
FUNCTION THROUGH FORM IN SOFT MATTER:
THE INFLUENCE OF BOUNDED GEOMETRIES IN HEATED GELS

AND FLUCTUATING PROTEINS

A Dissertation
Presented to

The Academic Faculty

By

Michael S. Dimitriyev

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of School of Physics

Georgia Institute of Technology

August 2017

Copyright c© Michael S. Dimitriyev 2017



FUNCTION THROUGH FORM IN SOFT MATTER:
THE INFLUENCE OF BOUNDED GEOMETRIES IN HEATED GELS

AND FLUCTUATING PROTEINS

Approved by:

Dr. Paul M. Goldbart, Advisor
School of Physics
Georgia Institute of Technology

Dr. Alberto Fernández-Nieves
School of Physics
Georgia Institute of Technology

Dr. Alexander Alexeev
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Peter Yunker
School of Physics
Georgia Institute of Technology

Dr. Shina Tan
School of Physics
Georgia Institute of Technology

Date Approved: July 27, 2017



“It is known that there are an infinite number of worlds, simply because there is an

infinite amount of space for them to be in. However, not every one of them is

inhabited. Therefore, there must be a finite number of inhabited worlds. Any finite

number divided by infinity is as near to nothing as makes no odds, so the average

population of all the planets in the Universe can be said to be zero. From this it

follows that the population of the whole Universe is also zero, and that any people

you may meet from time to time are merely the products of a deranged

imagination.”

Douglas Adams, The Restaurant at the End of the Universe
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SUMMARY

The ability to control the behavior of a material through the prescription of spatial

inhomogeneity is of increasing interest in condensed matter physics. Examples of

materials such as auxetic metamaterials, which widen when stretched, and hydrogels

that change shape when swollen involve patterned inhomogeneity to achieve these

responses. However, as the boundary of a material breaks translational symmetry, it

may also be considered a spatial inhomogeneity. We consider materials in which the

boundary is the operative inhomogeneity and plays a key role in determining response

to changes in environmental conditions.

We first consider a swollen hydrogel rod whose equilibration to a deswollen phase

is frustrated due to an impermeable skin that forms at its boundary, trapping sol-

vent within the gel. This constrained gel undergoes internal phase separation, which

results in the formation of a solvent-poor shell, enclosing a solvent-rich core. The

coaxial arrangement of these regions is unstable to symmetry breaking, which leads

to polarization of the solvent distribution across the rod’s cross-section, and an inter-

nal elastic stress distribution that causes the rod to bend. If the rod is curved when

originally fabricated, the stress generated as a result of phase separation leads this

polarization to align with the rod’s curvature. In the case of a ring formed from a

uniformly curved rod, this stress leads to a “Pringling” instability that buckles the

ring out of its plane. If, instead, the rod is originally fabricated straight, its symme-

try is spontaneously broken by the gel’s polarization, which causes it to bend in the

spontaneously selected direction. The Goldstone modes associated with this broken

continuous symmetry twist the rod and leads to a reduction of correlations between

bending directions along the rod.

We also consider allosteric regulation of proteins where the ability of a protein to

bind a ligand molecule is modified by the presence of a bound ligand elsewhere on

xiii



the protein. In particular, we examine a model in which a bound ligand modifies the

thermal fluctuations of elastic deformations about a static mean conformation. We

model the protein as an elastic continuum and determine the change in fluctuation

correlations due to the presence of a bound ligand. By treating the bound ligand as

a small adjustment of the protein’s boundary, we develop a perturbative approach to

calculating the change in fluctuation correlations. We show that, to leading order,

the increase in vibrational entropy due to binding is further increased by the presence

of an already-bound ligand, which provides for a cooperative effect whose magnitude

is governed by the protein shape and binding site locations.
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CHAPTER 1

A TOUR OF POLYMER GEL PHYSICS

1.1 Introduction: linking thermodynamics and extreme mechanics

Within the realm of amorphous rigid materials without crystalline symmetries, poly-

mer gels possess an interesting duality, having a rubber-like elasticity whilst being able

to undergo large volume changes due to mixing with a solvent, e.g., water. There are

three essential ingredients: polymers, cross-linkers, and solvent.

Polymers are typically idealized as a linear molecule that, due to thermal fluctu-

ations in the angle between adjacent monomer units, explores random walk confor-

mations, as shown in Fig. 1.1. The characteristic size of a polymers is specified by a

radius of gyration Rg, which scales with the number of monomers N as N ν , where

ν = 1/2 for an “ideal” chain, for which the self-exclusion interaction amongst chain

segments is neglected. More realistically, a polymer does not intersect with itself,

resulting in statistics of a self-avoiding (as opposed to ideal) random walk, for which

ν ≈ 3/5, increasing the size of the chain. However, this is the situation in a “good” sol-

vent where the polymer is miscible in the solvent, as opposed to the case immiscibility

(a “poor” solvent) where the polymer radius is decreased due to the high energetic

penalty of interaction. An intermediate case is the ϑ-solvent, where a mildly poor

solvent cancels out the self-avoidance interaction of the polymer, resulting in ν = 1/2

(see e.g., [1]). These solvent-polymer interactions lead to swelling behavior of gels

and can be tuned by a number of variables, including changes in temperature, pH,

and ion concentration.

A solution composed of many polymers can be brought to a polymer concentration

where individual typically coils overlap in equilibrium. This is where the introduction
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Figure 1.1: A computer-generated random walk in three dimensions representing an
“ideal” polymer with N = 103.

of permanent chemical cross-linker molecules can result in the formation gel due to

bonding monomers. Either the linked monomers belong to two distinct polymers

or the same one. If there is sufficient linking of different polymers then a system-

spanning continuous network of linked polymers can form, resulting in a chemical gel.

This gelation transition is related to the general class of percolation transitions [1].

Furthermore, constraints introduced by cross-linking localize polymers that previously

underwent system-spanning Brownian motion, given sufficient time, and the ensuing

ergodicity breaking of the polymer network is results in rigidity [2]. Gels are therefore

similar to rubbers and have a similar entropic elasticity.

However, unlike typical rubbers, the polymers that form these gels may be misci-

ble in a solvent, leading to swelling. As the both the entropic elastic stresses of the

polymer network and the osmotic pressure of the solvent within the network have

magnitudes set by the thermal energy scale kBT , both are important in determining

the gel’s macroscopic equilibrium shape, particularly in gels with lower cross-linking

densities, resulting in the signature ability of gels to undergo large macroscopic shape

changes in response to varying solvent conditions. While there are a variety of poly-

mer gels whose equilibrium states can be modified in various ways, we will focus on

the specific case of electrically neutral hydrogels that undergo large volume changes,

swelling or deswelling in response to changes in temperature by imbibing or expelling
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water. Suitably prepared hydrogels have a remarkably large volume response, capable

of swelling to an equilibrium volume on the order of 103 times their dry volume by

absorbing water [3]. The volume transition can be smooth or abrupt, even discontin-

uous under various conditions. For example, poly(N-isopropylacrylamide) hydrogels

(pNIPAM) gradually deswell under heating until 32◦C, beyond which, owing to a

change in solvent nature from good to poor, such gels abruptly expel most of the

solvent and enters a deswollen phase [3].

Additionally, hydrogels can undergo shape changes beyond swelling. Mechanical

constraints, such as attachment to a stiff substrate, can frustrate deswelling of the

gel in a homogeneous manner, resulting in inhomogeneous deswelling such as surface

ripples [4, 5]. Gels that are subject to inhomogeneous swelling are of particular

interest, as the resulting deformations typically cannot be realized in flat space [6],

leading to a variety of buckled shapes [7, 8], some of which mirror designs found in

nature [9–11]. This has led to origami-inspired searches for ways to program certain

shapes that are actuated upon swelling; one such method is “4D printing” [12].

In the present chapter, we will review hydrogel thermodynamics and mechanics.

We will start by introducing the state functions that are used to describe the macro-

scopic states of hydrogels (§ 1.2) and show that models of hydrogel mechanics can be

phenomenologically constructed using nonlinear elasticity (§ 1.3). We also outline the

Flory-Rehner theory, which is an approximate treatment of the statistical mechanics

of polymer gels and ultimately provides equations of state that are largely successful

in describing such gels (§ 1.4). Finally, we discuss the volume phase transition (§ 1.5)

as well as the complication of specifying a critical point due to shear rigidity (§ 1.6).

In the next chapter (Ch. 2), we will consider a hydrogel, initially swollen, that is

rapidly heated past the volume phase transition. As we shall discuss, a thin, deswollen

skin develops, constraining the gel’s volume to be constant. Under this global con-

straint on the volume, the gel can attain a constrained, phase-separated equilibrium

3



where a solvent-rich region coexists with a solvent-poor region. Focusing our attention

on hydrogel rods with a coexistent solvent-poor shell enclosing a solvent-rich core, we

find that such coaxial configurations are unstable to symmetry breaking that leads

to inhomogeneous stress, bending the rod. In the following chapter (Ch. 3), we will

develop a reduced model to predict the equilibria of these rods in which the fields

describing rod shape are coupled to a field that describes the broken-symmetry ar-

rangement of solvent-rich and solvent-poor regions. Using our results, we speculate

that hydrogel rods can be fabricated in a way that directs phase separation, leading

to a novel way of actuating shape changes.

1.2 Thermodynamic description

Consider a sample of gel that is allowed to exchange solvent with its surroundings

but contains a constant mass of polymer. Assuming that the gel is composed of ns

solvent molecules and nm monomers, each molecule and monomer occupying a small

volume vs and vm, respectively, the total volume V of the gel is given by

V = nsvs + nmvm , (1.1)

where we assume the incompressibility of the solvent and polymers, viz., the fixing of

vs and vm. Therefore, in addition to the temperature T , we can choose the volume

V and the number of solvent molecules ns as state functions of the system. The gel’s

shear rigidity requires that changes in hydrogel shape distort the polymer network,

doing work. The work needed to change the 3 side-lengths Li of a box-shaped sample

of the gel shown in Fig. 1.2 to lengths L′i ≡ ΛiLi depends on the changes in lengths

of the sides. The deformation of the gel is therefore set by the dimensionless ratios

of length Λi such that Λ1Λ2Λ3 = 1. Note that specifying the box shape is artificial:

the distance between any two points R and R + dR, e.g., two cross-links, is altered

4



upon deformation of the gel, which takes dR to dR′. Assuming affine deformation of

the gel, for which the changes in lengths are independent of position, all lengths are

transformed by a deformation matrix Λ, such that

dR′i = Λij dRj . (1.2)

Deformed volume elements d3R′ are related to the undeformed ones via

d3R′ ≡ dR′1 ∧ dR′2 ∧ dR′3 = Λ1iΛ2jΛ3k dRi ∧ dRj ∧ dRk

= (εijkΛ1iΛ2jΛ3k) d3R = (det Λ) d3R ,

(1.3)

so det Λ describes the gel’s volume. We factorize Λ so that

Λ̂ ≡ Λ

(det Λ)1/3
(1.4)

describes volume-preserving deformations, so that

det Λ̂ ≡ 1 . (1.5)

The deformation matrix Λ̂ is the state function describing volume-preserving stretch-

ing of the gel, encoding information complementary to the volume: as shown in

Fig. 1.2c, affine deformations stretch lengths homogeneously so that subdivisions of

the gel undergo common deformations.

Our selection of state functions (T, V, Λ̂, ns) suggests the use of the Helmholtz

free-energy F as the potential for determining the equilibrium properties of the gel.

As F is a homogeneous, first-order function in its extensive parameters V and ns [13],

we have

F (T, V, Λ̂, ns) = V F
(
T, 1, Λ̂,

ns
V

)
≡ V F̃

(
T, Λ̂, ρs

)
, (1.6)
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Figure 1.2: Representative sample of a cross-linked polymer network with linear di-
mension L and distance between two arbitrary cross-linkers given by dR (a) prior
to deformation and (b) after affine deformation, prescribed by deformation matrix Λ
which is shown (c) as an intensive state function.

where F̃ is a free-energy density and ρs (≡ ns/V ) is the number-density of solvent

molecules. Recalling Eq. (1.1), the volume is prescribed by the total amount of

solvent and polymer, obfuscating the interpretation of ρs. We can equivalently use

the polymer volume-fraction φ, defined via

φ ≡ nm vm
ns vs + nm vm

= 1− vs ρs , (1.7)

i.e., the fraction of the gel that is occupied by polymer; φ = 1 corresponds to a gel

that is completely devoid of solvent whereas φ = 0 is the limit of an infinitely dilute

gel. Therefore, F may be expressed as

F =
vm nm
φ

F̃ (T, Λ̂, φ) , (1.8)

where we have changed variables from ρs to φ.

1.3 Nonlinear elasticity

Before examining a microscopic theory of polymer gels, let us inquire about the form

of the free-energy cost ∆Fdef of deforming the gel. We start by ignoring swelling

effects and assume that the gel is held at the volume fraction φ0 at which it was

6



cross-linked. We call this state of the gel its reference state R and its state after

deformation a target state T . The free-energy of deformation should be invariant

with respect to rotations UR of the reference state and rotations UT of its target

state, so that

∆Fdef(Λ) = ∆Fdef(ΛUR) = ∆Fdef(UT Λ) . (1.9)

It is convenient to introduce the right Cauchy-Green tensor G, defined via

G ≡ ΛTΛ , (1.10)

which is preserved under rotations of the target state:

Grot = (UT Λ)T (UT Λ) = ΛT UT
T UT Λ = ΛT 1 Λ = ΛT Λ = G . (1.11)

Note that with Λij ≡ ∂R′i/∂Rj, the tensor Gij is a metric tensor describing lengths

on T in terms of lengths on R. To ensure that it is invariant under isometries of R,

∆Fdef depends on the thee invariants (under rotation) of G [14], viz.,

I1 = tr G

I2 =
1

2

[
(tr G)2 − tr GTG

]
I3 = det G

(1.12)

where tr indicates a trace, and we note that the third invariant I3 is unity. If ∆Fdef

is an analytic function of Λ then it can be written as a power series in {I1, I2}. For

our purposes, it is sufficient to approximate ∆Fdef by

∆Fdef ≈
C

2
tr G =

C

2
tr ΛTΛ (1.13)

which corresponds to the deformation of network of phantom, Gaussian chains, a
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starting point for the theory of rubber elasticity [14, 15] and is recovered in the

Flory-Rehner theory (see § 1.4). Another commonly used form that attempts to

account for deviations due to large deformations is the Mooney-Rivlin theory [14], in

which ∆Fdef = c1I1 + c2I2.

Whilst polymer gels have a rubber-like elasticity and are therefore essentially

incompressible at fixed polymer-volume fraction, they can compress and expand if

allowed to exchange solvent with their surroundings. Recall that Λ̂ is a state variable

that is independent of φ. We define Λ = 1 to correspond to the state with relaxed

polymer network with volume fraction φ0. As Λ describes an affine deformation, the

ratio det Λ of volume elements between the relaxed reference state and the deformed

target state is also given by the ratio of the volume of the target state nmvm/φ to the

volume of the reference state nmvm/φ0; thus, we have

det Λ =
φ0

φ
. (1.14)

Therefore, det Λ can be used as a state function instead of φ, leading to a free-energy

F = F (T, V,Λ) (1.15)

that is expressible terms of all three invariants given in Eq. (1.12).

1.4 Microscopic description: the Flory-Rehner mean-field theory

To arrive at concrete equations of state that describe elasticity and swelling, we

need to incorporate the statistical mechanics of the polymer gel. We begin with

an approximation of the polymer network as a collection of nch chains, where each

cross-linking point is an intersection of the ends of four chains; there are thus nch/2

cross-linkages. Other structures, such as loops and free ends, are ignored within this

model.
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The microscopic interaction energy U is the sum of three terms, viz.,

U = Umonomer−monomer + Umonomer−solvent + Usolvent−solvent (1.16)

(see [1]), with each of these terms depending on particle positions. For example,

Umonomer−monomer contains an excluded volume interaction
∑

i 6=j(vm/2) δ(Ri − Rj),

summed over monomer positions. The Flory approach treats interactions in a mean-

field approximation:

U ≈ v

2
V kBT

[
χm−m ρ

2
m + 2χm−s ρm ρs + χs−s ρ

2
s

]
(1.17)

where ρm = nm/V and ρs = ns/V are number-densities and the monomer units are

taken to have the same volume as solvent molecules so that vm = vs ≡ v. Re-writing

in terms of φ, the densities become (ρm, ρs) = (φ, 1− φ)/v, so that

U ≈ 1

2
NkBT

[
χm−m φ

2 + 2χm−s φ(1− φ) + χs−s (1− φ)2
]

(1.18)

where N = nm+ns is the total number of particles considered and (χm−m, χm−s, χs−s)

are the various dimensionless interaction strengths, which incorporate interactions

such as van der Waals and excluded volume [1].

By treating interactions at the mean-field level, the elasticity of the polymer net-

work can be approximated using a phantom chain model where polymer conforma-

tions are allowed to overlap one-another, leading to random-walk ‘ideal’ polymers.

Although some degree of realism is lost, the problem gains tractability whilst re-

taining the essential physics – the free-energy cost of elastic deformations is simple to

derive and has a form that reduces to the classical rubber elasticity model, Eq. (1.13),

in the unswollen limit. The Flory-Rehner theory therefore breaks the calculation of
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the free-energy into two pieces:

F = Felastic + Fmix , (1.19)

i.e., an elastic free-energy Felastic [16] that is calculated with the phantom chain as-

sumption, and a free-energy of mixing Fmix [17] that is arrived at though a mean-field

approximation.

1.4.1 Elasticity of a cross-linked network of ideal chains

The elastic free-energy of the gel is approximated as proportional to the net confor-

mational entropy change due to deforming nch independent polymer chains. Thus,

we require knowledge of (i) how deformations affect the conformational entropy of

a single polymer and (ii) how to determine the effect on an ensemble of many such

polymers.

To begin, consider a singe polymer of length L with one terminal end at position

r and the other at the origin, as shown in Fig. 1.3a. Any polymer of the same length

may adopt a variety of different conformations, starting at the origin, with the other

terminal point sampled from a normalized distribution P1(r). If the polymer is an

ideal chain then its conformations adopt forms resembling the trajectory of a particle

undergoing a random walk, shown in Fig. 1.3, and

P1(r) =
1

(2π`2)3/2
exp

{
−|r|

2

2`2

}
, (1.20)

as shown in Fig. 1.3b, where ` is a length-scale that is proportional to the radius of

gyration. For a collection of nch phantom chains, the joint probability Pnch
of finding

chain 1 with end-to-end vector R1, chain 2 with R2, etc. is simply the product of

10



individual single polymer probabilities, so that

Pnch
(R1,R2, ...,Rnch

) = P1(R1)P1(R2) · · ·P1(Rnch
)

=
1

(2π`2)3nch/2
exp

{
−

nch∑
i=1

|Ri|2/2`2

}
.

(1.21)

Note that Pnch
is proportional to the number Ω of ways for the collection of polymers

to have end-to-end vectors (R1, ...,Rnch
). The entropy Schains corresponding to this

“macrostate” [1] is therefore

Schains(R1, ...,Rnch
) = kB ln Ω(R1, ...,Rnch

) = −kB
nch∑
i=1

|Ri|2

2`2
+ const. . (1.22)

However, the collection of end-to-end vectors is not set but is itself distributed accord-

ing to Pnch
. The entropy is thus the expected value of the fixed end-to-end entropy:

Σchains = 〈Schains(R1, ...,Rnch
)〉 = −kB

nch∑
i=1

〈|Ri|2〉
2`2

+ const. = −3

2
nch kB + const.

(1.23)

where we observe that the free-energy F = −TS resembles the energy of an ideal

gas of monatomic particles in 3 dimensions, each translational degree of freedom

contributing a mean energy of (3/2)kBT per particle.

