by the quadrupole

moment, viz.

S ≡ 1

2
〈3 cos2 θ − 1〉 ≡ 1

2

∫
(3 cos2 θ − 1)f(θ) dΩ. (1.1)

The parameter S has a value very close to unity when the rods are almost all parallel to one

another [so that f(θ) is strongly peaked at θ = 0 and π]. On the other hand, if the rods are

orientationally disordered, f(θ) is independent of θ so that S = 0.

In experiments, a difference between the (high-temperature) isotropic state and the (low-

temperature) nematic state of a liquid crystal has been observed in measurements of macro-

scopic tensor properties, such as the diamagnetic susceptibility and the dielectric constant.

For example, the diamagnetic susceptibility tensor χd1d2 (where d1, d2 are Cartesian indices

that take values from the set {1, 2, 3}) that relates the response in magnetic moment M

(arising from molecular diamagnetism) to an applied external fieldH , via Md1 = χd1d2Hd2 , is

an isotropic tensor (i.e., χd1d2 ∝ δd1d2) when the state is isotropic, but takes on the following,

anisotropic form (choosing the z-axis to be parallel to the direction of nematic alignment)

when the state is nematic:

χd1d2 =


χ⊥ 0 0

0 χ⊥ 0

0 0 χ‖

 .

It is useful define a tensor Sd1d2 that is proportional to the anisotropic part of the diamagnetic

susceptibility tensor, viz.,

Sd1d2 ≡ Q(χd1d2 −
1

3
δd1d2

3∑
d3=1

χd3d3) =
Q

3


−χa/3 0 0

0 −χa/3 0

0 0 2χa/3

 , (1.2)

3



where χa ≡ χ‖ − χ⊥.

How can one relate χd1d2 , which is a macroscopic quantity (with axes d1, d2 = x, y, z

defined in the laboratory frame, with z parallel to the direction of macroscopic nematic

alignment) to the magnetic polarizability tensor Aij of a single nematogen (where i, j = a, b, c

are the axes of the nematogen’s coordinate frame, so defined that the c-axis is parallel to

the long axis of the nematogen), which is a microscopic quantity? The two quantities are

related via the following way. By defining a transformation tensor id1jd2 , where id1 , jd2 are

direction cosines between the set of axes fixed in the nematogen’s frame (i, j) and the set of

axes fixed in the laboratory frame (d1, d2), one can construct the expression

χd1d2 = ρ
∑
ij

Aij〈id1jd2〉, (1.3)

where ρ is the number of nematogens per unit volume, and the angle brackets denote averag-

ing over the orientation distribution function f(θ). As we shall see, this relation allows one

to determine how the diamagnetic susceptibility is related to the direction of macroscopic

nematic alignment, which we continue to denote by the unit vector n (which we shall take

here to be parallel to the axis of macroscopic alignment z), and the intensity of nematic

alignment, given by the scalar quantity S. For the anisotropic part of χd1d2 , one finds that

χd1d2 −
1

3
δd1d2

∑
d3

χd3d3 = ρAij

〈
id1jd2 −

1

3
δijδd1d2

〉
. (1.4)

To determine χa in terms of the parameters of the nematogen’s magnetic polarizability tensor

Aij, we set d1 = d2 = z. This allows one to obtain, from Eq. (1.4), the result

χa = ρ(A‖ − A⊥)S, (1.5)

where A‖ and A⊥ are, respectively, the nematogen’s magnetic polarizability computed along

the nematogen’s axis and the directions perpendicular to that axis. The value of the constant
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Q in (1.2) can be chosen as (ρ(A‖ − A⊥))−1. One then obtains the tensor component

expression

S = Qρ(A‖ − A⊥)S


−1/3 0 0

0 −1/3 0

0 0 2/3



= S


−1/3 0 0

0 −1/3 0

0 0 2/3


= S(n⊗ n− 1

3
I), (1.6)

where S denotes a 3× 3 matrix having components Sd1d2 , and I is the 3× 3 identity matrix.

This equation shows that the anisotropic part of the experimentally measurable diamag-

netic tensor χd1d2 is proportional to the intensity of nematic alignment S, and its tensor

components reflect the direction of macroscopic nematic alignment n.

One can now proceed to construct a quantity, known as the Landau-de Gennes order

parameter, that (i) detects the transition from the isotropic to the nematic state, and

(ii) quantifies the amount of orientational anisotropy, bearing in mind that this quantity

should coincide with the tensor Sd1d2 in (1.6) for a system that is nematically aligned. Gen-

eralizing to D spatial dimensions, such a quantity is defined microscopically by the following

real, traceless, and symmetric tensor,

〈Qdd′(r)〉 =
V

N

〈
N∑
i=1

(
νidν

i
d′ −D−1δdd′

)
δ(D)

(
r− ci

)〉
, (1.7)

where N is the number of rod-like units, νi is the microscopic unit orientation vector of unit

i and ci is its microscopic position vector, r is an arbitrary position vector, and the angular

brackets 〈· · · 〉 denote averaging over the distribution function for νi and ci. The expectation
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value of 〈Qdd′(r)〉 is zero in the isotropic state, but in the nematic state it acquires the value

given in Eq. (1.6).

Why do nematic liquid crystals undergo a phase transition from the isotropic state to a

nematic state? At high temperatures, entropy considerations dominate, which means that

the state is isotropic. On going to low temperatures, the nematogens align owing to both

energetic and entropic reasons. Energetically, the nematogens may have dipole interactions

which are minimized when the nematogens are parallel to one another; entropically, the

alignment of nematogens also minimizes their total excluded volume, so that the phase

space available for the motion of their centers-of-mass is maximized. (In the limiting case

of very dense packing of nematogens, they can still translate past one another if they are

stacked parallel to one another; unlike the case if the packing is dense and the nematogens

are oriented randomly, which results in jamming.)

We now present a brief overview of the basic ideas behind three major theoretical ap-

proaches to the isotropic-nematic transition in liquid crystal systems:

• (i) the theory of Onsager; see Ref. [8],

• (ii) the theory of Maier and Saupe; see Refs. [9, 10, 11], and

• (iii) Landau-de Gennes theory; see Refs. [12, 1].

These approaches can be divided into two broad categories. The first two approaches belong

to the class of theories that are molecular-statistical in nature, and are based on appropri-

ate, specific models of molecular interactions. The third approach belongs to the class of

phenomenological theories, which rely on Landau’s fundamental insight that the free en-

ergy of a system near the phase transition can be expanded in powers of a small-valued

order parameter. Such theories depend on symmetry considerations, and it may be prima

facie difficult to assign a physical meaning to the coefficients of such a “Landau expansion”

(though it is possible, in principle, to connect the coefficients to a molecular-statistical-based
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model via procedures such as that of Hubbard and Stratonovich; an example will be given

in Chapter 3).

1.1.1 The theory of Onsager

We first describe the physical idea behind the Onsager theory of the isotropic-nematic phase

transition in liquid crystals. One can regard the nematogens as long, thin, hard cylinders,

and correspondingly, the excluded-volume effects of such cylinders will not only depend on

their center-of-mass positions, but importantly, also on their relative orientations. The total

excluded volume of parallel cylinders is smaller than that of perpendicular cylinders, and

thus one expects that for a sufficiently large volume fraction of such cylinders it would be

entropically favorable for the cylinders to be aligned parallel to one another. Indeed, Onsager

found [8] that such systems undergo a transition from the isotropic state to the nematic state

when the parameter (`/a)φ exceeds a certain value, where φ is the volume fraction occupied

by the cylinders, ` is the length of a cylinder, and a is the diameter of the cylinder.

Onsager’s theory applies to lyotropic systems, i.e., those for which the nematic-isotropic

phase transition is driven not by temperature but by excluded-volume effects via concentra-

tion. However, many actual liquid crystal systems are thermotropic, i.e., the phase transition

is driven by temperature. To describe the phase transition behavior of thermotropic systems,

one can turn to the approach of Maier and Saupe and the Landau-type theory of de Gennes.

1.1.2 The theory of Maier and Saupe

The theory of Maier and Saupe is analogous to the Weiss molecular field theory for the

ferromagnetic transition. It assumes that the nematogens interact via van der Waals in-

teractions, and makes no use of the consideration of position- and orientation-dependent

excluded-volume effects. The two-body potential for two nematogens located at c and c′ is

7



assumed to have the dipolar form:

U(c, c′,ν,ν ′) = −B P2(cos γ)/|c− c′|6, (1.8)

where P2(x) ≡ 1
2
(3x2 − 1) is the second-order Legendre polynomial, and γ is the angle

between the unit vectors ν,ν ′ describing the alignment of the two nematogens. For B > 0,

such a potential favors parallel alignment. The Maier-Saupe theory makes the mean-field

assumption that a given nematogen of position c and orientation ν is subject to the mean

potential 〈U(c, ci,ν,νi)〉i, i.e., U(c, ci,ν,νi) averaged over the positions and orientations of

all other nematogens (which we shall label by i). Position-averaging gives a constant

b =
∑
i

〈B/|c− ci|6〉ci ; (1.9)

and orientation-averaging over a distribution function fi ≡ f(θi) leads to

〈P2(cos γ)〉f = 〈P2(ν · νi)〉fi

=
4π

5

2∑
m=−2

〈Y∗2,m(νi)〉fiY2,m(ν)

=
4π

5
〈Y∗2,0(νi)〉fiY2,0(ν)

=

〈
3

2
cos2 θi −

1

2

〉
fi

(
3

2
cos2 θ − 1

2

)
= S P2(cos θ), (1.10)

where in the second line we have used a spherical-harmonic decomposition of P2(ν ·νi) (i.e.,

the addition theorem), in the third line we have observed that only the m = 0 component

does not vanish under averaging over the azimuthal angle, and in the fourth line we have

made use of the definition (1.1) and defined cos θi to be the angle that the i-th nematogen

makes with a given macroscopically defined axis. Equations (1.9) and (1.10) imply that the
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mean-field potential acting on a given nematogen is given by

U(cos θ, S) = −bS P2(cos θ), (1.11)

so that the probability distribution is given by

f(cos θ) = C exp(−U(cos θ, S)/T ), (1.12)

where C is a normalization factor. We can now look for the occurrence of an isotropic-

nematic transition by studying the location of the minimum of the free energy of liquid

crystallization per nematogen,

∆F ≡ F (S 6= 0)− F (S = 0) = E − TS, (1.13)

as T is varied (F (S = 0) is typically taken to be zero). Here, E ≡ 〈U〉/2 = −bS2/2 is the

internal energy per nematogen (the factor of 1/2 is to compensate for double-counting the

interaction), and S is the orientational entropy per nematogen, given by

S = −
∫
f(cos θ) ln[4π f(cos θ)] dΩ = −(bS2/T )− ln(4π C). (1.14)

We then obtain for the free energy,

∆F ≡ F (S 6= 0)− F (S = 0) = (bS2/2) + T ln(4π C). (1.15)

The local minima of the free energy are determined via the condition ∂∆F/∂S = 0. This

leads to a self-consistent equation for S:

S = 2π C

∫ π

0

P2(cos θ) exp[−U(cos θ, S)/T ] sin θ dθ. (1.16)
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One can numerically solve this equation for a range of values of T . The result is that the free

energy has a stable minimum at S = 0 (corresponding to the isotropic state) for T > b/4.55,

and the free energy has a stable minimum at S ≥ 0.44 (corresponding to the nematic state)

for T < b/4.55. The phase transition is thus discontinuous, as S jumps from zero to a

non-zero, non-infinitesimal value at the transition temperature.

1.1.3 Landau-de Gennes theory

We now turn to the Landau-de Gennes theory of the isotropic-nematic phase transition. The

construction of this theory involves three steps: (i) determining a suitable order parameter

that reflects the symmetries of the system; (ii) carrying out an expansion of the free energy

density g of the liquid crystal system in powers of the order parameter, and heeding the dic-

tum: those terms that are not forbidden by symmetry are mandatory; and (iii) determining

the local minima of the free energy, for given thermodynamic conditions (such as tempera-

ture). We have already introduced the order parameter Q, which reflects the symmetries of

the state of the nematogens. De Gennes then constructed the Landau expansion of the free

energy density as a sum of rotationally invariant combinations of Q:

g(T ) ≈ g0 +
1

2
A(T ) {Q Q} − 1

3
B(T ) {Q Q Q}+

1

4
C(T ) {Q Q Q Q}. (1.17)

Here, curly brackets—as in {S S′}—indicate the trace of the product of the tensors S and S′,

i.e.,
∑D

d,d′=1 Sdd′S
′
d′d. The terms in the Landau expansion are invariant under operations of

symmetry of the nematic phase, as well as global rotations in space. The presence of a cubic-

order term causes the isotropic-nematic phase transition to be discontinuous. To determine

the simplest possible functional dependence of the coefficients A, B and C on temperature

that would lead to the prediction of a phase transition, one argues “retrodictively” (i.e.,

“backwards”) as follows: as the system is isotropic at high T and nematic at low T , we

define A to be positive at high T and negative at low T , as this would result in the free
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energy being minimized at S = 0 at high T and at S 6= 0 at low T . One aims for the simplest

form of A that exhibits such behavior: it is given by writing A as a linear function of T :

A(T ) = a(T−T ∗). If the phase transition were continuous, T ∗ would have the meaning of the

mean-field phase transition temperature; but for a discontinuous transition, T ∗ demarcates

the phenomenological limit of metastability of the isotropic phase as the system is cooled,

and this temperature is called the spinodal temperature. For simplicity, we assume that a, B

and C are temperature-independent. To determine the temperature Tc at which the system

undergoes a transition from the nematic to the isotropic state (as T is increased), we first

insert (1.6) into (1.17); this gives

g = g0 +
1

3
a(T − T ∗)S2 − 2

27
BS3 +

1

9
CS4. (1.18)

The temperature Tc and the corresponding value Sc of S are then determined from the

simultaneous conditions that the free energy densities of the two states be equal, and that g

be minimized with respect to S. Thus, one finds that Tc = T ∗+(B2/27aC) and Sc = (B/3C).

This completes our introduction to the basic physics of nematic liquid crystallinity.

1.2 Polymers and elastomers

What are elastomers and how are they formed? To answer this question, one should be

acquainted with polymers, which are the basic building blocks of elastomers. Polymers are

very long, flexible, chain molecules, made up of many small groups of atoms which have

been essentially permanently combined in a given way. Each repeating small group is called

a monomer. A typical polymer may consist of thousands of monomers. A polymer chain

molecule can have a huge number of conformations. This is because of stereoisomerism.

Consider the polyethylene molecule (see Fig. 1.2). This molecule is made out of repeating

units of atoms, each unit consisting of one carbon atom and two hydrogen atoms. Each
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Figure 1.2: The repeating unit of polyethylene, showing its stereochemistry.

pair of carbon atoms (from adjacent repeating units) has an essentially constant separation

1.54 Å, and the angle between neighboring carbon-carbon bonds is also essentially constant

(at 68o). However, the angle of a given carbon-carbon bond around the axis defined by

its neighboring carbon-carbon bond (which we call the torsion angle) can vary. Thus, if

the energy barrier between different choices of the torsion angle is comparable to or smaller

than the thermal energy (set by the temperature T ), the polymer can adopt a variety of

torsional angles, and this makes accessible a huge number of polymer conformations at the

given temperature.

To investigate the properties of polymers at length-scales much larger than the effective

bond length `p (which is the length-scale of short-range relative orientational correlations of

monomers along the polymer), and given that the arc-length L of a polymer chain molecule

is much larger than `p, one can work with an idealized model in which polymers are regarded

as the trajectories of a random walk. In three spatial dimensions, the distribution function

of conformations of such a polymer is given by the Wiener distribution, viz.

Φ(R) ∝ exp

(
− 3

2`p

∫ L

0

dσ

∣∣∣∣dR(σ)

dσ

∣∣∣∣2
)
, (1.19)

where R(σ) denotes the position vector of a monomer situated an arc-length distance of σ

from one end of the polymer. The Wiener distribution describes a Gaussian distribution of

polymers, with a vanishing mean value for the end-to-end distance of a polymer, 〈R(L) −

R(0)〉 = 0, and a mean-square value 〈|R(L)−R(0)|2〉 = L `p.
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A more accurate model of the polymer has distinct monomers not occupying the same

position in space, and thus the Wiener model should be augmented by an excluded-volume

interaction term. The resulting model is known as the Edwards model [59], and it is described

by the following distribution function,

Φ(R) ∝ exp

(
− 3

2`p

∫ L

0

dσ

∣∣∣∣dR(σ)

dσ

∣∣∣∣2 − u0

2`2
p

∫ L

0

dσ

∫ L

0

dσ′ δ(R(σ)−R(σ′))

)
, (1.20)

where u0 is a parameter proportional to the volume excluded as a result of the short-ranged

monomer-monomer repulsion.

1.2.1 Gelation, vulcanization, and elasticity

When a sufficiently large fraction of polyfunctional units (i.e., molecules containing more

than one group of atoms that can chemically react with certain reagents to form compounds)

are permanently bonded together (meaning that the bonds do not break on experimentally

accessible time-scales), the system can undergo what is known as permanent gelation, in

which a single, giant macromolecule is formed that spans the entire volume of the space

containing the monomers. Vulcanization is a special case of permanent gelation, in which

the polyfunctional units are long, flexible polymers, and the bonding is made via cross-

linkers (e.g., short chains of sulfur atoms in rubber) which are permanent and join randomly

chosen pairs of monomers. An elastomer (commonly known as rubber) is a material formed

by such a vulcanization process. Vulcanized rubber is an elastically rigid network medium

characterized by having a non-zero static shear modulus, implying that under the application

of a static shear stress, the network would respond by undergoing a static shear strain. This

is to be distinguished from the case of pure rubber, essentially an uncross-linked polymer

melt or an insufficiently cross-linked system, which is a visco-elastic liquid. This means that

under the application of a shear stress, pure rubber would respond by flowing.

The property of elasticity, characteristic of sufficiently vulcanized rubber, can be under-
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stood as an entropic effect, which is reflected in the fact that the shear modulus of vulcanized

rubber depends on temperature. We can understand this entropic effect via the random walk

picture of a polymer chain (with Nm ≡ L/`p monomers envisioned as “steps” each of length

`p). In three spatial dimensions, the mean square of the end-to-end vector R for a random

walk of Nm steps is given by

〈R2
d〉 = 〈|R|2〉/3 = `2

pNm/3, (1.21)

where d (= 1, 2, 3) are the Cartesian indices. The random-walk model of polymer chains

leads to a Gaussian probability P (R) for finding that a single chain conformation has an

end-to-end vector R:

P (R) =

(
3

2πR2
0

)−3/2

exp(−3R2/2R2
0), (1.22)

where R ≡ |R|2 and R0 ≡ Nm`
2
p. The free energy F (R) for a chain having end-to-end vector

R is then given by F (R) = −T lnZ(R) = 3TR2/2R2
0 [up to an additive constant; we have

used the fact that the partition function Z(R) is proportional to P (R)].

To obtain the shear modulus of a system of vulcanized rubber (that consists of N poly-

mer chains), and to see how it depends on temperature, one can consider, for simplicity, the

classical theory of rubber elasticity, developed by Kuhn, Wall and Flory (see, e.g., Refs. [3]).

The classical theory makes the following four assumptions. The first assumption is that

polymer chains can be modeled as random walks. Secondly, the classical theory assumes

there is no change in the volume of the system on deformation. Thirdly, the classical the-

ory also assumes that the positions of the junctions of the polymer chains are fixed in a

non-fluctuating elastic background medium, and the separation R between a given pair of

junctions changes affinely to a new value R′ when the medium is deformed:

Rd → R′d′ ≡ Λdd′Rd′ (1.23)
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where the deformation gradient Λdd′ ≡ ∂R′d/∂Rd′ , and volume conservation implies det Λ =

1. The fourth assumption holds that the entropy of the network is equal to the sum of

the entropies of constituent chains. Now, for the particular case of uniaxial strain, the

deformation gradient is specified by

Λ =


λ 0 0

0 1/
√
λ 0

0 0 1/
√
λ

 ,

where the first diagonal entry means the rubber is being stretched (for λ > 1) by a factor

λ in one (longitudinal) direction, whereas the second and third diagonal entries mean that

it is simultaneously also being shrunk by a factor 1/
√
λ in the remaining two (transverse)

directions. Under uniaxial deformation, the average free energy of a system of N chains

under deformation is given by F = 3NT 〈RT · ΛT · Λ · R〉P (R)/2R
2
0 = NT Tr(ΛT · Λ)/2,

where 〈· · · 〉P denotes an average over the Gaussian distribution P . (In deriving the free

energy of the deformed collection of chains, this approach makes use of the elementary result

〈RdRd′〉P = δdd′R
2
0/3.) The shear modulus is then given by the coefficient of Tr(ΛTΛ)/2 in the

free energy expression, viz., NT , which reveals an explicit linear dependence on temperature.

1.2.2 Theory of vulcanization

The classical theory of elasticity, just described, cannot be used to study the actual phe-

nomenon of the gelation or vulcanization transition. To explain the occurrence of the gela-

tion/vulcanization, various approaches based on the idea of percolation have been proposed

by several workers. For example, the approach described by de Gennes [13] views the gelation

transition essentially as a problem of percolation on a regular lattice. In it, a polymer chain

is modeled as a set of “beads”occupying a number of lattice sites in a connected manner.

Two chains are said to intersect if they have at least one site in common. One assumes that
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two chains are cross-linked if they intersect one another. A set of intersecting chains is said

to form a finite cluster if it does not span the entire lattice. Denoting the number of beads

per site by c, the chains will start to overlap with one another and larger and larger clusters

will form as c increases. Above a critical value of c, an infinite cluster forms, and percola-

tion is said to have occurred. The strengths of the percolative model include its ability to

explain certain experimental facts, such as the fact that at the vulcanization transition, a

non-zero fraction of the monomers becomes bonded to form an infinite cluster. On the other

hand, the percolative model does not explain the phenomenon of elasticity, which accompa-

nies vulcanization (manifested in the system’s acquisition of a non-zero shear modulus). As

the classical theory of elasticity (described in the previous subsection) indicates, elasticity

is intimately related to the entropy of conformations of polymer chains, which is missed

out in the percolation picture. It thus appears unsatisfactory that one invokes the classical

theory of elasticity when describing the elastic properties of rubber, and separately invokes

percolation theory for understanding the connectivity or architecture of the vulcanization

transition. A more complete theory of rubber should be able to account for both aspects,

simultaneously.

Thus, we now turn to consider a more fundamental approach to the theory of the vulcan-

ization transition, one that not only predicts the onset of percolation, but also predicts the

acquisition by the system of elasticity at the vulcanization transition point. We shall call this

approach “vulcanization theory” (see, e.g., [6]). This approach is rooted in the microscopic

formulation of the statistical mechanics of rubber by Deam and Edwards [35] as well as the

theory of spin glasses by Edwards and Anderson [36]. Based on the theoretical foundations

and physical insights provided by these works, Goldbart and co-workers have investigated the

critical behavior at the vulcanization transition as well as the structure and elastic behavior

of the emergent random solid state, via polymer- and particle-based microscopic models (see,

e.g., [6, 62]), symmetry-based Landau theory [7], and renormalization-group techniques [30].

We shall convey the main ideas of vulcanization theory by reviewing the Landau theory
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of vulcanization described in [7]. In common with Landau theories of phase transitions,

such as the isotropic-to-nematic phase transition reviewed in Sec. 1.1.3, the vulcanization

transition, which is an equilibrium phase transition from a liquid state (in which the particles

are spatially delocalized) to a random solid state (in which a macroscopic fraction of particles

are spatially localized about certain random mean positions with finite but random r.m.s.

displacements around their mean positions), is described by means of an order parameter.

To construct the order parameter for the vulcanization transition, one may first think of

using the particle density,1 but this is not an appropriate order parameter as the system’s

density (after having averaged over the random realizations of the cross-linking constraints)

is uniform in the random solid state, as it is in the liquid state. Instead, one considers the

following Edwards-Anderson-like function of 1 + n wave-vectors {k0, . . . ,kn}:

[
N∑
j=1

〈eik0·cj〉χ . . . 〈eik
n·cj〉χ

]
, (1.24)

where k̂ is the (1 + n)-fold replicated wave-vector (k0, . . . ,kn), N is the total number of

particles, cj is the position vector of particle j (j = 1, . . . , N), the angular brackets 〈· · · 〉χ

denotes the thermal expectation value for a given realization χ of the quenched disorder

(i.e., the cross-linking constraints), and [· · · ] denotes a suitable average over realizations of

the quenched disorder. Equivalently, in real space, the function in (1.24) takes the form

[
N∑
j=1

〈δ(r0 − cj)〉χ . . . 〈δ(rn − cj)〉χ

]
, (1.25)

The order parameter for the vulcanization transition is given by 〈Ω〉. In Fourier space, 〈Ω〉

is defined by

〈Ωk̂〉 ≡
1

N

[
N∑
j=1

〈eik0·cj〉χ . . . 〈eik
n·cj〉χ

]
−

n∏
α=0

δkα,0. (1.26)

1Here, we are using the terms “particle” and “polymer” interchangeably, as the difference is one of
microscopic detail. At large lengthscales, such being the case when the system is weakly cross-linked and
thus near the vulcanization transition point, such microscopic differences become unimportant.
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When all the particles are delocalized, every factor 〈eik·cj〉χ has the value δk,0 (by the trans-

lational invariance of the state), and the order parameter Ωk̂ takes the value zero, which

characterizes the liquid state. On the other hand, in the random solid state, one expects

that a non-zero fraction of particles are localized. We shall call the fraction of localized

particles the gel fraction, and denote it by G. The gel fraction is found by carefully taking

the kα → 0 limit of Ωk̂.
2 For particles which are localized with mean position vectors

〈cj〉 ≡ bj and undergoing thermal excursions around their mean positions with localization

lengths (or r.m.s. displacements) ξj, one may approximate

〈exp(ik · cj)〉χ ≈ exp(ik · bj −
1

2
k2ξ2

j ). (1.27)

This approximation is good if one is interested in studying properties of the system at

lengthscales much larger than the typical localization lengthscale. The distribution of mean

positions z and localization lengths ξ of the localized particles is given by

P (z, ξ) =
1

GN

∑
j∈loc.

[δ(z − bj)δ(ξ − ξj)], (1.28)

where
∑

j∈loc. refers to a sum over the localized particles. We assume that the mean positions

of the localized particles are distributed independently of how the localization lengths are

distributed, i.e.,

P (z, ξ) = P (z)P (ξ). (1.29)

Using Eqs. (1.27), (1.28) and (1.29), one can express Eq. (1.26) as

〈Ωk̂〉 = G

∫
dz dξ P (z)P (ξ) eik̃·z−

1
2
|k̂|2ξ2

+
1

N

[ ∑
j∈deloc.

〈eik0·cj〉χ . . . 〈eik
n·cj〉χ

]
− δk̂,0̂, (1.30)

2This can be understood as follows. If a particle at position c is delocalized, any non-zero value of k,
however small, will cause the “phase factor” eik·c to take on different values as c ranges over all space, and
thus 〈eik·c〉χ = 0; on the other hand, if a particle is localized, taking the limit kα → 0 will give unity to the
phase factor. Thus in taking this limit, one is actually counting the fraction of localized particles.
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where
∑

j∈deloc. refers to a sum over the delocalized particles,

k̃ ≡
n∑

α=0

kα, (1.31)

|k̂|2 ≡
∑n

α=0 |kα|2, and δk̂,0̂ ≡
∏n

α=0 δkα,0. Noting that the term

1

N

[ ∑
j∈deloc.

〈eik0·cj〉χ . . . 〈eik
n·cj〉χ

]
=

1

N
(N −GN)δk̂,0̂, (1.32)

and using the fact that the system is statistically homogeneous, which implies that P (z) =

1/V , one obtains

〈Ωk̂〉 = Gδ∑n
α=0 kα,0

∫ ∞
0

dτP (τ) exp

(
−

n∑
α=0

|kα|2/2τ

)
−G

n∏
α=0

δk̂,0̂, (1.33)

where τ ≡ 1/ξ2 is the inverse square localization length, P (τ) is the distribution (reflecting

the heterogeneity of the random solid) of the inverse localization lengths, and the number G

is the gel fraction, i.e. the fraction of particles that are localized. We check that this Ansatz

reflects the properties of a system that undergoes the vulcanization transition: in the liquid

state the localization lengths are all infinite, and the first term of (1.33) vanishes unless

kα = 0. This implies that the value of 〈Ωk̂〉 = 0 in the liquid state. (One can also see this

from another perspective: in the liquid state, the fraction G of localized particles is zero, so

〈Ωk̂〉 = 0.) On the other hand, as we have explained earlier, the gel fraction in the random

solid state can be found by taking the limit kα → 0 in Eq. (1.26). When this limit is taken

in (1.33), one obtains 〈Ωk̂〉 = G, which agrees with our requirement. The Kronecker delta in

the first term of Eq. (1.33) reflects the fact that the random phase factors exp ik̃ · z in the

first term of Eq. (1.30) adds up destructively when one sums over z, unless the wave-vector

sum is equal to zero. In real space, an elementary Fourier transform shows that the Ansatz
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(1.33) becomes

〈Ω(r̂)〉 = G

∫
dz

V

∫
dτP (τ)

( τ
2π

)(1+n)D/2

e−
τ
2

∑n
α=0 |rα−z|2 − G

V 1+n
. (1.34)

This form enables one to see that Ωα(rα) ≡
∏

α 6=β
∫
drβΩ(r̂) vanishes. As we shall explain

in Appendix B, this vanishing reflects the local incompressibility of the elastomer. Thus,

in serving as an appropriate order parameter the argument of Ωk̂ is restricted to having

values drawn only from the “higher replica sector” (HRS), i.e., the set of replicated vectors

{k0, . . . ,kn} with more than one non-zero vector entry. In addition, we note the following

points:

(i) As we explain in greater detail in Sec. 3.2, one can identify the zeroth replica in 〈Ω(r̂)〉

as describing the preparation ensemble, i.e., the thermodynamic ensemble of the system at

the instant of cross-linking, where cross-links have formed between particles (ultimately

resulting in the localization of some fraction G of particles).

(ii) The Ansatz assumes that the mean position of a given particle in the system long

after the cross-linking was done coincides with its position at the instant of cross-linking,

thus omitting the effects of random displacements (the randomness owing to the spatial

heterogeneity present in a real elastomer) undergone by particles as the system relaxes to a

mechanically equilibrated state after cross-linking.

Bearing in mind the scalar character of the vulcanization order parameter and the fact

that its argument takes values from the HRS, one can now write down, based on symmetry

and lengthscale considerations, a Landau free energy H[Ω] for the vulcanization transition.

The Landau free energy should be invariant under independent translations and rotations

of each replica. It is given by (cf. Ref. [7])

H =
∑
k̂

(
−ε+

1

2
|k̂|2
)

Ωk̂Ω−k̂ − c
∑

k̂1,k̂2,k̂3

Ωk̂1
Ωk̂2

Ωk̂3
δk̂1+k̂2+k̂3,0̂

, (1.35)
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where
∑

k̂ denotes a sum over replicated wave-vectors belonging to the HRS, and the wave-

vectors have been expressed in terms of some basic lengthscale (such as that of the radius of

gyration of a single uncross-linked polymer). We see that there is at least a linear instability

when ε < 0, and this instability occurs in the HRS, implying that the associated phase

transition is related to the change in correlations between the various replicas. The mean-

field theory corresponds to the solution of the stationarity point equation,

δH

δΩ−k̂
= 0⇒ (−ε+

1

2
|k̂|2)Ωk̂ − c

∑
k̂′

Ωk̂′ Ωk̂−k̂′ = 0. (1.36)

For all ε, this equation has the solution Ωk̂ = 0, and this is globally stable for ε < 0,

and corresponds to the liquid state. For ε > 0, a non-zero value of Ωk̂ becomes stable,

corresponding to the emergence of the random solid state. We substitute the physically

motivated Ansatz for Ωk̂ into this stationarity point equation, and thereby obtain stationarity

conditions on G and P (τ). The stationary value of G is given, for ε > 0, by

G =
2ε

3
. (1.37)

From the results of microscopic calculations (see, e.g., Refs. [6, 62]), one finds that ε ∝ (η2−1)

(where η2 is the number of cross-links per polymer). This implies the physically reasonable

scenario in which the gel fraction increases with an increase in the strength of cross-linking.

From the stationarity condition one also obtains an integro-differential equation for the

distribution of localization lengths:

τ 2

2

dP (τ)

dτ
=
( ε

2
− τ
)
P (τ)− ε

2

∫ τ

0

dτ1 P (τ1)P (τ − τ1). (1.38)

One can simplify the equation by choosing the scaling variables

P (τ) = (2/ε)π(θ); τ = (ε/2)θ. (1.39)
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Figure 1.3: The function π(θ) governing the scaling of the probability distribution P (τ) of
inverse square localization lengths.

The integro-differential equation then becomes

θ2

2

dπ

dθ
= (1− θ)π(θ)−

∫ θ

0

dθ′ π(θ′) π(θ − θ′). (1.40)

By solving this equation subject to the normalization constraint
∫∞

0
dθ π(θ), one can derive

the scaling function π(θ). One finds that this function decays rapidly as θ → 0 and θ →∞,

and in addition has a peak at θ ≈ 1 with a width of order unity (cf. Fig. 1.3), which implies

[via Eq. (1.39)] that the typical localization length scales as ε−1/2 near the vulcanization

transition.

1.3 Nematic elastomers

Having given an overview of the main ideas and approaches to the physics of nematic liquid

crystals and of elastomers, we are now in a position to describe the physics of nematic

elastomers. A nematic elastomer is a material formed by randomly and permanently cross-

linking a large number of liquid crystalline polymers (LCP), until the system becomes a solid.

A liquid crystalline polymer is a polymer containing rod-like units that are stiffer than the
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Figure 1.4: Two types of liquid-crystalline polymers (LCPs): (a) main-chain LCP; (b) side-
chain LCP. An LCP consists of stiff, nematogenic units as well as more flexible chains, known
as spacers. Here, solid ellipses represent the nematogenic units, and blue connecting lines
represent spacers. Inset: an example of a segment of an LCP given by DDA9, consisting of
a stiff, nematogenic unit and a flexible chain, the flexible chain consisting of repeated CH2

units.

polymer backbone, and thus act as nematogens; such polymers can be categorized into

two classes, depending on how the nematogens are attached to the more flexible polymer

backbone. If the nematogens are connected together by means of more flexible elements

known as spacers then one has the main-chain type of LCP. If, on the other hand, the

nematogens are attached to a flexible polymer backbone as side groups then one has the

side-chain type of LCP; see Fig. (1.4). Nematic elastomers thus possess both elasticity and

some form of the orientational organization of liquid crystals (such as the ability to undergo

a phase transition from an isotropic to a nematic state upon lowering the temperature).

Owing to the interplay between nematic and elastic degrees of freedom, nematic elas-

tomers exhibit elastic and structural properties that are more exotic than one might an-

ticipate. For example, the monodomain version of a nematic elastomer (i.e., one in which

there is a direction along which nematogens are aligned on average) is characterized by a

remarkable softness in its elasticity; see Refs. [16, 18, 19, 17, 20, 5]: the sample can undergo
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a finite strain at no cost in elastic energy. This results from the strong coupling between

the orientational order of liquid crystallinity and the elasticity of the polymer network. In

particular, the alignment of the constituent mesogens influences—and is influenced by—the

macroscopic shape of the nematic elastomer sample. Furthermore, the nematic alignment

can be re-oriented along the stretching direction as a result of an externally imposed deforma-

tion. There can also be a spontaneous uniaxial deformation in response to external factors,

such as temperature and light irradiation, that affect the orientational order parameter.

The example of soft elasticity, just discussed, gives us a foretaste of how the elastic and

orientational properties of nematic elastomers can crucially depend on the way they are pre-

pared. There are three principal preparation schemes. The first is the two-step cross-linking

procedure of Küpfer and Finkelmann [15], in which the sample is lightly cross-linked in the

isotropic state, then cooled to the nematic state, then stretched so that the system acquires

uniform nematic alignment, and then cross-linked again to trap in this alignment. What

results is a monodomain nematic elastomer , as it exhibits essentially uniform macroscopic

nematic alignment. The second method involves the direct cross-linking of the system when

it is in the nematic state. The resulting product is called a nematic-genesis nematic elas-

tomer (NGNE). The third method is to directly cross-link the system in the isotropic state.

The resulting product is called an isotropic-genesis nematic elastomer (IGNE). Macroscopi-

cally, the state is then isotropic, but locally there are domains of nematic alignment, typically

of a micron or so in size, which are orientationally anti-correlated over distances of the order

of 10 microns; see Refs. [28, 5, 51]. We shall employ the term polydomain state to refer

to the kind of equilibrium state observed in IGNEs. Nematic elastomers also “memorize”

both the positions of the chain segments and the orientations of the nematogen units at

the instant of cross-linking. This memorization is, however, only partial, as a result of the

thermal fluctuations that occur in the new, post-cross-linking equilibrium state; the strength

of this memorization will depend on factors such as the temperature at which the system

was cross-linked as well as the average number of cross-links per polymer [28].

24



What ingredients should a theory of nematic elastomers include? To appreciate the com-

plexity and difficulty associated with the task of describing nematic elastomers theoretically,

one should be mindful of the following features of nematic elastomers:

(i) The existence of quenched freedoms (i.e., random variables that are effectively fixed

for a given sample but vary randomly from sample to sample), in addition to thermal (or

annealed) freedoms (i.e., freedoms that relax on time-scales substantially shorter than ex-

perimental observations).

(ii) The existence of three levels of disorder, viz., (a) the quenched randomness just

mentioned, associated with the permanent chemical structure originating in the random

cross-linking process, (b) the emergent randomness in the mean positional and displacement

statistics of the polymers that constitute the network medium, and (c) the familiar thermal

randomness, associated with the Brownian positional and/or orientational motion of the

constituents.

(iii) The presence of a large number (at least of the order of the Avogadro number) of

nematogens and polymers, all of which undergo thermal fluctuations and interact with one

another.

(iv) The dependence of the measured properties of a nematic elastomer on its statistical

state at the instant of preparation.

These complexities enrich the study of nematic elastomers but also renders it more chal-

lenging. We now mention how certain ideas and methods have been adopted in this thesis

in order to address the four challenging features of nematic elastomers noted above. Such

ideas and methods will be developed and explained more fully in subsequent chapters. The

presence of a large number of thermally fluctuating freedoms that interact with one another,

indicated in (iii), implies that it would be impossible to determine the macroscopic properties

of the system by computing the individual trajectories of constituent particles. In common

with theoretical studies of other systems involving large numbers of particles, such as fer-

romagnets or liquids, a theoretical study of nematic elastomers should aim for a statistical
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description, where one speaks of the probability of obtaining a certain physical configuration,

rather than of the dynamics of particles at the microscopic level. Approximation schemes

based on the use of perturbation theory can be utilized, once certain suitable, small physical

parameters have been identified. In order to decouple these interacting freedoms, one may

adopt a scheme that involves transforming the discrete problem of interacting particles into

a continuum problem of interacting fields, and determining a saddle-point solution which

corresponds physically to the case where there are no correlations between field fluctua-

tions, and the effect of weak correlations is then computed via perturbations around the

saddle-point solution. With regard to decoupling the large number of interacting particles,

the approximation scheme employed by the present thesis is the Hubbard-Stratonovich de-

coupling scheme (which converts the discrete problem into a continuum field theory, which

has the virtue of being amenable to the field theorist’s toolkit). This necessitates the def-

inition of collective fields. This is explained in Chapter 3. We shall see how the Ansatz

of the saddle-point solution, proposed in Chapter 3, describes the second, emergent, level

of randomness indicated in feature (ii–a). The other two levels of randomness are also

taken into account by the theory described in the same chapter. In addition, to address

the issue of quenched disorder, mentioned in (i), we have adopted a technique known as the

replica method. Instead of an effective Hamiltonian, we shall be studying an effective replica

Hamiltonian (see Secs. 2.4 and 4.2). As a result of using the replica method, one proceeds

by studying the statistical mechanics of 1 + n thermodynamic ensembles or “replicas” of

a system in which quenched disorder is absent. The application of replicas also takes care

of the issue described in feature (iv); one of the replicas corresponds to the state of the

system at the instant of preparation, whilst the other n replicas correspond to the state of

the system when it is measured. The dependence of the measured properties on the state of

the system at preparation corresponds, operationally, to the coupling in the effective replica

Hamiltonian between freedoms belonging to the “preparation replica” and ones belonging

to a “measurement replica”.
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1.4 Purpose of the present work

What issues does the present thesis aim to address? The first issue has to do with un-

derstanding the microscopic origin and stability of the macroscopically isotropic state (of

which the polydomain state is a particular instance) observed in IGNEs. So far, work in this

direction (see, e.g., Refs. [23, 22, 24, 25, 52]) have mostly adopted random-field models (re-

flecting the randomness originating in the spatially varying orientational anisotropy induced

by cross-linking). The models implicitly assume that the network medium is not thermally

fluctuating. However, for real elastomers, one should allow for the action of thermal fluctu-

ations of the polymer network. We shall see that allowing this enables one to predict, for

a suffiently strongly cross-linked IGNE, a novel type of nematic correlation behavior that is

both oscillatory and decaying in real space, in addition to the more familiar type of simple

exponential decay behavior that one encounters in nematic liquid crystals.

The second issue has to do with how to capture theoretically aspects of the memorization

capability of an IGNE. For example, the IGNE’s memory of the correlation pattern of thermal

nematic fluctuations present at the instant of cross-linking can influence the subsequent

correlation pattern of the nematic alignments that are “frozen” into the IGNE via the cross-

linking process. Moreover, we shall also learn that the fidelity of this memorization of the

initial fluctuation pattern depends on the strength of cross-linking as well as the temperature

at which the system was cross-linked.

The third issue pertains to the elastic response of IGNEs, which is experimentally ob-

served to be much softer than in ordinary elastomers (such as rubber). Rubber obeys Hooke’s

law for small strains, but IGNEs are known to have flat plateaus for their stress-strain

curves [28]. We shall learn that long-wavelength thermal fluctuations of the nematogens

make an IGNE more elastically compliant than an ordinary elastomer.

To see where the afore-mentioned issues are addressed in the chapters of this thesis, we

now give an analytical outline of the thesis.
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In Chapter 2, we describe a phenomenological model of the IGNE that takes into account

the thermal fluctuations of the elastomeric network and is based on a microscopic model of

the IGNE as a set of dimers that are randomly connected via springs. Via this model,

we are able to make the following predictions: (i) the correlation length of the thermal

nematic fluctuations in an IGNE having a weak random field is shorter than it is in a

liquid nematic held at the same temperature; (ii) the thermal and glassy correlations of

the liquid crystallinity in IGNEs having sufficiently strong random fields exhibit oscillatory

spatial decay; and (iii) when the local nematic order present at the instant of cross-linking is

spatially correlated over distances larger than the typical localization length of the network,

the system strongly memorizes that local nematic order.

In Chapter 3, we describe a microscopic model of the IGNE in terms of dimers randomly

that have been randomly connected by springs, and obtain a replica Landau-Wilson field

theory of the IGNE via a Hubbard-Stratonovich procedure. We show that this microscopic

model leads directly to the phenomenological theory described in Chapter 1.

In Chapter 4, we obtain the saddle-point approximation to the Landau-Wilson theory

derived in Chapter 3.

In Chapter 5, we introduce the concept of non-affinity and describe how it can be captured

via the use of a certain non-affinity correlator. We summarize the ideas and method behind

two theories: (i) the theory of DiDonna and Lubensky [61], and (ii) the theory of Mao et

al. [62] We shall then look at a certain class of replica Goldstone fluctuations associated

with the broken relative translational symmetries of individual replicas in a replica field

theory of elastomer, and interpret them as replicated combinations of non-affine deformations

and thermal elastic fluctuations around the relaxed state. We show how the non-affinity

correlator is related to the correlator of replica Goldstone fluctuations and, in the limit of

vanishing strain deformation, what the correlator of replica Goldstone fluctuations tells one

about the strength and range of disorder-averaged correlations of random displacements

undergone by the volume elements of the elastomer due to its relaxation after cross-linking.
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In Chapter 6, we investigate the effects of thermal and glassy nematic fluctuations on the

elastic properties of IGNEs in the high-temperature regime. Using the replica field theory

formulated in Chapter 3, we find: (i) that the elastic modulus of an IGNE is softer than that

of ordinary rubber, the softening being induced by long-wavelength thermal nematic fluctu-

ations, and (ii) that the disorder-averaged correlations of random displacements undergone

by the volume elements of the elastomer during relaxation after cross-linking are enhanced

in an IGNE (as compared with ordinary rubber) through the presence of glassy and thermal

nematic fluctuations.

In Chapter 7, we investigate the effects of elastic fluctuations on the pattern of thermal

and glassy nematic fluctuations in the high-temperature regime. We shall see that, owing

to the long-range correlations of the elastic fluctuations, the effective correlation length of

thermal nematic fluctuations of the IGNE is larger than that corresponding to a system

without elastic fluctuations. We shall also see that elastic fluctuations enhance the glassy

nematic fluctuations present in the IGNE.

In Chapter 8, we shall use the replica field theory to explore the stability of the macro-

scopically isotropic state of the IGNE in the low-temperature regime. To do this, we shall

employ the replica Gaussian variational method [39, 40]. We shall discover that quenched

disorder in the form of cross-linking constraints ensures that the macroscopically isotropic

state is stable down to arbitrarily low temperatures.

In Chapter 9, we present the main conclusions arrived at in this thesis.
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Chapter 2

Phenomenological model of the
isotropic-genesis nematic elastomer

As described in the Introduction, the constituents of the IGNE medium undergo thermal

position-fluctuations. The IGNE also possesses the ability to memorize the thermal nematic

fluctuations at the instant of the cross-linking of the network constituents, and this memo-

rization influences the subsequent liquid-crystalline behavior of the system. In this chapter,

we focus on these aspects by constructing a phenomenological, Landau-type free energy [see

Eq. (2.3)], which is valid for an IGNE at high temperatures and which involves two novel

elements: (i) a lengthscale-dependent nematic-nematic interaction term, reflecting the short-

lengthscale liquidity; and (ii) a random field that takes the memory effect into account. In

addition, we introduce two types of thermodynamic ensembles: the preparation ensemble

and the measurement ensemble. This phenomenological model leads to three predictions for

the high-temperature regime of the IGNE:

(i) The correlation length of the thermal nematic fluctuations in an IGNE having a weak

random field is shorter than it is in a liquid nematic held at the same temperature.

(ii) The thermal and glassy correlations of the liquid crystallinity in IGNEs having suf-

ficiently strong random fields exhibit oscillatory spatial decay.

(iii) When the local nematic order present at the instant of cross-linking is spatially

correlated over distances larger than the typical localization length of the network, the

system strongly memorizes that local nematic order.

In Chapter 3, we justify the Landau-type free energy (2.3) employed in the present

chapter, by deriving it from a microscopic model of the IGNE. The material presented in

the present chapter is based on Ref. [29].
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2.1 Landau-type description

To describe the structure and correlations of the system post cross-linking, we employ the

local nematic order parameter field Qdd′(r), 1 introduced in the previous chapter, viz.,

Qdd′(r) =
1

N

N∑
i=1

(
N i
dN

i
d′ −D−1δdd′

)
δ(D)

(
r−Ri

)
. (2.1)

In addition, we characterize the random local environmental anisotropy, which tends to

induce local nematic alignment Q in the post cross-linking system, in terms of the random

tensor field M:

M(r) = Y(r) +
T

T 0

∫
dDr′H(r− r′) Q0(r′). (2.2)

Here, T is the measurement temperature (i.e., the temperature at which the system is main-

tained, in equilibrium, long after the cross-linking process), and T 0 is the preparation tem-

perature (i.e. the temperature of the equilibrium state into which cross-links are instanta-

neously created). The random environmental anisotropy described by M is caused by the

thermally averaged part of random local spatial arrangement of the localized polymers at

post-cross-linking equilibrium. It consists of two parts: (i) a part that is independent of the

the pattern of local nematic alignment Q0 present at the instant of cross-linking, which we

call the memory-independent random field and denote by Y; and (ii) a part that is due to

1Two remarks are in order. First, there is in fact a slight difference from (1.7) in that the real-space
nematic order parameter defined in this chapter has dimensions of inverse volume, whereas that in (1.7) is
dimensionless. This is to make subsequent calculations in Fourier space more convenient, as the Fourier-space
nematic order parameter Qp is then dimensionless. As for the real-space nematic correlators computed in
subsequent chapters, contact can be re-established with experiment by multiplying the real-space nematic
correlator by a factor of V 2, where V is the volume of the system. The second remark is less elementary
and has to do with the question of whether 〈Q〉 is an appropriate order parameter for an IGNE. The issue
arises because in an IGNE, the head-tail symmetry of a nematogen, present in a nematic fluid, appears to be
absent in an IGNE, because the nematogens are linked to polymer backbones. We shall consider disorder-
averaged values of 〈Q〉, which implies that for a given configuration in which a given nematogen is linked
at one end to a given polymer, there is another configuration that the nematogen is linked at the other end
to the same polymer. Thus, the appropriate order parameter for detecting the isotropic-to-nematic phase
transition in an IGNE is not a polar vector but, rather, the disorder-averaged value of 〈Q〉. The combined
symmetry operation, viz., first inverting the nematogen about its center and then swapping the end(s) at
which the nematogen is linked, is also implicit in the sum over realizations of quenched disorder, which we
shall consider for the microscopic dimer/spring model in Chapter 3.
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the pattern of Q0, which we call the memory-dependent random field . Q0 is partially im-

printed in the network structure, and this imprint then partially elicits a response similar to

Q0 in the post-cross-linking state. The relationship between Q and Q0 is characterized by a

“smearing” kernel, which embodies the idea that Q (i.e., the post-cross-linking equilibrium-

state memory of Q0) is partially erased, as a result of the thermal position fluctuations of

the network. Because of such thermal fluctuations, the position of a given constituent of the

network is not sharply localized; instead, this constituent is able to wander over distances

of order a finite lengthscale, which we call the localization length [6]. We denote the typical

value of the localization length of the network by the symbol ξL. A large value of ξL would

indicate that the network constituents are weakly localized, whereas a small value would

indicate strong localization.

Equivalently, viewed from wave-vector space the contribution from Q0 becomes HpQ
0
p.

Physically, we expect H(r) to be positive and bell-shaped, operative primarily over a region

of order the typical localization length ξL, and to decay monotonically with increasing |r| over

this lengthscale, ultimately tending to zero for |r| � ξL. Correspondingly, in wave-vector

space Hp would decay monotonically to zero over a scale ξ−1
L . Hence, we see that H serves as

a “soft filter,” de-amplifying—more strongly, the shorter the lengthscale—the contributions

made by the Fourier components of Q0 to the random anisotropic environment on distance

scales shorter than ξL. This is a natural consequence of the liquid-like character of the post-

cross-linking system on lengthscales shorter than ξL. As for the overall amplitude of H, this

we expect to increase with (i) the fraction G of polymers that are localized; (ii) the sharpness

of localization 1/ξL; (iii) the nematogen-nematogen aligning interaction J ; and (iv) the length

` of the nematogens; and we expect this amplitude to decrease with the “measurement

temperature” T (see below for more on this concept), because thermal fluctuations tend

to moderate any aligning forces. A complementary microscopic calculation, which will be

described in Chapter 3, bears out these expectations, yielding Hp = H0 exp(−p2ξ2
L/2), where

the amplitude H0 ∝ G2J2(`/ξL)4/T .
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In terms of these ingredients, we take as a model for the Landau-type free-energy cost

F associated with the induction of local nematic order in the post-cross-linking system the

form:

F =
1

2

∫
p

((
At+ Lp2 + Hp

){
QpQ−p

}
− 2
{(

Yp + (T/T 0) Hp Q0
p

)
Q−p

})
. (2.3)

Here,
∫
p

is shorthand for
∫
dDp/(2π)D, p2 is the squared length of the vector p, and the

Rp is the Fourier transform
∫
dDr R(r) exp(ip · r). Furthermore, A characterizes the align-

ing tendencies of nematic freedoms; and L is the generalized stiffness for nematic order,

for which (for the sake of simplicity) we have adopted the Landau-de Gennes equivalent of

the one-Frank-constant approximation.2 The symbol t denotes the reduced measurement

temperature;3 the occurrence of two temperatures, T and T 0, stems from the fact that elas-

tomers and related systems are characterized by not one but two statistical ensembles. One,

which we call the preparation ensemble, provides a statistical description of the random (non-

equilibrating, unmeasured) freedoms Q0 that characterize the local alignment immediately

prior to cross-linking. The other ensemble describes the equilibrium state of the system long

after cross-linking was done, via the statistics of the equilibrating variables Q; we call it the

measurement ensemble.

The free energy (2.3) consists of two terms. The first two elements of the first term

constitute the familiar Landau-de Gennes free energy at quadratic order; higher-order terms

have been neglected as we focus on the properties of IGNEs at t > 0. These elements describe

the free-energy cost of inducing nematic alignment from the unaligned state. The second

2See, e.g., P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edn (Clarendon Press,
Oxford, 1993). As our primary aim is uncover the qualitative physics encoded in Eq. (2.3), we have neglected

another possible gradient term, viz., L′
∫
p

∑D
d,d′,d′′=1 pd′ Qdd′(p) pd′′ Qdd′′(−p), where L′ is the generalized

stiffness corresponding to this term. Including this gradient term in Eq. (2.3) would result, e.g., in the five
components of the nematic tensor Q not all having the same value of the oscillation wavelength ξG/T,o at
strong disorder. However, this inclusion would not change our results qualitatively , including our central
result, viz., that spatially oscillatory decay arises for the glassy and thermal nematic correlators, provided
the disorder is sufficiently strong.

3The reduced measurement temperature t is defined to be (T − T ∗)/T ∗, where T ∗ is the spinodal tem-
perature for the spatially homogeneous isotropic-to-nematic transition in the nematic liquid.
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term incorporates what we have described above, viz., the influences of (i) the configuration

of the rod-like constituents at the instant of cross-linking, via Q0, together with (ii) the

memory-independent random field Y caused by the localized polymers post cross-linking.

From the (previously given) value of H0 and Eq. (2.3), we see that the contribution to F/T

involving Q0 carries a factor (J/T 0)(G`2/ξ2
L)2(J/T ). In it, the two temperature factors

show that the network is better able to store a given pattern Q0 the lower the preparation

temperature T 0 and, similarly, better able to elicit Q0 from Q the lower the measurement

temperature T . Taking the two terms together, F is minimized by the most probable nematic

configuration Q̃, which is given by

Q̃p =
(
Yp + (T/T 0) Hp Q0

p

)
/
(
At+ Lp2 + Hp

)
. (2.4)

By completing the square with respect to the first and second terms in Eq. (2.3), we arrive

at the following form for F (up to a non-thermally fluctuating term):

1

2

∫
p

(
At+ Lp2 + Hp

){(
Qp − Q̃p

)(
Q−p − Q̃−p

)}
. (2.5)

The third element in the first term of the free energy (2.3) is a new and central element. It

encodes the essential physical difference between our model and previous models of IGNEs,

viz., the elastomer’s possession of a network that is localized randomly and fluctuating

thermally, and is, furthermore, liquid-like at sub-localization-length scales and solid-like at

larger scales. As can be seen from Eq. (2.5), this element gives rise to a nonlocal free-

energy cost for creating a departure from the nematic pattern Q̃p. This cost arises because

the network mediates additional nematic-nematic interactions. We emphasize that: (i) the

mediated interactions addressed here are not of a type transmitted through coupling between

the nematic order and elastic deformation, but of a novel type that is related to the short-

lengthscale liquidity feature of the network; and (ii) the free-energy cost associated with
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such mediated interactions arises from the competition between the tendency for nematic

alignment and the localization forces (which are responsible for causing the short-range

liquidity of the network). Thus, the nonlocal energy cost of creating a nematic departure

from Q̃ that is essentially uniform over a lengthscale rather larger than ξL is relatively large,

as at this lengthscale the solidness of the network becomes pronounced. Conversely, the

nonlocal energy cost is relatively mild if the departure varies only over some lengthscale

rather shorter than ξL, where the system has a more liquid-like character.

2.2 Diagnostics for structure and correlations

For a system with a given realization of quenched disorder, its statistical mechanics is,

in essentially all cases, impossible to study theoretically, because of the huge number of

parameters involved and the absence of symmetry. Moreover, the results would apply to

a particular realization of disorder, and would not generally be helpful. Thus, for a useful

theoretical treatment of systems with quenched disorder, the description should be in terms

of disorder-averaged quantities. Similarly, for each given realization of quenched disorder,

there are a large number of possible configurations of the thermally fluctuating variables,

and these quantities should also be averaged, according to the standard precepts of Gibbs

statistical mechanics.

What thermally and disorder-averaged physical quantities should one use to characterize

the static local liquid crystalline structure of IGNEs in the high-temperature regime? These

quantities should take into account the various levels of randomness present in IGNEs, and

should be robust enough to describe their characteristic features as well as be able to describe

the development of nematic order. Denoting disorder-averaged quantities by [· · · ] (by which

we mean, here, quantities averaged over suitably distributed Y and Q0), and thermally

averaged quantities by 〈· · · 〉 (by which we mean quantities averaged over the measurement
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a) b)

Figure 2.1: Schematic depictions of snapshots of nematogen locations and orientations at a
particular instant (blue) and at a much earlier instant (shaded). (a) A conventional liquid
crystal in the isotropic state. Such systems do not memorize the local pattern of nematogen
alignment indefinitely. There is no correlation between the orientations of blue and shaded
nematogens that are depicted near one another. Nor is there any preference for blue and
shaded nematogens that are depicted near one another to be the same nematogen. (b) A
liquid cystalline ealstomer in the macroscopically isotropic state. Such systems do memorize
the local pattern of nematogen alignment indefinitely. The orientations of blue and shaded
nematogens depicted near one another are likely to be correlated. For systems in which the
nematogens are chemically bonded to an elastomer network, blue and shaded nematogens
depicted near one another are likely to be the same nematogen. However, for systems in
which the nematogens are not chemically bonded to a network there is no preference for blue
and shaded nematogens depicted near one another to be the same nematogen.

ensemble), we shall focus on the following two quantities:4 (i) the glassy correlator , defined

via the formula

CG(r, r′) ≡ [{〈Q(r)〉 〈Q(r′)}〉]; (2.6a)

(ii) the thermal fluctuation correlator , defined via the formula

CT (r, r′) ≡
[〈{(

Q(r)− 〈Q(r)〉
) (

Q(r′)− 〈Q(r′)〉
)}〉]

. (2.6b)

4Although we are focusing on the scalar aspects of the correlators, it is straightforward to reconstruct
the full structure of the corresponding fourth-rank tensors, by appending suitable isotropic tensor factors
constructed from Kronecker deltas.
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The correlator CT characterizes the strength of the thermal fluctuations of the nematic

alignment away from the local mean value as well as the spatial range over which these

fluctuations are correlated. Inter alia, through its range, CT can be used to detect the

occurrence of a continuous phase transition. The glassy correlator CG is a diagnostic of

particular value for nematic elastomers, as it detects the occurrence of randomly frozen

(i.e., time-persistent) local nematic order. For the case where r and r′ are co-located, it

is the nematic analog of the Edwards-Anderson order parameter, introduced long ago for

spin glasses [36], in the sense that it measures the magnitude of local nematic ordering,

regardless of the orientation of that ordering. Moreover, how CG varies with the separation

of r and r′ determines the spatial extent of regions that share a roughly common nematic

alignment. Two mechanisms are responsible for the existence of these aligned regions. First,

the formation of a random network causes a local breaking of rotational invariance, which has

the effect of creating randomly anisotropic environments that tend to align the nematogens

locally. Second, although the equilibrium state of the system at the instant prior to cross-

linking is, on average, isotropic, a “snapshot” of its microscopic configuration at that instant

would reveal local nematic order of the type that we normally call thermal fluctuations.

As we shall see, the cross-linking process can trap these fluctuations in, either partially or

fully, the extent depending on the strength of the cross-linking and the temperature at the

moment of cross-linking.

In the high-temperature regime, the disorder-averaged quantity [〈Q(r)〉] vanishes, owing

to the macroscopic isotropy of the post-cross-linking state. On the other hand, the ther-

mal average of the local order parameter for a specific realization of the quenched disorder

〈Q(r)〉 is maintained at a nonzero, time-persistent, random value, which we shall compute

shortly. This nonzero value is the result of the partial trapping, by the network, of the ori-

entational randomness Q0 present at the instant of cross-linking, together with the memory-

independent random field Y of the network, post cross-linking. The free energy (2.3) is

quadratic in Q, and therefore the computation of 〈Q〉 and CT using the statistical weight
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exp(−F/T ) is elementary, yielding

〈Qp〉 = Q̃p; (2.7a)〈{(
Qp − 〈Qp〉

)(
Qp′ − 〈Qp′〉

)}〉
=

TµD δp+p′,0

At+ Lp2 + Hp

. (2.7b)

Here, µD ≡ (D − 1)(D + 2)/2 counts the number of degrees of freedom of Q and takes the

value 5 for D = 3. Note that we have chosen units in which Boltzmann’s constant has the

value unity.

To perform the average over the quenched random variables Y and Q0, we must adopt

a model for their statistics that is consistent with the physical origin each has. The choice

we make is that Y and Q0 are independent, Gaussian-distributed random fields, with zero

means and non-zero variances, the latter being given by

[{
Q0

p Q0
p′

}]
= T 0µD

δp+p′,0

A0t0 + L0p2
, (2.8a)[{

Yp Yp′
}]

= T Hp δp+p′,0 . (2.8b)

Here, A0 and L0 are, respectively, the preparation-ensemble counterparts to A and L. The

statistics of Q0 depend on the reduced temperature t0 of the preparation ensemble;5 it

does not depend on H, because H encodes the physics of random but imperfect spatial

localization, and this only comes into being post cross-linking. (The impact of Q0 does

depend on H, as H controls the relaxation of Q from Q0 to its equilibrium value, post cross-

linking.) By contrast, the statistics of Y does depend on H; this is because H characterizes

the typical value of the memory-independent random field that results from the random

(imperfect) spatial localization of the polymers constituting the network. In view of their

distinct origins, it is natural that Y and Q0 be statistically uncorrelated.

However, it is not a coincidence (as we will indeed see from a microscopic calculation in

5The reduced preparation temperature is defined via t0 ≡ (T 0 − T ∗)/T ∗, where T ∗ is the spinodal
temperature of the liquid nematic just prior to the instant of cross-linking.
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Chapter 3, but also natural, at least heuristically, that the H that characterizes the orienta-

tional caging induced by the network (via Y) is the same H that determines the fidelity with

which the network preserves the orientational order present immediately post cross-linking

(i.e., Q0). It is, in fact, natural, because localization that is sharper and more widespread

(i.e., involves a larger localized fraction) both creates more intense network-induced orienta-

tional caging and enhances the trapping-in of the local nematic order present immediately

post cross-linking. Our physical expectation, borne out by a microscopic analysis, is that

such strengthening of the localization would enhance memorization more strongly than it

would orientational caging. This expectation is consistent with the phenomenological choice

presented here, in which the corresponding contributions to the random anisotropy field,

Eq. (2.2), scale as
√

H for the caging (i.e., Y) part and H for the “memorization” (i.e., Q0)

part. Such a “soft” random field is to be contrasted with the conventional, “hard” random

field that is present at all length-scales, the latter being based on the assumption that the

quenched disorder inhabits a thermally non-fluctuating background.6

Returning to the disorder-averaged diagnostics—the mean [〈Q〉] and the correlators

CT and CG—we complete their computation using the statistics of the quenched disorder,

Eqs. (2.8), to arrive at (with [〈Qp〉] = 0)

CTp = TµD
1

At+ Lp2 + Hp

, (2.9a)

CGp = TµD

T
T 0 (A0t0 + L0p2)−1|Hp|2 + Hp

(At+Lp2+Hp)2 . (2.9b)

6The random field Ising model is an example of such a system.
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Figure 2.2: Real-space decay behavior of (a) the glassy correlator (rescaled) C̃G(r) ≡
(60π2L/TµD) CG(r), for t0 � TH0/T

0A0; t = 0.1L/Aξ2
L, at (i) H0/H

(c) = 0.5 (weak dis-
order; red, dashed) and (ii) H0/H

(c) = 40 (strong disorder; blue, solid). (b) the thermal

correlator (rescaled) C̃T (r) ≡ (2π2L/TµD) CT (r), for the same parameters. On going from
weak to strong disorder, both correlators cross over from simple exponential decay to oscil-
latory decay of wavelength of order ξL.