Now that we know how to calculate the net entropy Σchains, let us determine how

deformations change this entropy, again starting from the effect on a single polymer

and then extending the calculation to the collection of chains. Affine deformation of

a single polymer r→ Λr ≡ r′ changes the probability distribution to

P ′1(r) =
det Λ

(2π`2)3/2
exp

{
−|Λr|2

2`2

}
, (1.24)

as shown in Fig. 1.3c. If chains in a network undergo affine deformation, taking the
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Figure 1.3: (a) Example of random walk with end-to-end vector r. (b) shows an
ensemble of end-to-end vectors sampled from an isotropic distribution with standard
deviation `. (c) the distribution after affine deformation Λ.

initial set of end-to-end vectors (R1, ...,Rnch
) deformed vectors (ΛR1, ...,ΛRnch

), then

the total entropy Σ′chains after deformation is

Σ′chains = 〈S ′chains(ΛR1, ...,ΛRnch
)〉

= −1

2
nch kB tr ΛTΛ + nch kB ln det Λ + const. .

(1.25)

Thus, the increase in chain free-energy upon deformation is given by

F ′chains − Fchains =
1

2
nch kB T

[
tr ΛTΛ− 3− 2 ln det Λ

]
(1.26)

up to deformation-independent constants.

However, there is a reduction in the entropy that comes from the elimination of

chain translational degrees of freedom due to the chemical cross-linking of indepen-

dent chains into pairs that share center-of-mass motion [17, 18]. To show this reduc-

tion, note that the translational freedom of each chain contributes a total entropy of

kB nch lnV + const. where V is the system volume. After deformation, V → (det Λ)V

so the change in entropy is given by kB nch ln det Λ, which is provided by the last

term in Eq. (1.26). However, each cross-linking event between two chains constrains
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the translational motion of the chains. Thus, there is a reduction of the total entropy

by (kB nch/2) ln det Λ resulting in the Flory-Rehner result for the elastic free-energy:

Felastic =
1

2
nch kB T

[
tr ΛTΛ− 3− ln det Λ

]
. (1.27)

It should be noted, however, that this argument is contentious [19] because the cross-

linked chains are localized, exploring only a small sub-volume that is not appreciably

stretched after affine deformation of the whole volume. Still, Eq. (1.27) is a widely

adopted model for hydrogel elasticity, and changes to the contentious term do not

qualitatively change our results.

1.4.2 Mixing free-energy from a mean-field approximation

To estimate the mixing free-energy, we approximate space by a lattice (as shown in

Fig. 1.4) of N sites, each occupied by either a solvent molecule or a monomer; because

the system is densely filled, there are ns solvent molecules and nm = N−ns monomers.

Furthermore, let the solvent molecules and monomer units occupy common volumes,

v; as the persistence length of the polymer does not figure into this theory, we are

free to choose the size of monomer units for the polymers. The mixing free-energy

Fmix can be decomposed into an mixing energy Umix and mixing entropy Smix:

Fmix = Umix − TSmix . (1.28)

The mixing energy Umix is the difference of the interaction energy U(φ) of gel with

solvent and monomer and the energy of unmixed pure monomer U(φ = 1) and pure

solvent U(φ = 0). The dilute limit has a free-energy per site of uφ=0 = kBTχs−s/2

whereas the monomer-packed limit has a free-energy per site of uφ=1 = kBTχm−m/2.
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Figure 1.4: Lattice calculation of the mixing entropy. Each cell occupies a volume v.
Solvent is represented by blue cells. (a) Bragg-Williams case in which the monomer
units (orange) are uncorrelated. (b) Flory-Huggins case where monomers are iden-
tified with mobile polymers of degree N . (c) Flory-Rehner case where monomer
translational freedom is frozen.

Thus, the total unmixed energy is nm u(1) + ns u(0), so the Umix is given by

Umix = Nu(φ)− nm uφ=1 − ns uφ=0

= N [u(φ)− φuφ=1 − (1− φ)uφ=0]

= N kB T χφ (1− φ) ,

(1.29)

where χ ≡ χm−s−χm−m/2−χs−s/2 is the so-called Flory parameter [1]. If χ < 0 then

U < 0, favoring maximally mixed polymer and solvent (φ = 1/2): this occurs when

the cost of monomer-solvent interactions is less the average cost of monomer-monomer

and solvent-solvent interactions.

By fixing the total number of polymers and solvent molecules, we fix the energy

of the system, allowing us to work in the microcanonical ensemble, so the entropy is

given by

S = kB ln Ω , (1.30)

where Ω is the number of microstates. To proceed with determining the entropy S,

we must count the number of ways that the lattice can be filled with solvent and

monomers, where the monomers (i) are arranged into polymers which (ii) belong to

a cross-linked network that spans space. However, as we shall demonstrate, S is
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dominated by the solvent’s translational entropy, i.e., a measure of the number of

arrangements of solvent particles amongst a unique configuration of monomers. To

show this, we will start with the simple case of “free” monomers that are unassociated

with a larger polymer molecule, all able to explore space independently (see Fig. 1.4a)

and recover the entropy of Bragg-Williams theory. After, we will progressively intro-

duce the necessary constraints by associating the monomers into polymers and then

introducing the cross-linking constraints.

Consider a binary system, consisting of nA and nB particles of species ‘A’ and ‘B’,

respectively. E.g., ‘A’ represents solvent and ‘B’ represents free monomers as shown

in Fig. 1.4a. The total number of microstates within the mean-field approximation

(or, equivalently, Bragg-Williams theory [20]) is given by

Ω =
N !

nA!nB!
, (1.31)

so the entropy, using Stirling’s approximation ln x! ≈ xln x− x, is

S ≈ kB [N ln N − nA lnnA − nB lnnB] . (1.32)

Recalling the volume fraction φ = nB/N , the entropy is

S ≈ −N [(1− φ)ln(1− φ) + φ ln φ] , (1.33)

from which we find that the state of maximum entropy is φ = 1/2, corresponding to

a mixed state composed equally of both species of particles.

We now associate monomers into polymer units that are free to explore the entire

space, whilst localizing individual monomers to much smaller volumes around the

polymers’ centers of mass (see Fig. 1.4b). Let each polymer consist of N monomers

so np = nm/N is the total number of polymers. Whilst the individual monomers
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have the adjacency condition, polymers are allowed full translational freedom on the

lattice. Thus, the entropy of the localized monomers is negligible compared with the

translational entropy of the polymers. The entropy S is therefore dominated by the

translational entropy of the solvent and the polymers such that

S ≈ −N
[
(1− φ)ln(1− φ) +

φ

N
ln

φ

N

]
. (1.34)

Note that while the entropy S in the dilute limit (φ→ 0) disappears, S in the polymer-

packed limit (φ → 1) is non-zero, contrary to the definition of a mixing entropy. To

obtain the mixing entropy ∆Smix, note first that we can define an average entropy

per site via s = S/N . In the purely solvent case, the entropy is given by ns sφ=0; for

the purely species polymer case, the entropy per site is given by nm sφ=1. The mixing

entropy is the total entropy, less the entropy of the pure solvent and polymer, so that

Smix = N s(φ)− ns sφ=0 − nm sφ=1

= N [s(φ)− (1− φ) sφ=0 − φ sφ=1]

≈ −N
[
(1− φ)ln(1− φ) +

φ

N
ln φ

]
,

(1.35)

and thus is the Flory-Huggins result [1, 21] for polymer solutions.

Finally, we consider the case in which permanent cross-links are introduced, lo-

calizing polymers to small regions about the cross-link sites (see Fig. 1.4c). In this

case, the polymers have constraints that reach all the way to the sample boundary,

resulting in rigidity. Therefore, the translational entropy of polymers is negligible

compared with the entropy of the solvent. The result may be found by considering

the limit of the Flory-Huggins theory where the system consists of an infinitely long

polymer, i.e., taking N →∞. The mixing entropy is therefore simply given by

Smix ≈ −N(1− φ)ln(1− φ) (1.36)
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which is independent of network details [1, 17, 18]. The mixing free-energy is thus

Fmix = N kB T [(1− φ)ln(1− φ) + χφ (1− φ)] , (1.37)

which we can rewrite using the state function V = vN .

1.4.3 The Flory-Rehner free-energy for polymer gels

Combining the elastic (Eq. (1.27)) and mixing (Eq. (1.37)) terms yields the Flory-

Rehner free-energy [16, 17], which is given by

F (T, V,Λ, φ)

kBT
=
nch

2

[
tr ΛTΛ− 3− ln(det Λ)

]
+
V

v
[(1− φ)ln(1− φ) + χ(T )φ (1− φ)]

(1.38)

where, we note, the only nonlinear scaling of the free-energy with respect to tempera-

ture occurs via the Flory parameter χ(T ), and we use the full deformation matrix Λ as

a state function instead of Λ̂ by requiring the constraint of Eq. (1.14), i.e., det Λ = φ0
φ
.

The number nch of effective chains, viz., those contributing to the network elasticity

by being cross-linked to other chains, is set at the moment of cross-linking, when the

gel is at volume fraction φ0, and is given by nch = ν0V (φ/φ0) where ν0 is the density

of chains at cross-linking and is considered a material parameter of the hydrogel. The

corresponding free-energy density F̃ is therefore

F̃ (T,Λ, φ)

kBT
=
ν0

2

φ

φ0

[
tr ΛTΛ− 3− ln(det Λ)

]
+

1

v
[(1− φ)ln(1− φ) + χ(T )φ (1− φ)] .

(1.39)
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1.5 Hydrogel swelling equilibrium and volume phase transition

With the Flory-Rehner free-energy Eq. (1.39) in hand, let us determine the equilib-

rium volume fraction φ(T ) in the case of an isotropic gel (where Λ̂ = 1). We first

show that φ(T ) for a gel placed in a pure solvent is determined by a constant os-

motic pressure condition. We then develop a virial expansion of the osmotic pressure

equation of state to demonstrate that the Flory parameter χ characterizes the second

virial coefficient. Finally, to describe the discontinuous volume transition of many

electrically neutral hydrogels that is not predicted within the Flory-Rehner theory,

we introduce the Erman-Flory [22] corrections in the virial expansion.

Consider a hydrogel that is placed in a good solvent, held at fixed temperature T .

In equilibrium, the gel’s constituent polymer attain open, un-coiled conformations,

where the solvent permeates the scaffolding of the polymer network. Solvent molecules

are allowed to enter and leave the scaffolding so that the equilibrium volume fraction

φ is determined by the chemical equilibrium condition

µ(T, φ) =

(
∂F

∂ns

)
T

= µ0(T ) (1.40)

where µ0(T ) is the chemical potential of the solvent outside of the gel. Note that

the solvent within the gel is identical to the solvent outside of the gel; its chemical

potential µ can therefore be decomposed into µ = µ0 + ∆µ where ∆µ is attributed to

mixing with the polymer network. The correction ∆µ is due to an osmotic pressure

Π acting on the gel, due to the thermal motion of the polymers in the gel, and is

given by

Π(T, φ) = −∆µ

vs
= φ2

(
∂

∂φ

F̃

φ

)
T

, (1.41)

where we have taken F = vm nm F̃ /φ and ns = (1 − φ)nmvm/φvs. Thus, chemical

equilibrium of a hydrogel in contact with pure solvent requires that Π = 0. This
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equilibrium condition can be modified through the addition of hydrostatic pressure

so that Π(T, φ) = const., which may be inverted, leading to φ(T ) “isobars.”

Using the free-energy density from the Flory-Rehner theory, Eq. (1.39), we find

that

Π(φ, T ) =
kB T

v

[
ν0 v

2

(
φ

φ0

− 2

(
φ

φ0

)1/3
)
− φ− ln(1− φ)− χ(T )φ2

]
, (1.42)

which has a scale for Π set by the energy density kBT/v. The dimensionless param-

eter ν0 v is an effective cross-linker fraction and sets the relative contribution of the

polymer network’s elasticity. Expanding Eq. (1.42) in powers of φ yields

Π(φ, T ) =
kB T

v

[
ν0 v

2

(
φ

φ0

− 2

(
φ

φ0

)1/3
)

+
1

2

(
1− 2χ(T )

)
φ2 +

∞∑
m=3

φm

m

]
, (1.43)

which we recognize, ignoring the non-analytic cube root, as a virial expansion of Π

(see e.g., [23]). The term linear in φ is proportional to the chain density and results,

at low φ, in an “ideal gas” of cross-linked chains. The second virial coefficient is

(1− 2χ(T ))/2, consistent with the characterization of the interaction energy in terms

of the Flory parameter χ. Note that this term disappears for χ = 1/2, resulting in

a ϑ-solvent; see § 1.1. As seen in Fig. 1.5a, Π = 0 has a solution φ(χ) that varies

continuously from swollen (smaller φ, larger volume) to deswollen (larger φ, smaller

volume) as the solvent quality is brought from good (i.e., χ < 1/2) to poor (i.e.,

χ > 1/2).

However, there are polymer gels, including pNIPAM [3], that possess a discontin-

uous transition for Π = 0 that cannot be realized within the model presented so far.

A resolution lies in the Erman-Flory theory [22], which adds parameters in a virial

expansion of the osmotic pressure, i.e.,

Π(φ, T ) =
kB T

v

[
· · ·+ 1

2

(
1− 2χ1

)
φ2 +

1

3

(
1− 3χ2

)
φ3 + · · ·

]
, (1.44)
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Figure 1.5: Equilibrium volume fraction φ(χ1) for a gel with (a) continuous transition
where χ2 ≡ 0 and (b) discontinuous transition where χ2 ≡ 0.56 [24], both with
φ0 ≡ 0.1 and ν0v ≡ 10−4.

where the Flory parameter χ is expanded in powers of the volume fraction, i.e.,

χ(T, φ) = χ1 + χ2φ+ · · · (1.45)

and χ1, χ2, . . . are empirically determined parameters. Gels that exhibit a discontin-

uous volume transition can be well modeled by keeping χ2 constant and using χ1(T )

as the solvent quality parameter [24, 25], as shown in Fig. 1.5b. The discontinuity

in φ(χ1) is due to the emergence of a second free-energy minimum, which consti-

tutes a metastable equilibrium state, as well as an unstable equilibrium, as shown in

Fig. 1.6. Due to thermal fluctuations, an unconstrained sample of gel should always

reach its global free-energy minimum, with a cross-over in equilibrium volume frac-

tion occurring when the two free-energy minima are equal, which occurs at χ1 = χ∗1.

Realistically, the gel remains in a metastable state near the cross-over, leading to a

hysteresis effect, where the deswelling transition for a swollen gel occurs at a value of

χ1 that exceeds χ∗1 and the swelling transition for a deswollen gel occurs at one that

lies below χ∗1.
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Figure 1.6: The total free-energy with multiple equilibria for the three cases in the
vicinity of the transition value of χ∗1 the Flory parameter χ1.

1.6 At the critical point: complication of shear rigidity

We compete this chapter by examining the gel’s thermodynamic stability to inho-

mogeneous perturbations, highlighting one way in which the polymer network’s shear

rigidity alters the intuition gained from studying the thermodynamic description of

fluids. The stability is determined by second variations of the gel’s total free-energy

F with respect to the gel’s configuration. For an inhomogeneous gel, the free-energy

density F̃ varies from point to point. As F̃ is a density with respect to the target

space T , we can approximate F as a sum of F̃ (R) over small volumes d3R, so that

F =

∫
T

d3R F̃ (R) . (1.46)

Note that there are generally additional terms that depend on the gradient of the

state functions, which are not seen in the homogeneous theory; we consider the limit

in which variations of these state functions are small enough to be ignored (see § 2.4.1

for a more detailed discussion). Variations in the hydrogel’s configuration result in

changes in T so we find it convenient to define an equivalent free-energy density on
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the reference space R via

F =

∫
R

d3rF(r) , (1.47)

where r ∈ R so that F(r)/φh ≡ F̃ (R(r))/φ(R(r)).

Consider a gel that is in equilibrium with pure solvent, and has a homogeneous

equilibrium volume fraction φh. We will determine the stability of the gel by cal-

culating the second variation of the free-energy δ2F in two different ways. In first

calculation, we consider variations in the volume fraction φ whilst fixing the gel to be

isotropic, so Λ̃ = 1. In our second calculation, we relax the isotropy constraint and

consider inhomogeneous variations of the gel’s shape. We conclude the difference in

the two calculations is a hallmark of the gel’s shear rigidity.

First, we consider variations of the volume fraction φ of the form

φ(r) = φh + δφ(r) , (1.48)

whilst constraining the gel to remain isotropic everywhere, so Λ̂ = 1. Then the

deformation matrix, expanding to second order in inhomogeneous variations δφ(r), is

given by

Λ =

(
φ0

φ

)1/3

1 ≈
(
φ0

φh

)1/3
(

1− 1

3

δφ

φh
+

2

9

(
δφ

φh

)2
)

1 , (1.49)

which allows us to compute the second variations of the free-energy F as

δ2F |φh =
1

2

∫
Vh

d3r
∂2F
∂φ2

∣∣∣∣
φ=φh

δφ2 . (1.50)

Thus, the thermodynamic stability of the gel requires that

∂2F
∂φ2

∣∣∣∣
φh

=
∂2

∂φ2

φhF̃

φ

∣∣∣∣
φh

=
φh
φ3

[
φ
∂Π

∂φ
− 2Π

] ∣∣∣∣
φh

=
φh
φ3

[K − 2Π]

∣∣∣∣
φh

=
1

φ2
h

K > 0

(1.51)
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where K is the osmotic bulk modulus and we have noted that in equilibrium, Π = 0.

Thus stability breaks down for vanishing K, i.e., diverging compressibility. As a

diverging response function is the signature of critical phenomena, it follows that

K = 0 marks a critical point for a homogeneous equilibrium gel.

The foregoing argument relies on a spatial modulation of the gel’s volume fraction

that does not shear the gel so that the deformation matrix is given by Eq. (1.49).

However, it is not clear that the gel can achieve a deformed shape described by the

points R(r) such that Λij(r) = (φ0/φh)
1/3∂Ri/∂rj = (φ0/φ(r))1/3δij. As was shown

by Onuki [26] and later by Golubović and Lubensky [27], the critical point for elastic

materials that undergo a volume transition is not K = 0 but rather K + (4/3)µ = 0,

where µ is the shear modulus of the gel. To see this, consider fluctuations in shape

characterized by a displacement field R − r ≡ u(r), which results in a deformation

matrix

Λij =

(
φ0

φh

)1/3 [
δij +

∂ui
∂xj

]
. (1.52)

By expanding the free-energy to quadratic order in the strain uij = (ui/∂rj+uj/∂ri)/2,

we find that the second variation of the free energy has a linear elastic form given by

δ2F =
1

2

∫
Vh

d3r

[
2µuijuij +

(
K − 2

3
µ

)
u2
ii

]
(1.53)

where µ ≡ ν0(φh/φ0)1/3. Integrating by parts and taking the boundary of the gel to be

at infinity (or, equivalently, assuming that we are considering small strain fluctuations

deep within the bulk of the gel) we find that

δ2F = −1

2

∫
Vh

d3r u ·
[
−µ∇×∇× u +

(
K +

4

3
µ

)
∇∇ · u

]
. (1.54)

Decomposing the displacement field into u = ut + u||, i.e., the (divergence-free,

∇ · ut = 0) transverse part and the (curl-free, ∇ × u|| = 0) longitudinal part,
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the fluctuations in the gel’s shape are decomposed into transverse excitations, with

modulus µ > 0, and longitudinal excitations, with modulus K + (4/3)µ. As the

transverse excitations are divergence free, the longitudinal excitations reflect inhomo-

geneous variations in the gel’s volume fraction. Thus, in order for this true critical

point to be reached, the bulk modulus must become negative with a magnitude large

enough to compensate for the added shear modulus. Note, however, that we have

neglected the effect of the boundary, which generally complicates the decomposition

into transverse and longitudinal parts. Interestingly, we can therefore expect that the

gel’s shape can have an impact on defining its critical point; this too is a consequence

of the shear rigidity.