2.3 High-measurement-temperature structure and

correlations

Having computed the correlators CT and CG, we now set about using them to study how

the presence of a network modifies the organizational behavior of nematic freedoms. To do

this, we first note that there are two emergent lengthscales present in IGNEs: (i) the typical

localization length ξL, quantifying the sharpness of localization of polymers belonging to

the network; and (ii) the intrinsic nematic correlation length ξN [≡
√
L/At], describing the

range over which nematic freedoms would be correlated if there were no network present.

On the other hand, we have the strength of the memory-independent random field Y, which

is characterized by
√

H0. In what follows, we shall study the dependence of CT and CG on

the parameters ξN , ξL and H0, doing so for two specific systems: one prepared at t0 �

TH0/T
0A0, and one at t0 < TH0/T

0A0. First consider the behaviors of CT and CG for

t0 � TH0/T
0A0, so that any local nematic order present immediately post cross-linking (and

thus available for trapping in) is spatially correlated only over distances far shorter than the

typical localization length ξL; see Table 2.1. This separation of lengthscales implies that the

local nematic order arising from Q0 would be heavily “washed out” by thermal fluctuations
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Disorder strength Weak (H0 < H(c)) Strong (H0 > H(c))

ξ2
T,o ∞ 1

2
ξ2
L/ ln(H0/H

(c))

ξ2
T,d ξ2

N
1−(H0/H(c))
1+(H0/At) ∼ ξ2

L/
(
1 +

ξ2
L

2ξ2
N

)
ξ2
G,o ∞ ∼ ξ2

L/ ln(H0/H
(c))

ξ2
G,d

1
2
ξ2
L + 2ξ2

N
1−(H0/H(c))
1+(H0/At) ∼ ξ2

L

Table 2.1: Values of the correlation lengthscales (ξT,d and ξG,d), and the oscillation wave-
lengths (ξT,o and ξG,o) in the weak- and strong-disorder regimes for the case of IGNEs
cross-linked at t0 � TH0/T

0A0.

of the network. Thus, in this regime the dominant contribution to the trapped-in local

nematic order originates in the memory-independent random field Y.

Continuing with the case t0 � TH0/T
0A0, we observe that CT and CG exhibit quali-

tatively distinct behaviors in two regimes, depending on the strength of the random field

(see Fig. 2.2). For H0 < H(c) (where H(c) ≡ 2L/ξ2
L—the weak-disorder regime), CT and CG

decay simply with increasing real-space separation. More specifically, by examining their

small wave-vector behaviors we ascertain that the respective associated correlation lengths

ξT,d and ξG,d have the values given in Table 2.1. We see, from the behavior of ξT,d, the

physically reasonable result that the random network, with its thermal fluctuations, serves

to shorten the nematic thermal fluctuation correlation length from the value it would have

in the absence of the network, a phenomenon that conventional (i.e., non-thermally fluctu-

ating) random-field approaches would not capture. As for ξ2
G,d, it comprises two parts. One

(∝ ξ2
T,d) arises from the nematic thermal correlations; the other (∝ ξ2

L) comes from the local

aligning effect exerted by the cage. The fact that ξG,d increases with ξL does not mean that

a more weakly cross-linked network (for which ξL would be larger) aligns the nematogens

more effectively. Whilst the lengthscale of aligned regions ξG,d may increase, the magnitude

of CG, which governs the intensity of the alignment locally, decreases.7

By contrast, for H0 > H(c) (i.e., the strong-disorder regime), the (weak-disorder) simple

7This can be seen by computing the value of CG(r = 0), which is approximately given by TµDH0ξN/4πL2

at weak disorder, and noting that H0 varies as ξ−4L .
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decay of the correlators can give way to oscillatory decay, as we now discuss. Regardless of

T , CT oscillates, whereas CG only does for sufficiently small T . The oscillation wavelengths

ξT/G,o are determined via the radii of the shells in wave-vector space on which the correspond-

ing correlators are maximal. Thus, we arrive at an explicit (and, notably, T -independent)

formula ξT,o = ξL/
√

2 ln(H0/H(c)) and an implicit one for ξG,o, viz.,

1 + (ξN/ξG,o)
2 + 4(ξN/ξL)2 − (H0/At)e−ξ

2
L/2ξ

2
G,o = 0.

The cross-over boundary between the oscillatory and non-oscillatory regimes for CT occurs

at the threshold where the oscillation wavelength ξT,o is about to shrink from infinity to a

finite value. At this threshold, H0 = H(c). Similarly, the cross-over boundary between the

oscillatory and non-oscillatory regimes for CG occurs at the threshold where the oscillation

wavelength ξG,o is about to shrink from infinity to a finite value. The phase boundary for

glassy oscillations is given by

H0 = At+ 2H(c). (2.10)

(See Fig. 2.3.)

The value of ξT/G,d in this strong-disorder regime, given in Table 2.1, is estimated via

the widths of the peaks of CT/G. Upon decreasing ξL at fixed ξN , the value of ξT,d tends

to ξL from above, indicating that the network is limiting the range over which the thermal

nematic fluctuations are correlated. On the other hand, ξG,d remains at the scale of ξL,

indicating that the range of coherent nematic alignment is circumscribed by the network’s

typical localization length.

Oscillatory behavior can be regarded as the resolution of the interplay of two energetic

costs of fluctuations. The cost of creating local nematic order via rotations of the nemato-

gens is smaller for long-wavelength fluctuations. By contrast, the cost of creating nematic

order via local segregation of nematogens according to their preferred orientation is smaller

for short-wavelength fluctuations (which is a reflection of the short-lengthscale liquidity of

42



Thermal and
glassy oscillations

Thermal oscillations

No oscillations

2 4 t
�

2

4

6
H
�

Figure 2.3: Crossover diagram for the glassy and thermal correlators, indicating the three
qualitatively distinct regimes of behavior for a system that is cross-linked at a very high
temperature. Here, H̃ ≡ H0/H

(c) is a measure of the disorder strength, and t̃ is the rescaled
reduced temperature, with the value (Aξ2

L/L)t. Above the blue solid line, both correlators
oscillate and decay as a function of separation. Between the blue solid and red dashed lines,
both correlators decay but only the thermal one also oscillates. Below the red dashed line,
both correlators decay but neither oscillates.

the network). When the former mode dominates for all wavelengths, long-wavelength fluc-

tuations are the most probable and, hence, correlations decay without oscillation. When the

disorder is strong enough, however, the latter mode drives the most probable fluctuations to

a finite wave-vector and, hence, correlations oscillate as they decay (cf. Figs. 2.4 and 2.5).8

Having considered the behaviors of CT and CG for systems prepared at high tempera-

tures, we now consider the corresponding behavior for systems prepared at t0 < TH0/T
0A0,

so that the local nematic order present immediately post cross-linking is spatially correlated

over distances larger than ξL. This regime can be reached in IGNEs by imposing a suffi-

ciently large density of cross-links, such that the typical localization length of the network

becomes comparable to or smaller than the nematic correlation length of the isotropic liquid

of nematogens just prior to cross-linking. 9 As one can see from Eq. (2.9a), the behavior

8Such behavior is analogous to the micro-phase separation in cross-linked polymer blends; see Refs. [66, 67]
9We note that, in addition to IGNEs, the result that we have obtained for this regime also describes the

strong memory effect present in nematic elastomers that have been prepared in the nematic state, at least
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Figure 2.4: Nematogens in an IGNE can lower their energy by a mechanism via which each
nematogen rotates such that the nematogens are locally aligned on average. To illustrate this
mechanism, we have disregarded the ability of each rod to translate, and focused solely on
their rotational capability. (a) Nematogens before rotation. (b) Nematogens having rotated
to achieve local net alignment. The blue-colored rod remains in the same position, whilst
undergoing rotation. This mechanism of energy reduction via local rotation is favored if the
ends of the nematogens are not strongly localized by the network.

Figure 2.5: Nematogens in an IGNE can also lower their energy by local segregations, viz.,
rods undergo local translation such that rods of similar orientations become more proximate
to each other. The extent of each nematogen’s translation is restrained by its localization
length. (The area over which the blue-colored rod has a higher probability of translating to
is colored yellow.) To illustrate this mechanism, we have disregarded the capability of the
rods to rotate, and focussed solely on their translational ability. (a) Nematogens before local
segregation. (b) Nematogens after local segregation. The blue-colored rod has translated
a certain distance whilst maintaining its orientation. Note that the resulting local nematic
pattern is shows local director anti-correlation (the director being associated with the locally
coarse-grained orientation density of the individual nematogens).
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of CT is unchanged, undergoing simple decay in real space at weak disorder but oscillatory

decay at strong disorder. Conversely, CG exhibits behavior qualitatively different from that

of a system prepared at t0 � TH0/T
0A0, because it now receives its dominant contribution

from the memorization of Q0. Specializing to t ≈ t0 and for wavelengths larger than ξL, we

see from Eq. (2.9b) that CG is approximately given by

CGp ≈ µD

(
T

T 0

)2
T 0

A0t0 + L0p2
, (2.11)

i.e., it is proportional to the correlator of the thermal nematic fluctuations immediately

post cross-linking. This indicates that the pattern of these thermal fluctuations has been

faithfully memorized by the network.

2.4 Effective replica Hamiltonian

To facilitate comparison with the microscopic dimer/spring model of an IGNE, which will

be described in Chapter 3, in this section we consider deriving the disorder-averaged free

energy for the phenomenological model of the IGNE via a technique known as the replica

method [45]. In principle, one should be able to derive disorder-averaged quantities such as

the glassy and thermal fluctuation correlators (2.9) from the disorder-averaged free energy

(by appending suitable conjugate fields). However, in practice, directly disorder-averaging

the free energy is difficult, if not impossible, owing to the presence of a logarithm function,

and hence one has to resort to indirect methods such as the replica method.

Before we do that, however, we pause to explain why one should disorder-average the free

energy rather than (say) the partition function. This is part of a more general notion that

one should disorder-average extensive variables. We shall follow the explanation given by

Brout [44]. Consider a very large system and divide it up into a large number of subsystems,

such that each subsystem is macroscopic and clearly contains a statistically distinct set of

qualitatively [28].
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quenched random variables. Assume that interactions in the system are short-ranged, so

that one can ignore the coupling between the subsystems. Thus, the value of any extensive

variable for the whole system is the sum of this quantity over the subsystems. Given the

large number of subsystems, the average over the subsystems is equivalent to an average

over all possible choices of the quenched disorder, according to a given, physically motivated,

probability distribution for the quenched disorder. Just as in ordinary statistical mechanics,

where we know that the relative fluctuations of the energy around its thermal equilibrium are

O(N−1/2), we expect that the relative fluctuations of the extensive variable also go to zero

in the limit of large system. A quantity having this property is said to be self-averaging. For

self-averaging quantities, not only can we expect the same results in experiments on different

macroscopic samples, but we can also expect that a theoretical calculation of the disorder

average of the quantity would give the same answer as experiments would.

Therefore, one appropriate quantity to be averaged is the free energy F but not the

partition function Z. Moreover, an average of Z would be tantamount to treating quenched

and annealed variables on the same footing, and thus would not reflect the equilibration

of the annealed variables in the presence of a fixed background of quenched variables. We

use the square brackets [· · · ] to denote disorder averages, so that the disorder-averaged free

energy [F ] is given by

[F ] = −
∑
χ

P (χ)Fχ = −T
∑
χ

P (χ) lnZχ, (2.12)

where χ indexes the realizations of quenched disorder, and Fχ is the free energy for a given

realization χ. The average over the realizations of disorder is weighted by some distribution

of quenched disorder P (χ), for which a model form has to be determined.

We now use the replica method to perform the disorder average of the logarithm of the
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partition function, [lnZχ]. This method is based on the following mathematical identity:

xn = en lnx = 1 + n lnx+O(n2) (for small n)

⇒ lnx = lim
n→0

xn − 1

n
. (2.13)

This can be used to represent the logarithm in Eq. (2.12), so that one has

[F ] = −T
∑
χ

P (χ) lim
n→0

Zn
χ − 1

n
= −T lim

n→0

[Zn
χ ]− 1

n
. (2.14)

The problem now is to calculate the disorder average of Zn
χ . Recall that each partition

function Zχ = Tr S e
−Hχ(S)

T is a Boltzmann-weighted sum over all possible states S in the

statistical ensemble for the system. (S might be the collection of conformations of the

polymers or, in a magnetic system, the orientations of the spins.) Thus one can write

[Zn
χ ] =

[
Tr S1 e−

Hχ(S1)

T Tr S2 e−
Hχ(S2)

T · · ·Tr Sn e
−Hχ(Sn)

T

]
= Tr S1Tr S2 · · ·Tr Sn

[
e−
(
Hχ(S1)+Hχ(S2)+···+Hχ(Sn)

)
/T
]

≡
n∏

α=1

Tr Sαe
−Hrep(S1,...,Sn)/T , (2.15)

where Hrep ≡ −T ln
[

exp
(
(Hχ(S1) + Hχ(S2) + · · · + Hχ(Sn))/T

)]
. One thus arrives at a

formulation in which there are n thermodynamical systems, or statistical ensembles (but

each with the same realization of disorder χ). Each of these ensembles is known as a replica.

They are undecoupled in Eq. (2.15). By exchanging the order of the disorder average [· · · ]

and the thermal average over each of the n replicas of the microscopic states (under the

trace operations Tr Sα), and performing the disorder average before the thermal average,

one obtains an effective replica Hamiltonian Hrep(S1, . . . , Sn) which describes n replicas of

a pure system, where the quenched disorder is absent. However, the price of obtaining such

a replicated pure system is that the replicas are now, in general, coupled to one another.
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For the phenomenological model described by Eq. (2.3), we can follow the procedure

described above, taking Q0 and Y to be our quenched random variables and [· · · ] to be an

average over these quenched random variables. We find, after some computation, that the

effective replica Hamiltonian is given by

H
[
Q1,Q2, · · · ,Qn

]
=

1

2T

n∑
α=1

∑
p

(
At+ Lp2 + Hp

)
{Qα

p Qα
−p}

− 1

2T 2

n∑
α,β=1

∑
p

[{Yp Y−p}]{Qα
p Qβ

−p}

− 1

2(T 0)2

n∑
α,β=1

∑
p

Hp H−p [{Q0 Q0}]{Qα
p Qβ

−p}. (2.16)

This effective replica Hamiltonian describes n replicas of a pure system, and the replicas are

now coupled. This effective replica Hamiltonian enables one to determine [F ] via Eq. (2.14).

In Chapter 3, the effective replica Hamiltonian will be compared with Eq. (4.7) to show that

the microscopic model of the IGNE is equivalent, under coarse-graining, to the phenomeno-

logical model considered in the present chapter.
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Chapter 3

Microscopic dimer/spring model of
the IGNE

In this chapter, we justify the form of the Landau-type free energy (2.3) employed in the

previous chapter, by deriving it from a microscopic model of IGNEs, a model that we describe

in detail in Sec. 3.1. To deal with the problem of quenched disorder (which originates in

the random cross-linking process), we implement the replica method in Sec. 3.2, paving

the way for the Hubbard-Stratonovich decoupling scheme which is performed in Sec. 3.3.

There, we develop a field theory for IGNEs, which involves an order parameter field Q that

describes liquid crystalline ordering, and an order parameter field Γ that describes random

solidification.

3.1 Ingredients of the model

We model an IGNE microscopically in terms of a system of dimers that are randomly and

permanently linked via springs (see Fig. 3.1). The springs mimic the flexible constituents

of liquid crystalline polymers, and also serve as cross-links; the dimers mimic the stiff con-

stituents of liquid crystalline polymers. Each dimer (labeled by j, where j = 1, . . . , N)

consists of two particles at position vectors cj,1 and cj,2 that are separated by a fixed dis-

tance `. The orientation of the j-th dimer is specified by the unit vector

nj =
cj,1 − cj,2
|cj,1 − cj,2|

. (3.1)
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Figure 3.1: A model of dimers (purple) cross-linked via Hookean springs (black). Each
dimer has a length ` and each spring has an r.m.s. length b. Each dimer has a center-of-mass
position vector cj (where j = 1, . . . , N labels the dimer) and an orientation specified by a
unit vector n.

The dimers interact via three types of forces. Firstly, there is an orientational interaction be-

tween dimers that promotes parallel or antiparallel alignment. We model such an interaction

via a potential of the Maier-Saupe type, viz.,

Hnem = − V

2N

N∑
i,j=1

J(ci − cj)(ni · nj)2, (3.2)

where cj ≡ (cj,1 +cj,2)/2 is the position vector of the j-th dimer’s center of mass. The factor

of V/N is inserted for convenience. 1 We shall assume that the aligning interaction is short-

range, and approximate the interaction kernel J(c) by the value
(
J0/(2πa

2)d/2
)

exp(−c2/2a2).

In Fourier space, the potential is given by Jp ≈ J0 exp(−p2a2/2). Here, a specifies the range

of the interaction between dimers, and J0 characterizes the strength of the interaction. In ad-

dition to the orientational interaction, the dimers experience a positional excluded-volume

interaction between particles belonging to any pair of dimers. We model this positional

1The Hamiltonian Hnem remains extensive under this choice of prefactor, as the interaction is short-
ranged. (On the other hand, if the interaction is infinite-ranged then one would need an extra factor 1/N .)
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excluded-volume interaction via an Edwards-type pseudo-potential [59],

Hev =
λ

2

N∑
i,j=1

∑
s,t=1,2

δ(ci,s − cj,t), (3.3)

where λ is the strength of the excluded-volume interaction. 2 Finally, any given pair of

dimers that are connected by a spring interact additionally via the harmonic potential due

to the spring. We specify such a potential by the following Hookean energy term:

Hxlink =
T

2b2

M∑
e=1

|cie,se − cje,te|2. (3.4)

Here, T denotes the temperature and b2 denotes the mean squared separation of any two

points connected by a spring. Note that the spring has zero rest-length. This accords with

the behavior of Gaussian molecular chains, for which the ends of a given polymer segment

of the network prefer to be near one another rather than apart, as the former situation

gives rise to more conformations of the polymer segment, and thus is entropically favored.

The network is prevented from collapsing into a globule only because of the presence of

sufficiently large excluded-volume forces. The label e indexes the springs, and M denotes

the number of springs. The indices ie, je ∈ {1, . . . , N} refer to the pair of dimers that are

connected by spring e (= 1, . . . ,M). The indices se, te ∈ {1, 2} label the particles that are

connected by spring e.

For the microscopic model, the thermal and quenched random variables are themselves

microscopic, in contrast to the mesoscopic (or coarse-grained) thermal and quenched random

variables considered in Chapter 2. In the microscopic model, the thermal random variables

are specified by variables ci,s, whilst the quenched random variables are given by: (i) the

total number of springs M ; and (ii) the set of possible ways of assigning these springs to

2In principle, one should allow the entire rod volume to be excluded. However, to do so would introduce
more technical difficulties than would be appropriate to our essential aim of penalizing density fluctuations.
Thus, we have employed the simplest possible formulation that enables one to achieve this aim, which is to
make the ends of cross-linking springs subject to an excluded-volume interaction.
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pairs of end-points of dimers. We can label a given realization of quenched disorder by

χ = {ie, se; je, te}Me=1. The total Hamiltonian for the dimer model is then given by

H = Hnem +Hxlink +Hev, (3.5)

and for a given realization χ of quenched disorder, the partition function is specified by

Zχ =

∫ ∏
i,s

dci,s e
−H/T

N∏
j=1

δ(|cj,1 − cj,2| − `). (3.6)

As discussed in Sec. 2.4, it is appropriate to average the free energy of the system over all

realizations of the quenched disorder. From this point onwards, we shall use the square

brackets [· · · ] to denote a quantity averaged over realizations χ of the quenched disorder,

and angular brackets 〈· · · 〉 to denote a quantity averaged over the microscopic thermal

configurations of the dimers. One is then in a position to write the disorder average of the

free energy [F ] as

[F ] =
∑
χ

P (χ)Fχ = −T
∑
χ

P (χ) lnZχ , (3.7)

where Fχ is the free energy for a given realization of quenched disorder χ.

3.2 Replicas and collective fields

What disorder statistics should we use to compute the disorder average of the free energy?

In common with other elastomeric systems (such as rubber; see, e.g., Ref. [6]), we employ

an elaboration of the Deam-Edwards distribution P (χ) [35]. This amounts to choosing

P (χ) =
1

M !

(
Ṽ η2

2N

)M
Zχ
Z1

, (3.8)
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where the dimensionless volume Ṽ is defined to be V/(2πb2)d/2. The adoption of the Deam-

Edwards distribution reflects a picture in which the system undergoes instantaneous cross-

linking. In this process, one begins with a melt or solution at equilibrium and—so rapidly

that hardly any relaxation has time to occur—one introduces permanent bonds between

some random fraction of the pairs of dimers that happen, at the instant of cross-linking,

to be nearby one another. The Poissonian factor in P (χ) reflects the fact that cross-links

may or may not be formed between adjacent dimers during the cross-linking process, and

the probability that cross-links form between any two adjacent dimers is controlled by η2.

(In Appendix A, we show that η2 is related to the average number of cross-linking springs

per dimer, via the formula [M ]/N = 2η2.) In addition, P (χ) is proportional to Zχ, which

describes the fact that the thermal configurations of the cross-linked system are more likely

to be similar to the thermal configurations of the liquid system just prior to the instant of

cross-linking. The factor Z1 is present for normalization purposes. The disorder average of

the logarithm of the partition function [lnZχ] is carried out using the replica method, as

described in Sec. 2.4. We write the logarithm in Eq. (3.7) as

[F ] = −T lim
n→0

∑
χ

P (χ)
Zn
χ − 1

n
. (3.9)

We then insert the Deam-Edwards distribution to obtain

[F ] = −T lim
n→0

∑
χ

(
Ṽ η2

2N

)M
Zχ

M !Z1

·
Zn
χ − 1

n
. (3.10)

By exchanging the order of the disorder average [· · · ] and the thermal average over the

microscopic states of each replica, and performing the disorder average first (i.e., by summing

over the realizations of the quenched disorder χ), we arrive at the statistical mechanics of

n + 1 (not n) thermal copies of the system absent of quenched disorder. The result thus
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obtained is:

[F ] = −T lim
n→0

1

n

(
Z1+n

Z1

− 1

)
, (3.11)

in which the “ replica partition function ”Z1+n is given by

Z1+n =
〈

exp
( Ṽ η2

2N

∑
i 6=j

∑
s,t

e−
1

2b2
|ĉi,s−ĉj,t|2

) N∏
j=1

δ(|cαj1 − c
α
j2
| − `)

〉
N,n+1

. (3.12)

(For details of the derivation of Eq. (3.12), see Appendix B.) Here, we have denoted by

〈· · · 〉N,n+1 the thermal average over an (n + 1)-fold replicated version of the Hamiltonian

H. To simplify the notation, we have also introduced the symbol ĉ to denote the n+ 1-fold

replicated vector (c0, c1, . . . , cn), and α(= 0, 1, . . . , n) labels the replicas.

To decouple the N interacting (replicated) dimers, we apply a sequence of Hubbard-

Stratonovich transformations, so that we arrive at a system of N uncoupled copies of the

same replicated one-dimer system. This decoupling is achieved at the price of introducing

fluctuating auxiliary fields. The details of this decoupling scheme are presented in Ap-

pendix B. The advantage of the Hubbard-Stratonovich transformation is that it reduces the

task of summing over the configurations of the system of N replicated dimers to that of

summing over the configurations of one single replicated dimer, as well as the configurations

of the collective fields, for which systematic procedures (such as saddle-point approximation

and perturbative renormalization techniques) known from statistical field theory (see, e.g.,

Ref. [46]) can be applied. One can thus compute quantities that are otherwise difficult to

compute using the microscopic theory. The Hubbard-Stratonovich procedure allows one to

define collective fields γ(r̂) and q(r), given by

γ(r̂) ≡ 1

2N

N∑
i=1

∑
s=−1,1

n∏
α=0

δ
(
rα − cαi,s

)
− 1

V 1+n
(3.13)
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and

qd1d2(r) ≡ 1

N

N∑
i=1

(ni d1ni d2 −D−1δd1d2)δ(r − ci), (3.14)

and to relate their disorder-averaged expectation values to the expectation values of auxiliary

fields Γ(r̂) and Q(r), via the equations (cf. Appendix B)

lim
n→0
〈Γ(r̂)〉 =

[〈
γ(r̂)

〉]
; (3.15a)

lim
n→0
〈Qα(r)〉 =

[〈
q(r)

〉]
, (3.15b)

where on the LHS, the angular brackets 〈· · · 〉 refer to a thermal average over an effective

replica Hamiltonian [cf. Eq. (3.19)], which involves Γ and Qα, whereas on the RHS, 〈· · · 〉

refers to a thermal average over the microscopic positions ci and orientations ni of each

dimer, subject to the constraints |ci,1 − ci,2| = `; and [· · · ] refers to disorder averaging over

the realizations of cross-linking constraints.

How should one interpret the extra, or “zeroth,” replica, as well as the remaining n

replicas? Physically, the zeroth replica, which originates in the Deam-Edwards distribution,

represents the preparation ensemble of the system (i.e., the ensemble of configurations of

the system just prior to the instant of cross-linking), whereas the remaining n replicas

represent the measurement ensemble (i.e., the ensemble of thermal configurations of the

system measured at a time instant long after the instant of cross-linking). We have used

the term ensemble because the choice of the instant of cross-linking the system is arbitrary,

and corresponding to each different choice is a different thermal configuration of dimer

positions and orientations at the instant of preparation (and also a different set of thermal

configurations at the instants of measurement); all these different thermal configurations are

subject though to the same cross-linking constraints. To appreciate these points better, one

may re-write the disorder average of the product of 1 + n thermal averages in the RHS of
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Eq. (3.15a) as an autocorrelation function, viz.

[
〈gi,s(r0)〉 . . . 〈gi,s(rn)〉

]
≈
[
〈gi,s(r, t0) gi,s(r, t

0 + τ 1) . . . gi,s(r, t
0 + τn)〉

]
(3.16)

in the limit where |τn− τn−1|, . . . , |τ 2− τ 1|, τ 1 are each taken to be large compared with the

longest relaxation time of the constituents of the system. Here, gi,s(r, t) ≡ δ
(
(ci,s(t) − r

)
refers to the distribution profile of the s-th end of the i-th dimer at a given time instant

t. On the LHS of Eq. (3.16), the angular brackets refer to a thermal average over the

microscopic positions and orientations of the dimer, whilst on the RHS of Eq. (3.16), the

angular brackets refer to averaging over t0. By considering the autocorrelation function

on the RHS of Eq. (3.16), we can interpret t0 [to which corresponds the zeroth replica

〈gi,s(r0)〉] as the instant of cross-linking, whence the time instants t0 + τ 1, . . . , t0 + τn [to

which correspond the replicas 〈gi,s(r1)〉 . . . 〈gi,s(rn)〉, respectively] are then times at which

the system is measured long after cross-linking, each measurement instant being temporally

far removed from other measurement instants. Because our replica framework maintains a

conceptual distinction between the zeroth and the n remaining replicas, it is well adapted

to investigations of nematic elastomers, whose measured properties are known to depend on

their states of preparation; see, e.g., Ref. [28].

Based on the above discussion, we can interpret 〈Γ(r̂)〉 as the joint probability that a

dimer-end is found at position r0 at the instant of cross-linking, and that the same dimer-end

would be found at n subsequent, widely-separated, time instants at the positions r1, . . . , rn.

Similar to the order parameter Ω(r̂) described in Sec. 1.2.2, the value of 〈Γ(r̂)〉 vanishes if all

the dimers are delocalized, and has a nonzero value if a fraction of dimers are localized. Thus,

〈Γ(r̂)〉 serves, for a system of dimers, as an order parameter to detect a phase transition from

the liquid state to the random solid state. In Sec. 4.1, we shall discover (at the mean-field

level) that the expectation value of Γ can be given an Ansatz of the same form as that for

the expectation value of Ω (considered in Sec. 1.2.2). The expectation value 〈Q0(rα)〉 can
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be interpreted as the local nematic order parameter for the preparation ensemble, whilst the

expectation value 〈Qα(rα)〉 (for α = 1, . . . , N) can be interpreted as the local nematic order

parameter for the measurement ensemble.

3.3 Landau-Wilson free energy

By using the collective fields Γ and Qα, we can express the effective replica theory as follows:

Z1+n =

∫
DΓk̂

n∏
α=0

DQα
p exp

(
−Nf1+n(Γ,Qα)

)
. (3.17)

Here, the Landau-Wilson free energy per dimer f1+n (scaled in units of T ) is given by

f1+n(Γ,Qα) =
η̃2

2V n

∑
k̂

∆k̂|Γk̂|
2 +

1

2

n∑
α=0

∑
p

Jp
Tα
{Qα

p Qα
−p}

− ln

〈
exp

(
η̃2

2Ṽ n

∑
k̂

∆k̂Γk̂
∑
s=1,−1

e−ik̂·(ĉ+
1
2
s`n̂)

+
n∑

α=0

∑
p

Jp
Tα

Qα
d1d2

(p)e−ip·c
α

(nαd1
nαd2
−D−1δd1d2)

)〉
.

(3.18)

Here, the symbol η̃2 is defined by the value 4η2, ∆k is defined by exp(−1
2
b2k2), and n̂

denotes the 1 + n-times replicated unit vector (n0, . . . ,nn). 3 The symbol 〈. . .〉1,1+n denotes

Boltzmann weighting with respect to the (n + 1)-fold replicated Hamiltonian of a single

dimer.
∑

k̂ denotes the sum over replicated wave-vectors that are restricted to the higher-

replica sector (denoted “HRS”), for which a replicated wave-vector k̂ must have at least

two non-zero vector entries: kα 6= 0, kβ 6= 0, and α 6= β. For Γ, we have excluded the

one-replica sector (denoted “1RS”), viz., the set of replicated wave-vectors that each have

only one non-zero vector entry [i.e., k̂ = (0, . . . ,kα, . . . ,0)], as such fields would correspond

3We hope the reader will be unperturbed by our use of n both for the number of measurement replicas
and for the dimer orientation.
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to fluctuations in the macroscopic density of dimers (and show up, for example, as states

with spatially modulated density). As we are assuming the IGNE to be incompressible, we

shall neglect such fluctuations. Formally, the incompressibility is enforced by taking λ to

have a very large value, such that fluctuations of Γ in the 1RS are heavily suppressed. We

shall also define the zero-replica sector (denoted “0RS”) to be the set whose only member is

the replicated wave-vector that has zero for every entry. The lower-replica sector (denoted

“LRS”) refers to the union of the one-replica sector and the zero-replica sector.

To develop the expansion of the Landau-Wilson free energy, and hence the Landau theory,

we expand the ln-trace term in Eq. (3.18) in powers of Q and Γ. As we are allowing for

the possibility of a phase transition from the isotropic to the nematic state, controlled by

the temperature T , we keep the Q-only terms to quartic order. This collection of terms is

the Landau-de Gennes free energy for nematics [1], replicated 1 + n times. As we are also

allowing for the phase transition from the liquid to the random solid state, controlled by the

number of links per dimer η2, we keep the Γ-only terms to cubic order. For terms coupling

Γ and Q, it is appropriate to keep only the ones proportional to Q Q Γ, Q Γ Γ, and Q Q Γ Γ.

We retain the last term because it is responsible for the pre-emption of macroscopic nematic

alignment at low temperatures, as we shall discover. We obtain (see Appendix C for details)

f1+n(Γ,Q) = fΓ(Γ) + fQ(Q) + fcoupling(Γ,Q), (3.19)

where fΓ is the Landau-Wilson free energy per dimer (scaled in units of T ) which describes

a purely elastomeric network in the absence of nematic freedoms, fQ describes a purely

nematic liquid in the absence of an elastomeric network, and fcoupling describes the coupling

between the nematic freedoms and the elastomeric network.