In the following, we explore another case in which the shear rigidity leads to

important consequences for its thermodynamics. We will consider how constrained,

phase-coexistent equilibria couple to the shape of the gel.
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CHAPTER 2

BENDING INSTABILITY OF RAPIDLY HEATED POLYMER GEL

RODS

2.1 Introduction: polymer gels with a volume constraint

In the previous chapter, we discussed how polymer gels swell in the presence of a sol-

vent in order to attain an osmotic equilibrium. This relies on the gel’s porous bound-

ary which allows passage of solvent molecules between its interior and a surrounding

bath. Furthermore, any quasistatic change in the solvent quality, e.g. through small

changes in temperature, alters the osmotic equilibrium and thus changes the gel’s vol-

ume due to losing or gaining solvent molecules. We also introduced gels that undergo

a discontinuous volume phase transition between a large-volume swollen phase and

a small-volume deswollen phase, exemplified by the hydrogel pNIPAM, which enters

its deswollen phase when heated past its transition temperature of ∼ 32◦C. When

the gel undergoes homogeneous changes in volume fraction, it simply changes its vol-

ume by affine rescaling, without otherwise distorting its shape. However, when the

gel undergoes inhomogeneous changes in volume fraction, there are shape distortions

beyond a simple rescaling due to the shear rigidity, which we demonstrated by show-

ing that the critical point for the volume phase transition, indicated by a diverging

compressibility, is modified by a finite shear modulus. Now we will address what

happens to a swollen gel when the change in solvent quality is no longer performed

in a quasistatic manner but as a sudden impulse, resulting in a period of arrested

deswelling and constrained volume.

As many physical processes happen far from the quasistatic limit, understanding

the behavior of systems brought across a phase transition is of fundamental and
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practical importance. For example, for systems that undergo a “rapid quench” from a

disordered phase to an ordered phase spawn a variety topological defects, e.g. vortices

in superfluids, due to spontaneous symmetry breaking at different points in space that,

for short times after the quench, are not causally related [28]. The distribution of

similarly generated is thought to play a key role in providing structure to the universe

after rapidly cooling from big bang conditions [29, 30] and has been studied in soft

matter in the context of a quench from isotropic to nematic order in liquid crystals [31,

32]. For swollen of polymer gels, rapid changes in solvent quality reveal complicated

equilibration dynamics due to increased polymer-solvent friction that restricts solvent

flow at higher volume fraction. For example, swollen hydrogel spheres of pNIPAM

that are rapidly heated past the transition temperature have a prolonged period

during which the volume is preserved [3]. This is due to the formation of a thin

deswollen skin on the gel’s outer surface which halts the flow of solvent and arrests

deswelling. The resulting anisotropic stress of the stretched polymer network leads to

a mechanical equilibrium that is unstable and results in buckling of the gel’s surface,

forming alternating patterns of thin and thick deswollen skin that deforms the gel,

ballooning the surface outwards at the thinner parts and creasing it at the thicker.

2.1.1 Internal phase separation from rapid quench

During the prolonged period of arrested deswelling due to the formation of the

deswollen skin, the remainder of the hydrogel equilibrates under a global volume con-

straint. Macroscopically, as the total solvent inside the gel is conserved, equilibration

no longer requires chemical or osmotic equilibrium with the solvent bath. Instead,

equilibration must happen at fixed volume, as shown schematically in Fig. 2.1. How-

ever, as the gel is now in a poor solvent, the polymer locally favors a packed state

with high φ that it cannot achieve homogeneously; the only recourse is to undergo

inhomogeneous changes in volume fraction, leading to internal phase separation and
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Figure 2.1: Polymer gel in two situations: (a) allowed to exchange solvent with
surroundings, where equilibrium condition is imposed by constant chemical potential
or osmotic pressure; (b) solvent exchange blocked by thin de-swollen skin after rapid
heating, leading to constrained equilibration at constant volume.

the formation of solvent-rich and solvent-poor domains.

To describe the inhomogeneous gel, we choose the reference state R to correspond

to the homogeneous gel at volume fraction φh. We can define the deformation matrix

Λ as

Λij =
∂Ri

∂rj
(2.1)

rather than the definition used in the previous chapter which was in reference to the

relaxed state of the polymer matrix at φ0. The total free-energy is

F =

∫
R

d3r

[
1

2
µ tr ΛTΛ + Frem(φ)

]
(2.2)

where the shear modulus is µ = ν0(φh/φ0)1/3 in the Flory-Rehner theory and Frem(φ)

is the remaining free-energy density that depends on the volume fraction φ alone. Note

that this free-energy and our ensuing analysis are in fact independent of the Flory-

Rehner Eq. (1.39) or any microscopic theory and completely general for materials

with shear rigidity and a volume phase transition: instead of the volume fraction φ,

the invariant I3 = det Λ may be used, generalizing Eq. (2.2) to a nonlinear elastic

description of a material.

The target state T refers to the constrained equilibrium state, after the impulsive
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change in solvent quality, e.g. by heating the gel rapidly. Assuming that the amount

of solvent that has left the gel during formation of the thin skin is insubstantial,

arrested deswelling results in a conservation of the total solvent

∫
T

d3R (1− φ) =

∫
R

d3r (1− φh) . (2.3)

As the total amount of polymer is unchanged, the solvent constraint above is equiv-

alent to a volume constraint

V − Vh =

∫
T

d3R−
∫
R

d3r =

∫
R

d3r (det Λ− 1) =

∫
R

d3r

(
φh
φ
− 1

)
= 0 . (2.4)

Due to the volume constraint, in order for part of the gel to deswell and locally

lower its free-energy, another part of the gel has to swell further, locally increasing

its free-energy. If we ignore the shear rigidity of the contiguous polymer network, the

result is the formation of a homogeneous solvent-poor region with volume fraction

φp > φh and a homogeneous solvent rich region with volume fraction φr < φh. In

fact, this is analogous to the constrained phase separation of water into liquid and

vapor phases with the equilibrium values of φp and φr determined by (i) a common

tangent construction, detailing mechanical and chemical equilibrium, and (ii) a lever

rule, specifying the portion of the total volume occupied by each phase; for more

details, refer to Appendix A. Thus, we can partition the reference space R into two

domains: the solvent-poor region Rp, occupying a fraction f of the total volume, and

the solvent-rich region Rr occupying the remaining 1 − f of the total volume. The

volume constraint Eq. (2.4) reduces to

f

(
φh
φp
− 1

)
+ (1− f)

(
φh
φr
− 1

)
= 0 (2.5)
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Figure 2.2: (a) Points in the reference space, the homogeneous gel, a distance dx
normal N̂ to the interface and a distance dy from each other tangential T̂ to the
interface. (b) Same points in the target space, the deformed gel, are mapped to
different distances from the interface in each phase but are stretched the same distance
tangential to the interface, requiring Λr,TT = Λp,TT .

yielding a lever rule

f =
φ−1
r − φ−1

h

φ−1
r − φ−1

p

(2.6)

that corresponds exactly to the lever rule in fluid systems. Whilst the lever rule is a

consequence of mass and volume conservation and therefore independent of the gel’s

shear rigidity, the mechanical and chemical equilibrium equations no longer satisfy a

simple common tangent construction.

For a hydrogel to remain contiguous across a phase interface, the two phases

stretch the same amount along the interface. Therefore, in addition to a balance

of stress and chemical potential, the deformation matrix Λ satisfies a lamination

condition where its tangential components must be continuous at the interface; see

Fig. 2.2. As a consequence of the gel’s shear rigidity, the deformation caused by the

interface leads to long-range distortion of the polymer matrix. Phase coexistence of

gels is thus profoundly affected by sample shape and the common tangent construction

holds true only in the limiting case of a one-dimensional gel [33].
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2.1.2 Geometry and phase coexistence

For a fluid system with phase coexistence between liquid and vapor phases, thermo-

dynamics predicts the densities and fraction of the two phases but not their shape

or spatial arrangement; additional physics must be considered. From experience, we

know that the liquid phase accumulating “downward” at the “bottom” of the con-

tainer. This is due to gravity breaking the isotropy of space so that the denser phase

is pulled in one direction, displacing the less dense phase. In the case of polymer

gels, the two phases are not distinguished by mass but rather by packing of polymers

as the gel is mainly composed of water and polymer with assumed negligible free

volume. Due to the gel’s shear rigidity, inhomogeneous deformations to the polymer

matrix require stress balance which depends on gel shape. Thus, we expect that gel

shape can influence the organization of solvent-rich and solvent-poor domains. The

boundary of the gel breaks translational symmetry and consequently provides a loca-

tion for the deswollen phase to form. As the surface skin is deswollen, we expect that

the solvent-poor phase will “grow” from the boundary inward, resembling heteroge-

neous nucleation as the free-energy cost of creating interface between two phases is

less when grown from an inhomogeneity or a surface.

Rapid heating of spheres [3] and cylinders [34] each exhibit the formation of a

surface layer that buckles after some time. However, both of these geometries are

have uniform boundaries and the arrangement of solvent-rich and solvent-poor regions

conforms to the boundary shape until buckling breaks symmetry. Note that we are

ignoring the effect of cylinder end-caps which break translational symmetry and are

known to deswell before the middle section of the cylinder in the case of unconstrained,

“triphasic equilibrium” [22, 24] of swollen and deswollen phases with pure solvent.

Toroids, on the other hand, may be thought of as bent cylinders that curve about an

axis of revolution. By having a ring curvature, the symmetry of its cylindrical cross-

section is broken so that we may describe directions as “towards the axis” or “away
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Figure 2.3: (a) Toroid schematic with ring radius R and tube radius a as well as desig-
nation of directions “towards” and “away” from axis of revolution. (b) Image showing
the solvent rich phase shrinking towards the axis. (c) Image showing “Pringling” of
the toroid. Experimental images from [35].

from the axis;” see Fig. 2.3a. Rapid heating experiments performed on pNIPAM

hydrogel toroids show that the distribution of solvent-rich and solvent-poor domains

is indeed related to the broken symmetry direction of the toroid [35]. As shown in

Fig. 2.3b, the solvent-poor phase forms towards the axis of revolution, displacing the

solvent-rich phase away from the axis. We can understand this simply by observing

that a toroid that is allowed to fully deswell will do so by undergoing affine rescaling,

decreasing its volume without shearing its polymer network, and thus decreases its

ring radius, shrinking towards the axis; a toroid that is allowed to swell will grow away

from the axis. A phase-coexistent toroid, complicated by coherency strains between

the two phases, should nonetheless have a solvent-poor region that shrinks towards

the axis in order to minimize the shear deformation of its polymer network and a

solvent-rich region that swells away for the same reason.

This internal phase separation further has the consequence of buckling the toroid

in a manner that results in large deflections, for example resulting in the “Pringle”

shape of Fig. 2.3c. Variation in the swelling stress across the cross-section of the

toroid result in a swelling torque acting on the center-of-mass of the cross-section,

which buckles the toroid above a threshold set by the shear rigidity. We therefore

have a situation where (i) the spatial arrangement of coexistent phases is influenced
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by geometry which (ii) leads to deformation of the gel, changing its geometry.

To better understand and formalize this picture, we consider a generalization of

the toroid geometry to one of a rod, with circular cross-section, that is allowed to

curve in space. The geometry of the rod is set by a centerline, a space curve as in

Fig. 2.6b, which is simply a planar ring in the case of a toroid.

2.1.3 Outline of the theory for curved polymer gel rods

To determine the effect of curvature and torsion on gel rods, we greatly simplify

the problem by considering the limit of slender rods, where the tube radius a is

much smaller than the rod length L as well as any variation of the rod along its

length, e.g. the radius of curvature and torsion, κ−1 and τ−1, where κ and τ are the

centerline curvature and torsion as defined in Appendix B. This allows us to treat

curvature and torsion of the rod as contributing small corrections κa, τa to the free-

energy. Corrections to the deformation matrix that depend on the curvature and

torsion are taken to be small, resulting in a small strain field that is superimposed

on a background of an un-curved rod that has undergone internal phase separation.

Furthermore, we expect that the phase interface breaks the cross-section’s symmetry

in response to the rod’s curvature.

We will proceed by first determining the phase coexistent equilibrium of a straight

cylindrical rod of circular cross-section, yielding volume fractions φp and φr for the

two phases as well as deformation matrices Λp and Λr. Next, we will introduce small

variations in the geometry of the rod, both for the reference state R and the tar-

get state T , allowing the rod to be curved in the homogeneous state prior to the

rapid heating and for the rod to change its shape in equilibrium; we will also vary

the interface shape. Expanding the free-energy to quadratic order in the inhomo-

geneous strain about a background of the symmetric straight rod leads to a linear

elasticity calculation for the equilibrium strain field in terms of rod and interface
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geometry. Integrating out the cross-section strain variation, we arrive at an effective

one-dimensional elastic model coupling rod shape to interface shape. Crucially, we

find that the interface shape is coupled to rod curvature in a manner that “polarizes”

the coaxial arrangement of solvent-rich and solvent-poor regions, resulting in a larger

distribution of solvent-poor region towards the axis. Furthermore, we find that this

polarization unstable to spontaneous symmetry breaking.

This motivates us to develop a Landau theory in the next chapter to predict the

equilibrium shape of the rod in terms of a vector order parameter characterizing the

polarization of the solvent distribution. We find that the spontaneous symmetry

breaking leads to an ordered “ferromagnetic” phase of constant rod curvature which

supports spin wave-like Goldstone modes that describe modulations in the curvature

direction of the rod. As a result, we find that the spin wave rigidity is related to

the rod’s torsional rigidity. We end by speculating that the presence of these “twist

modes” may be seen experimentally and that our model may lead to a new approach

for programming shape change in hydrogel rods.

2.2 Phase coexistence in the case of a straight cylinder

We seek the constrained, phase-coexistent equilibrium specific to a swollen cylinder

of circular cross section that has undergone rapid heating. In particular, we will

determine the equilibrium state that maintains the translational and axial symmetry

of the cylinder, addressing the stability this symmetric equilibrium later. Using the

initial swollen state as the cylinder’s reference configuration, we take advantage of the

cylinder’s symmetry and use cylindrical coordinates {ρ, θ, z} so that the equilibrium

configuration is a mapping to cylindrical coordinates in the target space {P,Θ, Z}, as

shown in Fig. 2.4. Cylindrical symmetry of the reference and deformed configuration

requires that

P = P (ρ), Θ = θ, Z = Λ`z (2.7)
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where Λ` is the ratio of the deformed length to the initial length. The deformation

matrix is, in cylindrical coordinates,

Λ =


dP
dρ

0 0

0 P
ρ

0

0 0 Λ`

 (2.8)

or, Λ = (dP/dρ)P̂⊗ ρ̂+ (P/ρ)Θ̂⊗ θ̂ + Λ` Ẑ⊗ ẑ.

The phase coexistent regions are coaxial, forming an interface at P = Pb in the

target space, which we map to ρ = b in the reference space. As deswelling initially

occurs at the gel’s outside surface, we can assume that the solvent-poor region cor-

responds b < ρ ≤ a, resulting in a layer of thickness h = a − b, with ρ ≤ a the

solvent-rich region. To simplify the problem, we take the thin solvent-poor layer limit

h/a � 1, so f ≈ 2h/a � 1. By the lever rule Eq. (2.6), this corresponds with

an initially highly swollen gel with φh � 1 and a solvent-rich region that is almost

unchanged from its initial volume fraction, φr ≈ φh. By treating the solvent-poor

region as very thin, we can neglect any variation of the deformation matrix along its

thickness. Taylor expanding P (ρ) in the solvent poor region,

P (ρ) ≈ P (b) + (ρ− b)Λn +O(h2) (2.9)

where ρ−b ∼ O(h) and Λn is the first derivative of P at b. The resulting deformation

matrix is, to leading order,

Λp =


Λn 0 0

0 Λt 0

0 0 Λ`

 (2.10)

where Λn is identified as the ratio of the deformed layer thickness to the original h
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Figure 2.4: Schematic of phase-separated cyinder (a) before and (b) after deformation
along with cylindrical coordinates.

and Λt ≡ P (b)/b is the stretch of the interface, transverse to the cylindrical axis.

For the solvent rich region, we can likewise assume a power series expansion of

P (ρ). By the lamination condition, the transverse stretch of the interface has to

be continuous so P (b)/b = Λt. If we truncate the series expansion at linear order,

P (ρ) ≈ Λt ρ+ . . . , then

Λr =


Λt 0 0

0 Λt 0

0 0 Λ`

 (2.11)

so that the deformation matrix is constant throughout the solvent rich region. We

will make this approximation as it is consistent with the lamination condition and

allows for the designation of two volume fractions

φp ≈
φh

Λn Λt Λ`

, φr ≈
φh

Λ2
t Λ`

(2.12)

while describing free-energy cost due to an anisotropic coherency strain via the de-

formations Λt and Λ`, and thus captures the essential physics of the problem.

After changing variables from (Λn,Λt,Λ`) to (φr, φp,Λ`), the total free-energy is
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for the cylinder is

Fcyl

π a2
=(1− f)

[
1

2
µ

(
Λ2
` + 2

φh
φr Λ`

)
+ Frem(φr)

]
+ f

[
1

2
µ

(
Λ2
` + φh

φ−2
p + φ−2

r

φ−1
r Λ`

)
+ Frem(φp)

]
+ p

[
(1− f)

φh
φr

+ f
φh
φp
− 1

] (2.13)

where p is a Lagrange multiplier that enforces the volume constraint and represents

a constraining pressure exerted by the thin skin. Equilibrium is determined by the

stationary condition δFcyl = 0, yielding, to leading order in f , stress equilibrium

equations

Λ3
` − (1− f)

φh
φr
− f φh

φ−2
p + φ−2

r

2φ−1
r

= 0 (2.14)

φ2
r

φh

∂Frem

∂φr
− µ 1

Λ`

+ f µ
1 + φ2

r/φ
2
p

2 Λ`

= p (2.15)

φ2
p

φh

∂Frem

∂φp
− µ φr

φp Λ`

= p (2.16)

as well as a chemical equilibrium equation

Frem(φr)−Frem(φp) +
1

2
µ

(
φh
φr
− φh φr

φ2
p

)
= −p

(
φh
φr
− φh
φp

)
(2.17)

and the lever rule Eq. (2.6).

Using Flory-Rehner to provide a definite form for the gel free-energy, we find that

there are indeed solutions to the above system of equations for physically relevant

parameters. Using µ = 10−4kBT/v and χ2 = 0.56 our results are shown in Fig. 2.5

for φh ∈ {0.010, 0.015, 0.020}, i.e. cases of gels that are very swollen prior to rapid

heating. As expected, at the onset of phase coexistence, the change in solvent-rich

volume fraction is very small whereas the change in solvent-poor volume fraction is

quite dramatic. While the values for f shown can become substantial for larger χ1,

36



0.46 0.48 0.50 0.52 0.54 0.56

0.1

0.2

0.3

0.4

0.5

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.05

0.10

0.15

Figure 2.5: (a) Values of φp (solid) and φr (dashed) after constrained phase separation
as a function of χ1. (b) Fraction of solvent-poor phase in the reference state f .

the equilibrium equations hold only for small f .