We first consider the free-energy contribution fΓ. It is given by

fΓ(Γ) =
1

2

∑
k̂

(
r1 + r2|k̂|2

)
|Γk̂|

2 − r3

3

∑
1̂,2̂,3̂

Γk̂1
Γk̂2

Γk̂3
. (3.20)
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Here, the notation is that
∑

1̂,2̂,3̂ ≡
∑

k̂1,k̂2,k̂3
δk̂1+k̂2+k̂3,0̂

, r1 ≡ η̃2(1 − η̃2), r2 ≡ η̃2`2
r [where

`2
r ≡ 2(η̃2−1/2)b2 +(1− η̃2)`2/6], and r3 ≡ η̃6. The term fΓ is the free energy that describes

the vulcanization/random solidification transition for an ordinary elastomer [6, 7, 62]. It

exhibits a linear instability at the critical value η̃2
c = 1,4 which reflects the destabilization

of the liquid state with respect to a gel/random solid state when the average number of

cross-links per dimer is increased beyond a certain critical value.

Next, we consider the free-energy contribution fQ. In the present chapter, we only

consider its terms at quadratic order, and neglect higher-order terms, as we are focussing

on the liquid-crystalline properties of IGNEs at high temperatures. (The effect of nematic

terms at cubic and quartic order will be considered in Chapter 8, where we study the liquid-

crystalline behavior of IGNEs at low temperatures.) From Appendix C we have that the

relevant terms are given by

1

2

n∑
α=0

∑
p

(Jp/T
α){Qα

p Qα
−p} −

1

2
〈G2(Q)2〉. (3.21)

These terms describe the free-energy cost of inducing nematic alignment from the unaligned

state, and constitute the part of the familiar Landau-de Gennes free energy at quadratic

order in Q. We thus have

fQ(Q) =
n∑

α=0

∑
p

1

2Tα
M(Tα,p){Qα

p Qα
−p}

−
n∑

α=1

(
v

3T

∑
p1,p2

{Qα
p1

Qα
p2

Qα
−p1−p2

}+
w

4T

∑
p1,p2,p3

{Qα
p1

Qα
p2
} {Qα

p3
Qα
−p1−p2−p3

}

)
,

(3.22)

where T 0 corresponds to the preparation temperature, and Tα (for α = 1, . . . , n) corresponds

4This critical value η̃2 implies that the critical average linking number [M ]/N is 1/2, which is consistent
with that found for the randomly-linked particle model [62]. This is not surprising, as the connectivity of
the network is a topological characteristic that should not vary with the shape of the connected constituents
(e.g., if one were to replace point particles with extended rods).
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to the measurement temperature. In the high-temperature regime, we can neglect terms of

cubic and quartic order in Q, as the nematic fluctuations are small. As we assume that

the system is measured at one temperature (which we denote by T ), we write Tα (for

α = 1, . . . , n) as T . The parameters v and w scale as v ∼ O((J0/T )3) and w ∼ O((J0/T )4).

The “mass function” M(Tα,p) is defined via

M(Tα,p) ≡ J0e
−p2a2/2

(
1− 2J0

15Tα
e−p

2a2/2

)
; (3.23)

it can be expanded in powers of wave-vectors as

M(Tα,p) ≈ Cαtα +Kαp2. (3.24)

Here, t0 corresponds to the reduced preparation temperature and has the value (T 0−T ∗)/T ∗

(where T ∗ has the value 4J0/15); tα (for α = 1, . . . , n) corresponds to the reduced measure-

ment temperature, and has the value (T − T ∗)/T ∗. We write tα [for α = (1, . . . , n)] as t.

The parameter Cα is a measure of the aligning strength of nematogens and has the value

J0T
∗/Tα, whilst the parameter Kα is a measure of the local nematic stiffness and has the

value (2T ∗ − Tα)a2 J0/2T
α. Hence, the nematic free energy fQ can be expressed as

fQ(Q) ≈ 1

2T 0

∑
p

M(T 0,p){Q0
p Q0

−p}+
n∑

α=1

∑
p

1

2T
(Ct+Kp2){Qα

p Qα
−p}

− v

3T

n∑
α=1

∑
p1,p2

{Qα
p1

Qα
p2

Qα
−p1−p2

}+
w

4T

n∑
α=1

∑
p1,p2,p3

{Qα
p1

Qα
p2
} {Qα

p3
Qα
−p1−p2−p3

},

(3.25)

where C and K correspond, respectively, to the values of Cα and Kα for α = 1, . . . , n.

Lastly, we consider the free-energy contribution fcoupling. This consists of the following

three pieces,

fcoupling = fQΓΓ + fQQΓ + fQQΓΓ. (3.26)
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The first, fQΓΓ, accounts for the coupling of elastic fluctuations and nematic alignment

fluctuations in an IGNE, as we shall see in Sec. 4.2; it is given by

fQΓΓ(Γ,Q) = −
n∑

α=0

∑
p

∑
k̂

mα
1

(
pd1 pd2 + (kα + (p/2))d1(kα + (p/2))d2

)
Γk̂ Γ−k̂−pε̂α Q

α
d1d2

(p),

(3.27)

where, mα
1 ≡ J0η̃

2`2/10Tα. The next contribution to fcoupling in Eq. (3.26) is fQQΓ, which

primarily describes the impact, on nematic fluctuation correlations, of quenched randomness

arising from the cross-linking constraints. It is given by

fQQΓ(Γ,Q) = −
n∑

α 6=β

∑
p,q

mα
2 pd1 pd2 qd3 qd4 Γ−pε̂α−qε̂β Q

α
d1d2

(p)Qβ
d3d4

(q), (3.28)

where mα
2 ≡ J2

0 η̃
4`4/1600(Tα)2. At lengthscales much larger than the length ` of a dimer,

this contribution is sub-dominant to another contribution, fQQΓΓ, owing to the presence of

a prefactor that is quartic in wave-vectors. The third contribution to fcoupling in Eq. (3.26)

is fQQΓΓ, which also describes the effects of quenched randomness on nematic fluctuation

correlations. As we shall see later (cf. Sec. 4.2), this contribution leads to the non-local

interaction term {Qp Q−p}Hp of Eq. (2.3), which results in the real-space oscillatory decay

behavior of nematic correlations in a certain regime (viz., the strong-disorder regime). The
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term fQQΓΓ is given by

fQQΓΓ(Γ,Q) = −
n∑
α

∑
p,q

∑
k̂

mα
3 Γk̂ Γ−k̂−(p+q)ε̂α Q

α
d1d2

(p)Qα
d3d4

(q)

×
(
δd1d3 δd2d4 −

`2

7
(p+ q)d1(p+ q)d3 δd2d4

−4`2

7

(
kα + ((p+ q)/2)

)
d1

(
kα + ((p+ q)/2)

)
d3
δd2d4

)
−

n∑
α 6=β

∑
p,q

∑
k̂

mα
4 Γk̂ Γ−k̂−pε̂α−qε̂β Q

α
d1d2

(p)Qβ
d3d4

(q)

×
(
kαd1

kαd2
kβd3

kβd4
+

1

4
(pd1 k

α
d2

+ kαd1
pd2)(qd3 k

β
d4

+ kβd3
qd4)

+
1

8
pd1 pd2 qd3 qd4

)
−
∑
α

∑
k̂∈HRS

∑
p

mα
5 Γ−k̂ Γk̂{Q

α
p Qα

−p}. (3.29)

Here, mα
3 = 2J2

0 η̃
4/15(Tα)2, mα

4 = J2
0 η̃

4`4/450(Tα)2 and mα
5 = J2

0 η̃
4`4/60(Tα)2. We note the

overall minus sign in front of the coupling terms in Eqs. (3.27),(3.28) and (3.29). Physically,

this means that the alignment of nematic freedoms with the random, locally anisotropic

environments created by the cross-linking lowers the free energy of the system. The minus

sign also ensures that the correlators or nematic susceptibilities that we shall compute in

Sec. 4.2 are positive definite, and thus do not suggest any thermodynamic instabilities.
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Chapter 4

Saddle-point approximation

To investigate whether the system is in an ordered state at some external condition (such as

temperature or linking number), one can compute the equilibrium value of the corresponding

order parameter. Computing the equilibrium values of the order parameters, [〈q〉] [cf. (3.14)]

and [〈γ〉] [cf. (3.13)], is difficult, but the task is facilitated by observing that [〈q〉] and

[〈γ〉] are equal to the equilibrium values of the auxiliary fields, limn→0〈Qα〉 and limn→0〈Γ〉,

respectively computed using the effective replica Hamiltonian (3.19). In turn, these field-

theoretic equilibrium values are also hard to determine exactly, but there exists a procedure

by which they can systematically be approximated. The first step is to make a mean-field

approximation. Mathematically, this is equivalent to computing the saddle-point values

of Q and Γ for given T and η̃2, which are found by requiring that the free energy f1+n

[given by Eq. (3.19)] be stationary with respect to these fields. At high temperature and

for a value of η̃2 > 1 (i.e., the conditions in which the IGNE started out), the mean-field

approximation yields a vanishing saddle-point value for Q̄α: Q̄ = 0; and for Γ, its saddle-

point value, Γ̄, is given by Eq. (1.33), in which G is equal to 2(η̃2 − 1)/3 and P (ξ) is a

peaked distribution, centered about a typical value ξL whose value diverges as
√
η̃2 − 1 near

the vulcanization transition. In Sec. 4.2, we employ this mean-field picture to determine an

effective replica Hamiltonian for local nematic order in the presence of the random network.

This Hamiltonian enables one to derive expressions for the glassy and thermal fluctuation

correlators. We also make a comparison of the effective replica Hamiltonian derived in this

chapter with that presented in Sec. 2.4, and show that they are equivalent.
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4.1 Stationarity equations

In this section, we solve—for a system in the macroscopically isotropic, random solid state—

the saddle-point equations of the field theory, and approximate the expectation values 〈Γ〉

and 〈Q〉 by their saddle-point values Γ̄ and Q̄:

δf1+n

δΓ

∣∣∣∣
Γ̄,Q̄

= 0; (4.1a)

δf1+n

δQα
j

∣∣∣∣
Γ̄,Q̄

= 0; (4.1b)

where the scalar freedoms Qj are related to the matrix Q via the formula Q ≡
∑4

j=0 Ij Qj

(the matrices Ij are the five elements of a convenient basis for symmetric traceless 3 × 3

matrices, defined in Appendix D). As we are considering the system in the macroscopically

isotropic state, we require the saddle-point value of Q to vanish: Q̄ = 0. The saddle-

point equation for Γ̄ is obtained by applying (4.1a) to (3.20) (with Qα already set to its

saddle-point value). This yields

(
1− η̃2 +

1

2
`2
r |k̂|2

)
Γk̂ − η̃

4
∑
k̂′

Γk̂′ Γk̂−k̂′ = 0,

(4.2)

where we remind the reader that the basic lengthscale `r is given by `2
r ≡ 2(η̃2 − 1/2)b2 +

(1− η̃2)`2/6. We observe that Eq. (4.2) is of the same form as Eq. (1.36), which implies that

the value of 〈Γ〉 that has the form of the Ansatz for 〈Ω〉 in Eq. (1.33) solves the saddle-point

equation Eq. (4.2). The value of G that satisfies the stationarity condition Eq. (1.36) was

determined in Ref. [7], and we can directly transplant his result into the present context by

identifying η̃2 − 1 with ε and η̃4 with c. Observing that the wave-vectors in Eq. (1.35) are

scaled in units of a basic lengthscale, which we can take to be given by `r, one finds that the
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gel fraction in the IGNE has the value

G = 2(η̃2 − 1)/3. (4.3)

For simplicity, we set the distribution of localization lengths P (ξ) to a sharp value P (ξ)→

δ(ξ − ξL), thus obtaining

Γ̄k̂ ≈ G

∫
dz

V
ei

∑
α kα·z− 1

2
|k̂|2ξ2

L −Gδk̂,0̂, (4.4)

i.e., an entity of order G. An elementary Fourier transformation shows that in real space,

the order parameter is given by

Γ̄(r̂) =
G

(2πξ2
L)(1+n)D/2

∫
dz

V
e−|r̂−ẑ|

2/2ξ2
L − G

V 1+n
. (4.5)

Here, ẑ is a (1 + n)-fold-replicated vector whose value is given by (z, . . . ,z). We can regard

Eq. (4.5) as a variational Ansatz, which is to be substituted into the free energy Eq. (1.35)

and made stationary with respect to ξL. This procedure is essentially the same as that

described in Ref. [6], and yields the following value for the typical localization length: ξL ≈

(η̃2 − 1)−1/2`r. As with the case of vulcanized rubber, the typical localization lengthscale of

the localized constituents in an IGNE diverges as the vulcanization transition is approached.

The values Γ = Γ̄ and Q = 0 also solve the second saddle-point equation (4.1b); this is

shown in detail in Appendix E.

4.2 Effective theory of structure and correlations in

IGNEs

In this section, we re-derive the results obtained for a high-temperature IGNE in Chap-

ter 2. The re-derivation will occur in several stages. First, we derive an effective replica
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Hamiltonian for the liquid crystalline behavior of an IGNE in the saddle-point approxima-

tion to Γ but with Qα allowed to undergo thermal fluctuations. We remind the reader that

the saddle-point approximation for Γ corresponds to a situation in which the localized con-

stituents of a network undergo uncorrelated thermal fluctuations, and the system does not

undergo relaxation after cross-linking. Next, we show that this effective replica Hamiltonian

is equivalent to the one considered in Chapter 2 [i.e., Eq. (2.16)], by matching the structure

and parameters of the former to those of the latter. In addition, we compute the nematic

glassy and thermal fluctuation correlators using the replica formalism. We shall find that

the correlators computed in this way agree with those computed using the phenomenological

approach.

In the saddle-point approximation, Γ is regarded as a given quantity, set to its saddle-

point value Γ̄, and one neglects the feedback of the nematic degrees of freedom on it. One also

does not need to consider the free energy associated with the formation of the random solid

itself, as it is a constant. Furthermore, at this level of approximation, the term proportional

to Γ̄Γ̄Qα vanishes, as we show in Appendix F. Moreover, in the long-wavelength limit the

term proportional to Γ̄QαQβ is subdominant to the term proportional to Γ̄Γ̄QαQβ. Thus,

we only need to consider the replicated Landau-de Gennes theory plus the coupling term

proportional to Γ̄Γ̄QαQβ for the effective replica Hamiltonian of liquid crystallinity, which

we denote by H1+n. This H1+n depends parametrically on Γ̄ but statistical-mechanically on

the [(1 + n)-fold replicated] nematic order parameter Qα(r). Thus, we have that H1+n is

given by (cf. Appendix F)

H1+n[Qα] =
∑
p

1

2T 0
(C0t0 +K0p2){Q0

p Q0
−p}+

n∑
α=1

∑
p

1

2T
(Ct+Kp2){Qα

p Qα
−p}

− 1

T 0

n∑
α=1

∑
p

Wp{Q0
p Qα

−p} −
1

2T

n∑
α,β=1
(α6=β)

∑
p

Wp{Qα
p Qβ

−p}. (4.6)

Here, C and K correspond, respectively, to the values of Cα and Kα for α = 1, . . . , n. The
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symbol Wp is defined as W0e
− 1

2
p2ξ2

L , and we refer to W0 (≡ G2J2
0 η̃

4`4/(900Tξ4
L) as the disor-

der strength, i.e., the strength of the disordering effects of the random network on the nematic

order. The characteristic lengthscale beyond which W(r) is suppressed exponentially is ξL.

The kernel Wp is the manifestation of the physics of “melting” at short lengthscales, where

thermal fluctuations of the polymer network cannot be neglected.

To find the effect that the preparation history has on the measurable liquid crystalline

behavior, we integrate out the zeroth replica element, Q0, to obtain the effective free energy

Heff [{Qα}nα=1] ≡
n∑

α=1

∑
p

(
Ct+Kp2

2T
− |Wp|2

2T 0(C0t0 +K0p2)

){
Qα

pQα
−p
}

−
n∑

α,β=1
(α6=β)

∑
p

(
Wp

2T
+

|Wp|2

2T 0(Ct0 +K0p2)

){
Qα

pQβ
−p
}
. (4.7)

We can now compare the replica free energy stemming from the microscopic model given

in Eq. (4.7) with the replica free energy stemming from the phenomenological model in

Eq. (2.16). We see that they agree, provided the following correspondences for C, C0, Wp

and [{Yp Y−p}] hold:

C = A (≡ J0 T
∗/T ), (4.8a)

C0 = A0 (≡ J0 T
∗/T 0), (4.8b)

K = L, (4.8c)

K0 = L0, (4.8d)

Wp = Hp (≡ H0 e
−p2ξ2

L/2), (4.8e)

W0 = H0, (4.8f)

[{Yp Y−p}] = T Wp . (4.8g)

We learn from the microscopic field theory of the dimer model that H and Y have the same

physical origins. As W is equal to H, W can be interpreted as arising from an unconventional,
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“ soft ”type of random field which goes to zero at short lengthscales but assumes a non-

vanishing value at long lengthscales. Such an unconventional, soft random field is to be

contrasted with the conventional, “hard” random field that is present at all length-scales.

The softness of the former reflects the fact that the elastomeric background that gives rise

to quenched randomness is itself thermally fluctuating, as has been discussed in detail in

Chapter 2 (see also [29]). The relation (4.8g) allows one to assert the statistics of the glassy

nematic correlations in an IGNE: as Eq. (4.7) is Gaussian in the field variable Qα, all odd

moments vanish, the second moment is given by the glassy correlator, and higher even

moments can be obtained using suitable products of glassy correlators. In the remainder of

the thesis, we shall adhere to the notation established in Chapter 2, i.e., we shall use the

notation A, L, H and H0 instead of C, K, W and W0.

Next, we turn to the computation of CT and CG via the effective replica Hamiltonian (4.7).

We make use of the following identities (proved in Appendix G):

[〈Q〉] = lim
n→0
〈〈Qα〉〉; (4.9a)

[{〈Q〉〈Q〉}] = lim
n→0
〈〈QαQβ〉〉 (α 6= β); (4.9b)

[{〈Q Q〉}] = lim
n→0
〈〈QαQα〉〉. (4.9c)

Here, 〈〈· · · 〉〉 denotes an average performed with respect to the effective Hamiltonian Heff .

By using these identities, we can obtain CT and CG in wave-vector space from the diagonal

and off-diagonal elements of the propagator matrix, thus arriving at the results

CTp = TµD
1

At+ Lp2 + Hp

, (4.10a)

CGp = TµD

T |Hp|2
T 0M(T 0,p)

+ Hp

(At+Lp2+Hp)2 . (4.10b)

Note that the correlators given in Eqs. (4.10) are the same as the correlators given in

Eqs. (2.9). This again shows that the phenomenological model described in Chapter 1 can
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be derived from the dimer/spring model described in the present chapter. The appearance

of a scale-dependent function Hp in the denominators is a significant feature of the present

approach. Hp follows directly from the absence of the replica-diagonal contributions to the

term (4.7). Originating in the random network, Hp leads to a scale-dependent, downward

renormalization of the bare spinodal temperature T ∗, as can be seen from the denominators

of Eqs. (4.10).

Owing to the fact that the correlators in Eq. (4.10) have been derived from a theory that

is at most quadratic in fluctuations of Qα, we call these correlators “bare” correlators. They

exhibit a singularity (which suggests an instability) at some (negative) value of the reduced

temperature t < 0. For H0ξ
2
L/L < 2, i.e., in the weak-disorder regime, the denominator

factor At + Lp2 + Hp has a minimum at p = 0. Consequently, both of the bare correla-

tors given in Eqs. (4.10) diverge, at p = 0, at a critical (reduced, rescaled) temperature of

−H0ξ
2
L/L. This suggests a continuous transition to a uniformly ordered (i.e., macroscopi-

cally anisotropic) nematic state. By contrast, for H0ξ
2
L/L > 2, i.e., in the strong-disorder

regime, the denominator factors have a minimum at p2 = 2 ln(H0ξ
2
L/2L); therefore, both

bare correlators exhibit nonzero-wavelength divergences at a (reduced, rescaled) tempera-

ture −2 ln(eH0ξ
2
L/2L). This suggests a continuous phase transition to a state having periodic

spatial modulations. As we shall see in Chapter 8, however, neither of these putative tran-

sitions actually occurs when terms cubic and quartic in Qα are taken into account, as the

fluctuation corrections turn out to suppress the occurrence of the instabilities in 3 spatial

dimensions.

69



Chapter 5

Replica Goldstone fluctuations and
their physical meaning

With Chapters 5 and 6, we move to the topic of elasticity, studying it as a phenomenon that

emerges from the underlying statistical mechanics of fluctuations of the constituents of the

elastomer. In this chapter, we explain how non-affine correlations in random elastic media

can be described via the replica formalism of vulcanization theory. This chapter sets the

stage for the following ones, which describe how the elastic behavior of IGNEs is influenced by

nematic fluctuations. The present chapter has three sections. First, we introduce the notion

of non-affine displacement, which is an example of an elastic fluctuation, describing how it

has been quantified in phenomenological approaches such as the one formulated by DiDonna

and Lubensky [61]. In the following section, we examine a certain class of replica Goldstone

fluctuations. We then explain how such “Goldstone-deformed” states in vulcanization theory

can be interpreted in terms of a phenomenological theory of elastomers that takes non-affinity

into account. In the final section, we show how the theory of “Goldstone-deformed” states

can be employed to compute a certain correlator that reflects (i) the magnitude of the

random displacements that volume elements of the elastomer undergo during the process of

relaxation to mechanical equilibrium after cross-linking; and (ii) the departures from affinity

that occur when the elastomer is stretched. This chapter is based on material from Refs. [61]

and [62]. The main novelty that this chapter contains is an alternative derivation of the non-

affinity correlator, made using the replica formalism, rather than via a calculation using an

(unreplicated) phenomenological model, as was done in Ref. [62].
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5.1 Non-affine correlations in random elastic media

According to the picture presented by the classical elasticity theory (see, e.g., Refs. [48, 63]),

elastomers are spatially homogeneous media whose elastic moduli Kd1d2d3d4 are spatially

constant. When a uniform stress is applied to the boundary of such an elastomer, it under-

goes an affine deformation [the concept of affinity was defined in Sec. 1.2.1; see Eq. (1.23)].

In reality, however, the deformation is expected to be non-affine, at least at lengthscales

comparable to the typical localization length of the network, as the heterogeneities present

at those lengthscales lead the individual constituents of the network to undergo inhomo-

geneous displacements in response to an applied stress. Such deviations from the volume

element trajectories expected for affine deformation provide an example of what we term

elastic fluctuations. Two other types of elastic fluctuations that we consider in this chapter

and the following two are: (i) random displacements undergone by the volume elements of

the network medium as it relaxes to mechanical equilibrium after cross-linking, which we

call “relaxational displacements”; and (ii) thermally excited elastic excursions of volume

elements from their mean positions. In the present section, we focus on a subset of elastic

fluctuations, viz., the non-affine displacements, and describe a model proposed in Ref. [61]

to capture the correlations between the non-affine displacements in random elastic media.

The procedure followed in Ref. [61] involves starting with a model of an elastic network

in which particles occupy sites on a periodic or random lattice in their state of mechanical

equilibrium, with each pair of particles being connected via permanent central-force springs

described by a potential of the form,

Vb =
kb
2

(Rb −RbR)2 +
gb
4

(Rb −RbR)4. (5.1)

Here, b labels the spring connecting two given particles, kb and gb are finite constants, and

the distance between two particles occupying sites i and j in the distorted lattice (called

the target space) is given by Rb = |Ri − Rj|. Here, Ri ≡ Ri0 + ui is the position of a
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particle occupying site i when the lattice is distorted, Ri0 is the position of the particle

in the undistorted lattice (which we call the reference space), and ui is the displacement

undergone by the particle when the lattice is distorted. The total energy of the network is

given by UT =
∑

b Vb(Rb).

It is useful to form a quantity called the discrete-lattice nonlinear strain vb, defined

relative to the reference state: vb ≡ (R2
b−R2

b0) = Rb0 ·∆ub+ 1
2
|∆ub|2. HereRb0 ≡ |Ri0−Rj0|

is the separation between two particles occupying neighboring sites i and j in the undistorted

lattice, and ∆ub ≡ ui − uj. The lattice is then in a state of mechanical equilibrium when

UT is minimized with respect to vb, and the elastic energy of distortion can be determined

from the departures from the mechanically equilibrated state, in terms of ∆ub. From the

discrete model of the distorted lattice, DiDonna and Lubensky derived a continuum theory

of elasticity, the elastic energy of which is given by

H =

∫
dDr

(
1

2
Kd1d2d3d4(r)ud1d2(r)ud3d4(r) + σ̃d1d2(r)ud1d2(r)

)
, (5.2)

where ud1d2(r) ≡ (∂d1ud2 + ∂d2ud1 + ∂d1u · ∂d2u) is the continuum, Green–Saint Venant

Lagrangian, strain tensor, related to vb via vb ≈ Rb0,d1Rb0,d2ud1d2(r). One can likewise

define a continuum version Rd(r) of the position vector of a particle in the target space,

corresponding to the lattice position vectorRi, and a continuum version ud(r) of the discrete

displacement vector ui (bearing in mind that d refers to Cartesian coordinates and i labels

lattice sites). By defining a deformation gradient tensor Λ, corresponding to an external

imposed deformation via

Λd1d2 ≡ δd1d2 + γd1d2 , (5.3)

one may write for the position vector of a particle residing in the bulk of the medium

Rd(r) = Λdd′rd′ + u′d′(r); (5.4a)

ud(r) = γdd′rd′ + u′d(r), (5.4b)
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where γ ·r and u′(r) refer, respectively, to the affine and non-affine parts of the displacement

undergone by the particle when the external deformation is imposed. For a particle located

at the boundary of the medium, the deformation is affine, and consequently u′ = 0.

The elastic moduli Kd1d2d3d4 and the internal stress σ̃d1d2(r) are related to the the pa-

rameters Vb, kb and Rb0 of the discrete model via

Kd1d2d3d4(r) ≡ 1

2v(r)

∑
j

kbR
−2
b0 Rb0,d1Rb0,d2Rb0,d3Rb0,d4|b=〈i,j〉; (5.5a)

σ̃d1d2(r) ≡ 1

2v(r)

∑
j

V ′b (Rb0)(Rb0,d1/Rb0)Rb0,d2|b=〈i,j〉, (5.5b)

where 〈i, j〉 denotes a given pair of nearest particle neighbors occupying sites i and j, the

sum over j is over all bonds having one end at i, and v(r) is the volume of a Voronoi cell

centered at position r ≡ Ri0. For a lattice having random spring constants kb, the elastic

moduli Kd1d2d3d4 and internal stress σ̃d1d2 of the corresponding continuum elastic theory will

also be random, inherited from the randomness in kb.

Via this approach, DiDonna and Lubensky showed that the non-affinity in the displace-

ments of particles at microscopic (i.e., lattice-spacing) lengthscales can be captured by a

continuum theory defined at much larger lengthscales, by studying the random statistics

of the elastic moduli Kd1d2d3d4(r) at position r. It is useful to regard Kd1d2d3d4(r) as com-

prising two components: (i) a spatially uniform average part Kd1d2d3d4 , and (ii) a spatially

fluctuating part δKd1d2d3d4(r). In particular, they showed that when the system is subject

to a stress that leads to a macroscopic strain γ, the non-affine part of the resulting displace-

ment (viz., u′), is generated by the spatially fluctuating contribution δKd1d2d3d4(r). For

δKd1d2d3d4(r) and γd1d2 both small, and writing [· · · ] for the average over bond strengths

kb, DiDonna and Lubensky determined that the Fourier transform of the correlator of the

non-affine displacement G(r,0), defined by

Gdd′(r,0) ≡ [u′d(r)u′d′(0)], (5.6)
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takes the functional form γ2∆K(p)/(p2K2), where ∆K(p) is the Fourier transform of relevant

components of the variance of the elastic modulus-tensor, K represents the disorder-averaged

elastic modulus-tensor, and γ (not the same as the macroscopic strain γ) denotes appropriate

components of Λ. In real space, and on lengthscales large compared with the correlation

lengthscale of non-affinity, G(r,0) scales as (∆K/K2)γ2|r|−(D−2) in D dimensions.

Having provided an overview non-affinity and its characterization via the phenomenolog-

ical approach of DiDonna and Lubensky, we now consider an alternative approach, rooted in

the replica field theory of vulcanization, which offers a picture in which non-affine displace-

ments can be interpreted as a class of Goldstone fluctuations in the symmetry-broken state

of vulcanized media. This alternative approach enables one to study (see Chapter 6), the

impact of nematic fluctuation correlations on the elastic behavior of an IGNE and conversely,

enables one to study the impact of elastic fluctuations on the liquid crystalline structure in

an IGNE in the high-temperature regime (see Chapter 7). In the following two sections,

we derive the replica-off-diagonal correlator of the Goldstone fluctuation field in a deformed

rubber system, and show that it can be interpreted as the non-affinity correlator considered

in Ref. [61].

5.2 Broken symmetries and Goldstone fluctuations:

isotropic rubber and IGNEs

In this section, we employ the replica field theory approach to derive a theory of the elasticity

of IGNEs in the high-temperature regime. To do this, we first consider the case of rubber,

and describe the symmetries that are broken at the random solidification transition. Second,

we identify the corresponding branch of “massless,”(i.e., Goldstone) fluctuations of the order-

parameter field Γ about the random-solid state. Third, we interpret the displacement field

corresponding to such Goldstone fluctuations, for externally strained rubber, as replicated
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copies of

v + (vΛ − v) + u, (5.7)

where v is the local displacement that the system undergoes as it relaxes after the instant

of cross-linking, vΛ−v is the non-affine part of the deformation that the (relaxed, originally

unstrained) system undergoes under the application of an external strain, and u refers to an

instance of the thermally driven local displacements that the system undergoes about the

relaxed, externally strained state. This interpretation is facilitated by comparing parameters

in the disorder-averaged version of the phenomenological model (5.16) with parameters in

the Goldstone fluctuation free energy (5.15).

In the replica approach, what symmetries are broken at the random solidification transi-

tion? In the liquid state, in which all particles are delocalized, the order parameter 〈Γ〉 = 0

has the full symmetry of the Landau free energy of vulcanization [i.e., fΓ of Eq. (3.20)], and

this is the symmetry of independent translations and rotations of each replica. However,

at the transition to the random solid state, the symmetry of relative translations between

various replicas is broken, whilst the symmetry of common translations of all replicas is

preserved. The preservation of the symmetry of common translations of all replicas is a

reflection of the macroscopic or statistical homogeneity of the random solid, whilst the bro-

ken symmetry of relative translations of replicas is related to the positional localization of a

macroscopic fraction of particles.

This point can be alternatively appreciated by regarding replicas as describing equi-

librated copies of the system, probed at widely-separated time-instants, and localization

implies that a particle will persist within some region of space for all time, whereas delocal-

ization implies that the particle is able to explore the entire space, so that its positions at

widely-separated times are essentially uncorrelated. The liquid state is thus invariant under

independent translations of each replica. On the other hand, when the particles are local-

ized, the positions of a particle in different replicas are correlated, and thus the symmetry
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of relative translations between different replicas is broken. Such a reduction of symmetry

is manifest in the value of 〈Γ〉 [cf. Eq. (4.5)].

In accordance with the conventional Landau paradigm, there would be a Goldstone

fluctuation corresponding to each independent broken symmetry, the Goldstone fluctuation

being defined as the fluctuation whose energy goes to zero as its wave-vector goes to zero.

Let us consider the order parameter Γ in real space, as this reveals clearly what the broken

and unbroken symmetry directions are in replica space. Considering the case of rubber, the

order parameter 〈Ω(r̂)〉 [cf. (1.34)] can be written in the form

〈Ω(r̂)〉 = G

∫
dz

V

(
1

2πξ2
L

)(1+n)D/2

exp

(
−|r̂λ − ẑλ|

2

2ξ2
L

− |r̂τ |
2

2ξ2
L

)
− G

V n+1
, (5.8)

where, for the sake of simplicity, we have specialized to the case where all localized par-

ticles are localized with the same localization length ξL. Here, we have defined ẑλ =

(z, . . . ,z)/
√

1 + n, and decomposed the (1 + n)D-dimensional position vector r̂ into its

longitudinal and transverse components, via

r̂ = r̂λ + r̂τ , r̂λ = (r̂ · ε̂λ), r̂τ = r̂ − r̂λ, (5.9)

where we have defined the longitudinal basis vector ε̂λ in replica space (spanned by {εα|α =

0, . . . , n}, a set of basis vectors in replica space) via the formula

ε̂λ ≡
n∑

α=0

εα√
1 + n

. (5.10)

From Eq. (5.8), we see that 〈Ω(r̂)〉 does not depend on r̂λ, as changes in the latter can be

accomodated by shifting the integration variable z. This corresponds to the direction of

common translations of all replicas. On the other hand, Ω(r̂) does depend on r̂τ , so that the

change in Ω (and correspondingly, the free energy of the state) evolves continuously from

zero to a finite value as r̂τ is deformed continuously by a finite, position-dependent amount.
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Thus, the displacement field associated with Goldstone fluctuations should be constructed

as z-dependent replicated translations Ûτ parallel to r̂τ in replica space.