2.3 Phase coexistence in a broken-symmetry rod

Now that we know how to solve for the equilibrium of a straight, symmetric cylinder

that maintains its symmetry throughout phase separation, we address the problem

of breaking axial symmetry through (i) interface shape b 7→ b(θ) ≡ b0(1 + Γ(θ))

and (ii) curving the centerline; Fig. 2.6 is representative of such a symmetry-broken

configuration. Whereas the symmetric cylinder is described by a deformation matrix

of purely radial dependence, Λ0(ρ), which we have approximated as piecewise, Λ0 =

Λr+(Λp−Λr)Θ(ρ−b), the broken-symmetry deformation matrix depends on θ. If the

rod curves gently, we expect that the θ-dependence is contained in a small correction

to Λ0; the same can be assumed for small interface anisotropy Γ. Therefore, we

will use the symmetric equilibrium obtained in the previous section as a “vacuum”

configuration on which we will superimpose a small, inhomogeneous deformation field

due to symmetry breaking.

We decompose the deformation matrix as

Λ = Λint Λext Λ0 (2.18)
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where Λext is the deformation due to specifying a curved rod shape for the hydrogel,

which is held fixed as an external constraint. In response, the hydrogel undergoes

internal deformations, Λint, in order to achieve equilibrium. As Λext and Λint represent

small deformations composed with the large deformation Λ0 due to phase separation,

we can expand Λext = 1 + uext and Λext = 1 + uint, where uext and uint are small,

inhomogeneous strain fields.

To determine the strain, consider a sequence of configurations

R Λ1−→ R′ Λ2−→ T

r 7→ r′ 7→ R

where points R in the target space (T ) are related to points r′ in an intermediate

deformed reference space (R′) via an equilibrating displacement field u

R(r′) = r′ + u(r′) (2.19)

where u(r′) is a vector field defined on R′. This sort of decomposition is used when a

material undergoes a large plastic deformation Λ1, followed by a small elastic defor-

mation Λ2. Therefore deformation matrix Λ2,µν = ∇′νRµ = δµν +∇′νuµ = Λint is the

internal deformation matrix so uint = ∇′u is the internal strain field. In turn, r′ and

r can be represented in tube coordinates {x′1, x′2, s′} and {x1, x2, s} (see Appendix B)

as

r′ = `′(s′) + x′a d̂′a(s′)

r = `(s) + xa d̂a(s) .

(2.20)

We take the reference state R to be a rod of homogeneous volume fraction φh whose

centerline is given by `.

Each slice through the cross section in R is locally a cylinder resembling Fig. 2.6c

38



Figure 2.6: Geometry of the broken-symmetry gel rod. (a) shows the overall shape of
a bent and twisted rod with the deformed phase interface shown in orange. (b) a focus
on the centerline ` showing the rotating curve frame {d̂1, d̂2, d̂3}. (c) cross-section
with symmetric and asymmetric phase interfaces described by radii b0 and b(θ) and
representative transverse point x.

39



where the transverse coordinates have a polar representation

x2(ρ, θ) = ρ cos θ, x3(ρ, θ) = ρ sin θ (2.21)

and the phase interface is at ρ = b(θ). We choose the intermediate state R′ as one in

which the deformed rod has undergone phase separation with isotropic deformation

Λt in the solvent-rich region and a stretch Λt tangential to the interface and Λn normal

to the interface in the solvent-poor region

ρ′(ρ, θ) =

 Λt ρ for ρ < b(θ)

Λt b(θ) + ρ̂′ · N̂′(θ) Λn ρ for b(θ) ≤ ρ < a
(2.22)

where N̂′(θ) is the interface normal and is calculated below. Similarly, we assume that

the longitudinal coordinate s′ = Λ` s is the result of a simple stretch of s. Note that

s′ is generally not an arclength parameter, whereas we may take s to be one. There

is a parametric dependence of the mapping ρ′(ρ, θ) on undeformed arclength s due

to varying interface shape along the centerline; we will take ∂b/∂s to be on the same

order as dκ/ds and dτ/ds and thus higher order. There is additional deformation due

to bending and twisting the centerline, appearing through covariant differentiation

Λ1,µν = ∇νr
′
µ. We find Λ1 for the solvent-rich region:

Λ1 ≈ Λt d̂
′
m ⊗ d̂m + εmn3 [τ ′ Λ` x

′
m − τ Λt xm] d̂′m ⊗ d̂3

+ Λ` [1 + εmn3(κ′m x
′
n − κm xn)] d̂′3 ⊗ d̂3

(2.23)

where we keep the leading order corrections in rod shape, namely the initial and

deformed curvature, κ and κ′, and torsion τ and τ ′ (see Appendix B for more details).

Identifying Λ2 = Λint as the deformation due to the equilibrating displacement

field u, we therefore have Λ1 = Λext Λ0 = (1+uext) Λ0. Factoring out Λ0, the external
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strain in the solvent-rich region is

uext ≈ εmn3

[(
∆κm +

Λt − 1

Λt

κm

)
x′n d̂′3 ⊗ d̂′3

+

(
∆τ +

Λ` − 1

Λ`

τ

)
x′m d̂′n ⊗ d̂′3

] (2.24)

where ∆κm ≡ κ′m − κm and ∆τ ≡ τ ′ − τ . Notice that uext contains the usual

dependence on changes in curvature and torsion for elastic rods [36] but also depends

on the curvature and torsion prior to deformation, accounting for the additional

inhomogeneous strain of swelling a curved gel; this correction disappears if the gel

does not undergo phase separation and is typically small when φr ≈ φh. The internal

and external strain fields can be combined into a total strain field u:

Λ = (1 + u) Λ0 = (1 + uint) (1 + uext) Λ0 = (1 + uint + uext + uint uext) Λ0 . (2.25)

As we are considering small symmetry breaking strain, we can approximate u as the

superposition, u ≈ uint + uext.

2.3.1 Deformation of the solvent-poor region

In order to determine the deformation matrix for the thin, solvent-poor region, we

again take the approximation that variations of the deformation matrix through the

layer are negligible. Due to the lamination condition, the components of Λ tangential

to the interface are continuous across the interface and are thus determined by the

deformation matrix in the solvent rich region. Assuming that the variation of the

interface shape is gradual along the rod’s length compared with variation in the

cross-section, the interface tangent space is spanned by orthonormal basis {T̂, d̂3} in

R where T̂ is the interface tangent vector that is transverse to the rod:

T̂ =
∂θb(θ)

|∂θb|
≈ θ̂ + ρ̂ ∂θΓ (2.26)
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Figure 2.7: Cut-away of a representative interface shape with interface tangent T̂ and
normal N̂.

which is perpendicular to the rod normal

N̂ ≈ ρ̂− θ̂∂θΓ (2.27)

where ∂θΓ = ∂θb/b0; see Fig. 2.7. Therefore, the tangential components of Λ are, to

lowest order in interface deformation Γ,

Λ33 ≈ (1 + u33) Λl

ΛTT ≈ Λt + (uθθ + (uρθ + uθρ)∂θΓ) Λt

ΛT3 ≈ (uθ3 + uρ3∂θΓ) Λl

Λ3T ≈ (u3θ + u3ρ∂θΓ) Λt .

(2.28)

As mixed normal-tangential components of the deformation matrix are ofO(h), we

can ignore them. Therefore, the only other component to consider is the pure normal

component, ΛNN = N̂ · ΛN̂. Per our assumption that the thickness is deformed by

Λn, we have ΛNN = (1 + uNN(θ))Λn where uNN ≈ uρρ − (uρθ + uθρ)∂θΓ. However, as

we shall show, uNN is determined by the other strain components when we assume

incompressibility of the polymer network.
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2.3.2 The total free-energy

We now expand the free-energy about the symmetric equilibrium Λ0 in terms of the

strain u. Decomposing the reference space R into a solvent-rich region Rr and a

solvent-poor region Rp breaks the volume integral into

∫
R

d3r =

∫
Rr

d3r +

∫
Rp

d3r

=

∫ L

0

ds

{∫
Rxsr

d2x γ +

∫
Rxsp

d2x γ

} (2.29)

where transforming to tube coordinates {x1, x2, s} decomposes the volume integration

into integration over cross sections regions Rxs
r and Rxs

p and integration over the

rod length, along with Jacobian determinant γ = 1 + εmn3 κm xn (see Appendix B).

Transforming transverse coordinates to polar form, d2x = dρ dθ ρ, where Rxs
r =

{(ρ, θ) | ρ < b(θ); 0 ≤ θ < 2π} and Rxs
p = {(ρ, θ) | b(θ) < ρ < a; 0 ≤ θ < 2π}. Taking

the thin shell approximation for the solvent-poor region, the integrand is evaluated

at ρ = b(θ) and

∫
Rxsp

d2x γ ≈
∫ 2π

0

dθ

∫ a

b(θ)

dρ b(θ) γb(θ) ≈
∫ 2π

0

dθ h(θ) b(θ) γb(θ) (2.30)

where h(θ) ≡ a − b(θ) is the non-uniform thickness of the solvent-poor region and

γb(θ) ≡ γ(ρ = b(θ)).

The total free-energy is therefore decomposed as F = Fr + Fp where the solvent-

rich part is

Fr =

∫ L

0

ds

{∫
Rxsr

d2x γ

[
1

2
µ

(
tr
(
ΛT
r Λr

)
+ tr

(
ΛT
r (u+ uT )Λr

)
+ tr

(
ΛT
r u

TuΛr

))
+ Frem

(
φr

det u

)
+ p

(
φh
φr

det u− 1

)]
(2.31)

43



and the solvent-poor part is

Fr =

∫ L

0

ds

{∫ 2π

0

dθ h b γb

[
1

2
µ

(
tr
(
ΛT
p Λp

)
+ 2Λ2

nuNN + 2Λ2
tuTT + 2Λ2

`u33

+ Λ2
nu

2
NN + Λ2

t (u
2
TT + u2

3T ) + Λ2
`(u

2
33 + u2

T3)

)
+ Frem

(
φp

det u

)
+ p

(
φh
φp

det u− 1

)]} (2.32)

where φr and φp correspond with the symmetric equilibrium values obtained in the

previous section.

2.3.3 Symmetric strain

Note that the strain u is an asymmetric tensor, uT 6= u, and can be decomposed as

u =
u+ uT

2
+
u− uT

2
= ε+ ω (2.33)

where ε = (u+uT )/2 is the symmetric part and ω = (u−uT )/2 is the antisymmetric

part. However, as ω is antisymmetric, it describes local rotations of the gel. This can

be seen by imaging a rotation U centered at r that takes points dr to dR, centered

at R via

dRi = Uij drj (2.34)

so the rotation matrix U plays the role of the deformation matrix Λ. But pure

rotations are isometries of space, so

dr2 = dR2 = dRi dRi = Uij Uik drj drk (2.35)

requiring that UTU = 1. Thus, we can express U in exponential form as U =

exp(θi Ti) where θi is a set of angles and U−1 = exp(−θi Ti) = UT implies that

Ti = −Ti. As Λ = 1 + u, we can approximate u by expanding the rotation matrix
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U to linear order in small rotations: U ≈ 1 + θi Ti. Thus, the antisymmetric strain

ω ≈ θiTi originates from a small rotation of the gel. However, as rotations do not

change gel lengths, the free-energy must be independent of rotations. Therefore, we

will expand the free-energy in terms of the symmetric strain ε, simply achieved by

taking u 7→ ε.

2.3.4 Rubber-like incompressibility

With the deformation matrix Λ expressed in terms of small symmetric strain ε, we

can now expand the free-energy density in powers of ε about the symmetric “vacuum”

of Λ0, borrowing the terminology of quantum field theory. Much like a saddle-point

expansion in QFT, we can determine the stability of the symmetric rod to symmetry

breaking by the expansion truncating to quadratic order. However, the small inhomo-

geneous strain will yield only small variations in the polymer volume fractions away

from their vacuum values φr and φp: the values of ε we are considering are not large

enough to cause parts of the gel to transition between solvent-rich and solvent-poor

phases. Thus, we may regard the phase-separated gel as a composite medium where

the two phases have a fixed degree of swelling and are therefore rubber-like. The

free-energy cost of compressing the gel at fixed volume fraction depends on the bulk

modulus of the gel at that volume fraction which is much larger than the shear modu-

lus µ, often one or two orders of magnitude for hydrogel [37] and up to four for actual

rubber [14]. We can therefore regard changes in volume fraction as costly compared

with shear deformations and quench all local volume changes with the constraint

det ε = 1 . (2.36)

By fixing the volume fraction of the gel locally as well as globally, we require by the

lever rule Eq. (2.6) that the fraction of solvent-poor region, f is fixed. As f is set
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by the thickness h = a− b of the solvent poor region, fixing f places a restriction on

the interface shape b = b0(1 + Γ(θ)). Restricting our attention to breaking coaxial

symmetry of the cross-section rather than longitudinal, “peristaltic” modes [38], the

constraint on Γ is, to leading order,

∫ 2π

0

dθ Γ(θ) = 0 . (2.37)

It is therefore convenient to expand Γ in Fourier modes

Γ(θ) =
∞∑
m=1

Γm(θ)

Γm(θ) =

[∫ 2π

0

dϕ

π
Γ(ϕ) cos(ϕ)

]
cos θ +

[∫ 2π

0

dϕ

π
Γ(ϕ) sin(ϕ)

]
sin θ

(2.38)

where Eq. (2.37) is satisfied due to the exclusion of m = 0.

As the total volumes occupied by two phases of gel are unchanged and the portion

of the free-energy density that depends on volume fraction alone is also unchanged,

the total free-energy may be written F = F0 + ∆F where

F0 = V

{
(1− f)

[
Frem(φr) + p

(
φh
φr
− 1

)]
+ f

[
Frem(φp) + p

(
φh
φp
− 1

)]}
(2.39)

is the free-energy of the symmetric cylinder and ∆F is the free-energy change due

to symmetry breaking. Expanding the free-energy to quadratic order in ε requires

that the incompressibility constraint be expanded to quadratic order. The result of

expanding the determinant to quadratic order in ε, performed in Appendix C, is

tr ε ≈ 1

2
tr ε2 − (tr ε)2 +O(ε3) (2.40)
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which can be iterated once, resulting in

tr ε ≈ 1

2
tr ε2 +O(ε3) . (2.41)

Therefore, certain linear terms in ∆F are replaced in order to satisfy the incompress-

ibility constraint [14]; we choose

ε11 + ε22 ≈ −ε33 +
1

2
tr ε2 in Rr

εNN ≈ −εTT − ε33 +
1

2
(ε2NN + ε2TT + 2 ε2T3 + ε233)

≈ −εTT − ε33 + ε2TT + ε2T3 + ε233 + εTT ε33 in Rp

(2.42)

where we have solved for εNN through a second iteration of the volume constraint.

2.3.5 free-energy change due to symmetry-breaking

Enforcing the incompressibility constraints of Eq. (2.42), the free-energy change ∆F

can be written in linear elastic form as

∆F =

∫ L

0

ds

{∫
Rxsr

d2x γ

[
µ (Λ2

` − Λ2
t ) ε33 +

1

2
crAB εA εB

]
+

∫ 2π

0

dθ b h γb

[
µ (Λ2

` − Λ2
n) ε33 + µ (Λ2

t − Λ2
n) εTT +

1

2
cpαβ εα εβ

]} (2.43)
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where crAB is an elastic constant tensor, expressed using the Voigt convention, A,B ∈

{11, 22, 33, 23, 13, 12}, and is given by

crAB = µ



2Λ2
t 0 0 0 0 0

0 2Λ2
t 0 0 0 0

0 0 Λ2
l + Λ2

t 0 0 0

0 0 0 Λ2
l + 3Λ2

t 0 0

0 0 0 0 Λ2
l + 3Λ2

t 0

0 0 0 0 0 4Λ2
t



(2.44)

and similarly for the solvent-poor region, the interface-tangent Voigt indices are

{α, β} ∈ {TT, 33, T3} and the elastic constant tensor is

cpαβ = µ


Λ2
t + 3Λ2

n 2Λ2
n 0

2Λ2
n Λ2

l + 3Λ2
n 0

0 0 Λ2
l + Λ2

t + 2Λ2
n

 . (2.45)

We have thus arrived at a linear elastic description of a composite system composed

of two materials with different elastic structures, characterized by elastic constant

tensors cr and cp, that are stretched from their rest shape due to inhomogeneous

strain ε33 6= 0. To simplify the problem of determining the equilibrium displacement

field u, we approximate the integration region in Eq. (2.43) as a straight cylinder so

γ ≈ 1, which can be taken as long as κ a� 1.

Now, we seek the equilibrium internal displacement field u that makes the free-
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energy stationary:

δ∆F = 0 =

∫ L

0

ds

{∫
Rxsr

d2x

[
µ (Λ2

` − Λ2
t ) δεint,33 + crAB εB δεint,A

]
+

∫ 2π

0

dθ b h

[
µ (Λ2

` − Λ2
n) δεint,33 + µ (Λ2

t − Λ2
n) δεint,TT + cpαβ εβ δεint,α

]}
(2.46)

where we have noted that δε = δεint as variations are taken with respect to the internal

displacement field u. As the integration region is approximated as a straight cylinder,

we can approximate the internal strain as

εint,µν =
1

2

(
∇′µuν +∇′νuµ

)
=

1

2

(
∂′µuν + ∂′νuµ − 2Ωλ

µν uλ
)

≈ 1

2

(
∂′µuν + ∂′νuµ

) (2.47)

where Ωλ
µν are the Christoffel symbols of the curved tube (see Appendix B), so that

variations are given by

δεint,µν ≈
1

2

(
∂′µδuν + ∂′νδuµ

)
. (2.48)

Defining symmetric stress tensors σr and σp with components

σrmn = 2µΛ2
t εmn

σrm3 = µ (Λ2
` + 3Λ2

t ) εm3

σr33 = µ (Λ2
` + Λ2

t ) ε33

σpTT = µ [(Λ2
t + 3Λ2

n) εTT + 2 Λ2
n ε33]

σpT3 =
1

2
µ (Λ2

` + Λ2
t + 2 Λ2

n) εT3

σp33 = µ [(Λ2
` + 3 Λ2

n) ε33 + 2 Λ2
n εTT ]

(2.49)
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the variation of the free-energy can be written as

δ∆F =

∫ L

0

ds

{∫
R′xsr

d2x′

Λ2
t

σrµν ∂
′
νδuµ +

∫ 2π

0

dθ′
b′ h′

Λt Λn

σpαβ ∂
′
βδuα

}
(2.50)

where we have transformed to the intermediate reference space R′ by taking d2x =

d2x′/Λ2
t and b = b′/Λt, h = h′/Λn. Note that the solvent-poor free-energy is similar to

that of a thin plate which is dominated by in-plane stresses; α, β ∈ {T, 3}. Integrating

by parts,

δ∆F =

∫ L

0

ds

{[∫ 2π

0

dθ′
b′ h′

Λt Λn

(σpT3 δuT + σp33 δu3) +

∫
Rxsr

d2x′

Λ2
t

σrµ3 δuµ

]L
0

+

∫ 2π

0

dθ′ b′
[(
σrNN +

h′

b′
(1− ∂θθΓ)σpTT

)
δuN + (σrTN − ∂′T h′ σ

p
TT ) δuT

+ (σrN3 − ∂′T h′ σ
p
T3) δu3

]
−
∫
Rxsr

d2x′

Λ2
t

δuµ ∂
′
νσ

r
µν

} (2.51)

where the first line results from integration over the endcaps at s = 0, L. Thus, the

equilibrium equations and boundary conditions are provided by setting the integrands

in Eq. (2.51) equal to zero.