There are nD components of Ûτ corresponding to the nD independent broken relative

translation symmetries, consistent with the Goldstone counting argument, viz., that the

number of Goldstone degrees of freedom is equal to the difference between the dimension

of the symmetry-unbroken group of transformations (which for the present case is T(1+n)D,

where T denotes the group of translations in one spatial dimension for one individual replica)

and the symmetry-broken group (which for the present case is TD, i.e., the group of common

translation of all replicas in D spatial dimensions).

For our purpose it would be convenient to adopt a different representation of the Gold-

stone fluctuations. Consider the general case of a network subject to an imposed external

deformation Λ that maps a mass-point at position z at the instant of cross-linking to a

position Λ · z instantaneously, and subsequently relaxing, causing the same mass-point at

position z at the instant of cross-linking to be mapped to a position Λ · z +U(z) at a time

long after cross-linking. Recalling our earlier discussion pertaining to Eq. (3.16), where we

observed that the zeroth replica can be interpreted as an equilibrated copy of the system

at the instant of cross-linking and each of the remaining n replicas can be interpreted as

equilibrated copies of the system at a time instant of measurement (each time instant of mea-

surement being separated from other measurement time instants by a wide interval), we can

express the new Goldstone parametrization via the replicated vector Û(z), which is defined

by Û(z) ≡ (R̂ − ẑ) = (0,U 1(z), . . . ,Un(z)), where R̂ = (R0, . . . ,Rn) and R0(z) = z. In

this parametrization, the “Goldstone-deformed” vulcanization order parameter configuration

assumes the form

〈Ω(r̂)〉 =
G

(2πξ2
L)(1+n)D/2

∫
dz

V
e
− 1

2ξ2
L

∑n
α=0 |rα−Rα(z)|2

− G

V 1+n
. (5.11)
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In Fourier space, this same order parameter configuration is given by

Ωk̂ = G

∫
dz

V
e
∑n
α=0 ik

α·Rα(z)− 1
2
|kα|2ξ2

L −Gδk̂,0̂. (5.12)

The two representations of the Goldstone fluctuations—Eq. (5.8), parametrized by trans-

lations Ûτ (z) along the directions of broken translation symmetry of the replicas, and

Eq. (5.11), parametrized by Û(z) for which U 0(z) = 0—were shown to be equivalent in

[62]. One can check that both forms certainly have the same number of degrees of freedom,

i.e. nD. We adopt the second representation, as it is in line with our interpretation of the

zeroth replica as the preparation ensemble, the absence of Goldstone fluctuations in the ze-

roth replica being consistent with the notion that the system has yet to relax at the instant

of cross-linking.

The physical content of the Goldstone fluctuations Uα(z) is suggested by a comparison

of the free energy of Goldstone fluctuations in vulcanization theory with a phenomenological

model of an elastomer that has spatially random elastic moduli and internal stresses (see,

e.g., Ref. [62]). To determine, using the formalism of vulcanization theory, the free energy of

Goldstone fluctuations for an externally unstrained, incompressible elastomer, one can follow

the procedure of Ref. [62]: Starting with the Landau-Wilson free energy of the ordinary

elastomer [which is given by (3.18) with J0 and ` set to zero], the “Goldstone-deformed”

value (5.12) is substituted for Ω. One integrates out the momenta k̂ and the position vectors

cα (in the log-trace part). The resulting expression for the Landau-Wilson free energy then

involves quantities of the form |R̂(z1) − R̂(z2)|2, which can be re-written in terms of the

fluctuation Ψ(z1, z2) as

|R̂(z1)− R̂(z2)|2 ≡ (1 + n)|z1 − z2|2 + Ψ(z1, z2). (5.13)

For small strains, the Landau-Wilson free energy is then expanded in powers of Ψ, and one
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can write it as the sum of the free energy Hs.p. of the saddle-point value of Ω and the free

energy HΨ of Goldstone fluctuations, i.e.,

HΩ = Hs.p. +HΨ. (5.14)

HΨ has been computed in Ref. [62]; it is given by

HΨ =
1

2

∫
dz1 dz2K1(z1, z2)Ψ(z1, z2)

− 1

8T

∫
dz1 dz2 dz3 dz4K2(z1, z2, z3, z4)Ψ(z1, z2)Ψ(z3, z4), (5.15)

where K1(z1, z2) and K2(z1, z2, z3, z4) are bell-shaped functions of the separations of the

positions {z1, . . . ,z4}, whose values are determined in Ref. [62]. For the case where all

localized particles have the same localization length ξL, K1(z1, z2) and K2(z1, z2, z3, z4) are

of the order of (N/V )(1/ξ3
L)T/ξ2

L and (N/V 3)(1/ξ3
L)T/ξ4

L, respectively.

One then compares HΨ with the replica effective Hamiltonian derived from some micro-

scopic, phenomenological model of elastomer with quenched disorder, in the hope that such

a comparison (analogous to the one made between the phenomenological theory of an IGNE

and the microscopic model in Sec. 4.2) will enable one to interpret the parameters of HΨ

in terms of the more familiar phenomenological parameters. This comparison has also been

done in Ref. [62], which models a continuous medium [with mass-points (i.e., coarse-grained

volume elements) labeled by their position vectors z in the externally unstrained, reference

state] by the following elastic free energy: 1

HG =
1

2

∫
dDz1 d

Dz2G(z1 − z2)
(
|R(z1)−R(z2)|2 − |z1 − z2|2

)
, (5.16)

1We have simplified the model of Ref. [62] by assuming that the network does not suffer a contraction
after cross-linking. In general, there should be a contraction by a factor that was determined in Ref. [62] to
be approximately (1− (ρ/Dλ0)) in D spatial dimensions, where ρ is the mean shear modulus of the network
and λ0 is a parameter penalizing density fluctuations. As we are considering the case of an essentially
incompressible IGNE, λ0 will be very large, and we may therefore neglect this contraction.
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where G(z1−z2) is a random, nonlocal harmonic attraction between a mass-point located at

z1 and another mass-point located at z2. This harmonic attraction stems from the entropy

of polymer chains in the heterogeneous network. We characterize it by its disorder average

G(0)(z1−z2) ≡ [G(z1, z2)] and disorder variance [G(z1, z2)G(z3, z4)]−[G(z1, z2)][G(z3, z4)].

The fluctuation part of G(z1, z2) is given by

G(1)(z1, z2) ≡ G(z1, z2)−G(0)(z1 − z2). (5.17)

The disorder-average G(0) is translationally invariant, reflecting our physical requirement for

a statistically homogeneous system; hence it is a function of the difference of the positions

z1 and z2. It is shown in Ref. [62] that this microscopic phenomenological model leads to

a Lagrangian theory of elasticity (i.e., one that involves strain tensors defined with respect

to the mechanically equilibrated, externally unstrained state of the elastomer) that has

spatially random elastic moduli and internal stresses, similar to the continuum theory of

Lagrangian elasticity described by Eq. (5.2). The kernel G(z1−z2) in Eq. (5.16) is a nonlocal

generalization of the coefficient kb in Eq. (5.1). Just as DiDonna and Lubensky [61] found

that the randomness in the spring constant kb generates spatially random elastic moduli

and internal stresses, it was found in Ref. [62] that the randomness of G(z1 − z2) generates

spatially random elastic moduli and internal stresses.

To make a comparison with the free energy of Goldstone fluctuations from the vulcan-

ization theory, Ref. [62] uses the replica method to average HG over the quenched disorder,

G. The deformation field R(z) is regarded as a thermally fluctuating field in the presence

of the disordered background supplied by G(z1, z2). HG is then regarded as the effective

Hamiltonian for a given thermally fluctuating configuration specified by R(z), and the free

energy for a given disordered realization, viz., FG = −T lnZG, can then be computed via
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the partition function ZG, given by

ZG =

∫
DRe−HG(R(z))/T . (5.18)

The free energy FG can then be disorder-averaged using the replica method:

[FG] = −T lim
n→0

[Zn
G]− 1

n
, (5.19)

where the square brackets [· · · ] now refer to a disorder average over the statistics of G.

Similar to the procedure employed in Chapter 3.2, one defines a “replica partition function”

Zn ≡ [Zn
G], given by

Zn =

∫ n∏
α=1

DRαe−Hn/T , (5.20)

where Hn is the effective Hamiltonian of a pure system governing the replicated deformation

fields, given by

Hn ≡ −T ln
[
e−

∑n
α=1 HG(Rα(z))/T

]
. (5.21)

Via a cumulant expansion and the use of Eq. (5.16), one obtains for the effective Hamiltonian

the following expression:

Hn = −T

−[ n∑
α=1

HG(Rα(z))/T

]
c

+
1

2

[
n∑

α,β=1

HG(Rα(z))HG(Rα(z))/T

]
c

− . . .


=

1

2

∫
dz1 dz2 [G(z1, z2)]c Ψ(z1, z2)

− 1

8T

∫
dz1 dz2 dz3 dz4 [G(z1, z2)G(z3, z4)]c Ψ(z1, z2) Ψ(z3, z4)− . . . , (5.22)

where [· · · ]c refer to the connected cumulants. By comparing the form of Hn with the form

of HΨ [cf. Eq. (5.15)], one arrives at the following determination of the quenched-disorder

statistics of the microscopic phenomenological model (5.16) in terms of the parameters of
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the free energy of Goldstone fluctuations (5.15) derived from vulcanization theory:

[G(z1, z2)]c = K1(z1, z2); (5.23a)

[G(z1, z2)G(z3, z4)]c = K2(z1, z2, z3, z4). (5.23b)

In particular, by determining the mechanically equilibrated (i.e., relaxed) state of the sys-

tem described in (5.16) after cross-linking, for a given realization of quenched disorder, an

expression is derived in Ref. [62] for the local, non-affine deformation vΛ, which is composed

of two parts: (i) the random displacement that the system undergoes as it relaxes to me-

chanical equilibrium in the externally unstrained state after cross-linking, which we denote

by v; and (ii) the non-affine part of the deformation (which we denote by vΛ − v) that the

system undergoes as an external strain is imposed on it.

The state of mechanical equilibrium is found by minimizing HG in (5.16) with respect to

R(z). In Ref. [62], it was determined that vΛ is given, in Fourier space, by

vΛ(p) = PT
Λ · fΛ(p)/2(G

(0)
0 −G(0)

p ), (5.24)

where PT
Λ is the transverse projection tensor in Fourier space for the externally deformed

state, i.e.,

PT
Λ ≡ I−

(ΛT )−1ppΛ−1

Tr (pp(ΛTΛ)−1)
, (5.25)

and fΛ(p) is the random, non-equilibrium force acting on the system at the instant of cross-

linking, driving the system towards the state of mechanical equilibrium. The force fΛ(p) is

given by

fΛ(p) ≡ −2i

(
Λ · ∂

∂p
G

(0)
(p,0) − Λ · ∂

∂q

∣∣∣∣
q=0

G
(0)
(p,q)

)
. (5.26)

The disorder-averaged correlator of non-affine deformation can straightforwardly be com-
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puted; its value is given by

[vΛ(p)vΛ(−p)] = {PT
Λ hΛ(p)}/

(
G

(0)
0 −G(0)

p

)2
, (5.27)

where the parameter hΛ(p) is defined via

(
hΛ(p)

)
d1d2

≡
∫
dDz1 d

Dz2 d
Dz3 d

Dz4 [G(z1, z2)G(z3, z4)]c

×Λd1d3Λd2d4(z1 − z2)d3(z3 − z4)d4(e−ip·z1 − e−ip·z2)(eip·z3 − eip·z4)

=

∫
dz1 dz2 dz3 dz4K(z1, z2, z3, z4)

×Λd1d3Λd2d4(z1 − z2)d3(z3 − z4)d4(e−ip·z1 − e−ip·z2)(eip·z3 − eip·z4).

(5.28)

Its functional dependence is the same as that of the non-affinity correlator computed in

Ref. [61]. One sees that the function hΛ(p) in the numerator of the non-affinity correlator

(5.27) is proportional to the disorder variance γ2 ∆K(p) of [61], and that (G
(0)
0 − G

(0)
p )2 in

the denominator is, in the limit of long wavelengths, proportional to p2.

5.3 Deriving the non-affinity correlator using replicas

The same non-affinity correlator, which was derived in Ref. [62] via the phenomenological

model (5.16), can be derived more efficiently using the Goldstone-deformed vulcanization
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Figure 5.1: Schematic depiction of two types of elastic fluctuations present in an undeformed
elastomer: (i) local, random, displacements v(z), that occur as the elastomer network relaxes
after cross-linking; and (ii) thermally excited elastic fluctuations u(z) about the relaxed
state, all for a given realization of quenched randomness, and of how such fluctuations
are encoded via replicas: (a) Snapshot of an elastomer network at the instant of cross-
linking, before it has time to relax. This is a configuration belonging to the preparation
ensemble, which we also refer to as the zeroth replica. The blue lines represent polymers,
each intersection of polymers represents a cross-link. For purposes of illustration we have
introduced vertical dashed lines and displayed the cross-links that lie on the vertical dashed
lines as red dots. (b) The same network after it has relaxed, but in the absence of thermal
fluctuations. For simplicity, we ignore the “background” polymers and focus on the behavior
of the red cross-links shown in (a). The positions of the red cross-links do not coincide with
their corresponding positions on the vertical dashed lines in (a). This reflects the fact that
as the network relaxes to mechanical equilibrium after cross-linking, the cross-links undergo
local random displacements from their positions at the cross-linking instant. (c) Snapshot
of replica 1, representing one thermal configuration from the measurement ensemble. The
lighter red dots refer to the positions of the red cross-links in (b), whilst the bright red
dots refer to the corresponding positions of the red cross-links when thermal fluctuations are
present. (d) Snapshot of replica n, also representing a distinct thermal configuration from the
measurement ensemble. The positions of the mass-points are different from those in snapshot
(c), owing to thermal fluctuations. Note that if the elastomer is externally deformed, there
would be an additional type of elastic fluctuation, viz., non-affine displacement.
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theory (5.15), as we now show. From Eq. (5.13), it follows that

Ψ(z1, z2) ≡
n∑

α=1

(Rα(z1)−Rα(z2))2 − n(z1 − z2)2

=
n∑

α=1

(
Λ · (z1 − z2) + (Uα

Λ (z1)−Uα
Λ (z2))

)2 − n(z1 − z2)2

= n(Λ− I) · (z1 − z2) + 2Λ(z1 − z2) ·
n∑

α=1

(Uα
Λ (z1)−Uα

Λ (z2))

+
n∑

α=1

(
Uα

Λ (z1)−Uα
Λ (z2)

)2
, (5.29)

the free energy cost of Goldstone fluctuations (5.15) around the externally deformed cross-

linking state can be re-written, in Fourier space, as

H ′Ψ
T

=
1

2T

∫
dDz1 d

Dz2K1(z1, z2)
n∑

α=1

|Uα
Λ (z1)−Uα

Λ (z2)|2

− 1

4T 2

∫
dDz1 d

Dz2 d
Dz3 d

Dz4K1(z1, z2, z3, z4) Λd1d3(z1 − z2)d3 Λd2d4(z1 − z2)d4

×
n∑

α,β=1

(
Uα

Λ (z1)−Uα
Λ (z2)

)
d1

(
Uα

Λ (z3)−Uα
Λ (z4)

)
d2

=
n∑

α=1

∑
p

K1(0)−K1(p)

TV

{
PT

Λ ·Uα
Λ (p) PT

Λ ·Uα
Λ (−p)

}
−

n∑
α,β=1

∑
p

(hΛ(p))d1d2

4T 2V 2
(PT

Λ ·Uα
Λ (p))d1(PT

Λ ·U
β
Λ(p))d2 . (5.30)

where H ′Ψ is the same as HΨ, but with the constant terms excluded. Note that we have

enforced transversality of elastic fluctuations (which reflects our linear-order approximation

to the constraint that the rubber is incompressible, i.e., ∇·U = 0) by multiplying the terms

with factors of PT
Λ.

It can be deduced from Ref. [62] that the result given in Eq. (5.30) can be expressed, to
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leading order in G2 and at long wavelengths, by the formula

H ′Ψ
T

=
N

2V 2

n∑
α=1

∑
p

µ p2
{
PT

Λ ·Uα
Λ (p) PT

Λ ·Uα
Λ (−p)

}
− N

2V 2

n∑
α,β=1

∑
p

µ′Λd1d3 Λd2d4

(
p2δd3d4 + 2pd3pd4

)
(PT

Λ ·Uα
Λ (p))d1(PT

Λ ·U
β
Λ(p))d2 ,

(5.31)

where the elastic constants µ, µ′ are given by (µ, µ′) = (η2G2/4)(2 + η2, η2 − 1).

For an undeformed IGNE, the pattern of symmetry breaking at the vulcanization tran-

sition is analogous to that of undeformed rubber, as the symmetry breaking is associated

with random localization. Correspondingly, the IGNE also possesses a branch of Goldstone

fluctuations whose free energy has the same form as that given by Eq. (5.31) with Λ→ I. It

is straightforward to find the corresponding values of µ and µ′ for an IGNE, as the saddle-

point values of 〈Ω〉 and 〈Γ〉 have the same form as one another [cf. Eqs. (1.34) and (4.5)].

We simply have to replace η2 by η̃2 and set the value of G to 2(η̃2 − 1)/3; cf. Eq (4.3).

From Eq. (5.30) one can straightforwardly compute the “glassy correlator” of Goldstone

fluctuations, 〈Uα
Λ (p)Uβ

Λ(−p)〉 (α 6= β), and see that it is equal, in the replica limit, to the

value of the non-affinity correlator given by Eq. (5.27). This should not surprise us, if we

consider the fact that the Goldstone fluctuations Uα
Λ can be interpreted as arising from

replicating the elastic fluctuation UΛ for an elastomer system with a given realization of

quenched disorder, where UΛ ≡ vΛ + u (and u are thermally-excited elastic fluctuations

about the relaxed deformed state, Λ · z + vΛ; cf. Fig. 5.1). The thermal average of UΛ for a

given disordered realization is given by 〈UΛ〉 = vΛ, which implies that the disorder-averaged

correlator of non-affine deformations is given by [〈UΛ(p)〉 〈UΛ(−p)〉]. In the formalism of

replica field theory, such a correlator is precisely given by the replica-off-diagonal contribution

to the inverse of the kernel of the term quadratic in Uα
Λ (p), in a theory that is at most of

quadratic order in Uα
Λ (p).
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Chapter 6

Effect of nematic fluctuations on
IGNE elasticity in the
high-temperature regime
In the Introduction, we saw how nematic elastomers are characterized by novel elastic proper-

ties such as softness. The discussions in the previous chapter have also revealed the physical

meaning of the correlator of Goldstone fluctuations 〈Uα
Λ U

β
Λ〉. In particular, in the limit

Λ → I, this correlator describes the disorder-averaged square displacement undergone by

the volume elements of the elastomer during relaxation. The purpose of this chapter is

two-fold:

First, we explore one mechanism that leads to elastic softening in IGNEs. We focus on

the small-strain regime (i.e., Λ→ I) and show that the shear modulus of an IGNE is made

smaller than the shear modulus of an ordinary rubber by the presence of long-wavelength

thermal nematic fluctuations.

Second, the same replica formalism that enables one to derive the afore-mentioned result

also enables us to determine the enhancement that frozen nematic fluctuations induce in the

magnitude of random displacements undergone by volume elements of the elastomer when

it relaxes after cross-linking. In principle, our approach should also enable one to determine

the contribution that frozen nematic fluctuations make to the non-affinity correlator for an

IGNE under arbitrary deformations. However, this would require us to solve the saddle-

point equations (4.1) with Q̄ 6= 0 in general (as Q should acquire a non-zero part due to

finite strain). In this chapter, we focus on the simpler case of an IGNE in the limit that

Λ→ I, for which the saddle-point solution Q̄ = 0 still holds.

The results obtained in this chapter are valid in the high-temperature regime of the

IGNE, i.e., above the critical temperature.

87



To study the impact of nematic fluctuations on the elastic behavior of IGNEs, we shall

augment the free energy of Goldstone fluctuations H ′Ψ (5.30) by the free energy of nematic

fluctuations (4.7) as well as a term that linearly couples Uα to Qα, which is derived from the

term 〈G1(Γ)2G2(Q)〉 in the expansion of the log-trace term of (3.18). This coupling term is

computed in Appendix I. This gives the following free energy of fluctuations:

H[U ,Q]/T =
n∑

α=1

∑
p

K1(0)−K1(p)

TV

{
PT ·Uα(p) PT ·Uα(−p)

}
−

n∑
α,β=1

∑
p

(hΛ→I(p))bc (PT ·Uα(p))b (PT ·Uβ(p))c

+i
n∑

α=1

∑
p

N bpU
α
p ·Qα

p · p

+
N

2T

n∑
α=1

∑
p

(
At+ Lp2 − T |Hp|2

t0(A0 t0 + L0p2)

)
{Qα

p Qα
−p}

− N
2T

n∑
α,β=1
(α 6=β)

∑
p

(
Hp +

T |Hp|2

t0(A0 t0 + L0p2)

)
{Qα

p Qβ
−p}, (6.1)

where PT
d1d2

denotes the transverse projection tensor for the undeformed state, defined via

δd1d2 − p̂d1 p̂d2 , where p̂d1 ≡ pd1/|p| is the unit vector aligned in the direction of p. We have

introduced the transverse projection tensor to eliminate the bulk deformation mode, as the

IGNE is assumed to be incompressible. The function bp describes the strength of nemato-

elastic coupling in the deformed state, and takes the value (G2η̃4J0`
2/10Tξ2

LV ) exp(−p2ξ2
L/2).

We remind the reader that J0 denotes the strength of nematic-nematic interaction, η̃2 is

proportional to the average number of cross-links per dimer, ` denotes the length of a ne-

matic rod, G denotes the gel fraction, and ξL denotes the typical localization length of the

elastomeric network; cf. Chapter 3. The function bp is wavelength-dependent, being ex-

ponentially suppressed for large values of p. This accords with the expectation that Uα

(which encode non-affinity and thermal elastic fluctuations) are physically meaningful only

on lengthscales larger than ξL, and thus can have a well-defined coupling to local nematic
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alignments only at those lengthscales. The parameter b0 is a measure of the aligning capa-

bilities of the IGNE, as longer nematogens and stronger nematogen-nematogen interactions

give rise to larger values of b0. To obtain the effective replica free energy H[U ] of the elastic

deformations Uα, we integrate out Qα, thus obtaining

H[U ] =
n∑

α=1

∑
p

(
K1(0)−K1(p)

TV
− N

2
p2|bp|2CT (p)

)
×
{
PT ·Uα

p PT ·Uα
−p
}

−
n∑

α,β=1

∑
p

(
(PT)a′a (PT)b′b

(hΛ→I(p))a′b′

4T 2V 2
+
N

2
p2(PT)ab |bp|2 CG(p)

)
×(Uα(p))a (Uβ(−p))b, (6.2)

where CTp is the nematic thermal fluctuation correlator, which has a value given by

CTp =
T

A t+ Lp2 + Hp

, (6.3)

and CGp is the nematic glassy correlator, which has a value given by

CGp =
T
(

Hp + T |Hp|2
t0(A0 t0+L0p2)

)
(A t+ Lp2 + Hp)2

. (6.4)

The glassy correlator detects the presence of nematic alignments that are trapped in during

the process of cross-linking (and are therefore time-persistent); see Chapter 2.

6.1 Correlations of random relaxational

displacements in IGNEs

In the previous chapter, we have shown that the Fourier-space correlator of non-affine de-

formations, [vΛ(p)vΛ(−p)] is given by [〈UΛ(p)〉 〈UΛ(−p)〉]. The latter quantity is given by
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the replica-off-diagonal part of the replica correlator 〈Uα
Λ (p)Uβ

Λ(−p)〉. For the case Λ→ I,

which gives the disorder-averaged correlator of random relaxational displacements in an

IGNE, one can compute this correlator via the free energy (6.2). The result is

[{〈Up〉 〈U−p〉}] =
1

2T 2V 2{hΛ→I(p)PT}+N p2|bp|2CG(p)(
2(K1(0)−K1(p))

TV
−N p2|bp|2CT (p)

)2 . (6.5)

Here, the notation hΛ→I denotes the value of hΛ evaluated in the limit that Λ goes to the

identity matrix I. For a system with no nematic freedoms present (i.e., ordinary rubber),

bp = 0 and

[{〈Up〉 〈U−p〉}] =
{hΛ→I(p)PT}

8
(
K1(0)−K1(p)

)2 . (6.6)

By comparing Eqs. (6.5) and (6.6), one learns about the sources driving random relaxational

displacements in IGNEs and in ordinary rubber. In ordinary rubber, random relaxational

displacements are driven by the randomness of the elastic modulus (which is itself a manifes-

tation of the quenched disorder introduced by cross-linking constraints). In IGNEs, on the

other hand, the cross-linking constraints cause nematic alignments to be randomly frozen,

and these randomly frozen alignments [represented by CG in Eq. (6.5)], along with the ran-

domness of the elastic modulus [represented by hΛ→I(p) in Eq. (6.5)], act as sources driving

random relaxational displacements.

6.2 Softening of elastic response in IGNEs

We now turn to the issue of determining the elastic modulus of an IGNE in the high-

temperature regime, which we denote by the symbol KIGNE. Consider the work done by

the thermal environment in creating a strain fluctuation εp of wavelength (2π/p) for a

given realization of quenched disorder. Such a strain fluctuation has an associated energy

E = Kp |εp|2/2 (with Kp having dimensions of T/V 2). By the Equipartition Theorem, the

thermally averaged strain energy 〈E〉 = T/2. The strain fluctuation is measured relative to
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the relaxed state, and thus the corresponding thermally averaged strain energy is given by

(Kp/2)〈|εp|2〉 = Kp〈{(Up − 〈Up〉)(U−p − 〈U−p〉)}〉 p2/2. The elastic modulus Kp is the re-

sponse of the thermally averaged mean-square strain fluctuation to the thermal energy, and

for a given realization of quenched disorder, one obtains the following fluctuation-response

relation,

Kp =
T

〈{(Up − 〈Up〉)(U−p − 〈U−p〉)}〉 p2
. (6.7)

The experimentally measurable KIGNE is equal to the long-wavelength limit of the disorder

average of Kp. In the replica approach, [〈{(Up − 〈U−p〉)(U−p − 〈U−p〉)}〉] is given by any

of the replica-diagonal elements of the correlator matrix 〈Uα
p U

β
−p〉, viz.,

〈Uα
p U

β
−p〉 = T/(2(K1(0)−K1(p)))− 1/(N p2|bp|2CT (p)). (6.8)

This allows one to find KIGNE for small strain:

KIGNE =
(
2(K1(0)−K1(p))/p2 −N |bp|2CT (p)

)
|p→0. (6.9)

For ordinary rubber, bp = 0, and K = 2(K1(0)−K1(p))/p2|p→0, which agrees with the value

of the shear modulus of rubber found in Ref. [62]. Equation (6.9) shows that the elastic

modulus of an IGNE in the high-temperature regime is smaller than the elastic modulus of

ordinary rubber by an amount proportional to the thermal nematic fluctuation correlator in

the limit |p| → 0. We thus see that long-wavelength thermal nematic fluctuations induce a

softening of the elastic response.
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Chapter 7

Effect of elastic fluctuations on IGNE
structure in the high-temperature
regime
In the previous chapter, we looked at the ways in which thermal and glassy nematic fluctua-

tions modify the elastic properties of an IGNE. In the present chapter, we study the impact

of elastic fluctuations of the mass-points of the elastomer network on the liquid crystalline

behavior of an undeformed IGNE. In Chapters 2 and 3, where we worked at the saddle-point

level for Γ but allowed for nematic fluctuations, we made certain predictions pertaining to

the thermal and glassy correlators of nematic fluctuations; in particular, we showed that

the thermal and glassy correlators can undergo an oscillatory type of decay in real space,

provided the disorder strength H0 is sufficiently large.

The question therefore arises as to whether such oscillatory-decaying behavior survives

when elastic fluctuations of the localized network constituents are taken into account. In

this chapter, we show that, at least in the high-temperature regime, such fluctuations do

not result in any qualitative change to the oscillatory-decaying behavior of CT and CG at

sufficiently large values of H0; instead, the boundaries of the correlator behavior, separating

non-oscillatory and oscillatory decay in the disorder-strength vs. temperature phase dia-

gram are only quantitatively modified. In addition, we derive the corrections that elastic

fluctuations make to the glassy and thermal correlation lengths in the weak-disorder , high-

temperature regime for a system prepared at high temperatures, as well as a correction to

the glassy correlator of a system prepared at t0 < TH0/T
0A0.
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7.1 Elastic-fluctuation-corrected effective theory of

liquid crystallinity

To obtain an effective theory of local nematic order in the macroscopically isotropic state,

which also takes into account the effects of elastic fluctuations of the localized network

constituents, we consider a fluctuation free energy that consists of three contributions: (i) a

contribution of quadratic order inUα, solely arising from Goldstone fluctuations and given by

Eq. (5.31); (ii) a contribution describing nematic fluctuations, given by Eq. (4.6); and (iii) a

contribution arising from the coupling of elastic fluctuations to nematic fluctuations; we also

consider the linear coupling term proportional toUα Qα, derived from a term proportional to

Γ ΓQα in the Landau-Wilson free energy (cf. Appendix I). We have already encountered this

coupling term in the previous chapter [cf. Eq. (6.1)]. The free energy of elastic fluctuations

per dimer, Hel, is given by the sum of the contributions (i) and (iii):

Hel

T
=

1

2V 2

∑
p

∑
α,β

PT
d1d2
Gαβp Uα

d1
(p)Uβ

d2
(−p) + i

∑
α

∑
p

bp p ·Qα
p ·Uα

−p, (7.1)

where the kernel Gαβp has the value (µδαβ − µ′1αβ)p2, in which 1αβ is an n × n matrix

whose entries are all equal to unity. Equation (7.1) is essentially Eq. (6.1) for the case

of an undeformed IGNE (i.e., Λ = I) with the contribution of purely nematic fluctuations

omitted. The inverse of Gαβp , viz., (G−1
p )αβ, which is proportional to the Fourier-space replica

elastic fluctuation correlator 〈〈Uα
p U

β
−p〉〉, is given by the formula (G−1

p )αβ = DTp δαβ +DGp 1αβ,

where we call DTp ≡ 1/(µ p2) the elastic thermal fluctuation correlator and DGp ≡ µ′/(µ2 p2)

the elastic glassy fluctuation correlator. As DTp is given by the replica-diagonal element of

〈〈Uα
p U

β
−p〉〉, it is a measure of the elastic “softness” of the system, as explained in Sec. 6.2;

analogously, as DGp is given by the replica-off-diagonal element of 〈〈Uα
p U

β
−p〉〉, it quantifies

the magnitude of random displacements undergone by the volume elements of the elastomer

during relaxation.
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Mode Expression in terms of Q

Longitudinal, φp p̂a p̂bQab(p)

Transverse, Wd1d2(p) PT
d1d3

PT
d2d4

Qd3d4

−1
2

(
PT
d5d3

PT
d5d4

Qd3d4 + φ
)
PT
d1d2

Mixed, Xd1(p) PT
d1d2

p̂d3 Qd2d3(p)

Table 7.1: The five independent modes of Qp, utilized in Eq. (7.6). Here, p̂d ≡ pd/|p| is
the unit vector aligned in the direction of p, and PT

d1d2
≡ δd1d2 − p̂d1 p̂d2 is an operator that

projects a D-dimensional vector onto the plane transverse to the direction of p.