In the slender rod limit, variations of the strain along the arclength are small

compared with the variations in the cross-section. Appealing to this separation of

scales, we can make a “quasistatic” approximation of the stress balance along the rod’s

arclength where variations of the displacement field along s are ignored, ∂′suµ � ∂′nuµ

for n = 1, 2. The quasistatic equilibrium equations are

∂′nσ
r
µn = 0 for ρ < b(θ) (2.52)
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with cross-section boundary conditions

σrNN + h′

b′
(1− ∂θθΓ)σpTT = 0

σrTN − ∂′T h′ σ
p
TT = 0

σrN3 − ∂′T h′ σ
p
T3 = 0

 for ρ = b(θ) . (2.53)

The equilibrium strain field is determined in Appendix D. Due to the surface stress

h′ σpTT , there is a Laplace-like pressure (see e.g., [36, 39]) that acts on the solvent rich

region, balanced by normal stress σrNN . The first boundary condition relates these

two stresses, where (1 − ∂θθΓ)/b′ ≈ (1 − Γ − ∂θθΓ)/b0 is the mean curvature of the

interface (see Eq. (2.70)). Furthermore, changes in surfaces stress due to, for example,

changes in solvent-poor thickness h must be balanced by traction of the solvent-rich

region, provided by the other two boundary conditions which balance gradients in

surface stresses h′ σpTT and h′ σpT3 against solvent-rich region stresses σrTN and σrN3.

Such gradients of surface stress are similar to the Marangoni force in fluids [39], an

effect arising from gradients in surface tension that leads to flow of viscous fluids.

2.3.6 An effective rod model

By determining the equilibrium displacement field u in terms of constrained rod shape

parameters ∆κ and ∆τ , as well as constrained interface shape Γ(θ), we can now de-

velop a reduced deformation free-energy ∆F due to to maintaining these constraints.

We have effectively integrated out all other degrees of freedom of the rod, resulting

in an effective description in terms of fewer fields. This method is completely gen-

eral in physics; for example, the Helmholtz free-energy of a thermodynamic system is

obtained by integrating out all microscopic degrees of freedom consistent with a con-

strained temperature, volume, and number of particles (e.g., [23]). By determining

the equilibrium strain (Eqs. (D.20)) to linear order in the constrained parameters, we

therefore obtain a quadratic free-energy.
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Inserting the equilibrium strain into the ∆F in Eq. (2.43), we are left with an

integrand that varies over the solvent-rich region cross-sectionRxs
r as well as the phase

interface. The integrand depends solely on powers of xm and therefore integration

over Rxs
r involves calculating moments of area

〈xm xn · · ·xp︸ ︷︷ ︸
N

〉 ≡
∫ 2π

0

dθ

∫ b(θ)

0

dρ ρN+1 ρ̂m ρ̂n · · · ρ̂p

=
bN+2

0

N + 2

∫ 2π

0

dθ(1 + Γ(θ))N+2 ρ̂m ρ̂n · · · ρ̂p .

(2.54)

We note that

εpq3 (∆κp + . . . ) 〈xq〉 = b3
0 εpq3 (∆κp + . . . )

∫ 2π

0

dθ
(
Γ1(θ) ρ̂q +O(Γ3)

)
(2.55)

εpq3 εrs3 (∆κp + . . . )(∆κr + . . . ) 〈xqxs〉 ≈
π

4
b4

0

∣∣∣∣∆κ+
Λt − 1

Λt

κ

∣∣∣∣2 (1 +O(Γ2)) (2.56)

where Eq. (2.55) couples the curvature and the center of mass of the solvent-rich

region and Eq. (2.56) results in the structure of the bending modulus which, while

generally an anisotropic tensor, is isotropic to leading order. The center of mass 〈xm〉

is non-zero only if Γ1 6= 0 and therefore serves as an indication of symmetry breaking.

It is convenient to expand Γ(θ) as

Γ(θ) = ψ · ρ̂(θ) +
∞∑
m=2

(
Ψme

im θ + Ψ∗me
−im θ

)
(2.57)

where ψ is a vector parameter describing the magnitude and direction of the displace-

ment of the centers of mass of the solvent-rich core and solvent-poor shell relative to

one another, as given by

〈xm〉 = b3
0

∫ 2π

0

dθ Γ1(θ) ρ̂m ≡ π b3
0 ψm, . (2.58)

In analogy to the displacement between atomic nucleus and electron cloud brought

52



Figure 2.8: Symmetry broken rod in which the solvent-rich and solvent-poor regions
do not share a common center of mass but are instead shifted relative to one another,
described by polarization ψ.

on by an external electric field, we will refer to ψ as a “polarization” of the core and

shell (see Fig. 2.8). Other modes of interface shape deformation are represented in

terms of complex Fourier amplitudes Ψm.

After integration, the total reduced free-energy is

∆F =
1

2

∫ L

0

ds

{
E η2 +B

∣∣∣∣∆κ+
Λt − 1

Λt

κ

∣∣∣∣2 + J

(
∆τ +

Λ` − 1

Λ`

τ

)2

−2 k εpq3

(
∆κp +

Λt − 1

Λt

κp

)
ψq − r1|ψ|2 −

∞∑
m=2

rm |Ψm|2
} (2.59)

with coefficients given below:

E = µπb2
0

[
Λ2
` + 2Λ2

t +
h0

2b0

(
4Λ2

` + Λ2
t + 7Λ2

n

)]
B =

1

4
µπb4

0

[
Λ2
` + 2Λ2

t +
h0

b0

(
4Λ2

` + Λ2
t + 7Λ2

n

)]
J =

1

8
µπb4

0

[
Λ2
` + 3Λ2

t + 4
h0

b0

(
Λ2
` + Λ2

t + 2Λ2
n

)]
rm =

1

2
µπb2

0m
(Λ2

t − Λ2
n)2

Λ2
t

[
1 +

h0

2b0

(
3

Λ2
t − Λ2

n

Λ2
t

m− 4

)]
k =

1

2
µπb3

0Λt

[
Λ2
t − Λ2

n +
h0

b0

(
(Λ2

t − Λ2
n)2

Λ2
t

+ Λ2
t + Λ2

n − 2Λ2
`

)]
(2.60)

As with the classical rod theory, the cost of extensile deformation, E η2 is much larger
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than the cost of bending and twisting deformations as long as κ b0, τ b0 � 1. Thus, we

can consider the slender rod as inextensible, able to only bend and twist at constant

length [36].

2.4 Phase interface and bending instability of phase-coexistent rods

Examining the reduced deformation free-energy Eq. (2.59), we find that

δ2∆F

δΨ2
m

= −rm (2.61)

where rm > 0 for small enough h0/b0. Therefore, even initially straight rods are

unstable to spontaneous symmetry breaking of the interface shape. In particular, the

polarization ψ acquires a non-zero value, pointing is some undetermined direction

transverse to the rod’s centerline. Due to the coupling with ∆κ, we see that the

straight rod is therefore unstable to spontaneous bending in an undetermined direction.

The mechanical origin of this spontaneous bending is due to a swelling moment, a

torque on the centerline due to the swelling stress of the solvent-rich region on one

side and the deswelling stress of the solvent-poor region on the other, as shown in

Fig. 2.8. This effect is also seen in the heating of bimetallic strips [40] composed of

two laminated metals of different thermal expansion coefficients, leading to a thermal

stress differential that results in a bent strip.

However, if the rod is initially curved so that κp 6= 0 then the free-energy is lowered

if

εpq3 κp ψq > 0 (2.62)

which is maximized if

ψ ∝ d̂3 × κ . (2.63)

Therefore, we may regard the initial curvature κ as an external aligning field on the
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polarization direction ψ in a manner analogous to a magnetic field acting on a spin

system in a ferromagnetic phase, a relation that we shall further explore in the next

section.

2.4.1 Stabilization of the phase interface

The instability of all Fourier modes of Γ is an artifact of adapting a homogeneous free-

energy density, namely Eq. (2.2), to describe an inhomogeneous gel. Our rationale

for doing this is that we are concerned with macroscopic deformations of the gel

arising from two well-defined regions corresponding with solvent-rich and solvent-

poor gel, each of homogeneous volume fraction. Smaller details, such as variation of

φ across the width of the phase interface, require an inhomogeneous description of

the gel. According to the program of Landau theory, the microscopic variation of the

volume fraction should be penalized with a gradient-squared term, resulting in an

inhomogeneous free-energy

Finh =

∫
R

d3r

[
1

2
µ tr ΛTΛ +

1

2
C |∇φ|2 + Frem(φ)

]
(2.64)

that is required for describing interface shape [41].

In systems undergoing spinodal decomposition, the spatial modulations of φ are

unstable for all wavenumbers q less than a upper cutoff wavenumber qc, set by the

rigidity of microscopic variation C [20, 27, 42]. Modulations of the phase interface for

the coaxial phase coexistent rod should similarly be stabilized at some large Fourier

mode through the introduction of a missing inhomogeneous contribution to the free-

energy which contribute to an interfacial free-energy. Following [20], the interfacial

free-energy has a phenomenological form which depends on the (i) surface tension c0,
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the (ii) mean curvature Hint, and (iii) the Gaussian curvature Kint:

Fint =

∫
int

dS

[
c0 +

1

2
c1H

2 +
1

2
c2K

]
. (2.65)

In our theory, the interface is described within our tube coordinates as a surface of

radius b(θ), which we give the parametric form

σ(θ, s) = `(s) + b(θ)ρ̂ (2.66)

and is thus a diffeomorphism, a smooth mapping, of a cylinder. By the Gauss-

Bonnet theorem (see e.g., [43]), the integral of the Gaussian curvatureK and therefore

contributes a constant to Eq. (2.65).

Furthermore, by adopting the “quasistatic” approximation of the rod equilibrium,

variations of the surface area and mean curvature are due to Γ alone. To calculate

the surface area and the mean curvature, we require the surface metric

gαβ = ∂ασ · ∂βσ ≈

 b2
0((1 + Γ)2 + (∂θΓ)2) 0

0 1

 (2.67)

describing lengths on the surface and the second fundamental form Bαβ

Bαβ = ∂αβσ · N̂ ≈

 b0(∂θθΓ− (1 + Γ)− 2(∂θΓ)2) 0

0 0

 (2.68)

characterizing a local parabolic profile near surface points [44]. The surface area is

Aint =

∫ L

0

ds

∫ 2π

0

dθ
√

det gαβ ≈ Aint,0 +O(Γ2) (2.69)

and the mean curvature is given by the trace of the second fundamental form (or,
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Weingarten’s equation [43, 44])

H = Bα
α ≈ −1 + Γ + ∂θθΓ +O(Γ2) . (2.70)

Thus, the free-energy change due to interface deformation is

∆Fint ≈
c1

2b2
0

∫ L

0

ds

∫ 2π

0

dθ (∂θθΓ + Γ)2 ≈ c1

2b2
0

∫ L

0

ds
∞∑
m=1

(m2 − 1)2 |Ψm|2 (2.71)

where we have used the Fourier expansion of Γ. Importantly, the m = 1 mode does

not contribute to the deformation free-energy of the interface because it is a simple

translation of the interface about the rod’s centerline. Deformation to higher modes,

however, are penalized by an energy that scales as m4. As this scaling is a higher

power than the m2 of the coefficient rm in Eq. (2.60), deformations of the interface

stabilized at a cutoff wavenumber mc > 1. Thus, the m = 1 mode is always unstable

in the low h0/b0 whilst higher-order modes are potentially stabilized by the interfacial

energy.
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CHAPTER 3

EQUILIBRIUM OF PHASE-SEPARATED GEL ROD

3.1 Equilibrium description via Landau Theory

In the previous section, we showed that the hydrogel rod with coaxial phase coexis-

tence of solvent-rich and solvent-poor regions is unstable to symmetry breaking. This

results in spontaneous polarization of the coaxial arrangement and internal swelling

stress that leads to a bent rod. We have found that the essential physics is captured

by the interplay of the change in curvature of the centerline ∆κ and the polarization

ψ which plays the role of an order parameter describing the rod’s broken symme-

try. If the rod is originally curved when fabricated with curvature κ then, due to

inhomogeneous internal stress, ψ is aligned with the curvature direction. Thus, κ

acts as an external aligning field on ψ. We will now use these observations to de-

velop a Landau free-energy that describes the equilibrium shape of the rod, with the

idea that the three-dimensional structure of the hydrogel can be abstracted to a one-

dimensional field theory. The Landau approach was originally developed to capture

the behavior of a system near a continuous phase transition [45] and has been used

to make mean-field predictions regarding diverse phenomena including the celebrated

Ginzburg-Landau theory of type-I superconductors [46] and the Landau-de Gennes

theory of the isotropic-to-nematic transition of liquid crystals [47].

A Landau free-energy density L is an analytic function constructed from, in prin-

ciple, all symmetry-preserving combinations of fields characterizing a system under-

going a phase transition [20, 48]. In practice, L is truncated as a finite power series,

maintaining the minimal terms needed to describe key aspects of the system. First,

consider the polarization order parameter ψ which is a vector field along the rod’s
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Figure 3.1: The “Mexican hat” profile of L(ψ)

centerline, pointing in the transverse plane to the centerline at all points. In the

absence of rod curvature, the free-energy should be invariant under SO(2) rotations

of the order parameter and is thus given by

L = · · · − 1

2
r|ψ|2 +

1

4
u|ψ|4 +O(|ψ|6) (3.1)

where we truncate the expansion after the quartic term. Note that we exclude odd

powers of |ψ| =
√
ψ2

1 + ψ2
2 as they are non-analytic. Due to the results we obtained

in the previous section, the quadratic term is typically negative resulting in instability

of ψ = 0. However, the center of mass of the solvent-rich phase cannot be arbitrary

far from the centerline and is limited by the gel’s rigidity. The |ψ|4 term stabilizes the

large-amplitude behavior of the free-energy, resulting in the classical “Mexican hat”

profile for L(ψ), seen in Fig. 3.1. This feature is universal for systems that undergo

a phase transition to a phase with a continuous symmetry encoded in degrees of

freedom of the order parameter that are transverse to its magnitude.

In particular, we recognize that Eq. (3.1) belongs to the class of models that

describe the physics of, for example, superfluids (via the Ginzburg-Landau theory)

where the equilibrium at |ψ|2 = r/u corresponds to the condensate density and the

direction of ψ is an SO(2) rotational degree of freedom that is mapped to the unit

circle in C1 and is thus a U(1) condensate phase. Finally, we introduce an external
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field H which couples to ψ and selects an alignment direction

L = · · · − 1

2
r|ψ|2 +

1

4
u|ψ|4 −H ·ψ . (3.2)

As we have previously shown, both the fabricated curvature κ and final curvature

κ′ of the rod couple to ψ. While the details of the curvature-polarization coupling

is developed from the three-dimensional theory of the previous chapter, symmetry

dictates the possible forms of the coupling. Requiring invariance under reversal of

the rod’s arclength coordinate s 7→ −s, we find that κ 7→ −κ and d̂3 7→ −d̂3 whereas

ψ 7→ ψ. Therefore, while the triple product d̂3 · (κ × ψ)) is invariant, the scalar

product κ ·ψ is not and we recover the coupling

H = d̂3 × (k1∆κ+ k2κ) (3.3)

where we use ∆κ = κ′ − κ without loss of generality.

So far, the Landau free-energy is a familiar complex φ4 theory at fixed rod shape

which acts as an external field on the polarization. We now allow the rod shape to

vary, introducing additional terms. As we have argued, the rod is inextensible and it

bends and twists at fixed length. For such rods, we can use the general deformation

energy

L =
1

2
Bmn∆κm∆κn +

1

2
J∆τ 2 + . . . (3.4)

where J is the torsional modulus and Bmn is a bending modulus matrix and is gener-

ally anisotropic. As this quadratic free-energy is taken to be positive-definite, higher

order terms are not needed.

The bending modulus matrix Bmn can be decomposed as a sum of irreducible

tensors [49]

Bmn = B(0)δmn +B(2)
mn (3.5)
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where B(0) is the rank-0 tensor, or scalar, representing the isotropic part. The

anisotropic contribution is given by B
(2)
mn, which a the rank-2 traceless, symmetric

tensor. Note that if the rod is unpolarized then it is isotropic with Bmn = B(0)δmn.

Therefore, we expect an expansion of the form

B(0) = B(0,0) +B(0,2)|ψ|2 + . . .

B(2)
mn = B(2,2)(|ψ|2δmn − 2ψmψn) + . . .

(3.6)

where the expansions are taken to O(ψ2) and are required to have the above forms

due to symmetry. Now, the bending modulus is determined by the second mo-

ment of area, weighted by a Young’s modulus E [36] which generally varies over

space; using notation where 〈 · 〉 represents integration over the cross section, Bmn =

〈E(x)xpxq〉 εmp3εnq3. If we consider a simple model where the rod is composed of

solvent-rich and solvent-poor regions with Young’s moduli Er and Ep, then

Bmn = (Er 〈xpxq〉r + Ep 〈xpxq〉P )εmp3εnq3 (3.7)

with the cross-section integration decomposed into integration over solvent-rich and

solvent-poor regions. In the unpolarized case ψ → 0, these two regions share a

common center of area and are both isotropic. The center of area for the solvent-rich

region is 〈x〉r = bψ and for the solvent-poor region is 〈x〉p = −bψ for an appropriate

length b. Moving to center of area coordinates δxr = x − bψ for the solvent-rich

region and δxp = x + bψ for the solvent-poor region where 〈δxr〉r = 〈δxp〉p = 0, the

second moments can be decomposed as

〈xpxq〉r = b2ψpψq + Irpq

〈xpxq〉p = b2ψpψq + Ippq

(3.8)

where Ir/ppq are second moments of area in the frame of the respective centers of area.
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If we assume that the polarization ψ describes a shift of the centers of the two regions

and that any departures from isotropy are dominated by this shift then we can take

I
r/p
pq ≈ Ir/pδpq and

Bmn ≈ ((ErI
r + EpI

pδpq + (Er + Ep)b
2ψpψq)εmp3εnq3

= Bδmn + B̃ψpψqεmp3εnq3

(3.9)

where the modulus B̃ characterizes the anisotropic bending rigidity due to polariza-

tion of the gel. However, the above form of the bending modulus matrix results in

curvature-polarization coupling of the form (εmn3∆κmψn)2 which is higher order-than

the linear coupling already present in L. Therefore, we can regard the anisotropy in

Bmn as higher-order curvature-polarization coupling which can be ignored in the con-

text of Landau theory. Therefore, the final form for the Landau free-energy density

is

L =
1

2
B|∆κ|2 +

1

2
J∆τ 2 − 1

2
r|ψ|2 +

1

4
u|ψ|4 − εmn3(k1∆κm + k2κm)ψn . (3.10)

The full Landau free-energy L is an integral of the Landau free-energy density L

over the rod’s length along with gradients of the fields to penalize variation. Thus,

L =

∫
ds

[
1

2
C|ψ̇|2 + L

]
(3.11)

where ψ̇ is taken to be an ordinary derivative with respect to s as the covariant form

∇sψ yields additional couplings between rod shape and ψ that, like the anisotropic

part of Bmn, are higher order contributions. Furthermore, it is important to note

that curvature κ′m and torsion τ ′ of the deformed rod already encompass elastic-like

terms and thus do not require additional gradients. To see this, note that the general
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Frenet-Serret equations Eq. (B.2) can be arranged as

κ′1 = d̂′3 · ∇sd̂
′
2 = −d̂′2 · ∇sd̂

′
3

κ′2 = d̂′1 · ∇sd̂
′
3 = −d̂′3 · ∇sd̂

′
1

τ ′ = d̂′2 · ∇sd̂
′
1 = −d̂′1 · ∇sd̂

′
2

(3.12)

from which we find

|κ′|2 = |∇sd̂
′
3|2

τ ′2 = |d̂′3 ×∇sd̂
′
1|2

εmn3κmψn = −ψ · ∇sd̂
′
3

(3.13)

so that the rod elasticity can be regarded as an O(3) nonlinear σ-model in one di-

mension, where the nonlinearity comes from fixing the unit magnitudes of {d̂′µ} [50].

Thus, we get a glimpse of the complexity of the rod’s Landau theory.

3.2 Equilibrium equations

In the rod’s equilibrium configuration, the Landau free-energy is stationary, δL = 0,

with respect to variations of the order parameter ψ, as well as variations in the frame

orientation, {d̂′µ}. Whilst variations of the order parameter lead to the equilibrium

equation via the usual Euler-Lagrange equations [51]

cψ̈m + rψm − u|ψ|2ψm − εmn3(k1∆κm + k2κm) = 0 (3.14)

variations of the frame are more involved as the frame basis must remain orthonormal.

Thus, the varied frame {d̂′µ+ δd̂′µ} must be accessed via SO(3) rotations of {d̂′µ}. We

can define the rotation via a set of three angles {δθµ}3
0, indicating a specific element

of the three-dimensional rotation group SO(3), which may then be represented by a
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rotation matrix U(δθ). The variation of the frame orientation is thus

δd̂′µ = (Uµν(δθ)− δµν)d̂′ν . (3.15)

Taking U = exp θλT
(λ) where T (λ)

µν = −ελµν forms a basis of the Lie algebra so(3), we

find

δd̂′µ = δθλT
(λ)
µν d̂′ν = δθ × d̂′µ . (3.16)

Variations of the frame orientation results in variations of curvature and torsion

via Eq. (3.12), which correspond to the rate of rotation of the frame. If we make the

dynamical analogy where the rod’s shape represents the trajectory of an asymmetric

top, where the arclength parameter s plays the role of time, then the curvature and

torsion represent the top’s angular momentum components. Thus, we can define

conjugate rotational moments M, given by

M = ∆κ+ J∆τ d̂′3 (3.17)

as well as a “swelling moment” Mswell

Mswell = k1ψ × d̂′3 (3.18)

which represents the torque exerted by swelling stresses due to the internal phase

separation. Using the relations [52]

∆κ′1 = d̂′1 · ∇sδθ

∆κ′2 = d̂′2 · ∇sδθ

∆τ ′ = d̂′3 · ∇sδθ

(3.19)
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the rod shape set by κ′ and τ ′ satisfies the Kirchhoff equations

∇s(M + Mswell) = Ṁ + Ṁswell + (κ′ + τ ′d̂3)× (M + Mswell) = 0 . (3.20)

The Kirchhoff equations are a system of nonlinear, first-order differential equations

that result from requiring balance of internal and applied, i.e. swelling, moments along

a rod that is generally curved. In the special case of a symmetric rod with isotropic

bending modulus, there are closed-form solutions, just as with the symmetric top.

However, the rod equations incorporate an asymmetric bending modulus and much

like the asymmetric top, we expect that Eq. (3.20) are non-integrable and can even

have chaotic solutions [53, 54].

3.3 Buckling of phase-separated rings

We consider the simple case of the symmetric equilibrium of a planar, ring-like hy-

drogel toroid and its buckling instability, recovering the result of [35]. The planar

ring initially has a centerline given by

`(s) = R
(

cos
s

R
ê1 + sin

s

R
ê2

)
(3.21)

and we choose the frame to correspond to the usual Frenet-Serret frame

d̂1(s) = − cos
s

R
ê1 − sin

s

R
ê2

d̂2(s) = ê3

d̂3(s) = − sin
s

R
ê1 + cos

s

R
ê2

(3.22)

as shown in Fig. 3.2. The initial curvature is therefore κ = (1/R)d̂2 and, as the

centerline lies in the plane, it is torsionless.

Now consider the equilibrium where the ring maintains uniform curvature and
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Figure 3.2: Planar ring ` with a representative form of perturbed ring `′ = ` + ζd̂2

defined in reference to a fixed basis {ê1, ê2, ê3}.

planar shape, only able to undergo homogeneous changes in radius R→ R′. However,

as we are considering the extensible limit of rods, the circumference of the ring cannot

change so we require that R′ = R; thus, κ′ = κ and ∆κ = 0. In this equilibrium,

L = πR

[
−r|ψ|2 +

1

2
u|ψ|4 + 2k2

1

R
ψ1

]
(3.23)

so ψ attains an equilibrium value

ψ∗ ≈ −
(√

r

u
+

k2

2rR
+O(R−2)

)
d̂1 (3.24)

where, for simplicity, we take R to be large. We may regard this symmetric equilib-

rium as corresponding to an ordered polar phase of the ring where the initial curvature

sets the alignment direction as −d̂1.

To address the stability of this homogeneous equilibrium, we have to determine

the free-energy change due to inhomogeneous variations of the fields about their

equilibrium values. Observing that the free-energy is lowered only if

2k1ψ
∗
1

∫ 2πR

0

ds∆κ2 < 0 (3.25)

and that the arclength integral of the curvature of any simple closed planar curve is
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2π (see e.g., [43]) the ring must therefore be linearly stable to planar deflection of the

centerline. We therefore search for instabilities by considering non-planar deflections

of the centerline

`′ = `+ ζ(s)d̂2 (3.26)

as well as transverse fluctuations of ψ

ψ ≈ |ψ∗|
[
−
(

1− 1

2
ϕ(s)2

)
d̂1 + ϕ(s)d̂2

]
(3.27)

where we assume that the magnitude |ψ∗| remains fixed. The geometric curvature

and geometric torsion, corresponding to the deformed Frenet-Serret frame {n̂′, b̂′, t̂′},

as in Appendix B, are given by

κgeo ≈
1

R

(
1 +

1

2
R2ζ̈2 − ζ̇2

)
(3.28)

τgeo ≈
1

R

(
R2

...
ζ + ζ̇

)
. (3.29)

Finally, we assume that the transverse frame {d̂′1, d̂′2} can undergo an additional rota-

tion by ξ(s), from the Frenet-Serret frame, resulting in a transformation of curvature

and torsion (see Eq. (B.8)):

∆κ1 = κgeo sinχ ≈ 1

R
χ

∆κ2 = κgeo cosχ ≈ 1

R

(
−1

2
χ2 +

1

2
R2ζ̈2 − ζ̇2

)
∆τ = τgeo + χ̇ ≈ 1

R

(
R2

...
ζ + ζ̇

)
+ χ̇

(3.30)

The second variation of the Landau free-energy is therefore given by

δ2L =
1

2

∫ 2πR

0

ds

[
B

1

R2
χ2 + J

(
1

R
(R2

...
ζ + ζ̇) + χ̇

)2

+ C|ψ∗1|2ϕ̇2 +
k2|ψ∗1|
R

ϕ2 − k1|ψ∗1|
R

(R2ζ̈2 − 2ζ̇2 − χ2 + 2χϕ)

]
.

(3.31)
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Figure 3.3: Buckling thresholds shown for dimensionless stressM1R/B versus dimen-
sionless torsional rigidity J/B; hatched regions are unstable. Solid lines represent the
case in which fluctuations in ψ is quenched, reproducing Fig. 3 from [35]. Dashed
lines include effect of fluctuating ψ, with C ′/B = M2R/B = 1.

After performing a Fourier expansion in each of the perturbing fields (see Appendix E),

we find buckling thresholds for each of the modes, indexed by n, as shown in Fig. 3.3.

Two cases are shown: solid lines represent the result when variations of ψ are

quenched, recovering the result of [35]; dashed lines show the effect of including

variations of ψ. Modes n ≥ 2 are shown as the first Fourier mode corresponds to a

rigid rotation of the ring and is thus excluded from our analysis. The lowest mode

to go unstable is n = 2, resulting in the “Pringle” shape that is characteristic of ring

buckling. Note that allowing ψ to fluctuate decreases the buckling threshold for all

modes. This is not surprising as quenching fluctuations is tantamount to constraining

degrees of freedom, thus making the rod more rigid.

3.4 Spin and twist: Goldstone modes of hydrogel rods

The case of an initially straight rod is special as it is unstable to spontantous sym-

metry breaking to a state of constant ψ and ∆κ = κ′ which solve the equilibrium

equations (Eqs. (3.14),(3.20) and (3.14)) but whose direction is not uniquely specified,

and thus results in a spontaneously chosen direction, which we may specify by as a
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Figure 3.4: (a) Minimium of the quartic potential L(ψ) has continuous rotational
symmetry of phase field δφ at fixed |ψ|. (b) A spin chain that possesses an aligned
phase with spontaneous phase ϕ0 has spin wave Goldstone modes with modulated
phase ϕ. (c) The polarized rod with spontaneous bending direction set by ϕ0 has
“twist wave” Goldstone modes with modulated bending direction.

phase ϕ of the polarization ψ, as in Fig. 3.4a. In this way, the initially straight rod

resembles a spin chain that spontaneously forms an ordered phase of aligned spins, or

a ferromagnetic phase whose magnetization order parameter, defined as the average

orientation of the spins, attains a fixed value but points in an arbitrary direction, as

shown in Fig. 3.4b. As this ordering breaks a continuous symmetry, a long wavelength

modulation of the orientation known as a “spin wave” [55] has an energetic cost that

vanishes as wavenumber k → 0, corresponding to the limit of a global rotation of

the orientation and are thus “gapless.” The Landau free-energy models the cost of

such a deformation and for small enough k, only the quadratic order term is kept so

Lspin−wave ∝ k2.

In general, any system that spontaneously breaks a continuous symmetry sup-

ports these gapless excitations [56, 57], also called Nambu-Goldstone modes. With
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the characteristic ∝ k2 energy cost, Goldstone modes provide the foundation for elas-

ticity of condensed matter systems: the proportionality constant is known as the

rigidity of the modes [20]. This is easily seen in crystalline systems where the posi-

tion of a lattice breaks the continuous translational symmetry and modulations of the

lattice position, low-frequency acoustic phonons, are Goldstone modes of the system.

Rigidity from broken continuous symmetry is, however, perhaps best exemplified by

liquid crystals, “mesophase” systems possessing both liquid and crystalline character-

istics [47]. In the case of nematic liquid crystals, the orientation of the molecules,

defined similarly to the magnetization of a spin chain, is spontaneously broken and

distortions of this “director field” away from a uniform orientation are characterized

as twist, splay, and bend deformations with their respective rigidities. Furthermore,

due to the vanishingly small energy cost of Goldstone modes, they are susceptible to

thermal fluctuations and thus, by the Fluctuation-Dissipation theorem [58], play an

important role in energy dissipation [20].

Goldstone modes of the straight rod, much like spin waves, correspond to the

rod whose orientation undergoes a long wavelength rotation about the centerline

as shown in Fig. 3.4c. In the limit where the orientation of the symmetry-broken

rod is modulated very little along the rod’s length, we may once again consider a

“quasistatic” treatment where the rod is in equilibrium at all points along its length,

independent of all other points, despite the imposed rotation of the bending direction.

Fixing the magnitudes of ψ and κ′, we note that the moment balance Eq. (3.20)

requires that κ′||ψ × d̂′3 so

ψ = |ψ|(d̂′1 cosϕ(s) + d̂′2 sinϕ(s)) = −|ψ|n̂′(s)

κ′ = |κ′|b̂′(s)
(3.32)

where ϕ(s) describes the modulation of the rod’s orientation. The rotation of ψ in

going from s → s + δs is therefore δψ = δϕ d̂′3. As ψ always points in −n̂ and κ′
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always points in b̂ we have

δn̂ = δϕ d̂′3 × n̂ = δϕ b̂; δb̂ = −δϕ n̂ . (3.33)

Thus, we see that by the Frenet-Serret equations Eq. (B.5), the torsion is τ ′ = ϕ̇.

Therefore, the change in the Landau free-energy due to slow modulation is,

∆L =
1

2

∫
ds(J + C|ψ|2)ϕ̇2 . (3.34)

We find that by representing the orientation ϑ in Fourier space

ϕ(s) =

∫
đk ϕ̂(k)eiks (3.35)

borrowing đk = dk/2π [48], that the free-energy per mode is (1/2)Ctwk
2 which is

indeed proportional to k2, with “twist wave” rigidity Ctw = J +C|ψ|2. In addition to

the “spin wave”-like mode corresponding with rotations of ψ, contributing a rigidity

C|ψ|2, there there is an accompanying torsion of the rod contributing a rigidity J .

By introducing torsion to a rod of fixed curvature, the full rod becomes a non-planar

structure, locally described as part of a helix [43].

Now, in assuming that the rod’s modulation is varied slowly, we have implicitly

introduced a lower length scale cutoff Λ<, defining the size of the region for which

the quasistatic approximation holds, providing an upper cutoff for k ∼ Λ−1
< . On the

other end, the rod is assumed to be long but is practically finite and thus has an

upper length scale Λ> which introduces a lower cutoff for k ∼ Λ−1
> . As we shall show

in the next chapter, the effect of fluctuations of the field ϕ at a point s on some other

point s′ is characterized by the fluctuation correlation function G:

G(s− s′) =

∫ Λ−1
<

Λ−1
>

đk
eik(s−s′)

k2
. (3.36)
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While the upper limit doesn’t give us any trouble, the k2 denominator diverges for

small k and we find that G has an infrared divergence, G ∼ Λ>. Therefore, the

effect of a fluctuation grows along the rod and, in the case of long rods, results in the

breakdown of long-range order. In general, the Mermin-Wagner theorem tells us that

long range order can only exist in systems with a dimension d > 2 [48]: in higher

dimensions, đdk ∝ |k|d−1d|k| so that the integrand scales as |k|d−3 and thus has a

removable singularity for d > 2. We therefore conclude that while a segment straight

rod may spontaneously bend in a well-defined direction and thus lie on a plane, a

very long rod will be a non-planar object. Note, however, that a planar bent rod

that is long enough will always intersect itself and that this theory does not take into

account the nonlocal effects of self-interaction.

3.5 Using internal phase separation for actuating deformations of hydro-

gel rods

One way to validate our model is to observe spontaneous bending of slender hydrogel

rods along with a clear distinction between solvent-rich and solvent-poor phases that

are polarized orthogonal to the bending direction. However, as straight rods have

been shown in experiments to undergo a large variety of instabilities upon heating,

including the surface “ballooning” seen in spherical samples, it may be difficult to

observe the ordered polarization that we predict. On the other hand, there is ev-

idence of this polarization picture in toroid-shaped samples of hydrogel [35]. The

homogeneous ring curvature of the toroid provides a uniform aligning field on the

polarization within our model. We therefore propose that rapid heating experiments

on curved rods may provide a good test of our predictions.

An S-shaped rod, for example, undergoes a an abrupt flip in the direction of κ at an

inflection point, as seen in Fig. 3.5a. The behavior of the polarization at this inflection

point could either (i) resemble a domain wall between regions of oppositely aligned ψ
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Figure 3.5: (a) An S-shaped portion of a rod with possible clockwise (cw) or coun-
terclockwise (ccw) twist in the inflection region; (b) example planar ring with eight
inflection points and “positively” crossings leading to a linking number of 4; (c) the
same ring but in a configuration that includes 2 “negative” crossings and a linking
number of 2; (d) interconversion between twist and write.

or (ii) undergo a rotation. The case of a rotation is expected if the inflection section

is expanded into a length of gel with κ = 0. Much like the “twist-wave” Goldstone

modes, we expect a rotation of ψ to exert an internal torque that twists the rod.

Therefore, such inflection points could be incorporated in the design of a hydrogel

rod to yield non-planar deformations that are actuated upon rapid heating.

Polarization rotations in inflection regions can either be clockwise or counterclock-

wise as shown in Fig. 3.5a. This has an interesting consequence for closed rings with

multiple inflection regions. As ψ obeys periodic boundary conditions in rings, there

is the possibility that the phase of the polarization, ϕ, can be wound around the ring

such that it can’t be unwound without changing |ψ|. Therefore, rings can support

topologically distinct configurations of ϕ, two of which are shown in Fig. 3.5b,c. The

number of topologically distinct windings of the polarization can be enumerated once

we note that as the ring is topologically equivalent to S1 and that the phase is a

mapping ϕ : S1 → S1. The topologically distinct configurations are thus enumerated

by the first fundamental group π1(S1) = Z, and can be described by a single integer,

the winding number. Much like in other ordered materials, such as liquid crystals and

crystalline solids, we find that the order that results from internal phase separation in

hydrogel rods can be globally classified using the notion of a topological charge, i.e.

the winding number. Equivalently, the polarization traces out a ring-like path that
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winds about the centerline such that the top down projection in Fig. 3.5b,c shows

crossings, which can be assigned a value of ±1. The equivalent topological character-

ization of two rings is the linking number (Lk) which is computed as the sum over the

crossing values, divided by 2. This number can alternatively be expressed as the sum

over two geometric (i.e., non-topological) quantities, known as the twist and writhe

[59]. As constant linking number, there can be an interconversion between twist and

writhe, shown in Fig. 3.5d, dictating the allowable configurations of the equilibrium

ring. Thus, we can expect that the stress due to a twisting polarization of the phase

separated regions will be relieved through writhing, similar to how the twist in DNA

double helices is converted to writhe and leads to “supercoiling” [60].
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CHAPTER 4

CONTINUUM MODEL OF FLUCTUATION-ALLOSTERIC

REGULATION

4.1 Introduction to allostery

The capacity for proteins to alter binding affinity due to changes in environment is

essential to many biological processes. Allosteric regulation, in which binding at a

certain active site on a protein is modified by the presence of an effector ligand, bound

to a regulatory site on the protein, allows for such a response. Effector ligands may be

either inducers, increasing the binding affinity at active site, or inhibitors, decreasing

binding affinity. The traditional, textbook notion of allostery is a based on the two-

state model of Monod, et al. [61] where effector binding triggers conformational

changes of the protein, altering the geometry of the active site and thus binding

ability. However, it is now recognized that effector binding does not necessarily change

single protein behavior; rather, it can affect the statistics of an ensemble of proteins

[62, 63]. Furthermore, there is evidence [64] that allostery does not require protein

conformational change but may occur via changes in protein dynamics. We consider

one version of dynamical allostery in which the sole effect of ligand binding is the

alteration of protein vibrational normal modes, thus changing its entropy without

altering its mean conformation. It has been demonstrated [65] that only a few normal

modes need undergo a modest frequency adjustment to achieve a measurable entropy

change.

Slow modes, characterized by long wavelength deformations, have proven to play

the dominant role in fluctuation allostery as disorder in the protein’s small scale struc-

ture tends to localize fast modes [66]. This observation has led to the development of
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simplified models of proteins where only the large-scale features are retained [66, 67],

resulting in free-energy estimates of the fluctuation-allosteric effect that are consis-

tent with measurements. It also offers the opportunity to develop continuum elastic

models of proteins based on coarse-grained descriptions of protein structures, aver-

aged over some cutoff length scale, which may be obtained experimentally, e.g., via

x-ray diffraction [68]. Proof-of-principle continuum models have shown that in order

to obtain a substantial free-energy change from remote binding, there must be a high

degree of inhomogeneity present [69, 70]. However, spatial modulations of rigidity of

an elastic protein is not the only source of inhomogneity: the boundary of a contin-

uum breaks translational symmetry so protein shape may be regarded prescribing an

inhomogeneity.

Shape plays an important role in determining the vibrational properties of con-

tinua with an impact on the density of states of waves [71]; conversely, the vibrational

spectrum may provide clues about the shape of the continuum in the inverse problem

of “hearing the shape of a drumhead” [72]. In this work, we use a continuum elas-

tic description of protein fluctuations to demonstrate that changes in coarse-grained

protein shape due to ligand binding can result in fluctuation-allosteric regulation.

In particular, in order to diagnose the effect of shape change on remote signal, we

develop a method of computing the change in fluctuation correlations and show how

this change can lead to cooperative binding effects.

4.2 Continuum Model of Coarse-Grained Protein

Consider a coarse-grained, continuum representation of a protein’s shape which we’ll

label Ω where the resolution of the protein has been cut off at some coarse-graining

length scale a. Instead of characterizing the protein by a sequence of atomic coordi-
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Figure 4.1: Schematic of the protein’s continuum shape Ω 3 x, along with displace-
ment field u, and boundary ∂Ω 3 α with outer normal n̂

nates {xi} and the corresponding pairwise interactions

∑
i<j

V (|xi − xj|) (4.1)

the atomic positions are averaged, blurred out over a volume a3, resulting in a smooth

density profile ρ(x), as well as an energy functional V [ρ] which is likewise smooth.