To obtain the elastic fluctuation-induced correction to the liquid crystalline behavior of

an IGNE, we integrate out the elastic fluctuation fields Uα from the Landau-Wilson free

energy, thus obtaining

Hcorrection

T
= −V

2

2

∑
p

∑
αβ

(bp)2 (G−1
p )αβPT

d1d2
Qα
d1d3

(p)Qβ
d2d4

(−p) pd3 pd4

= −1

2

∑
αβ

∑
p

(
DTp δαβ +DGp 1αβ

)
p2 Bp {Xα

p X
β
−p}, (7.2)

where Bp and Xp are defined via

Bp ≡
G4η̃8J2

0 `
4

100T 2 ξ4
L

e−p
2ξ2
L ; (7.3)

Xd1(p) ≡ PT
d1d2

p̂d3 Qd2d3(p). (7.4)

B0 describes the strength of nemato-elastic coupling. It is larger for longer nematogens and

stronger nematogen-nematogen interactions.

We are now in a position to write down the Landau free energy for an effective theory

of local nematic order in an IGNE, by combining the free energy contributions that involve

nematic fluctuations but do not originate from elastic fluctuations [i.e., Eq. (4.6)], with

the elastic fluctuation-induced correction term (7.2). We thus obtain the following effective
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Hamiltonian:

H1+n[{Qα}nα=0]

T
=

∑
p

1

2T 0
M(T 0,p){Q0

p Q0
−p}+

n∑
α=1

∑
p

1

2T
(At+ Lp2){Qα

p Qα
−p}

− 1

T 0

n∑
α=1

∑
p

Hp{Q0
p Qα

−p} −
1

2T

n∑
α,β=1
(α6=β)

∑
p

Hp{Qα
p Qβ

−p}

−1

2

n∑
α=1

∑
p

p2 BpDTp {Xα
p X

α
−p} −

1

2

n∑
α,β=1

∑
p

p2 BpDGp {Xα
p X

β
−p}.

(7.5)

Next, following the procedure described in Sec. 4.2, we integrate out the zeroth replica

element Q0 in order to determine the effect that the preparation history has on the measured

liquid crystalline behavior. This yields

Heff [{Qα}nα=0]

T
=

n∑
α=1

2∑
j=0

∑
p

(
At+ Lp2

2T
− |Hp|2

2T 0M(T 0,p)

)(
{W α

p W
α
−p}+ φαp φ

α
−p
)

−
n∑

α,β=1
(α 6=β)

∑
p

(
Hp

2T
+

|Hp|2

2T 0M(T 0,p)

)(
{W α

p W
β
−p}+ φαp φ

β
−p

)

+
n∑

α=1

∑
p

(
At+ Lp2

2T
− |Hp|2

2T 0M(T 0,p)
− 1

2
(DTp +DGp ) p2 Bp

)
{Xα

p X
α
−p}

−
n∑

α,β=1
(α 6=β)

∑
p

(
Hp

2T
+

|Hp|2

2T 0M(T 0,p)
+

1

2
p2 BpDGp

)
{Xα

p X
β
−p}. (7.6)

Here, we have made the following Fourier-space decomposition of the symmetric, traceless

field Qp into the independent components φp, Xp and Wp:

Qd1d2(p) = φp p̂d1 p̂d2 + PT
d1d3

p̂d2 Xd3(p) + PT
d2d3

p̂d1 Xd3(p) +Wd1d2(p).
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Here, Wd1d2 is a matrix that has three independent components (including φ), defined by

Wd1d2(p) ≡ PT
d1d3

PT
d2d4

Qd3d4 −
1

2

(
PT
d5d3

PT
d5d4

Qd3d4 + φ
)
PT
d1d2

. (7.7)

We call φp the longitudinal mode as it is the nematic mode that is projected onto the direction

parallel to the wave-vector, p. We call Xp the mixed mode, as it receives contributions from

both longitudinal and transverse channels of Q, and we call Wp the transverse mode, as it

is defined to be transverse to p. These modes are summarized in Tabe 7.1.

By applying the identities (4.9) to each of the fluctuation modes, we can obtain, from

the diagonal and off-diagonal elements of the propagator matrix in wave-vector space, the

thermal and glassy correlators for the longitudinal mode φ, mixed modes X and transverse

modes W :

〈〈φαpφ
β
−p〉〉 = T

T |Hp|2
T 0M(T 0,p)

+ Hp

(At+Lp2+Hp)2 Iαβ +
T

At+ Lp2 + Hp

δαβ; (7.8a)

〈〈{W α
pW

β
−p}〉〉 = 2T

T |Hp|2
T 0M(T 0,p)

+ Hp

(At+Lp2+Hp)2 Iαβ +
2T

At+ Lp2 + Hp

δαβ; (7.8b)

〈〈{Xα
pX

β
−p}〉〉 = 2T

T |Hp|2
T 0M(T 0,p)

+ Hp + Tp2 BpDGp(
At+Lp2+Hp − T p2 BpDTp

)2 Iαβ +
2T

At+ Lp2 + Hp − T p2 BpDTp
δαβ.

(7.8c)

The behavior of the correlators of X differs from the behavior of the correlators of W as

well as the behavior of the correlator of φ, owing to the fact that the elastic fluctuation field

Uα is transverse and couples only to X. The nematic correlator 〈〈Qα
d1d2

(p)Qβ
d3d4

(−p)〉〉 is

then found by adding the correlators in Eqs. (7.8) and appending a suitable tensorial factor
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as follows:

〈〈Qα
d1d2

(p)Qβ
d3d4

(−p)〉〉 =
1

D(D + 1)

(
δd1d3δd2d4 + δd1d4δd2d3

)
×
(
〈〈φα(p)φβ(−p)〉〉+ 〈〈{(Xα(p)Xβ(−p)}〉〉

+〈〈{W α(p)W β(−p)}〉〉
)

≡ 1

D(D + 1)

(
δd1d3δd2d4 + δd1d4δd2d3

) (
CTp δαβ + CGp Iαβ

)
. (7.9)

From this above equation, we see that the nematic thermal fluctuation correlator CTp and

the nematic glassy correlator CGp are given by

CTp =
3T

At+ Lp2 + Hp

+
2T

At+ Lp2 + Hp − T p2 BpDTp
; (7.10a)

CGp = 3T

T |Hp|2
T 0M(T 0,p)

+ Hp

(At+Lp2+Hp)2 + 2T

T |Hp|2
T 0M(T 0,p)

+ Hp + Tp2 BpDGp(
At+Lp2+Hp − T p2 BpDTp

)2 . (7.10b)

Having computed the correlators CT and CG, we are now in a position to study how elastic

fluctuations modify our results obtained in Sec. 2.3.

7.2 Nematic fluctuation correlations in the

weak-disorder regime

How do elastic fluctuations modify the behavior of the glassy and thermal fluctuation corre-

lators in an IGNE in the weak-disorder, high-temperature regime? For simplicity, we focus

on systems prepared at high temperatures, so we that do not have to consider the influence

of local nematic order arising from Q0. The qualitative understanding of the physical mod-

ification introduced by elastic fluctuations is aided by approximating CTp in Eq. (7.10) via a

Taylor expansion of the functions Hp and Bp in their denominators to quadratic order in p,
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for small values of H0/H
(c). This yields

CTp ≈ 3T

(At+ H0)
(
1 + ξ2

T,dp
2
) +

2T

(At+ ζ(η̃2, T )H0)
(

1 + ξ̃2
T,dp

2
) . (7.11)

Here, the function ζ(η̃2, T ) is given by (H0 − (T/µ)B0)/H0 ≈ 1 − 0.0045G2η̃4/µ. The first

term in this function encodes the effect of the quenched randomness of the cross-linking

constraints on the nematic correlations, whilst the second term encodes the effect of elastic

fluctuations on the nematic correlations. The lengthscale ξ2
T,d ≈

(
L − 1

2
H0ξ

2
L

)
/
(
At+ H0

)
is

the squared thermal correlation length for the longitudinal mode φ and transverse mode W ,

and the lengthscale ξ̃2
T,d ≈

(
L− 1

2
H0ξ

2
L +

3TB0ξ2
L

4µ

)
/
(
At+ ζ(η̃2, T )H0

)
is the squared thermal

correlation length for the mixed mode X. We can make the following three observations

about Eq. (7.11):

(i) In contrast to the effect of the quenched randomness of the cross-linking constraints,

which is to decrease the effective critical temperature, the effect of the elastic fluctuations

is to increase the effective critical temperature of the system (i.e., to make the system

more prone to macroscopic ordering). The mixed fluctuation mode X is most prone to

destabilization; its critical temperature Tc is given by Tc = (1−H0/A)T ∗/(1−T ∗B0/(µA)),

which is larger than the value (1−H0/A)T ∗ corresponding to the critical temperature of an

IGNE without elastic fluctuations.

(ii) The upward renormalization of the critical temperature by elastic fluctuations is

associated with the enhancement of the thermal correlation length of the mixed mode, i.e.,

ξ̃T,d. This enhancement is expected because elastic fluctuations have long-range correlations

in real space, owing to their “masslessness.”

(iii) Elastic fluctuations have a more pronounced effect on nematic correlations for larger

values of η̃2 and J0/T . This is to be expected, as a larger density of cross-links results

in greater elastic rigidity (and hence a stronger influence from elastic fluctuations), and a

larger value of J0/T also results in stronger nemato-elastic coupling, which then enables
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elastic fluctuations to have a greater impact on local nematic ordering.

Turning now to the form of CT in real space, one finds, after performing an inverse

Fourier transformation on Eq. (7.11), that it is given by the familiar Yukawa-type potential

encountered in studies of nematic liquid crystals (see, e.g., Ref. [1]), with the magnitude and

correlation length renormalized by elastic fluctuations, viz.,

CT (x− y) ≈
T exp

(
− |x− y|/ξ̃T,d

)
2π (At+ ζ(η̃2, T )H0) ξ̃2

T,d|x− y|
+

3T exp
(
− |x− y|/ξT,d

)
4π (At+ H0) ξ2

T,d|x− y|
. (7.12)

This result allows one to see that the real-space decay of the nematic thermal fluctuation

correlator is simple exponential, qualitatively the same as the real-space thermal fluctuation

correlator decay of a system in the absence of elastic fluctuations. On the other hand,

the presence of elastic fluctuations has resulted in an enhancement of the effective nematic

thermal correlation length.

Next, we study the effect that elastic fluctuations have on the glassy nematic order in the

weak-disorder regime. In order to see the qualitative effects of introducing elastic fluctuations

more readily, we consider making an approximation to the nematic glassy correlator in this

regime by Taylor-expanding the functions Hp and Bp in the denominator of CGp in Eq. (7.10)

to quadratic order in p, and then approximating the denominator by an exponential function,

viz.,

CGp ≈ 3TH0 e
−ξ2

G,dp
2

(At+ H0)2 +
2TH0 e

−
(

1
2
ξ2
L+2ξ̃2

T,d

)
p2

(At+ ζ(η̃2, T )H0)2 −
2T 2B0 p

2DGp e
−
(

3
4
ξ2
L+2ξ̃2

T,d

)
p2

(At+ ζ(η̃2, T )H0)2 . (7.13)

By performing an inverse Fourier transformation, one can compute the value of the real-space
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nematic glassy correlator; it is given by

CG(x− y) ≈
3TH0 exp

(
−|x− y|2/4ξ2

G,d

)
(4π)3/2 (At+ H0)2 ξ3

G,d

+
2TH0 exp

(
−|x− y|2/4

(
1
2
ξ2
L + 2ξ̃2

T,d

))
(4π)3/2 (At+ ζ(η̃2, T )H0)2 (1

2
ξ2
L + 2ξ̃2

T,d

)3/2

+
(2T µ′ B0/µ

2) exp
(
−|x− y|2/4

(
3
4
ξ2
L + 2ξ̃2

T,d

))
(4π)3/2 (At+ ζ(η̃2, T )H0)2 (3

4
ξ2
L + 2ξ̃2

T,d

)3/2
. (7.14)

The decay of the nematic glassy correlator is also simple exponential, qualitatively the same

as the real-space glassy correlator decay of a system in the absence of elastic fluctuations.

Just as the effective nematic thermal correlation length is enhanced by elastic fluctuations,

these elastic fluctuations also lead to enhancement of the effective nematic glassy correlation

length.

Equation (7.14) allows one to determine the local nematic intensity, i.e., CG(r = 0):

CG(r = 0) ≈ T

(4π)3/2 (At)2

(
3H0

ξ3
G,d

+
2H0(

1
2
ξ2
L + 2ξ̃2

T,d

)3/2
+

2µ′ B0/µ
2(

3
4
ξ2
L + 2ξ̃2

T,d

)3/2

)
. (7.15)

This result implies that random displacements undergone by the volume elements of the

elastomer during relaxation (reflected by the presence of the coefficient µ′/µ2) would enhance

the intensity of frozen nematic alignments. This is natural on physical grounds, as the

random, relaxational, displacements made by the volume elements of the elastomer introduce

local strain fields, which induce local orientational anisotropy, thereby causing an increase

in the intensity of glassy nematic order.
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7.3 Real-space oscillatory-decaying behavior of the

correlators CT and CG

Having studied the effect of elastic fluctuations on the liquid crystalline correlation behav-

ior of IGNEs in the weak-disorder, high-temperature regime, we now consider the effect of

elastic fluctuations in the strong-disorder, high-temperature regime. We continue to focus

on systems that have been prepared at high temperatures. Specifically, we are interested in

studying whether the real-space oscillatory-decay behavior of the glassy and thermal fluc-

tuation correlators for sufficiently large values of H0 survives when elastic fluctuations are

taken into consideration. We proceed by determining how elastic fluctuations modify the

cross-over boundaries in the disorder-strength vs. temperature phase diagram between the

oscillatory- and non-oscillatory-decay regimes of the glassy and thermal fluctuation corre-

lators. Following the procedure described in Sec. 2.3, we first determine the values of the

wave-vectors at which CTp and CGp are maximal, in the strong-disorder regime. We then set

these values to zero, as we are interested in the threshold at which the simple decay of

correlators first changes to oscillatory decay; this allows us to obtain equations for H0 that

depends on t, describing the boundary separating oscillatory and non-oscillatory decay for

the glassy and thermal fluctuation correlators. For the thermal fluctuation correlator, one

finds that the boundary is described by the condition

H0 = H(c) +
4TB0/(5µ)

1− 3TB0/(5µ(At+ H0))
. (7.16)

This can be further simplified to the following condition [by omitting the contribution of

TB0/(µ(At + H0)) which is much smaller than unity in the high-temperature regime], so

that the condition becomes

H0 ≈ (1 + 0.0035G2η̃4/µ)H(c). (7.17)
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Equation (7.17) implies that elastic fluctuations serve to increase the minimum value of the

disorder strength H0 required for the real-space oscillatory decay of CT to occur. Intuitively,

one can understand this result in the following way. As the local strain field induced by

thermal elastic fluctuations tends to promote the local alignment of nematogens, one requires

a larger disorder strength to inhibit such local alignment, in order that the translational

aggregation mechanism (which leads to local anti -alignment, i.e., the real-space oscillatory-

decaying behavior of CT ) can occur.

Following the same procedure used in deriving Eq. (7.17), one finds that the cross-over

boundary between the oscillatory and non-oscillatory regimes for the glassy correlator is

described by the following equation,

H0 ≈
(
1− 0.0036G2η̃4(1 + (µ′/µ))/µ

)
At+

(
2− 0.0072G2η̃4/µ

)
H(c). (7.18)

Remarkably, this equation shows that the effect of elastic fluctuations is to decrease, at

any given t (in the high-temperature regime), the minimum value of H0 required for the

appearance of real-space oscillatory decay of CG. The physical reason is that the time-

persistent random strain fields created by the random, relaxational, displacements of the

volume elements of the elastomer after the instant of cross-linking enhance the effective

disorder strength, thereby making it easier for the translational aggregation mechanism to

occur (and also make it harder for nematogens to align via local rotations).

7.4 Memorization capability of IGNEs

What effect do elastic fluctuations have on the memorization capability of an IGNE? Let

us focus on the behavior of the glassy correlator for a system prepared at a temperature

t0 < TH0/T
0A0, and study the effect of elastic fluctuations on the glassy correlator’s fidelity

in reflecting the thermal nematic fluctuation pattern present at the instant of cross-linking.
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As in Sec. 2.3, we specialize to t ≈ t0 (i.e., to the temperature at cross-linking) and consider

wavelengths larger than ξL. We thus find that CG is approximately given by

CGp =

(
3 +

2|Hp|2(
Hp + T

µ
Bp

)2

)
T 2/T 0

M(T 0,p)
. (7.19)

This indicates that the pattern of thermal nematic fluctuations present at the instant of cross-

linking is less faithfully memorized by the network when elastic fluctuations are present. This

reduction in fidelity of memorization is due to the smearing out of the memorized fluctuation

pattern by elastic fluctuations; this smearing is reflected in the presence of the functions Hp

and Bp in Eq. (7.19).
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Chapter 8

Order and stability in the
low-temperature regime

Having explored liquid crystalline and elastic aspects of an IGNE in the high-temperature

regime, we now turn to the exploration of an aspect of IGNE physics in the low-temperature

regime. For simplicity, we consider the issue of ordering and stability of the externally un-

deformed, macroscopically isotropic state of the IGNE in the absence of elastic fluctuations,

and show that this state possesses the striking property of being, at least locally, stable at

low temperatures. The material presented in this chapter is based on Ref. [32].

8.1 Gaussian variational method

To probe the issue of ordering and stability of the macroscopically isotropic state in the

low-temperature regime, we need to include terms of cubic and quartic order in Qα in the

effective Hamiltonian of Eq. (4.7), as the interactions between nematic fluctuations about

the disordered state have the possibility of being strong. Thus, we focus on the following
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effective Hamiltonian:

Heff [{Qα}nα=1]

T
=

n∑
α=1

∑
p

(
At+ Lp2

2T
− |Hp|2

2T 0M(T 0,p)

){
Qα

pQα
−p
}

−
n∑

α,β=1
(α 6=β)

∑
p

(
Hp

2T
+

|Hp|2

2T 0M(T 0,p)

){
Qα

pQβ
−p
}

− v

3T

n∑
α=1

∑
p1,p2

{Qα
p1

Qα
p2

Qα
−p1−p2

}

+
w

4T

n∑
α=1

∑
p1,p2,p3

{Qα
p1

Qα
p2
} {Qα

p3
Qα
−p1−p2−p3

}.

(8.1)

To compute the thermal and glassy correlators, we should employ an approximation scheme

that takes into account the nonlinear terms in the effective Hamiltonian. One method that

enables this is the Gaussian variational method (which we shall denote as GVM; see, e.g.,

Ref. [37]; for the method applied to systems having quenched randomness, see Refs. [39, 40,

38, 41]). The GVM is described as follows. We approximate 〈QαQβ〉Heff
by 〈QαQβ〉H0 , where

Heff is the original nonlinear effective Hamiltonian given by Eq. (8.1), and H0 a quadratic

trial Hamiltonian. By so doing, we are “absorbing” the nonlinearities present in Heff into

the unknown coefficients of the linear- and quadratic-order terms of H0, whose values can

then be estimated via a variational approximation. For our setting, we choose H0 to have

the form

H0

T
=

1

2

n∑
α,β=1

∑
p1,p2

Γαβ(p1,p2) Tr
{(

Qα(p1)− Q̄(p1)
)(

Qβ(p2)− Q̄(p2)
)}

(8.2a)

=
1

2

n∑
α,β=1

4∑
j=0

∑
p1,p2

(G−1)αβ(p1,p2)Qα
j (p1)Qβ

j (p2). (8.2b)

The trial Hamiltonian H0 generically features a nonvanishing mean value Q̄ together with

a kernel Γαβ. This is seen in Eq. (8.2a). Strictly speaking, the structure of the kernel
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Γαβ should allow for anisotropy for the case of Q̄ 6= 0. Our main analysis, however, only

concerns the macroscopically isotropic state, for which Q̄ = 0. Thus, in Eq. (8.2b) we have

also set Q̄ = 0. Equation (8.2a) expresses the trial Hamiltonian in Cartesian tensor form,

whilst Eq. (8.2b) expresses it in terms of the five scalar degrees of freedom of Qα. The

corresponding kernel is a transformation of Γαβ, and we have denoted it by (G−1)αβ. We

can check that 〈Qα
i Q

β
j 〉H0 = Gαβ. The variational parameters in (G−1)αβ computed via the

GVM are renormalized quantities, in which the effect of nonlinear nematic fluctuations have

been nonperturbatively taken into account, at least approximately.

Assuming that replica permutation symmetry remains unbroken, 1 we may parametrize

the replica-space inverse of (G−1)αβ as

Gαβ(p1,p2) = δp1+p2,0

(
CTr (p1)δαβ + CGr (p1)

)
, (8.3)

where CTr (p) and CGr (p) are the renormalized thermal and glassy correlators, in which fluctu-

ations are then approximately accounted for. Together with the mean nematic order param-

eter Q̄, they are to be determined self-consistently, by minimizing the resulting variational

free energy

Fvar =
〈
Heff −H0

〉
H0
− T ln

∫ n∏
α=1

DQα e−H0/T , (8.4)

where 〈· · · 〉H0 denotes averaging with respect to the Boltzmann weight e−H0/T . This calcu-

1We have assumed that the spontaneous breaking of replica symmetry does not occur for an IGNE. Such
an assumption is motivated by the fact that glassy phenomena such as hysteresis in the stress-strain behavior
of IGNEs have not been observed in experiments to date.
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lation is done in Appendix H and yields

2

5nT
Fvar =

1

T

∑
p

(
At+ Lp2 − |Hp|2

M(T 0,p)

)(
CTr (p) + CGr (p)

)
+

1

T

∑
p

(
Hp +

|Hp|2

M(T 0,p)

)
CGr (p)

+
7w

2T

(∑
p

(
CTr (p) + CGr (p)

))2

−
∑
p

(
ln CTr (p) +

CGr (p)

CTr (p)

)
. (8.5)

By minimizing Fvar with respect to CTr and CGr we obtain the self-consistency equations

At+ Lp2 − |Hp|2

M(T 0,p)
+ 7w

∑
p

(
CTr (p) + CGr (p)

)
−T
(
CTr (p)

)−1
+

T CGr (p)(
CTr (p)

)2 = 0, (8.6a)

At+ Lp2 + Hp + 7w
∑
p

(
CTr (p) + CGr (p)

)
− T

(
CTr (p)

)−1
= 0. (8.6b)

At the mean-field level (i.e., in the high-temperature regime, where we omitted the effects

of cubic and quartic terms in Qα), we saw that T
(
CTp
)−1

= At + Lp2 + Hp. By inspecting

Eq. (8.6b), we see that we can define a renormalized reduced temperature tR via the formula

tR = t+ 7
w

A
∑
p

(
CTr (p) + CGr (p)

)
. (8.7)

We can further re-scale t, t0 and tR as t̃, t̃p and t̃R, via

t̃ ≡ (Aξ2
L/L)t; (8.8a)

t̃p ≡ (Aξ2
L/L)t0; (8.8b)

t̃R ≡ (Aξ2
L/L)tR. (8.8c)
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Figure 8.1: Renormalized reduced temperature t̃R vs. reduced temperature t̃ for
wTV/(ξ3

L(H(c))2) = π/80. Disorder strength H0/H
(c) = 1/4, i.e., weak disorder (blue bold-

solid); H0/H
(c) = 5/4, i.e., strong disorder (red bold-dashed). As t̃ → ∞, the saturation

values of t̃R are −2H0/H
(c) (for weak disorder, i.e., H0/H

(c) < 1) and −2 ln(eH0/H
(c)) (for

strong disorder, i.e., H0/H
(c) > 1).

One thus obtains the renormalized thermal and glassy correlators

CTr (p) =
T

AtR + Lp2 + Hp

, (8.9a)

CGr (p) =
THp

(
1 + Hp

M(T 0,p)

)
(
AtR + Lp2 + Hp

)2 . (8.9b)

Note that the renormalized correlators in Eqs. (8.9) are structurally identical to their “bare”

counterparts, given in Eqs. (7.8), the only difference being the replacement of the “bare”

reduced temperature t by its renormalized counterpart tR. The relation (8.7) between tR and

t determines the existence, or lack thereof, of a transition out of the macroscopically isotropic

state. By power counting, one can see that the one-loop correction involving the wave-vector

sum over CT implies the breakdown of long-range order below two spatial dimensions. This

correction result confirms the Mermin-Wagner theorem [42], according to which models

having rotationally symmetric order parameters do not have long-range order in two or

fewer spatial dimensions. If no quenched disorder were present, the lower critical dimension

of the IGNE would indeed be two, and the frustration of long-range order would be due to
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thermal nematic fluctuations alone. On the other hand, in the present context, the one-loop

correction involving the wave-vector sum over CG implies the breakdown of long-range order

below four spatial dimensions. This correction arises from the presence of quenched disorder

(as the numerator is proportional to H0, which is introduced via the saddle-point value of

the order parameter 〈Γ〉 for random localization). The quenched disorder has caused an

increase of the lower critical dimension from two to four.

The relation (8.7) is depicted graphically in Fig. 8.1, which also shows us that t̃R saturates

at a finite value as t̃ → −∞. To see that the renormalized correlators are consistent with

the bare correlators in the high-temperature regime, we observe that the second term on the

RHS of Eq. (8.7), proportional to w, can be neglected in this regime. Thus, tR is essentially

the bare reduced temperature t, and the renormalized correlators (8.9) reduce to the bare

correlators (7.8), as they should.

What happens at lower temperatures? As t̃ is reduced, the intensities of CTr and CGr

become larger, and the corrections due to fluctuations, present in Eq. (8.7), increase. The

essential question is then: Do the denominators in Eqs. (8.9) vanish at some wave-vector p

for low enough temperature? If this were indeed to happen, it would signify a continuous

phase transition to some macroscopically ordered state. Now, the low-temperature physics of

our model depends sensitively on the value of H0ξ
2
L/L. For (H0ξ

2
L/L) < 2, the denominator

factor in Eqs. (8.9), viz., AtR + Lp2 + Hp, has a minimum at p = 0. Assuming that a

continuous phase transition occurs at a finite (and negative) value tc of t, this denominator

would have to vanish for p = 0. In three dimensions, however, the wave-vector integral in

Eq. (8.7) diverges, and thus tR(tc) = +∞, implying that the denominator actually diverges

to +∞, which contradicts our original assumption. We therefore conclude that in three

dimensions and for H0ξ
2
L/L < 2 there can be no continuous transition to any state having

long-range nematic order.

For H0ξ
2
L/L > 2, the factor At + Lp2 + Hp has a minimum at p2 = 2 ln(H0ξ

2
L/2L).

In this case, to have a continuous phase transition (towards a macroscopically periodically
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modulated phase) would require the vanishing of the denominator at p2 = 2 ln(H0ξ
2
L/2L).

However, again, the integral in Eq. (8.7) would diverge; thus, the present level of approxima-

tion indicates that no continuous phase transition occurs. Owing to quenched fluctuations,

the isotropic phase is always stable, for any positive H0.

8.2 Low-measurement-temperature structure for a

system prepared at T 0 far above T ∗

In this section, we unpack the physics encoded in the correlators computed via the GVM.

As with the results we found in Chapter 2, we shall see, e.g., that the glassy and thermal

nematic fluctuation correlations in an IGNE are capable of undergoing oscillatory decay for

sufficiently high cross-linking temperature T 0 and high disorder strength H0. By revisiting

the case of a system that was cross-linked at a very high temperature, we shall also see

how the structural behavior of the IGNE in the low measurement-temperature regime is

modified, via the presence of fluctuation-induced corrections, from its behavior in the high

measurement-temperature regime. For such systems, we shall contrast the effects of disorder

in the weak- (i.e., H0 ξ
2
L/L < 2) and strong- (i.e., H0 ξ

2
L/L > 2) disorder regimes.

8.2.1 Weak disorder

In this regime, the thermal and glassy correlators each have a finite peak at zero wave-

vector, indicating spatial decay without oscillation, in contrast with the strong-disorder

regime (see below, Sec. 8.2.2). To estimate the lengthscales ξ
(r)
T,d and ξ

(r)
G,d over which CTr

and CGr respectively decay, we examine their small wave-vector behavior, thus obtaining the

lengths

ξ2
T,d ≈

2− (H0 ξ
2
L/L)

2(t̃R + (H0 ξ2
L/L))

ξ2
L, ξ2

G,d ≈ 2ξ2
T,d + 1

2
ξ2
L. (8.10)
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Figure 8.2: (a) Glassy order parameter CG0 ≡ (4π3H(c)ξ3
L/T )CG(r)|r=0 and (b) glassy corre-

lation length ξ̃G,d ≡ ξG,d/ξL as a function of t̃ for three cases of weak disorder: H0/H
(c) = 0.1

(red solid), H0/H
(c) = 0.35 (green dashed) and H0/H

(c) = 0.75 (blue dot-dashed), where we
have set wTV/(ξ3

L(H(c))2) = π/80.

In the high measurement-temperature regime, tR is approximately t, and the behaviors that

are observed for ξT,d and ξG,d also apply to ξ
(r)
T,d and ξ

(r)
G,d. On the other hand, for decreased

measurement temperature, the nematogens tend to align with one another, driven by their

direct interactions, and this tendency is reflected in the accompanying rapid growth of the

strength of the glassy order parameter CGr (r)|r=0 and a similar rapid growth in ξ
(r)
G,d (see

Fig. 8.2), and ξ
(r)
G,d sets the lengthscale of the domain size in the weak -disorder regime. This

is to be contrasted with another lengthscale that sets the domain size in the strong-disorder

regime, as we shall learn in the following sub-section. This “inflation” of the domain size

in the presence of weak disorder is to be contrasted with the manner in which the domain

size shrinks and ultimately saturates with decreasing temperature in the presence of strong

disorder, which we shall explore in the following subsection.

8.2.2 Strong disorder

In the strong-disorder regime (i.e., H0 ξ
2
L/L > 2), the correlators CTr and CGr each have a

peak at a nonzero wave-vector. The peak of CTr (p) coincides with that of CTp , residing at

|p| =
√

2 ln(H0 ξ2
L/2L)/ξL. However, the peak of CGr (p) is located at a momentum value
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Figure 8.3: (a) Rescaled glassy correlator C̃Gr (p) ≡ (L2/(TH0ξ
4
L))CGr (p) at H0/H

(c) = 5 as
a function of rescaled reduced temperature t̃ ≡ (Aξ2

L/L)t and reduced wave-vector pξL;
(b) Glassy correlator C̃Gr (r) ≡ (2π2L2/TH0ξL)CGr (r) at H0/H

(c) = 5 as a function of rescaled
reduced temperature t̃ and rescaled separation distance r/ξL. Note the progression in (a)
of the peak location from zero wave-vector to nonzero wave-vector with decreasing t̃. The
peak at nonzero wave-vector is associated with the spatial oscillations observed in (b) for the
glassy correlator in real-space. For both panels, we have set wTV/(ξ3

L(H(c))2) = π/80. Note
also in (b) that the intensity C̃Gr (r)|r=0 rapidly increases as the temperature is reduced.