This standard coarse-graining procedure provides the basis for developing continuum

theories (see e.g., [39]) and has also been used to characterize large-scale protein

structure [68].

With a continuum representation of the protein in hand, we now consider a con-

tinuum linear elastic description of small deformations. Starting from an equilibrium

conformation where the protein has a fixed mean shape Ω, a small shape change

displaces points x → x + u(x) where u is a displacement field, depicted in Fig. 4.1.

Assuming an interaction of the form Eq. (4.1), the protein’s energy changes only if

inter-atomic lengths are changed. The change in continuum intervals |dx|2 is

|dx + du|2 − |dx|2 = dx · du + du · dx + |du|2

= (∂iuj + ∂jui + ∂iu · ∂ju)dxidxj ≡ 2uijdx
idxj

(4.2)

where the strain tensor uij is symmetric, reflecting invariance under rotation. By
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considering small fluctuations of the protein’s shape, we approximate the strain tensor

to leading order in u

uij ≈
1

2
(∂iuj + ∂jui) . (4.3)

Expanding the energetic cost of small deformations about an equilibrium conforma-

tion leads to a general form for the elastic energy

H =
1

2

∫
Ω

dVx Cijkl(x)uij(x)ukl(x) =
1

2

∫
Ω

dVx Cijkl(x) ∂iuj ∂kul (4.4)

where the elastic constant tensor C is generally inhomogeneous and anisotropic but,

owing to the symmetry of the strain tensor uij = uji, must have the following sym-

metries

Cijkl = Cjikl = Cijlk = Cklij (4.5)

which reduces the number of independent components from 34 = 81 to 21 [73]. In

the case of an isotropic continuum, the elastic constant tensor is further reduced

Cijkl = µ(δikδjl + δilδjk) + λδijδkl (4.6)

where µ is the shear modulus and λ is the Lamé parameter related to the bulk modulus

K via λ = K − 2
3
µ.

Integrating Eq. (4.7) by parts and applying Stokes’ theorem,

H =
1

2

∮
∂Ω

dSα ui(α)n̂j(α)Cijkl(α)
∂

∂αk
ul(α)− 1

2

∫
Ω

dVx uj∂jCijkl(x) ∂kul (4.7)

the equilibrium condition δH = 0 yields the equilibrium equation

−∂jCijkl∂kul ≡ Ĥilul = 0 for x ∈ Ω (4.8)
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with zero-traction boundary conditions

n̂j(α)Cijkl(α)
∂

∂αk
ul(α) = 0 for α ∈ ∂Ω (4.9)

due to the free variations of δu at the boundary and is equivalent to specifying that the

protein is fluctuating at constant hydrostatic pressure P . The equilibrium elasticity

operator Ĥij defined in Eq. (4.8) along with the zero-traction boundary conditions

specifies the vibrational spectrum of the protein. The spectrum is defined through

the eigenvalue problem

(Ĥ − εn1)ηn = 0 (4.10)

where the eigenfunctions ηn obey the zero-traction boundary conditions and are con-

tinuum normal modes of the elastic medium. Importantly, the eigenfunctions form a

complete set
∞∑
n=0

ηn,i(x)ηn,j(y) = δijδ(x− y) (4.11)

and can be taken to be orthonormal

∫
Ω

dVxηm · ηn = δmn . (4.12)

4.3 Shape fluctuations calculated via ensemble theory

Recall that we seek to study allosteric regulation as a change in protein statistic rather

than a deterministic effect on a single protein. To this end, consider an ensemble of

proteins of the same continuum shape Ω in a thermal reservoir at temperature kBT =

β−1; averages of the deformation field u are calculated by sampling proteins from

this ensemble, each of which generally has a unique displacement field, representing a

unique microstate σ. Within this canonical ensemble [23], the probability of observing
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a certain microstate σ is proportional to a Boltzmann factor

P (σ) =
1

Z
e−βH(σ) (4.13)

where the proportionality constant 1/Z normalizes the distribution,
∑

σ P = 1, so

Z =
∑
σ

e−βH(σ) (4.14)

which is the canonical partition function. As the microstate specified by a given

deformation field, the partition function is a sum over field configurations

Z =

∫
Due−βH[u] = e−βG (4.15)

where H[u] is the energy functional Eq. (4.7) and we have introduced the Gibbs free-

energy G which is the thermodynamic potential that characterizes the system at fixed

constraints of temperature T , pressure P (c.f. the boundary condition Eq. (4.9)), and

number of atoms N . The functional integral is a field generalization of the Feynman

path integral [74] and can similarly be evaluated by subdividing Ω into N regions,

with N →∞, indexed by xn, as shown in Fig. 4.2. The displacement field evaluated

at one of these points un = u(xn) is then integrated over R3, independently of its

neighboring points, so

∫
Du = lim

N→∞

∫
R3

∫
R3

· · ·
∫

R3︸ ︷︷ ︸
N

N∏
n=1

[dun] . (4.16)

Note that uniform translations and rotations of Ω do not stretch the protein in any

way so uij = 0 and thus the elastic energy Eq. (4.7) disappears, leading to diverging

contributions to Z. This is a problem manifest in gauge theories where H has some

gauge symmetry and is solved by a process of gauge fixing. Thus, we restrict the set
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Figure 4.2: Continuum subdivided into small volumes, indexed by points xn with a
displacement vector un for n ∈ {1 . . . N}.

of permissible deformations to the space of located shapes

Z =

∫
(loc)

Du e−βH[u] (4.17)

that have fixed center of mass and orientation, borrowing the term from the theory of

gauge kinematics [75]. However, this restriction isn’t easily made using the definition

of the functional integral in Eq. (4.16) as it is a coordinated restriction between all

of the points in Ω. Following [76], we instead use a system of collective coordinates

{bn} with a basis provided by the normal modes,

u(x) =
6∑

α=1

b
(α)
0 η

(α)
0 (x) +

∞∑
n=1

bnηn(x) (4.18)

where {η(1)
0 , . . . ,η

(6)
0 } is the set of zero-modes, forming a degenerate subspace with

ε0 ≡ 0, i.e. a set of d = 3 translations along with a set of rotations, and ηn>1

modes that are transverse to the zero-modes subspace, which we show schematically

in Fig. 4.3. The functional integration restricted to the space of located shapes is

thus conveniently given by

∫
(loc)

Du =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∞∏
n=1

[dbn] (4.19)
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Figure 4.3: Partitioning of configuration space into the null space, spanned by zero-
modes of the elasticity operator and its complement, the space of located shapes.
Deformations are taken in reference to the protein’s center of mass and principle axes
of intertia.

where bn ∈ (−∞,∞). As the energy is quadratic in bn,

H =
1

2

∞∑
n=1

b2
nεn (4.20)

the partition function is easily evaluated as a product of Gaussian integrals

Z =
∞∏
n=1

∫ ∞
−∞

dbn e
− 1

2
βεnb2n =

∞∏
n=1

√
2π

βεn
= N

(
det′ βĤ

)−1/2

(4.21)

where we have identified the product of non-zero eigenmodes as the determinant of

the operator Ĥ, restricted to the space transverse to the null space.

To measure the degree to which shape fluctuations in different locations of the

protein are related, consider the fluctuation correlation function

〈ui(x)uj(y)〉 =
1

Z

∫
(loc)

Du e−βH[u]ui(x)uj(y). (4.22)

Using the collective coordinate representation, we find that

〈ui(x)uj(y)〉 = kBT

∞∑
n=1

ηn,i(x)ηn,j(y)

εn
(4.23)
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Therefore, 〈ui(x)uj(y)〉 = kBTΓij(x,y) where Γ is a Green’s function satisfying

Ĥij(x)Γjk(x,y) = δ̃ik(x,y) for x,y ∈ Ω

n̂j(α)Cijkl(α)
∂

∂αk
Γlm(α, ·) = 0 for α ∈ ∂Ω

(4.24)

where δ̃ is the identity in the space transverse to the zero-mode subspace and Γ

is referred to as the Moore-Penrose pseudoinverse of Ĥ; for more details, refer to

Appendix F.

4.4 Change in elastic Green’s function due to shape variation

Consider the addition of a small, continuum shape ω, representing a bound ligand

to the larger protein shape Ω at a region Σ ⊂ ∂Ω representing a binding site, as

shown in Fig. 4.4. Assuming that such an addition doesn’t change the equilibrium

conformation of the protein, the ligand-bound protein can be regarded as a continuum

with a slightly different domain Ω′. It is essential that Ω′ is not a deformation of Ω

but should be treated as a completely different equilibrium protein of shape Ω′. To

determine difference in shape fluctuations between the protein Ω and ligand-bound

protein Ω, we determine the change in their elastic Green’s functions Γ′ and Γ. As

Γ′ and Γ are functions on two different spaces, we have to be careful about defining

their difference ∆Γ = Γ′ − Γ. However, as Ω′ = Ω ∪ ω, we can consider Γ′ij(x,y) as

a restriction of the full function Γ′ij(x
′,y′) to the protein part of the protein-ligand

whole, so we can define

∆Γij(x,y) ≡ Γ′ij(x,y)− Γij(x,y) for x,y ∈ Ω . (4.25)

We seek a perturbative calculation of Γ′ = Γ + ∆Γ in terms of a small parameter

that scales with the size of the ligand ω. Thus we need a formalism where the Green’s

function equation Eq. (4.24) for Γ′ can be expressed in terms of the equation for Γ,

83



Figure 4.4: The addition of a small ligand ω at boundary location Σ results in a new
protein domain Ω′. If the two shapes are diffeomorphic then f is a mapping between
the two shapes.

plus a small correction. However, we face a problem where the form of the equilibrium

elastic operator

Ĥil = −∂jCijkl∂k (4.26)

remains unchanged but the change comes in through the specification of the domain

and thus the boundary conditions as well. Equivalently, Ĥ has different spectral

forms due to the different eigenvalues and eigenfunctions in the two domains; even

the zero modes η(α)
0 are different as the orthonormal condition requires integration

over different domains Ω′ and Ω. This problem therefore lies outside of the familiar

Schrödinger perturbation theory and is reminiscent of the problem of solving for the

eigenstates of a particle, well known in a spherical potential, in a slightly ellipsoidal

potential. A method of solving this problem involving a coordinate transformation

that maps the ellipsoid onto the sphere was developed by Migdal [77] in the context

of computing nuclear moments of inertial. This coordinate transformation alters the

Hamiltonian, so that the result is then obtainable via Schrödinger perturbation theory

[78] and provides a program for our calculation.

Problems of domain variation are important within the field of shape optimiza-

tion and the study of moving surfaces [79]. In particular, the Hadamard variational

formula provides ∆Γ in the case of Laplace’s equation [80]. The method that we will

use here is based on the approach of interior variation similar to that of [81, 82] and
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relies on a diffeomorphism

f : Ω −→ Ω′

x 7→ x′

which results in a pullback of the operator Ĥ on Ω′ to a new operator Ĥ′ on Ω,

analogous to the change in the Hamiltonian in Migdal’s method.

Rather than taking the approach of Hadamard and others where a transformed

Green’s function equation Eq. (4.24) is found, we take a field-theory approach, cal-

culating Γ′ as

kBTΓ′ij(x
′,y′) =

∫
(loc)
Du′ exp{−β

∫
Ω′

dVz′ H′(u′)}u′i(x′)u′j(y′)∫
(loc)
Du′ exp{−β

∫
Ω′

dVz′ H′(u′)}
(4.27)

where

H′ = 1

2
Cijkl(z

′) ∂′iu
′
j ∂
′
ku
′
l (4.28)

is the energy density in Ω′. Now let x′ = f(x) ≡ x + s(x) where s is a vector field

describing the deformation that would be required to take Ω → Ω′. Expanding the

integrals in Eq. (4.27) to leading order in s, we find that

kBT∆Γij(x,y) ≈ −kBT
∫

Σ

dSα ζ(α)

{
Cklmn(α)

∂Γik(x,α)

∂αl
∂Γnj(α,y)

∂αm

+Kik(x,α)Γkj(α,y) + Γik(x,α)Kkj(α,y)

} (4.29)

where ζ(α) = n̂ · s(α) describes the depth of the perturbation and the null-space

projection kernel K is given by Eq. (F.9); see Appendix G for full calculation details.

It is important to note that Eq. (G.16) is a linear elastic version of Hadamard’s result

for Laplace Green’s functions [79–82]. Furthermore, this leading order perturbative

correction to the only involves single “scattering” off of the binding site boundary and

that the magnitude of the correction scales with the volume of the ligand as illustrated
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Figure 4.5: Graphical representation of the change in the Green’s function as a
scattering off of the binding site Σ, weighted with ligand depth ζ, with bare Green’s
function Γ.

in Fig. 4.5. The last two terms are required to ensure that the new Green’s function Γ′

is orthogonal to the zero-modes of the new protein shape. Finally, the formula holds

for either ligand additions, which increase protein volume, ligand detachments or

“scooping out” volume, or combinations of both. Importantly, this feature means that

by varying the form of shape alteration, described by ζ, one can tune the fluctuation

correlations.

4.5 Implications for Allostery

As strain quantifies anisotropic stretching of a material, the strain fluctuation corre-

lations

〈uij(x)ukl(y)〉 =
1

4
kBT

(
∂2Γjl(x,y)

∂xi∂yk
+
∂2Γil(x,y)

∂xj∂yk

+
∂2Γjk(x,y)

∂xi∂yl
+
∂2Γik(x,y)

∂xj∂yl

) (4.30)

detail the degree to which shape deformations of two regions in the protein are related.

Taking the appropriate derivatives of Eq. (G.16), we find that the change in strain

fluctuation correlations is given by

∆ 〈uij(x)ukl(y)〉 ≈ −β
∫

Σ

dSα ζ(α)Cmnpq(α) 〈uij(x)umn(α)〉 〈upq(α)ukl(y)〉 (4.31)
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Figure 4.6: Sketch of cooperative binding with two binding sites, labeled 1 and
2, on the protein boundary locations Σ1 and Σ2. Process without regulator ligand
attachment results in free-energy change ∆G2 whereas the presence of a ligand at site
1 results in ∆G2|1, which may be obtained from the free-energy change of binding to
site 1, ∆G1, and the net free-energy change ∆G21.

where the null-space projector K disappears as it is strain-less. Single-point strain

fluctuations describe mean-squared fluctuations of material lengths and thus charac-

terize the material’s rigidity. We see from Eq.(4.31) that strain fluctuations decrease

for added volume, meaning that ligand binding is expected to increase protein rigid-

ity, to leading order; the magnitude of this increase is controlled by the degree of

fluctuation correlations with the binding site. This is our central result and it can

importantly be measured in crystallographic data as the width of Bragg peaks, char-

acterized by the Debye-Waller ‘B’ factor [20].

In equilibrium, we can assume that the distribution of populations of proteins with

and without bound ligands is set by the Gibbs free-energy change due to binding,

∆G. In cooperative (inhibitive) binding processes, the presence of an effector ligand

decreases (increases) the binding free-energy, altering the equilibrium distribution.

Cooperative effects are quantified by monitoring ∆∆G = ∆G2|1−∆G2, the difference

in the free-energy of binding at site 2, given the presence of a bound effector ligand

at site 1, ∆G2|1, and without a bound effector ligand ∆G2. Referring to Fig. 4.6,

the free-energy change of binding both ligands, ∆G21, is equal to the net free-energy
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change of binding the effector ligand at site 1 and then binding at site 2, ∆G1+∆G2|1.

Therefore, ∆∆G = ∆G21 − ∆G2 − ∆G1 measures cooperativity by subtracting off

the effects of individual binding processes.

Consider the case in which the effect of ligand binding is dominated by changes

in vibrational entropy. The free-energy change is computed using the relation from

Eq. (4.15), G = −kBT lnZ:

∆G = −kBT lnZ ′/Z =
1

2
kBT ln

(
det′βĤ′

det′βĤ

)
(4.32)

where the functional determinant was introduced in Eq. (4.21). As Γ is the pseu-

doinverse of Ĥ in the null-space’s complement, the restriction on the determinant can

safely be dropped, so

∆G =
1

2
kB T ln

(
det β Γ′−1

det β Γ−1

)
= −1

2
kB T ln

(
det Γ′

det Γ

)
. (4.33)

Using the identity ln (det Γ) = tr (ln Γ) (see Appendix C) and expanding Γ′ = Γ+∆Γ,

where ∆Γ is once again restricted to Ω,

∆G = −1

2
kB T tr ln(1 + Γ−1∆Γ) . (4.34)

To calculate ∆∆G, let Γ1, Γ2, and Γ21 represent Green’s functions with bound

ligands at, respectively, site 1, site 2, and sites 1 and 2. Introducing ε as a small

bookkeeping parameter for the expansion, we can represent Γ1 and Γ2 in the following

way

Γ1 = Γ0 + ε∆Γ1 = Γ0 + ε∆(1)Γ1[Γ0] + ε2Φ1[Γ0]

Γ2 = Γ0 + ε∆Γ2 = Γ0 + ε∆(1)Γ2[Γ0] + ε2Φ2[Γ0]

(4.35)

where ∆(1)Γ1[Γ0] and ∆(1)Γ2[Γ0] are the leading order corrections due to single scat-
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Figure 4.7: (a) Diagrams for calculating Γ1 and Γ2 are shown where Φ1 and Φ2

generate all O(ε2) corrections. (b) Calculation of the total propagator Γ21 can be
written in terms of diagrams for Γ1 and Γ2 along with the leading order scattering
diagrams between both ligands, given as ∆(2)Γ21.
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tering, given by Eq. (G.16), and Φ1[Γ0] and Φ2[Γ0] are higher order terms that involve

interactions with the boundary; see Fig. 4.7a for a diagrammatic representation. Now,

the Green’s function Γ21 is expected to involve all scattering terms involving ligands

1 and 2 individually as well as scattering between the two ligands. To generate the

expansion, it is convenient to compute Γ21 by imagining that Γ1 has been computed

and to determine the effect of introducing ligand 2, which can be determined via the

expansion for Γ2 using a dressed propagator:

Γ21 = Γ0 + ε∆Γ21 = Γ1 + ε∆(1)Γ2[Γ1] + εΦ2[Γ1] . (4.36)

Expanding Γ1, we find that

ε∆Γ21 = ε∆Γ1[Γ0] + ε∆Γ2[Γ0] + ε2∆(2)Γ21[Γ0] +O(ε3) (4.37)

where ∆(2)Γ21 is defined diagrammatically in Fig. 4.7b and represents the lowest order

mutual scattering between ligands 1 and 2. Writing ∆∆G in terms of the change in

Green’s functions by using Eq. (4.34),

∆∆G = −1

2
kBT tr

(
ln

1 + εΓ−1
0 ∆Γ21

(1 + εΓ−1
0 ∆Γ2)(1 + εΓ−1

0 ∆Γ1)

)
. (4.38)

Expanding to ε2 and evaluating with Eq 4.37, we find that

∆∆G ≈ −ε
2

2
kBT tr

(
Γ−1

0 ∆(2)Γ21 − Γ−1
0 ∆Γ2Γ−1

0 ∆Γ1

)
(4.39)

where if we use the spectral representation for Γ0, we recognize that the second term
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evaluates to half of the first, leading to the result

∆∆G ≈ −1

2
β

∫
Σ1

dSαζ(α)

∫
Σ2

dSβζ(β) Cpqij(α) 〈uij(α)ukl(β)〉

× Cklmn(β) 〈umn(β)upq(α)〉 .
(4.40)

Evidently, when the perturbation lengths ζ are of the same sign (i.e., positive for

added ligands), the result is a cooperative interaction, a decrease in free-energy. It

confirms the expectation that cooperativity is greatest when binding sites have large

strain fluctuation correlations. Furthermore, this result is independent of binding

order meaning that binding at site 2 can also regulate binding at site 1.