Figure 8.4: (a) Behavior diagram for the glassy and thermal correlators, indicating the three
qualitatively distinct regimes. Here, H̃ ≡ H0/H

(c) is a measure of the disorder strength and
t̃ is the rescaled reduced temperature, having the value (Aξ2

L/L)t. Above the blue solid
line, both correlators oscillate and decay as a function of separation. Between the blue solid
and red dashed lines, both correlators decay but only the thermal one also oscillates. Below
the red dashed line, both correlators decay but neither oscillates. (b) Rescaled oscillation
wavelength ξ̃G,o (≡ ξG,o/ξL) as a function of t̃ for H0/H

(c) = 5. As t̃ is decreased, ξ̃G,o
eventually saturates at a nonzero value of order unity (which implies that ξG,o saturates at
the order of ξL). For both panels, we have set wTV/(ξ3

L(H(c))2) = π/80.
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different from that of CGp , viz., it occurs at the momentum value |p| = (ξ
(r)
G,o)

−1, with ξ
(r)
G,o

obeying

A tR + 4(L/ξ2
L) + L(ξ

(r)
G,o)

−2 − H0 exp
(
− ξ2

L/(2(ξ
(r)
G,o)

2)
)

= 0. (8.11)

As with the case of the finite-wave-vector peaks in CTp and CGp , the peaks in CTr (p) and CGr (p)

are associated with the oscillatory decay of the correlators in real space. The crossover in

their behavior, from non-oscillatory to oscillatory, as the disorder strength H0 is increased,

is shown in Fig. 8.4. The evolution of the location of the peak of CGr (p), from the origin to

a nonzero wave-vector, as the measurement temperature is decreased at disorder strength

H0 ξ
2
L/L = 10 is shown in Fig. 8.3. Provided the system is in the “under-damped” regime,

in which the renormalized glassy correlation length ξ
(r)
G,d exceeds the wavelength ξ

(r)
G,o of the

oscillations of the renormalized glassy correlator, the lengthscale ξ
(r)
G,o would reflect the size

of domains of local nematic alignment. Also, note from Eq. (8.11) that as the measure-

ment temperature is decreased, ξ
(r)
G,o decreases, and ultimately saturates at the order of the

typical localization length (see Fig. 8.4). This reflects qualitatively the experimental obser-

vation (see, e.g., Ref. [5], Fig. 8.18 of Sec. 8.4.2, and Ref. [51]) that the domain size of the

IGNE shrinks as temperature decreases, and saturates at a finite value. Comparison with

the corresponding experimental measurements of the domain size in the low-temperature

regime [28, 51] indicates that ξL is of the order of micrometers.
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Chapter 9

Conclusions

The objective of this thesis has been to develop a theoretical approach to the elastic and liquid

crystalline properties of isotropic-genesis nematic elastomers (IGNEs), in which local nematic

order—both in the preparation and the measurement ensembles—and random localization

are naturally incorporated. We have proposed a novel Landau-type theory of an IGNE,

which features a nonlocal nematic-nematic interaction term as well as a random-field term

that reflects the memorization of nematic fluctuations present at the instant of cross-linking.

Subsequently, we have justified this Landau-type theory via a microscopic model of an IGNE

consisting of dimers randomly, permanently and instantaneously cross-linked via springs.

Via the microscopic model of the IGNE, we have acquired the following main results:

(1) By taking the thermal fluctuations of the elastomer medium into account, we have

been able to predict, for a sufficiently strongly cross-linked IGNE, a novel type of corre-

lation behavior of nematic alignments trapped into the network via cross-linking, which is

oscillatory-decaying in real space. Such oscillatory-decay behavior is qualitatively consistent

with the anti-correlation pattern observed by Urayama et al. [28].

(2) By means of a Gaussian variational analysis, we have found that the macroscopically

isotropic state of an IGNE (and thus also the polydomain state) is locally stable in the low-

temperature regime. This result is consistent with the lack of any experimental observation,

to date, of the formation of long-range nematic order in IGNEs in the low-temperature

regime. Through the glassy and thermal fluctuation correlators computed via the Gaussian

variational method, we have been able to study the nematic structure and correlations in a

macroscopically isotropic IGNE at low temperatures.
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(3) We have shown that the IGNE’s memory of the correlation pattern of thermal nematic

fluctuations that are present at the instant of cross-linking directly influences the subsequent

correlation pattern of the nematic alignments that are “frozen” into the IGNE by the cross-

linking process. Moreover, we have also shown that the fidelity of the memorization of

the initial fluctuation correlation pattern depends on the strength of cross-linking and the

temperature at which the system was cross-linked, becoming better as the density of cross-

links is increased and the preparation temperature is decreased.

(4) We have shown, at least for the case of small strain, that the thermal fluctuations of

the nematic freedoms in an IGNE result in the softening of the elastic response of the IGNE

in the high-temperature regime.

(5) We have derived the functional form of the disorder-averaged correlator of random

relaxational displacements present in an IGNE, in particular explicating the dependence of

this correlator on the glassy and thermal fluctuation correlators of the nematic freedoms.

Apart from its relevance to the specific subject of liquid crystalline elastomers, the present

work brings to light a more general issue, viz., that the concept of a quenched random field

employed to describe an IGNE should be broadened to incorporate not only the conven-

tional, “frozen” type, which does not fluctuate thermally, but also the type necessary for

understanding media such as liquid crystalline elastomers, in which the frozen nature of the

random field is present only at longer lengthscales, fading out as the lengthscale progresses

down through a characteristic localization length, owing to the thermal position fluctuations

of the network’s constituents.

The approach described in this thesis opens up a path for studying more challenging

problems, such as the following few:

(i) The soft elasticity of a monodomain nematic elastomer (in which nematogens are

uniaxially aligned on average) has been studied by previous workers (see, e.g., Refs. [5, 18,

19, 20]). These works have uniformly been based on the assumption that the constituents

of the elastomer medium deform affinely when a homogeneous external stress is applied to
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its boundary. One of the major insights arising from these works is the role played by the

broken symmetry of the underlying liquid crystal system on the vanishing of certain elastic

constants; such vanishing leads to “ideal softness,” for which the gradient of the stress-strain

curve is zero at small strains. However, as discussed in the thesis, the bulk constituents of

the medium actually undergo non-affine displacements when subjected to a homogeneous

stress at the boundary. It is also experimentally well known (see, e.g., Ref. [5]) that instead

of being ideally soft, the monodomain nematic elastomer is “semi-soft,” which means that

the gradient of the stress-strain curve is small but finite at small strains. It has been shown

in Ref. [31] that the soft elasticity described in the theories of Refs. [5, 18, 19, 20] can

be derived from a replica field theory that couples Γ to Qα, with the value of Γ set to its

saddle-point value (which has an anisotropic exponent for the case of a monodomain nematic

elastomer, rather than an isotropic exponent as we have seen for the case of an IGNE). One

can study the branch of Goldstone fluctuations around this anisotropic saddle-point value

of Γ, integrating out the non-affinity and examining the resulting shear modulus. Such non-

affinity would presumably generate semi-soft corrections to the elasticity of a monodomain

nematic elastomer.

(ii) We have also explored the shear behavior of a slightly deformed IGNE in the high-

temperature regime, for which thermally driven elastic fluctuations are small. It is worth-

while to probe the medium’s shear modulus in the low-temperature regime as well; to do this,

one would have to consider nonlinear strain fluctuations, as elastic fluctuations can be large

in the low-temperature regime. This is because the inverse shear modulus depends on the

thermal nematic fluctuation correlator, and we have seen in Chapter 8 that this correlator

has a large value in the low-temperature regime.

(iii) One could also generalize the approach presented in Chapters 6 and 7 to the case of

IGNEs subject to a non-infinitesimal externally imposed strain deformation. In principle,

our approach takes the non-affinity present in deformed IGNEs into account. Thus, one

could determine the non-affinity correlator of IGNEs and derive the contribution that frozen
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nematic alignment makes to non-affinity in IGNEs.

The framework elucidated in the present work can also be extended, with suitable mod-

ifications, to explore the statistical physics of other randomly cross-linked systems, such as

smectic elastomers and actin filament networks.
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Appendix A

Calculation of the average linking
number per dimer

In the Appendices, we show components of the calculations that are necessary for deriving

the results presented in the main body of the thesis. In this Appendix, we show that the

average number of springs connected to a dimer, [M ]/N , is equal to 2η2. By definition,

[M ] =
1

Z1

∞∑
M=0

N∑
i1,j1=1
(i1 6=1)

∑
s1,t1=−1,1

. . .
N∑

iM ,jM=1

(iM 6=M )

∑
sM ,tM=−1,1

M

M !

( η2V

2N(2πb2)D/2

)M

×ZL

〈
M∏
e=1

∆(|cie,se − cje,te|)

〉
H0

=
η2V

2N(2πb2)D/2
1

Z1

〈(∑
i 6=j

∑
s,t

∆(|ci,s − cj,t|)
) ∞∑
M=1

1

(M − 1)!

( η2V

2N(2πb2)D/2

)M−1

×ZL
(∑
i 6=j

∑
s,t

∆(|ci,s − cj,t|)
)M−1

〉
H0

=
η2V

2N(2πb2)D/2
1

Z1

〈
ZL
(∑
i 6=j

∑
s,t

∆(|ci,s − cj,t|)

× exp
( η2V

2N(2πb2)D/2

∑
i 6=j

∑
s,t

∆(|ci,s − cj,t|)
)〉

H0

= η2d lnZ1

dη2
(A.1)

Here, ZL is the partition function of an un-cross-linked liquid of dimers, given by

N∏
i=1

∫
dci,1dci,2 exp(−Hnem −Hev)δ(|ci,1 − ci,2| − `). (A.2)
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H0 denotes the Hamiltonian of the un-cross-linked liquid, and has the value Hnem + Hev.

〈. . .〉H0 denotes a Boltzmann average over this Hamiltonian. ∆(|c|) has the value e−c
2/2b2 ,

where D is the number of spatial dimensions and b is the r.m.s. spring-length. On going

from the second to the third line, we have summed over M to obtain an exponential series.

In the fourth line, we have made use of the definition of the normalization factor Z1; it is

given by

Z1 =
∞∑

M=0

N∑
i1,j1=1
(i1 6=1)

∑
s1,t1=−1,1

. . .

N∑
iM ,jM=1

(iM 6=M )

∑
sM ,tM=−1,1

1

M !

( η2V

2N(2πb2)D/2

)M

×ZL(V )

〈
M∏
e=1

∆(|cie,se − cje,te|)

〉
H0

=
∞∑

M=0

N∑
i1,j1=1
(i1 6=1)

∑
s1,t1=−1,1

. . .
N∑

iM ,jM=1

(iM 6=M )

∑
sM ,tM=−1,1

1

M !

( η2V

2N(2πb2)D/2

)M
ZL(V )

×
∫ N∏

i=1

∫
dcidnie

− λ
2

2T

∑N
i,j=1

∑
s,t δ
(

(ci+
s`
2
ni)−(cj+

t`
2
nj)
)

+ V
2N

∑N
i,j=1 J(ci−cj)(ni·nj)2

× exp
( η2V

2N(2πb2)D/2

∑
i 6=j

∑
s,t

e−
|(ci+

s`
2 ni)−(cj+ t`

2 nj)|2

2b2

)
. (A.3)

To compute Z1 we approximate the system as a dilute gas of particles, for instance, in

approximating the delta function by 1/V and exp(−|ci − cj|2/(2b2)) by (2πb2)D/2/V . This

allows one to approximate Z1 by

Z1 ∝ V Ne−
λ2N2

2TV
+2Nη2

, (A.4)

where the proportionality constant is independent of η2. By substituting this value of Z1

into Eq. (A.1), one finds that [M ]/N = 2η2.
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Appendix B

Hubbard-Stratonovich decoupling
procedure

In this Appendix, we present the details of the Hubbard-Stratonovich decoupling scheme

that leads to Eq. (3.18). We first compute the replica partition function Z1+n which appears

in Eq. (3.11) and is defined by

Z1+n ≡
∑
χ

1

M !

(
V η2

2N(2πb2)D/2

)M
Zχ(V )Zχ(V )n. (B.1)

This gives

Z1+n =
∞∑

M=0

N∑
i1 6=j1

· · ·
N∑

iM 6=jM

∑
s1,t1

· · ·
∑
sM ,tM

1

M !

(
V η2

2N(2πb2)D/2

)M
×

n∏
α=0

∫ ∏
i

dcαi,1 dc
α
i,2

4π`2V
e

1
2

∑n
α=0

∑
i,j

Jij
Tα

(
(nαi ·nαj )2− 1

d

)
− 1

2b2

∑n
α=0

∑M
e=1 |cαie,se−c

α
je,te
|2

×e−
1
2

∑n
α=0

∑
i,j

∑
s,t

λ
Tα

δ(ci,s
α−cj,tα)

N∏
j=1

δ(|cαj1 − c
α
j2
| − l)

=
n∏

α=0

∫ ∏
i

dcαi,1 dc
α
i,2

4π`2V
e

1
2

∑n
α=0

∑
i,j JijT

α
(

(nαi ·nαj )2− 1
d

)
− 1

2

∑n
α=0

∑
i,j

∑
s,t

λ
Tα

δ(cαi,s−cαj,t)

× exp

(
V η2

2N(2πb2)D/2

∑
i 6=j

∑
s,t

e−
1

2b2

∑n
α=0 |cαi,s−cαj,t|2

)
N∏
j=1

δ(|cαj1 − c
α
j2
| − l). (B.2)

In the last step we have summed over all realizations of quenched disorder. This results in an

exponentiation of the Hookean energy term. The expression for Z1+n involves a constraint

that fixes the dimer rod length at `. We can eliminate the constraint by directly working

with the centre-of-mass coordinate c ≡ (c1 + c2)/2 and dimer orientation n ≡ (c2 − c1)/`.
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In terms of these new coordinates, Eq. (B.2) becomes

Z1+n =
n∏

α=0

∫ ∏
i

dcαi dn
α
i

4πV
e
V
2N

∑n
α=0

∑
i,j

J(cαi −cαj )

Tα

(
nαian

α
ib−

1
d
δab

)(
nαjan

α
jb−

1
d
δab

)
×e−

∑n
α=0

λ
2Tα

∫
drα

∑
i,s δ
(

(ci
α+ s`

2
nαi )−rα

)∑
j,t δ
(

(cj
α+ t`

2
nαj )−rα

)
× exp

( 2NV η2

(2πb2)D/2

∫
dx̂ dŷe−

|x̂−ŷ|2

2b2
1

2N

∑
i,s

δ
(
x̂− (ĉi +

s`

2
n̂i)
)

× 1

2N

∑
j,t

δ
(
ŷ − (ĉj +

t`

2
n̂j)
))
.

(B.3)

Here, we have made a continuum approximation to Ji,j, viz. Ji,j ≈ (V/N)J(cαi − cαj ), and

J(c) is defined by
(
J0/(2πa

2)d/2
)

exp(−c2/2a2). Next, we define the following collective

fields:

qαab(r
α) =

1

N

N∑
i=1

(nαian
α
ib − d−1δab)δ(r

α − cαi ), (B.4)

γα(rα) =
1

2N

N∑
i=1

∑
s=−1,1

δ
(
(ci

α +
s`

2
nαi )− rα

)
, (B.5)

γ(r̂) =
1

2N

N∑
i=1

∑
s=−1,1

δ
(
r̂ − (ĉj +

s`

2
n̂j)
)
. (B.6)

In Fourier space, these take the form

qαab(p) =
1

N

N∑
i=1

eip·c
α
i (nαian

α
ib − d−1δab), (B.7)

γαp =
1

2N

N∑
i=1

∑
s=−1,1

e−ip·(c
α
i + s`

2
nαi ), (B.8)

γk̂ =
1

2N

N∑
i=1

∑
s=−1,1

e−ik̂·(ĉi+
s`
2
n̂i). (B.9)
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Here, the argument of γk̂ can take any value in replica Fourier space. Note that γpε̂α = γαp .

Boltzmann averages are denoted by the following symbols

〈· · · 〉N,1+n ≡
n∏

α=0

∫ N∏
j=1

dcαj dn
α
j

4πV
;

〈· · · 〉1,1+n ≡
n∏

α=0

∫
dcαdnα

4πV
. (B.10)

We substitute the collective fields into Eq. (B.3), taking care to separate out the 0RS, 1RS

and HRS parts of the terms involving γk̂. The replica partition function now becomes

Z1+n =

〈
exp

(
N

2

n∑
α=0

∑
p

Jp
Tα
|qαab(p)|2 − 2N2

V

n∑
α=0

λ

Tα
|γα0 |2 −

2N2

V

n∑
α=0

∑
p

′
λα|γαp |2

)

× exp
(2Nη2

V n
|γ0̂|2 +

2Nη2

(2πb2)D/2V n

n∑
α=0

∑
p

′
∆pεα|γpεα|2

+
2Nη2

(2πb2)D/2V n

n∑
α=0

∑
k̂

∆k̂|γk̂|
2
)〉

N,1+n

∝
〈

exp
(N

2

n∑
α=0

∑
p

Jp
Tα
|qαab(p)|2 − N

2

n∑
α=0

∑
p

′ λ̃p
Tα
|γαp |2

+
Nη̃2

2(2πb2)D/2V n

n∑
α=0

∑
k̂∈HRS

∆k̂|γk̂|
2
)〉

N,1+n

,

(B.11)

where
∑

p
′ denotes a sum over all wave-vectors p excluding p = 0. The symbols ∆k ≡

(2πb2)D/2 exp(−1
2
b2k2), η̃2 ≡ 4η2, and λ̃/Tα ≡ (4N/Ṽ )λα/Tα − (4η2/Ṽ n)∆pεα . λ̃α has the

physical meaning of an excluded volume interaction between dimers that has been renor-

malized by the attractive interactions between cross-links. In Eq. (B.11), the set of all

wave-vectors has been decomposed into different replica sectors. The replica sectors are

defined as follows: if a replicated momentum vector p̂ ≡ (p0,p1, . . . ,pn) has no non-zero

component, then p̂ belongs to the zero-replica sector (denoted by “ 0RS ”). If there is only

one component pα which is nonzero, while all other components pβ = 0, then p̂ belongs to
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the one-replica sector (denoted by “ 1RS ”). If two or more components of p̂ are non-zero,

then p̂ belongs to the higher-replica sector (denoted by “ HRS ”). We also define the lower

replica sector (denoted by “ LRS ”) as the union of the zero-replica and one-replica sectors.

The virtue of this decomposition is that in the context of elastomeric systems, it allows one

to distinguish two types of phase transitions according to the sector it occurs in. If a phase

transition occurs in the HRS, it is the random solidication transition, i.e., a transition from

the liquid state to the random solid state. If a phase transition occurs in the 1RS, it is not

the random solidication transition, but rather a transition from a liquid state to a state with

periodic modulation in density, associated with the condensation of density fluctuations.

We now implement the Hubbard-Stratonovich transformation which is based on the fol-

lowing set of equalities for complex variables q and ω:

e−J |q|
2

=
J

π

∫
d(Reω)d(Imω)e−J |ω|

2+2iJReqω∗ ; (B.12a)

e+J |q|2 =
J

π

∫
d(Reω)d(Imω)e−J |ω|

2+2JReqω∗ . (B.12b)

Here q may be thought of as a complex-variable analogue of a collective field and ω is

the complex-variable analogue of its conjugate auxiliary field. We shall now establish the

relation in Eq. (3.15) by considering a one-dimensional system having the following partition

function:

Z = 〈eJq2+hq〉H0(q) ×
∫
dqe−H0(q)

=

∫
dq e−H0(q)eJq

2+hq. (B.13)

Here, the notation 〈. . .〉H0(q) ≡
∫
dq (. . .)e−H0(q)/

∫
dq e−H0(q) denotes thermal averaging with

respect to the “microscopic” Hamiltonian H0(q) governing the microscopic variable q. This

partition function can be re-written in the following form by introducing an auxiliary variable
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ω introduced previously:

Z =
√
J/π

∫
dω exp

(
−Jω2 + ln〈e2Jωq+hq〉H0(q)

)
×
∫
dqe−H0(q)

≡
√
J/π

∫
dω exp (−H(ω))×

∫
dqe−H0(q), (B.14)

where H(ω) is the “field-theoretic” Hamiltonian governing the auxiliary variable ω. Then

one can see that

〈ω〉H(ω) =

∫
dωω exp

(
−Jω2 + hq + ln〈e2Jωq+hq〉H0(q)

)∫
dω exp

(
−Jω2 + hq + ln〈e2Jωq+hq〉H0(q)

)
=

∫
dω
∫
dqω exp (−Jω2 + hq + 2Jωq −H0(q))∫

dω
∫
dq exp (−Jω2 + hq + 2Jωq −H0(q))

=

∫
dω
∫
dqω exp (−J(ω − q)2 + Jq2 + hq + 2Jωq −H0(q))∫

dω
∫
dq exp (−J(ω − q)2 + Jq2 + hq + 2Jωq −H0(q))

=

∫
dqq exp (Jq2 + hq + 2Jωq −H0(q))∫
dq exp (Jq2 + hq + 2Jωq −H0(q))

= 〈q〉H(q), (B.15)

where H(q) ≡ H0(q)− Jq2− hq. Generalizing q and ω to collective field q (γ) and auxiliary

field Q (Γ), we obtain Eq. (3.15).

The Hubbard-Stratonovich procedure allows us to write the replica partition function

Z1+n as a functional integral expression in terms of the auxiliary fields Γ [whose argument

we restrict to the HRS via the constraint Γpεα , in accordance with the replica-sector division

laid out in Eq. (B.11)], Γα (which is formally Γ but with its argument taking values in the

1RS), and Qα [conjugate to (resp.) γ, γα, and qα]. In terms of these auxiliary fields, the

replica partition function Z1+n is given by

Z1+n =

∫
DΓ

n∏
α=0

DΓαDQα exp{−Nf1+n[Γ,Γα,Qα]}. (B.16)
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Here the Landau-Wilson free energy per dimer f1+n (scaled in units of T ) is given by

f1+n(Γ,Γα,Qα) =
η̃2

2(2πb2)D/2V n

∑
k̂

∆k̂|Γk̂|
2 +

1

2

n∑
α=0

∑
p

′ λ̃p
Tα
|Γαp|2 +

1

2

n∑
α=0

∑
p

Jp
Tα
|Qα

ab(p)|2

− ln

〈
exp

(
η̃2

2(2πb2)D/2V n

∑
k̂

∆k̂Γk̂
∑
s=1,−1

e−ik̂·(ĉ+
s`
2
n̂)

+
i

2

n∑
α=0

∑
p

′ λ̃p
Tα

Γαp
∑
s=1,−1

e−ip·(c
α+ s`

2
nα)

+
n∑

α=0

∑
p

Jp
Tα

Qα
ab(p)e−ip·c

α

(nαan
α
b − d−1δab)

)〉
1,1+n

. (B.17)

By expanding the Landau-Wilson free energy per dimer f1+n for small values of the auxiliary

fields, one obtains a Landau theory with Γ, Γα and Qα, which are, respectively, the order-

parameter fields for the random solidification transition, the crystallization transition, and

the isotropic-nematic transition. As we assume that IGNEs are incompressible, there will

be no fluctuations in the density of dimers (which can be enforced by making λ̃ extremely

large), and thus there will be no corresponding instability in the 1RS. We shall therefore

disregard the contribution from Γα. The free energy, Eq. (3.18), then becomes

f1+n(Γ,Q) =
η̃2

2(2πb2)D/2V n

∑
k̂

∆k̂|Γk̂|
2 +

1

2

n∑
α=0

∑
p

Jp
Tα
|Qα

ab(p)|2

− ln〈exp[G1(Γ) +G2(Q)]〉1,1+n. (B.18)

We have introduced the abbreviations

G1(Γ) ≡ η̃2

2(2πb2)D/2V n

∑
k̂∈HRS

∆k̂Γk̂
∑
s=1,−1

e−ik̂·(ĉ+
s`
2
n̂), (B.19)

G2(Q) ≡
n∑

α=0

∑
p

Jp
Tα

Qα
ab(p)e−ip·c

α

(
nαan

α
b −

1

3
δab

)
, (B.20)

and specialized to three spatial dimensions (i.e., d = 3).
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Appendix C

Terms in the Landau expansion

In this section we expand the log trace term in Eq. (B.18) for small Γ and Qα. This gives us

f1+n(Γ,Q) =
η̃2

2(2πb2)D/2V n

∑
k̂

∆k̂|Γk̂|
2 − 1

2
〈G1(Γ)2〉1,1+n −

1

6
〈G1(Γ)3〉1,1+n

+
1

2

n∑
α=0

∑
p

Jp
Tα
|Qα

ab(p)|2 − 1

2
〈G2(Q)2〉1,1+n

−1

6
〈G2(Q)3〉1,1+n −

1

24
〈G2(Q)4〉1,1+n

−1

2
〈G1(Γ)2G2(Q)〉1,1+n −

1

2
〈G1(Γ)G2(Q)2〉1,1+n

−1

4

(
〈G1(Γ)2G2(Q)2〉1,1+n − 〈G1(Γ)2〉1,1+n〈G2(Q)2〉1,1+n

)
(C.1)

C.1 Terms proportional to ΓΓ

First, we compute the quadratic term for the vulcanization part of the Landau theory:

〈G1(Γ)2〉1,1+n =
η̃4

4(2πb2)D

∑
k̂1,k̂2

∆k̂1
∆k̂2

Γk̂1
Γk̂2

∑
s,t

〈
e−i
(
k̂1·(ĉ+ s`

2
n̂)+k̂2·(ĉ+ t`

2
n̂)
)〉

1,1+n

=
η̃4

2(2πb2)D

∑
k̂

∆2
k̂
Γk̂Γ−k̂

{
1 +

n∏
α=0

sin(kα`)

kα`

}
(C.2)
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C.2 Terms proportional to ΓΓΓ

We compute the cubic term for the vulcanization part of the Landau theory:

〈G1(Γ)3〉1,1+n =
η̃6

8(2πb2)3D/2

∑
k̂1,k̂2,k̂3

∆k̂1
∆k̂2

∆k̂3
Γk̂1

Γk̂2
Γk̂3

×
∑

s1,s2,s3

〈
e−i
(
k̂1·(ĉ+ s1`

2
n̂)+k̂2·(ĉ+ s2`

2
n̂)+k̂3·(ĉ+ s3`

2
n̂)
)〉

1,1+n

=
η̃6

4(2πb2)3D/2

∑
k̂1,k̂2

∆k̂1
∆k̂2

∆−k̂1−k̂2
Γk̂1

Γk̂2
Γ−k̂1−k̂2

×
(

1 +
n∏

α=0

sin(kα1 l)

kα1 l
+

n∏
α=0

sin(kα2 `)

kα2 `
+

n∏
α=0

sin(|kα1 + kα2 |`)
|kα1 + kα2 |`

)
(C.3)

C.3 Terms proportional to QαQα

Next, we compute the quadratic terms from the nematic part of the Landau theory:

〈G2(Q)2〉1,1+n =
∑
α,β

∑
p,q

∑
s,t=1,−1

JpJq
(Tα)2

Qα
ab(p)Qβ

cd(q)

×
〈
e−i(p·c

α+q·cβ)
(
nαan

α
b −

1

3
δab
)(
nβcn

β
d −

1

3
δcd
)〉

1,1+n
. (C.4)

Note that this term vanishes for α 6= β. For α = β, one computes that

〈G2(Q)2〉1,1+n =
1

4π

∑
α

∑
p

|Jp|2

(Tα)2
Qα
ab(p)Qα

cd(−p)

×
∫
dnα

(
nαan

α
b n

α
c n

α
d −

1

3
nαan

α
b δcd −

1

3
nαc n

α
d δab +

1

9
δabδcd

)
=

1

15

∑
α

∑
p

|Jα(p)|2

(Tα)2
Qα
ab(p)Qα

cd(−p)
(
δacδbd + δadδbc −

2

3
δabδcd

)
, (C.5)
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where we have used the equalities
∫
dnnanb = 1

3
δab and

∫
dnnanbncnd = 1

15
(δabδcd + δacδbd +

δadδbc).

C.4 Terms proportional to ΓQαQβ and ΓΓQα

The terms that couple the nematic order parameter to the vulcanization order parameter

give rise to the physics of nematic elastomers. At cubic order in Γ and Q (i.e., ΓQαQβ or

ΓΓQα), there are two such terms. They have been computed in [31], and are given by the

following equations:

〈G1(Γ)G2(Q)2〉1,1+n =
η̃2

800(2πb2)D/2

n∑
α 6=β

∑
p,q

∆−pε̂α−qε̂β
Jp Jq
Tα T β

Γ−pε̂α−qε̂β

×Qα
ab(p)Qβ

cd(q)papbqcqd,

(C.6a)

〈G1(Γ)2G2(Q)〉1,1+n =
η̃4`2

5(2πb2)D

n∑
α=0

∑
p

∑
k̂∈HRS

∆k̂∆−k̂−pε̂α
Jp
Tα

Γk̂Γ−k̂−pε̂αQ
α
ab(p)

×
(
papb + (kα + p/2)a(k

α + p/2)b
)
. (C.6b)

C.5 Terms proportional to ΓΓQαQβ

For reasons to be discussed in Appendix F, the foregoing coupling terms do not give the

leading-order contribution to the novel liquid crystalline behavior that our theory predicts

for IGNEs. This is why we further consider the higher-order terms that are proportional to

ΓΓQαQβ. We note that such terms are of two types: connected and disconnected. We first

consider the disconnected type, which is proportional to the product 〈G1(Γ)2〉〈G2(Q)2〉. By

using the expressions obtained for 〈G1(Γ)2〉1,1+n in Eq. (C.2) and 〈G2(Q)2〉1,1+n in Eq. (C.5),
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we obtain

〈G1(Γ)2〉1,1+n〈G2(Q)2〉1,1+n =
8η̃4

15(2πb2)D

n∑
α=0

∑
k̂

∑
p

∆2
k̂

(
Jp
Tα

)2

Γk̂Γ−k̂Q
α
ab(p)Qα

ab(−p).

(C.7)

Next, we consider 〈G1(Γ)2G2(Q)2〉1,1+n:

〈G1(Γ)2G2(Q)2〉1,1+n =
η̃4

(2πb2)D

n∑
α,β=0

∑
k̂1,k̂2

∑
p,q

∑
s,t=1,−1

∆k̂1
∆k̂2

Γk̂1
Γk̂2

JpJq
Tα T β

Qα
ab(p)Qβ

cd(q)

×
〈
e−i

∑n
γ=0

(
kγ1 ·(cγ+ s`

2
nγ)+kγ2 ·(cγ+ t`

2
nγ)
)
−ip·cα−iq·cβ

×
(
nαan

α
b −

1

3
δab
)(
nβcn

β
d −

1

3
δcd
)〉

1,1+n

≈ 8η̃4

15(2πb2)D

n∑
α=0

∑
p,q

∑
k̂∈HRS

Jp Jq
(Tα)2

×∆k̂∆−k̂−(p+q)ε̂αΓk̂Γ−k̂−(p+q)ε̂αQ
α
ab(p)Qα

cd(q)

×
(
δacδbd −

`2

7
(p+ q)a(p+ q)cδbd

−4`2

7

(
kα + (p+ q)/2

)
a

(
kα + (p+ q)/2

)
c
δbd

)
+

2η̃4`4

225(2πb2)D

n∑
α,β=0
(α6=β)

∑
p,q

∑
k̂∈HRS

Jp Jq
Tα T β

×∆k̂∆−k̂−pε̂α−qε̂βΓk̂Γ−k̂−pε̂α−qε̂βQ
α
ab(p)Qβ

cd(q)

×
(
kαa k

α
b k

β
c k

β
d +

1

4
(pak

α
b + kαa pb)(qck

β
d + kβc qd) +

1

8
papbqcqd

)
, (C.8)

in which the Qα matrices are now constrained to be symmetric and traceless. This term

receives a contribution from two distinct replica channels.
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Appendix D

Basis matrices for symmetric traceless
matrices

A complete set of orthonormal traceless, symmetric tensors Ij that satisfy the constraint

Tr IiIj = δij can be introduced, viz.

I0 =

√
2

3



−1
2

0 0

0 −1
2

0

0 0 1


, I1 =

1√
2



1 0 0

0 −1 0

0 0 0


,

I2 =
1√
2



0 1 0

1 0 0

0 0 0


, I3 =

1√
2



0 0 1

0 0 0

1 0 0


,

I4 =
1√
2



0 0 0

0 0 1

0 1 0


. (D.1)

The z-direction can be defined as the direction of the momentum transfer, p/|p|.
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Appendix E

Saddle-point equation for Q

Here, we shall show that the values Γ = Γ̄ and Q = 0 solve the saddle-point equation (4.1b),

owing to the rotational symmetry of Γ = Γ̄. Without loss of generality, we need to prove

that the following two equations hold:

∑
k̂

Γ̄k̂Γ̄−k̂−pεα
(
|kαx |2 − |kαy |2

)
= 0;

∑
k̂

Γ̄k̂Γ̄−k̂−pεαk
α
x k

α
y = 0. (E.1)

Here, the subscripts x and y refer to the Cartesian components of the vector kα. The

dependence on p vanishes as Γ̄k̂Γ̄−k̂−pεα is proportional to δ∑
γ k

γ ,0δ−∑
γ k

γ−p,0, forcing p = 0.

The left hand side of the first line of Eq. (E.1) then gives

∑
k̂

Γ̄k̂Γ̄−k̂
(
|kαx |2 − |kαy |2

)
= G2

∑
k̂

∫
dz1 dz2

V 2
ei

∑
γ k

γ ·(z1−z2)−ξ2
L|k̂|

2(|kαx |2 − |kαy |2)
= G2

∑
k̂

∫
dc dr

V 2
e
−ξ2

L

∑
γ

(
kγ−i r

2ξ2
L

)2

−(n+1) r2

4ξ2
L

(
|kαx |2 − |kαy |2

)
= G2

∑
k̂

∫
dc dr

V 2
e
−(n+1) r2

4ξ2
L

−ξ2
L

∑
γ |kγ |2

×
(
|kαx |2 +

irx · kαx
ξ2
L

− r2
x

4ξ2
L

− |kαy |2 −
iry · kαy
ξ2
L

+
r2
y

4ξ2
L

)
= 0. (E.2)
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In the last line, the pair consisting of the first and fourth terms and the pair consisting of the

third and sixth terms cancel by rotational symmetry, while the second and fifth terms vanish

under odd parity upon integration over r. A similar and straightforward computation can

be done to prove the second line of Eq. (E.1), whose vanishing arises owing to rotational

symmetry.
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Appendix F

Evaluating the coupling terms at the
saddle-point value Γ̄

F.1 Terms proportional to Γ̄Γ̄Qα

The terms
∫
dr̂ Γ(r̂)Γ(r̂)∇α

d1
∇α
d2
Qα
d1d2

(rα) and
∫
dr̂∇α

d1
Γ(r̂)∇α

d2
Γ(r̂)Qα

d1d2
(rα) for an elas-

tomer with uniaxial symmetry give rise to the Neoclassical Theory of nematic elastomers [5,

31]. However, for an IGNE, the terms give no contribution when Γ is set to its saddle-point

value Γ̄.
∫
dr̂∇α

d1
Γ(r̂)∇α

d2
Γ(r̂)Qα

d1d2
(rα) vanishes because the random solid state is macro-

scopically isotropic, and thus∇α
d1

Γ(r̂)∇α
d2

Γ(r̂) can only be proportional to δd1d2 in the absence

of external strain. Contracting this with Qα will cause the term to vanish, as Qα is trace-

less. On the other hand, by explicitly computing the value of
∫
dr̂ Γ(r̂)Γ(r̂)∇α

d1
∇α
d2
Qα
d1d2

(rα)

using the value of Γ̄(r̂) given by (4.5), one sees that the result is proportional to

∫
drα∇α

d1
∇α
d2
Qα
d1d2

(rα), (F.1)

which vanishes as the boundary is at infinity.

F.2 Terms proportional to Γ̄QαQβ

To lowest order, the term is given by
∑

α 6=β
∑

p,q pd1pd2qd3qd4Γ̄−pεα−qεβQ
α
d1d2

(p)Qβ
d3d4

(q).

However, at long length-scales, this term is small compared to the terms proportional to

Γ̄Γ̄QαQβ. This is because the momentum factors kα in the term Γ̄Γ̄QαQβ can be of the

order of the inverse localization length ξ−1
L , whereas the term Γ̄QαQβ receives contributions
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from those modes p and q that have magnitudes smaller than ξ−1
L —as the momentum modes

with magnitudes larger than ξ−1
L are exponentially suppressed by Γ (this exponential sup-

pression reflecting the liquid-like character of the network at short length-scales). Thus, we

can neglect the contribution from the term proportional to Γ̄QαQβ.

F.3 Terms proportional to Γ̄Γ̄QαQβ

We shall prove, at the saddle point value of Γ, that the disconnected part of the coupling

term 〈G1(Γ)2〉1,1+n〈G2(Q)2〉1,1+n vanishes. It is sufficient for our purpose to consider the

value of
∑̂
k

Γ̄k̂ Γ̄−k̂. Using the identity
∑

k̂δk̂,0̂δ−k̂,0̂ = δ0̂,0̂ = 1 and Eq. (4.4), one obtains

∑
k̂

Γ̄k̂Γ̄−k̂ =

1− 2

∫
dz

V
+
∑
k̂

∫
dz1dz2

V 2
e−ξ

2
L|k̂|

2−i
∑n
γ=0 kγ ·(z1−z2)

G2

=

−1 +
∑
k̂

∫
dc dr

V 2
e
−

∑n
γ=0

(
ξ2
L|k

γ+ ir

2ξ2
L

|2
)
− (1+n)r2

4ξ2
L

G2

=

(
−1 +

V 1+n · V
V 2

1

(2π)(1+n)d

( 4πξ2
L

1 + n

)d/2( π
ξ2
L

)(1+n)d/2
)
G2

= n ln

(
V

(2π)dξdL

)
G2 +O(n2). (F.2)

In the replica limit (n → 0), the above result is zero. Here, we have used the definition∑
k̂ ≡

V 1+n

(2π)(1+n)d

∫
dk̂ when performing the integral over k̂. In the last step, we have integrated

over k̂, r, and c.

We shall now consider the connected part of the term proportional to Γ̄Γ̄QαQβ, i.e.,

〈G1(Γ)2G2(Q)2〉. This term, which is important for our purpose of studying the polydomain

state of IGNEs, is given by ∇α
d1
∇α
d2

Γ̄(r̂)∇β
d3
∇β
d4

Γ̄(r̂)Qα
d1d2

(rα)Qβ
d3d4

(rβ) in real space. Despite

being of higher order in Γ, the term has long wavelength properties that are sufficiently hard.

The physical significance of this coupling term is that it encodes into the theory the fact

that the nematic degrees of freedom inhabit an environment that is at the microscopic
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level anisotropic, inhomogeneous and thermally fluctuating, but that no remnants of this

anisotropy, inhomogeneity, or fluctuations survive to the macroscopic level.

At the saddle-point level, the coupling term, 〈G1(Γ)2G2(Q)2〉, is invariant under the

common translation of all replicas. In real space, this means that

∇α
d1
∇α
d2

Γ̄(r̂)∇β
d3
∇β
d4

Γ̄(r̂)Qα
d1d2

(rα)Qβ
d3d4

(rβ) (F.3)

can be expressed in the form Ud1d2d3d4(rα−rβ)Qα
d1d2

(rα)Qα
d3d4

(rβ), where the kernel Ud1d2d3d4(rα−

rβ) depends only on the separation rα − rβ. Now, if the term is replica-diagonal, U would

be a constant, which means that the term can only give at most a local contribution.

However, it turns out that with the form of the saddle point value of Γ, the kernel van-

ishes. This can be seen by considering the replica-diagonal part of Eq. (C.8). Noting that

Γ̄k̂Γ̄−k̂−(p+q)εα ∝ δ∑
γ k

γ ,0δ−
∑
γ k

γ−p−q,0, this implies that p+q = 0. Thus the replica-diagonal

contribution to 〈G1(Γ)2G2(Q)2〉 (with Γ set to Γ̄) becomes proportional to the quantity,

∑
α

∑
p

∑
k̂

Γ̄k̂Γ̄−k̂Q
α
d1d2

(p)Qα
d3d4

(−p)

(
δd1d3δd2d4 −

4`2

7
kαd1
kαd3
δd2d4

)
. (F.4)

The first term vanishes, as we showed in Eq. (F.2). On the other hand, the second term also

vanishes, as we can see by doing a direct computation,

∑
k̂

kαd1
kαd3

Γ̄k̂Γ̄−k̂

∝
∫
dz1 dz2

V 2
kαd1

kαd3
e−ξ

2
L|k̂|

2−i
∑n
γ=0 kγ ·(z1−z2)

=

∫
dc dr

V 2
kαd1

kαd3
e
−ξ2

L

∑
γ |kγ+i r

2ξ2
L

|2− (n+1)r2

4ξ2
L

∝ δd1d3

1

2ξ2
L

(
π

ξ2
L

)(n+1)d/2(
4πξ2

L

n+ 1

)d/2 (
1− 1

n+ 1

)
= 0, (F.5)
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on taking the replica limit. On going to the second step, we have changed to center-of-mass

coordinate c and relative coordinate r, and on going to the third step we have shifted the

momentum kγ → kγ − ir/(2ξ2
L) and integrated over kγ (γ = 0, 1, . . . , n) and r.

Next, we compute the replica off-diagonal contribution to 〈G1(Γ)2G2(Q)2〉 with Γ set

to Γ̄. As we are considering lengthscales larger than the typical localization length ξL, the

terms with coefficients in p and/or q are smaller than those with coefficients in kα, and we

can neglect the former. It is thus sufficient to consider the following contribution:

n∑
α 6=β

∑
p,q

∑
k̂∈HRS

Γ̄k̂Γ̄−k̂−pε̂α−qε̂βQ
α
d1d2

(p)Qβ
d3d4

(q) kαd1
kαd2
kβd3
kβd4

= G2V n+3

∫ n∏
γ=0

d3kγ

(2π)3

d3p

(2π)3

d3q

(2π)3

∫
dz1

V

dz2

V

n∑
α,β=0
(α6=β)

Qα
d1d2

(p)Qβ
d3d4

(q) kαd1
kαd2
kβd3
kβd4

× exp

(
−
∑
γ 6=α,β

ξ2
L

∣∣∣∣kγ + i
z1 − z2

2ξ2
L

∣∣∣∣2 − (n− 1)|z1 − z2|2

4ξ2
L

− 1

2
ξ2
L(p2 + q2)− i(p+ q) · z1

−ξ2
L

∣∣∣∣kα + i
z1 − z2

2ξ2
L

+
1

2
p

∣∣∣∣2 + ξ2
L

∣∣∣∣iz1 − z2

2ξ2
L

+
1

2
p

∣∣∣∣2 − ξ2
L

∣∣∣∣kβ + i
z1 − z2

2ξ2
L

+
1

2
q

∣∣∣∣2
+ξ2

L

∣∣∣∣iz1 − z2

2ξ2
L

+
1

2
q

∣∣∣∣2). (F.6)

We replace the coordinates z1 and z2 by the “relative coordinate” R and “centre-of-mass

coordinate” C, defined respectively by R = z1 − z2 and C = (z1 + z2)/2, and integrate over

C, which results in a factor of (2π)dV δ(p + q,0). Next, we integrate over q to enforce the

equality q = −p. We then integrate out the kγ for γ 6= α, β. After having done all this, the

RHS of Eq. (F.6) becomes

G2V n+2

(2π)(n−1)d

(
π

ξ2
L

)(n−1)d/2 n∑
α,β=0
(α6=β)

∫
dkα

(2π)d
dkβ

(2π)d
dp

(2π)d

∫
dR

V
Qα
d1d2

(p)Qβ
d3d4

(q)

×
(
kα − iR

2ξ2
L

− p

2

)
d1

(
kα − iR

2ξ2
L

− p

2

)
d2

(
kβ − iR

2ξ2
L

+
p

2

)
d3

(
kβ − iR

2ξ2
L

+
p

2

)
d4

× exp
(
− 1

2
p2ξ2

L −
(n+ 1)r2

4ξ2
L

−
(
|kα|2 + |kα|2

)
ξ2
L

)
. (F.7)
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As we focus on the properties at length-scales larger than ξL (below ξL, the system is liquid-

like), we can neglect the terms with prefactors of p and/or q, as they will be smaller than the

terms with prefactors of k and/or iR/(2ξ2
L) (k and iR/(2ξ2

L) being of order 1/ξL). Integrating

over R, kα and kβ, the RHS of Eq. (F.6) becomes

G2

2ξ4
L

∑
α6=β

∑
p

e−
1
2
p2ξ2

L{Qα
p Qβ

−p}. (F.8)

From this, one can deduce that the coupling term −1
4
〈G1(Γ)2G2(Q)2〉 is given by

−1

4
〈G1(Γ)2G2(Q)2〉 = − η̃2`4J2

0G
2

900ξ4
L T

α T β

∑
p

exp(−p2ξ2
L/2){Qα

p Qβ
−p}. (F.9)
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Appendix G

Expressing microscopic observables in
terms of field-theoretic quantities

Here, we derive expressions for the physical quantities [〈qp〉] and [〈qp1〉〈qp2〉] in terms of the

conjugate fields Qp and the effective replica free energy Heff [Eq. (4.7)]. We do this for the

general case of [〈qp1〉 . . . 〈qpP 〉] (P ∈ {1, 2, 3, . . . }).

[〈qp1〉 . . . 〈qpP 〉] =

[
1

Zχ

∫ ∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
qα1
p1
e−

Hnem[nα1 ]

Tα1 −Hev[cα1 ,nα1 ]

Tα1 −
Hxlink,χ[cα1 ,nα1 ]

Tα1

×
N∏
i=1

δ(|cα1
i1
− cα1

i2
| − `)

× · · ·

× 1

Zχ

∫ ∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
qαPpP e

−Hnem[nαP ]

TαP
−Hev[cαP ,nαP ]

TαP
−
Hxlink,χ[cαP ,nαP ]

TαP

×
N∏
j=1

δ(|cαPj1 − c
αP
j2
| − `)

]
= lim

n→0

∑
χ

P (χ)
1

Zn
χ

∫ ∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
qα1
p1
. . . qαPpP

×e−
∑n
γ=1

(
Hnem[nγ ]

Tγ
+
Hev[cγ,nγ ]

Tγ
+
Hxlink,χ[cγ,nγ ]

Tγ

) n∏
γ=0

N∏
j=1

δ(|cγj1 − c
γ
j2
| − `),

(G.1)

where in the second step, we have multiplied numerator and denominator by n − P copies

of

Zχ =

∫ ∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
e−

Hnem[n]
Tγ

−Hev[c,n]
Tγ

−
Hxlink,χ[c,n]

Tγ

N∏
i=1

δ(|ci1 − ci2 | − `). (G.2)
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This produces a factor of Zn
χ in the denominator which goes to unity once the replica limit

is taken. We now perform the average over realizations of quenched disorder:

[〈qp1〉 . . . 〈qpP 〉] = lim
n→0

∑
χ

1

M !Z1

(
V η2

2(2πb2)D/2N

)M n∏
γ=0

N∏
i=1

δ(|cγi1 − c
γ
i2
| − `)

×
∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
qα1
p1
. . . qαPpP e

−
∑n
γ=0

(
Hnem[nγ ]

Tγ
+
Hev[cγ,nγ ]

Tγ
+
Hxlink,χ[cγ,nγ ]

Tγ

)
= lim

n→0

1

Z1

n∏
γ=0

∏
i

dcα1
i,1 dc

α1
i,2

4π`2V
qα1
p1
. . . qαPpP

×e
∑n
γ=0

∑
i,j

Jij
2Tγ

(
(nγi ·n

γ
j )2− 1

D

)
−
∑n
γ=0

∑
i,j

∑
s,t

λ
2Tγ

δ(cγi,s−c
γ
j,t)

× exp

(
V η2

2(2πb2)D/2N

∑
i 6=j

∑
s,t

e−
1

2b2
|cγi,s−c

γ
j,t|

2

)
N∏
i=1

δ(|cγi1 − c
γ
i2
| − `)

= lim
n→0

Bn

Z1

〈
qα1
p1
. . . qαPpP e

N
2

∑n
α=0

∑
p
Jp
Tα
{qαp qα−p}

×e
−N

2

∑n
α=0

∑
p
′ λ̃p
Tα
|Γ̃αp |2+N

2
η̃2

∑n
α=0

∑̂
k

∆k̂|Γ̃k̂|
2〉

N,1+n

,

(G.3)

where Bn is a constant. Here, {α1, . . . , αP} ⊆ {1, . . . , n}, as we are interested in nematic

correlators in the measurement ensemble. In the second step, we summed over M to obtain

an exponential function. To proceed further, we note that the factors of qαp can be generated

by introducing, in the replica partition function Z1+n, a source field Hα
p that is linearly

coupled to qαp ; we denote the resulting replica partition function by the symbol Z1+n[H]. By

functionally differentiating Z1+n[H] with respect to Hα
p, one can recover the correlators of

qαp . At the end of the computation, one has to take the replica limit, H→ 0. Following this
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procedure, one obtains the following,

[〈qp1〉 . . . 〈qpP 〉] = (−)P lim
n→0

lim
H→0

Bn

Z1

〈
δ

δHα1
p1

. . .
δ

δHαP
pP

e
N
2

∑n
α=0

∑
p
Jp
Tα
{qαp qα−p}−

∑n
α=1

∑
p Hαpq

α
−p

×e
−N

2

∑n
α=0

∑
p
′ λ̃p
Tα
|Γ̃αp |2+N

2
η̃2

∑n
α=0

∑̂
k

∆k̂|Γ̃k̂|
2〉

N,1+n

= (−)P lim
n→0

lim
H→0

Bn

Z1

〈
δ

δHα1
p1

. . .
δ

δHαP
pP

e
N
2

∑
p
Jp

T0 {qαp qα−p}

×e
N
2

∑n
α=1

∑
p
Jp
Tα

{(
qαp− Tα

NJp
Hαp

)(
qα−p−

Tα

NJ−p
Hα−p

)}
×e−

∑n
α=1

∑
p

(Tα)2

2NJp J−p
{Hαp Hα−p}

×e
−N

∑n
α=0

∑
p
′ λ̃p
2Tα
|Γ̃αp |2+N

2
η̃2

∑n
α=0

∑̂
k

∆k̂|Γ̃k̂|
2〉

N,1+n

. (G.4)

In the calculation above, we have completed the square in qαp , generating extra quadratic

terms (Tα)2

2NJαp J
α
−p
{Hα

p H
α
−p}. The Hubbard-Stratonovich transformation can now be performed,

with qαp − Tα

NJp
Hα

p, Γ̃αp, and Γ̃k̂ serving as the analogues of the field ω in Eqs. (B.12). Making

use of the following relation

Bn

〈
e
N

∑
p
Jp

2T0 {qαp qα−p}+N
∑n
α=1

∑
p

Jp
2Tα
{qαp− Tα

NJp
Hαp qα−p−

Tα

NJ−p
Hα−p}

×e
−N

∑n
α=0

∑′
p

λ̃p
2Tα
|Γ̃αp |2+N

2
η̃2

∑n
α=0

∑̂
k

∆k̂|Γ̃k̂|
2〉

N,1+n

=

∫
DΓ

n∏
α=0

DΓαDQαe−Nf1+n(Γk̂,Γ
α,Qα)−

∑n
α=1

∑
p HαpQ

α
−p , (G.5)
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we can compute

[〈qp1〉 . . . 〈qpP 〉] = (−)P lim
n→0

lim
H→0

1

Z1

δ

δHα1
p1

. . .
δ

δHαP
pP

×
∫
DΓ

n∏
α=0

DΓαDQα exp
(
−Nf1+n(Γ,Γα,Qα)

−
n∑

α=1

∑
p

Hα
pQα
−p −

n∑
α=1

∑
p

(Tα)2

2NJp J−p
{Hα

p H
α
−p}
)

= lim
n→0

Z1+n

Z1

∫
DΓ
∏n

α=0DΓαDQα
(
Qα1

p1
. . .QαP

pP

)
e−Nf1+n(Γ,Γα,Qα)∫

DΓ
∏n

α=0DΓαDQαe−Nf1+n(Γ,Γα,Qα)

≈ lim
n→0

∫ ∏n
α=1DQα

(
Qα1

p1
. . .QαP

pP

)
e−NHeff(Qα)∫ ∏n

α=1DQαe−NHeff(Qα)

≡ 〈〈Qα1
p1
. . .QαP

pP
〉〉 (G.6)

On going from Eq. (G.4) to Eq. (G.6), we have performed the Hubbard-Stratonovich trans-

formation with an extra linear coupling term HαQα. This originates in the extra part Tα

NJp
Hα

p

in qαp(p) − Tα

NJp
Hα

p which we took to be our collective field. This linear coupling term was

originally in the log trace but can be taken out of the log trace straight-forwardly as it does

not involve the microscopic statistical variables n and c. The Hubbard-Stratonovich trans-

formation is implemented after we have taken out the functional derivatives with respect

to the source field from the microscopic trace 〈. . .〉N,1+n. After the Hubbard-Stratonovich

transformation has been done, we are left with a quantity that the source-field functional

derivatives operate on, generating Qα1
p1
. . .QαP

pP
within the field-theoretic trace. After this has

been done, we take the limit H→ 0 which gets rid of the quadratic and linear terms in H. We

have also multiplied numerator and denominator by Z1+n. The factor Z1+n/Z1 = 1 + O(n)

and is equal to unity in the replica limit.
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Appendix H

Variational free energy for liquid
crystalline systems in the
macroscopically isotropic state
Here, we shall derive the variational free energy [Eq. (8.5)] from the effective Hamiltonian

for liquid crystalline order [Eq. (4.7)]. Recall that the variational free energy is given by

Fvar

T
=

1

T

〈
Heff −H0

〉
H0
− ln

∫ n∏
α=1

DQα exp(−H0/T ), (H.1)

where 〈· · · 〉H0 denotes averaging with respect to the Boltzmann weight exp(−H0/T ). The

trial Hamiltonian is given by

H0

T
=

1

2

n∑
α,β=1

4∑
j=0

∑
p1,p2

(G−1)αβ(p1,p2)Qα
j (p1)Qβ

j (p2), (H.2)

with the kernel given by

Gαβ(p1,p2) ≡ δp1,p2

(
CT (p1)δαβ + CG(p1)

)
, (H.3)

For reasons explained in Chapter 8, we have neglected possible non-zero parameters Q̄j

and assumed that the kernel is isotropic. First, we consider 〈H0〉H0 . By the equipartition

theorem, this is equal to 5n/2 (measured in units of kBT ), a constant which we can disregard.

Next, we consider 〈Heff〉H0 . To evaluate this, we first express Heff in terms of the five

independent degrees of freedom of Q, viz., QJ (J = 0, 1, . . . , 4), which are related to Qij via

the equality Qij ≡
∑4

J=0 I
J
ijQJ . Here, IJ are the basis matrices for symmetric traceless 3×3
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matrices, introduced in Appendix D. We obtain

Heff [Qα] =
1

2

n∑
α=1

4∑
j=0

∑
p

(
t+Kp2 − (hω(p))2

t0 +Kp2

)
|Qα

j (p)|2

−v
3

n∑
α=1

∑
p1,p2,p3

δp1+p2+p3,0

(1

2

√
2

3
Qα

0 (p1)Qα
0 (p2)Qα

0 (p3)

−
√

3

2
Qα

0 (p1)
(
Qα

1 (p2)Qα
1 (p3) +Qα

2 (p2)Qα
2 (p3)

)
+

1

2

√
3

2
Qα

0 (p1)
(
Qα

3 (p2)Qα
3 (p3) +Qα

4 (p2)Qα
4 (p3)

))
− v

6
√

2

n∑
α=1

∑
p1,p2,p3

δp1+p2+p3,0

(
3Qα

1 (p1)
(
Qα

2 (p2)Qα
2 (p3)−Qα

3 (p2)Qα
3 (p3)

)
+6Qα

2 (p1)Qα
3 (p2)Qα

4 (p3)
)

+
w

4

n∑
α=1

∑
p1,p2,p3,p4

δp1+p2+p3+p4,0

( 4∑
j=0

Qα
j (p1)Qα

j (p2)Qα
j (p3)Qα

j (p4)

+
4∑

i,j=0
(i 6=j)

Qα
i (p1)Qα

i (p2)Qα
j (p3)Qα

j (p4)
)

−1

2

n∑
α,β=1
(α 6=β)

4∑
j=0

∑
p

(
hω(p) +

(hω(p))2

t0 +Kp2

)
Qα
j (p)Qβ

j (−p). (H.4)

Averaging Heff over H0 yields the following result:

2

5n
〈H〉H0 =

∑
p

(
t+Kp2 −

(
hω(p)

)2

t0 +Kp2

)(
CT (p) + CG(p)

)
+
∑
p

(
hω(p) +

(
hω(p)

)2

t0 +Kp2

)
CG(p)

+
7w

2

∑
p1,p2,p3,p4

δp1+p2+p3+p4,0

(
δp1+p2,0δp3+p4,0

×
(
CT (p1) + CG(p1)

)(
CT (p3) + CG(p3)

))
.

(H.5)
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Finally, we look at the log-trace term,

ln

∫ n∏
γ=1

DQγe−H0/T = ln

∫ n∏
γ=1

DQγ exp

(
1

2

n∑
α,β=1

4∑
j=0

∑
p1,p2

(G−1)αβ(p1,p2)Qα
j (p1)Qβ

j (p2)

)

=
5

2

∑
p

ln
(
Det(G)

)
, (H.6)

where G is the n×n replica matrix defined by Gαβ ≡
(
CT (p)δαβ + CG(p)1αβ

)
. (The symbol

1αβ denotes an n × n matrix with every entry set to one.) The determinant of G is equal

to the product of eigenvalues of G, so we have to determine what its eigenvalues are. First,

note that 1αβ has one eigenvector (1, 1, . . . , 1) corresponding to the eigenvalue n, and n− 1

other eigenvectors

(n− 1, −1, −1, . . . , −1, −1),

(−1, n− 1, −1, . . . , −1, −1),

...

(−1, −1, −1, . . . , −1, n− 1),

corresponding to the eigenvalue 0. Thus G has one eigenvalue CT (p) + nCG(p) and n − 1

other eigenvalues CT (p). The log-trace term then becomes

− 2

5n
ln

∫ n∏
γ=1

DQγe−H0/T = − 1

n

∑
p

ln
((
CT (p) + nCG(p)

)(
CT (p)

)n−1
)

= − 1

n

∑
p

(
n ln CT (p) + ln

(
1 +

nCG(p)

CT (p)

))
≈ −

∑
p

(
ln CT (p) +

CG(p)

CT (p)

)
. (H.7)

Combining the results of Eqs. (H.5) and (H.7) and re-expressing the five scalar degrees of

freedom of Qα in terms of tensor components then gives us the variational free energy in
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Eq. (8.5).
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Appendix I

Computation of the term coupling the
elastic fluctuation and local nematic
order
In this Appendix, we shall derive the leading order contribution (in G and at large wave-

lengths) to the term proportional to UαQα from the term proportional to ΓΓQα in the

Landau-Wilson free energy, by considering the O(Uα) contribution to −1
2
〈G1(Γ)2G2(Q)〉.

Let us consider the general case of the Goldstone-deformed vulcanization order parameter

in the deformed cross-linking state, for which the position of a given particle at the instant

of cross-linking is given by Λ · z (Λ being the deformation gradient). At the end of the cal-

culation, we will set Λ to identity, and obtain the linear nematic-elastic fluctuation coupling

term for the un-deformed cross-linking state.

The Goldstone-deformed order parameter Γ is given in Fourier space by

Γk̂ =

∫
dz

V
e−ik

0·z−i
∑n
α=1 kα·(Λz+Uα(z))− 1

2
|k̂|2ξ2

L . (I.1)

Plugging this into Eq. (C.6b), and Taylor-expanding the exponential to leading order in Uα,
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one obtains

n∑
α=1

∑
p

∑
k̂

Γk̂−(p/2)εαΓ−k̂−(p/2)εαQ
α
d1 d2

(p)(pd1pd2 + (kα + (p/2))d1(kα + (p/2))d2)

= −iG
2

V

n∑
α=1

∑
p,q

∑
k̂

∫
dc dr

V 2
Qα
d1 d2

(p)(pd1pd2 + (kα + (p/2))d1(kα + (p/2))d2)

×
((

(kα − (p/2)) ·Uα
q +

n∑
γ=1

(γ 6=α)

kγ ·U γ
q

)
ei(q/2)·r

−
(
(kα + (p/2)) ·Uα

q +
n∑
γ=1

(γ 6=α)

kγ ·U γ
q

)
e−i(q/2)·r

)
×e−ik0·r−i

∑n
α=1 kα·Λr+ip·Λc−|k̂|2ξ2

L−
1
4
p2ξ2

L+iq·c. (I.2)

We integrate over c and q, which has the effect of changing q into −ΛT · p. Shifting

kγ → kγ − iΛ·r
2ξ2
L

(to eliminate cross-terms involving kγ in the exponential) and neglecting a

contribution proportional to pd1 pd2 (which will lead to terms of cubic order in momentum),

one obtains, for the terms proportional to
(
(kα − (p/2)) · Uα

q +
∑n

γ=1
(γ 6=α)

kγ · U γ
q

)
ei(q/2)·r in

Eq. (I.2), the following,

−iG
2

V

n∑
α=1

∑
p

∑
k̂

∫
dr

V
Qα
d1 d2

(p)(kα − i(Λ · r)
2ξ2
L

+ (p/2))d1(kα − i(Λ · r)
2ξ2
L

+ (p/2))d2

×
((
kα − iΛ · r

2ξ2
L

− (p/2)
)
·Uα(−ΛT · p) +

n∑
γ=1

(γ 6=α)

(
kγ − iΛ · r

2ξ2
L

) ·U γ(−ΛT · p
))

×e
− r2

4ξ2
L

−|k̂|2ξ2
L−

i
2
p·Λr− 1

4
p2ξ2

L
. (I.3)

Next, we shift r → r − iξ2
LΛT · p (to eliminate cross-terms involving r in the exponential).
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This allows one to obtain

−iG
2

V

n∑
α=1

∑
p

∑
k̂

∫
dr

V
Qα
d1 d2

(p)
(
kα − i(Λ · r)

2ξ2
L

+ ((ΛΛT − I) · p/2)
)
d1

×
(
kα − i(Λ · r)

2ξ2
L

+ ((ΛΛT − I) · p/2)
)
d2

×
(

(kα − iΛ · r
2ξ2
L

− ((ΛΛT − I) · p/2)) ·Uα(−ΛT · p)

+
n∑
γ=1

(γ 6=α)

(kγ − iΛ · r
2ξ2
L

− (ΛΛT · p/2)) ·U γ(−ΛT · p)

)

×e
− r2

4ξ2
L

−|k̂|2ξ2
L−

1
4

((ΛT ·p)2+p2)ξ2
L
. (I.4)

We perform a similar procedure for the terms proportional to
(
(kα+(p/2)) ·Uα

q +
∑n

γ=1
(γ 6=α)

kγ ·

U γ
q

)
e−i(q/2)·r in Eq. (I.2), shifting kγ → kγ − iΛ·r

2ξ2
L

(to eliminate cross-terms involving kγ in

the exponential) and neglecting a contribution proportional to pd1 pd2 , and next shifting

r → r+ iξ2
LΛT ·p (to eliminate cross-terms involving r in the exponential). This allows one

to obtain

−iG
2

V

n∑
α=1

∑
p

∑
k̂

∫
dr

V
Qα
d1 d2

(p)(kα − i(Λ · r)
2ξ2
L

+ ((ΛΛT + I) · p/2))d1

×(kα − i(Λ · r)
2ξ2
L

+ ((ΛΛT + I) · p/2))d2

×
((
kα − iΛ · r

2ξ2
L

+ ((ΛΛT + I) · p/2)
)
·Uα(−ΛT · p)

+
n∑
γ=1

(γ 6=α)

(
kγ − iΛ · r

2ξ2
L

+ (ΛΛT · p/2)
)
·U γ(−ΛT · p)

)

×e
− r2

4ξ2
L

−|k̂|2ξ2
L−

1
4

((ΛT ·p)2+p2)ξ2
L
. (I.5)

By adding (I.4) and (I.5), summing over the discrete wave-vectors k̂, and integrating over r,
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one obtains the following,

n∑
α=1

∑
p

∑
k̂

Γk̂−(p/2)εαΓ−k̂−(p/2)εαQ
α
d1 d2

(p)(pd1pd2 + (kα + (p/2))d1(kα + (p/2))d2)

=
iG2

V ξ2
L

n∑
α=1

∑
p

e−
1
4

((ΛT ·p)2+p2)ξ2
LUα(−ΛT · p) ·Qα

p · ΛΛT · p. (I.6)

For the un-deformed cross-linking state, Λ = I. The term −1
2
〈G1(Γ)2G2(Q)〉 from the

Landau-Wilson free energy (C.1) is then equal to

−1

2
〈G1(Γ)2G2(Q)〉 = −iG

2η̃4J0`
2

10TV ξ2
L

n∑
α=1

∑
p

e−
1
2
p2ξ2

LUα(−p) ·Qα
p · p. (I.7)

This is the elastic fluctuation–nematic linear coupling term at lowest order in momentum.
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