Considering that our result is a leading order effect, we expect that the possibility

of inhibitive allostery via entropic changes alone occurs at higher order. For higher

order terms to become important, the leading order term must be small, which occurs

in the case of marginally correlated binding sites. Even if the magnitude of the

correlation function is small, gradients need not be. This suggests that inflection

points of correlation, which we expect to be more sensitive to ligand shape, are

candidate allosteric sites. Alternatively, if there is a mismatch between binding site

shape and ligand shape, then binding deforms both the ligand and the binding site. As

the leading order effect of ligand attachment is a stiffening of the protein, fluctuation

allostery is inhibitive for such “induced-fit” requirements.

4.6 Conclusion

Much of the development of fluctuation allosteric regulation has been centered on

the premise that ligand binding alters the protein’s elastic rigidity, altering its vibra-

tional spectrum. By modeling the protein and ligand as elastic continua, we have

shown that the allosteric effect of cooperative binding can occur even in the limit

of homogeneous elastic moduli. In our model, the shape of the protein’s boundary
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plays a key role in determining the vibrational spectrum. The ligand alters vibration

through adjustment of this boundary geometry and thus the allosteric effect relies

on “hearing” the shape of the protein. Furthermore, we have shown that to leading

order, the change in vibrational free-energy due to binding depends on the status of

other binding sites, revealing a cooperative effect.

To conclude, we note that the notion of allostery has lately found its way into

condensed matter physics. It has been demonstrated, through simulation, that me-

chanical lattices can be designed, with varying fidelity, to respond with a desired strain

at one location on the boundary due to a prescribed strain elsewhere on the boundary

[83, 84]. Interestingly, the method, which involves patterning inhomogeneities in the

mechanical lattice, has shown that there is an optimal pattern in which a soft region,

shaped like a trumpet’s bell, connects the two sites and is surrounded by a more rigid

region. However, the role of the lattice’s boundary shape has not yet been explored.

Our results might be used to help guide development of optimal geometries for such

“allosteric materials.”
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CHAPTER 5

CONCLUSIONS: EXTREME STATISTICAL MECHANICS

As we have demonstrated, the function of a material, e.g., how it responds to changes

in external controlling conditions such as temperature or pH, can be controlled by

its form, meaning its large-scale geometry or topology and, possibly, internal con-

stitution. First, we have shown that rapidly heated hydrogel rods undergo phase

separation, forming solvent-rich and solvent-poor regions whose spatial arrangement

is governed by rod shape. Because the internal stress due to phase separation bends

the rod, rapid heating may be used to actuate large mechanical deformations. Sec-

ond, We have shown that allosteric regulation, the process by which the ability of

a protein to bind smaller biomolecules is modified by the attachment of a regulator

ligand molecule to the protein, can be influenced by the overall shape of the protein.

Changes in boundary geometry due to, e.g., the addition of a regulator molecule

at one binding site on the protein alters correlations between thermal-fluctuation-

induced elastic deformations of the protein, regarded as an elastic continuum. In

both cases, hydrogel rods and allosteric proteins, some key aspects of the material’s

thermodynamics is determined by its overall shape.

There is currently much interest withing the soft matter physics and mechani-

cal engineering communities in materials whose deformations are controlled by pre-

scribed patterns of mechanical instability; such materials are said to exhibit “extreme

mechanics” [85, 86]. For example, incompressible materials, such as rubber, can be

made much more compressible, even auxetic1, at the macroscopic scale through im-

printing certain failure modes [87]. Another example is origami, where creases are
1i.e., having negative Poisson’s ratio so that a bar of the material will become thinner when

compressed at the ends
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patterned in paper in such a way that they facilitate folding to non-flat, often com-

plex, shapes [86]. The hydrogel rod, on the other hand, achieves large deformations

through a thermodynamic instability and associated phase transition, placing it in a

rather different category than materials that rely on mechanical instability.

The idea of actuation of shape change via phase transitions of materials, “extreme

statistical mechanics,” gives rise to further questions, most notably: What other

systems exhibit a similar coupling between shape and thermodynamics and what

practical, or even commercial, applications might they have. Closely related are the

well-studied and quite beautiful couplings between elasticity and liquid crystalline

order found in liquid crystal elastomers (see e.g., [14]). Furthermore, a number of

interesting questions can be addressed for the hydrogel rod. For example, how do

the hydrodynamics of the polarized solvent-poor shell and solvent-rich core regions

affect the rod’s equilibration dynamics? What does rapid heating do to other rod

topologies, such as a two-hole doughnut (or a figure-of-eight)? And how does the

polarization order parameter generalize to higher dimensions, e.g., in rapid heating

of two-dimensional hydrogel slabs?2 Additionally, it would be interesting to study

critical phenomena (anomalous exponents, scaling, etc.) in deformable geometries. I

look forward with excitement to see how these ideas are developed.

2These questions were raised by my committee (see title page) and Prof. Andrew Zangwill, whom
I thank for their valuable input.
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APPENDIX A

PHASE COEXISTENCE AND THE COMMON TANGENT

CONSTRUCTION

Consider a system of N particles with volume V held at temperature T . With these

state functions, it is natural to describe the equilibrium of the system by the Helmholtz

free-energy F (T, V,N). As the free-energy is is a homogeneous function of first order,

F (T, V,N) = V F

(
T, 1,

N

V

)
≡ V F̃ (T, ρ) (A.1)

where ρ = N/V is the number density of the particles. Consider a case in which the

system has two coexistent phases. We will derive a set of equations that describe the

phase-coexistent equilibrium, viz. the common tangent construction and the lever

rule, and show that the free-energy density F̃ must have two equilibrium states.

Let the system phase separate into two phases ‘A’ and ‘B’ with densities ρA and

ρB, occupying volumes VA and VB. Note that as

VA + VB = V (A.2)

we can define a fraction f ≡ VA/V so the partitioning of the system implies that

VB/V = 1− f . Furthermore, the total number of particles is conserved

N = NA +NB = VAρA + VBρB = V [fρA + (1− f)ρB] . (A.3)

But the number of particles N is the same prior to separation into the two phases; we

96



can therefore set N = ρhV where ρh is the density of the homogeneous phase. Thus,

ρh = fρA + (1− f)ρB (A.4)

and then we solve for f yielding the lever rule

f =
ρh − ρB
ρA − ρB

. (A.5)

If ρA is much denser than ρB and ρh, then we expect that almost all of the volume is

occupied by the less dense phase, phase ‘B’, resulting in small f . Note that the lever

rule is a consequence of volume and number constraints alone and does not depend

on the details of the system’s thermodynamics.

To derive the other equilibrium equations, we write the total free-energy as the

sum of free energies for each of the individual phases, F = FA + FB. In terms of

free-energy densities,

F (T, V, {ρA, ρB}, f, λ)/V = fF̃ (T, ρA) + (1− f)F̃ (T, ρB)

+ λ[fρA + (1− f)ρB − ρh]
(A.6)

where the total number constraint is enforced by introducing a Lagrange multiplier

λ. Holding T and V constant, we can vary F with respect to ρA, ρB, f , and λ:

δF/V = 0 = f

{
∂F̃

∂ρ

∣∣∣∣
ρA

+ λ

}
δρA + (1− f)

{
∂F̃

∂ρ

∣∣∣∣
ρB

+ λ

}
δρB

+ {F̃ (ρA)− F̃ (ρB) + λ(ρA − ρB)}δf

+ {fρA + (1− f)ρB − ρh}δλ .

(A.7)

The equation obtained from varying with respect to λ yields the lever rule Eq.( A).
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Figure A.1: free-energy density with quartic form is plotted along with the unique
common tangent line, graphically determining equilibrium densities ρA and ρB.

Varying with respect to ρA and ρB yields a chemical potential balance

µA =
∂F̃

∂ρ

∣∣∣∣
ρA

=
∂F̃

∂ρ

∣∣∣∣
ρB

= µB . (A.8)

Graphically, on a plot of F̃ (ρ), the chemical equilibrium implies that the slope of

F̃ at ρ = ρA is the same as the slope at ρ = ρB. Importantly, this is only true

if the function F̃ (ρ) is not convex everywhere so that its Legendre transformation

ρ→ ∂F̃ /∂ρ is multivalued [13]. This only happens if there are multiple extrema, i.e.

multiple equilibria, each equilibrium corresponding to a distinct phase.

Finally, variation with respect to F yields the condition

F̃ (ρA)− F̃ (ρB) + λ(ρA − ρB) = 0 (A.9)

where, by virtue of the chemical equilibrium conditions,

F̃ (ρA)− F̃ (ρB)−

(
∂F̃

∂ρ

∣∣∣∣
ρA

ρA −
∂F̃

∂ρ

∣∣∣∣
ρB

ρB

)
= 0 . (A.10)

However, the above equation can be rewritten using the identity

F̃ − ∂F̃

∂ρ
ρ = F̃ − µρ = −P (A.11)
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and is thus equivalent to a pressure balance −PA + PB = 0. Rewriting as

F̃ (ρB) = F̃ (ρA) +
∂F̃

∂ρ

∣∣∣∣
ρA

(ρB − ρA) (A.12)

shows that ρA and ρB must lie along the same line whose slope is given by the tangent

to F̃ at both points, hence the “common tangent construction,” shown schematically

in Fig. A.1. Note that the slope of the tangent line is the chemical potential of the

two phases and the intercept is the pressure.
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APPENDIX B

DIFFERENTIAL GEOMETRY OF CURVES & TUBE COORDINATES

We review basic results of the differential geometry of space curves and then discuss

the “tube” coordinate system that can be used to describe points near a curve.

B.1 Space curves

Let `(s) be a space curve of length L parametrized by arclengh parameter s ∈ [0, L]

so that
d`

ds
= t̂(s) (B.1)

where t̂(s) is the unit tangent vector. In three dimensions, we can define two unit

vectors d̂1 and d̂2 so that the collection {d̂1, d̂2, t̂} forms an orthonormal triad for

each point s; we will designate d̂3 ≡ t̂, which we show in Fig. B.1. In general, the

frame at two different points can be related by a SO(3) rotation matrix.

Under an infinitesimal translation along the arclength, the frame undergoes an

infinitesimal rotation that is described by an antisymmetric matrix, a general element

of the Lie algebra so(3). The evolution of the frame is therefore given by a generalized

form of the Frenet-Serret equations

∇s


d̂1

d̂2

d̂3

 =


0 τ −κ2

−τ 0 κ1

κ2 −κ1 0




d̂1

d̂2

d̂3

 (B.2)

where κ1 and κ2 are components of a curvature vector κ and τ is a torsion. The

curvature and torsion here is generally different from what we’ll refer to as the “geo-

metric” curvature and torsion of a curve, κgeo and τgeo. One principle difference is that
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Figure B.1: Parametric space curve `(s) with orthonormal triad {d̂1, d̂2, d̂3}
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the curvature calculated in Eq. (B.2) is a vector rather than a scalar. The geometric

curvature and torsion are related to the geometry of the centerline ` without need of

specifying a frame. They can be calculated with the equations [43]

κgeo =
| ῭× ˙̀|
| ˙̀|3

(B.3)

τgeo =
( ˙̀× ῭) ·

...
`

| ˙̀× ῭|2
(B.4)

where the centerline ` need not be in arclength (unit speed) parameterization. The

Frenet-Serret frame is a unique frame that evolves according to the geometric curva-

ture and torsion alone:

∇s


n̂

b̂

t̂

 =


0 τgeo −κgeo

−τgeo 0 0

κgeo 0 0




n̂

b̂

t̂

 (B.5)

where n̂ is the normal, b̂ is the binormal, and t̂ is the tangent. The extra curvature in

Eq. (B.2) comes from the freedom of choosing a transverse frame that is rotated from

the n̂ and b̂ directions. Thus, κ encodes both κgeo and the orientation of the frame

relative to the Frenet-Serret frame. We find it useful to express the components of

the curvature vector in the following way:

κ1 = κgeo sinχ, κ2 = κgeo cosχ (B.6)

where χ encodes the angle of the chosen frame relative to the Frenet-Serret frame:


d̂1

d̂2

d̂3

 =


cosχ sinχ 0

− sinχ cosχ 0

0 0 1




n̂

b̂

t̂

 ≡ U(χ)


n̂

b̂

t̂

 . (B.7)
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Differentiating the above transformation equation yields

∇s


d̂1

d̂2

d̂3

 =

U̇U−1 + U


0 τgeo −κgeo

−τgeo 0 0

κgeo 0 0

U−1




d̂1

d̂2

d̂3



=


0 τgeo + χ̇ −κgeo cosχ

−τgeo − χ̇ 0 κgeo sinχ

κgeo cosχ −κgeo sinχ 0




d̂1

d̂2

d̂3


(B.8)

so we find that by rotating the transverse frame, the torsion in the rotated frame is

gains an additional term

τ = τgeo + χ̇ . (B.9)

This term appears due to the covariant piece of the transformation, namely U̇U−1.

B.2 Tube coordinates

Given a parametric curve in arc-length parametrization, `(s), we can define a cross-

section plane at each value of s that is perpendicular to the tangent vector d̂3(s). Vec-

tors in the cross-section planes can be written in the basis of unit vectors
{

d̂1(s), d̂2(s)
}
.

In general, position vector r may intersect many of these planes. However, it is often

possible to find a unique point `(s) corresponding to the minimal distance between

the point and the curve, |r− `|; it can be shown that r always lies within the corre-

sponding cross-sectional plane. Choosing this minimal distance point, let

r(x1, x2, s) = `(s) + x1d̂1(s) + x2d̂2(s) (B.10)

We will show later that the tuple (x1, x2, s) provides a consistent parametrization for

r as long as |x| < κ−1(s).
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For generality, let x1 = x1(q1, q2) and x2 = x2(q1, q2) and define ∂m = ∂
∂qm

for

m ∈ {1, 2}. The coordinate basis is given by

r3 = ∂sr = (1 + εmn3κmxn)d̂3 + τ d̂3 × x

rm = ∂mr = ∂mx ≡ xm

(B.11)

Using this coordinate basis, we can express any vector v located at (q1, q2, s) as

v = vµrµ for µ ∈ {1, 2, 3}. Note that we will use Greek letters to index the full basis

and Latin letters to index the cross-section basis.

For convenience, introduce q3 ≡ s so the lengths of intervals dqµ can be computed

as:

|dr|2 = (∂µr dqµ) · (∂νr dqν) = rµ · rν dqµdqν ≡ gµνdq
µdqν (B.12)

The metric tensor gµν is therefore given in matrix form by

gµν =


x1 · x1 x1 · x2 −τ(d̂3 × x) · x1

x2 · x1 x2 · x2 τ(d̂3 × x) · x2

−τ(d̂3 × x) · x1 τ(d̂3 × x) · x2 γ2 + τ 2 |x|2

 (B.13)

where we have defined, γ ≡ 1 + εmn3κmxn. Note that we can define the cross-section

block of the metric tensor as ĝmn = xm · xn so that the Jacobian of the coordinate

transformation r → qµ determines volume elements and is given by
√

det gµν =

γ
√

det ĝmn. Evidently, the determinant of the metric tensor has a risk of disappearing

at points a distance |κ|−1 from the centerline. This means, by the inverse function

theorem, that while points close to the centerline are invertible qµ → r, there is always

a breakdown of invertibility sufficiently far from the centerline of a curve. Restricting
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our attention close to the centerline, define the inverse metric by gµνgνρ = δµρ:

gµν =

 ĝmn + γ−2gm3g3n −τγ−2(d̂3 × x) · xm

−τγ−2(d̂3 × x) · xn γ−2

 . (B.14)

where we define xm ≡ ĝmnxn.

With the metric tensor and the inverse in hand, we can define a covariant basis

rµ = gµνrν , so that vectors may also be written v = vµr
µ. The covariant coordinate

basis is:

r3 =
1

γ
d̂3

rm = xm − τ (d̂3 × x) · xm

γ
d̂3

(B.15)

The gradient ∇ = ∂
∂r

can be written in terms of the tube coordinates using the

chain rule

∇ = rµ∂µ =
1

γ
(d̂3∂s − τx×∇t) + ∇t (B.16)

where ∇t ≡ xm∂m is the part of the gradient transverse to the centerline. Derivatives

of vector fields are given by

∇⊗ v = rµ ⊗ ∂µvνrν = rµ ⊗ rν∂µv
ν + rµ ⊗ (∂µrν)v

ν

= rµ ⊗ rν
(
∂µv

ν + Γνµλv
λ
) (B.17)

where the Christoffel symbols are defined by

Γνµλ ≡ rν · ∂µrλ = rν · ∂λrµ . (B.18)
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Thus, we can define covariant differentiation ∇µ of tensor field components by [44]

∇µT
αβ...

ρσ... ≡ ∂µT
αβ...

ρσ... + ΓαµνT
νβ...

ρσ... + ΓβµνT
αν...

ρσ... + . . .

− ΓνµρT
αβ...

νσ... − ΓνµσT
αβ...

ρν... − . . .
(B.19)

Now, the covariant differentiation involves contributions due to (i) rod curvature

and torsion and (ii) choice of cross-section coordinate system. We can isolate the

effect of rod curvature by using Cartesian coordinates in the cross section so qm = xm

and ĝ = 1. Defining rod Christoffel symbols Ωλ
µν through Eq. (B.18), evaluated with

Cartesian coodinates, we find

Ωl
m3 = −τ(εlm3 + γ−1(x · κδlm − κlxm))

Ωl
33 = γεlm3κm − τ 2(xl + γ−1(x · κ)εml3xm) + (τ̇ − γ−1τεmn3κ̇mxn)εpl3xp

Ω3
3m = −γ−1εmn3κn

Ω3
33 = γ−1εmn3κ̇mxn + γ−1τκ · x

(B.20)

where all other components are 0.
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APPENDIX C

EXPANSION OF THE DETERMINANT

As it occurs several times in this document, let us consider the expansion of the

determinant of a matrix, or more generally, an operator. Consider an invertible

matrix or operator A (such that det A 6= 0) that has a small addition εδA, where ε

sets the scale of the addition and is taken to be small. Then

det(A+ εδA) = det A det(1 + εA−1δA) (C.1)

where we have used the decomposition of determinants det AB = det A det B. Now,

using the identity

log det A = tr ln A (C.2)

we find

det(A+ εδA) = det A etr ln(1+εA−1δA) . (C.3)

Using the power series representation for the matrix logarithm, we find

det(A+ εδA) = det A etr ln(1+εA−1δA)

= det A etr (εA−1δA−(1/2)ε2(A−1δA)2+... )

= det A eεtr A
−1δA−(1/2)ε2tr (A−1δA)2+... .

(C.4)

Finally, Taylor expanding the exponential, we obtain the final result

det(A+ εδA) = (det A)

(
1 + εtr A−1δA+

1

2
ε2((tr A−1δA)2 − tr (A−1δA)2) + . . .

)
(C.5)
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where, in the special case that A is the metric tensor gµν and δA is the strain tensor

2uµν that results from a deformation, the above result can be compactly written using

Einstein notation uλν = gλµuµν as

det(g + 2u) = (det g)
(
1 + 2uµµ + 2uµµu

ν
ν − uµνuµν + . . .

)
. (C.6)
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APPENDIX D

SOLVING FOR THE EQUILIBRIUM INTERNAL DISPLACEMENT

FIELD

We solve the quasistatic elastic equilibrium equations

∂′nσ
r
µn = 0 for ρ < b(θ) (D.1)

with boundary conditions

∂′nσ
r
µn = 0 for ρ < b(θ) (D.2)

with cross-section boundary conditions

σrNN + h′

b′
(1− ∂θθΓ)σpTT = 0

σrTN − ∂′Th′σ
p
TT = 0

σrN3 − ∂′Th′σ
p
T3 = 0

 for ρ = b(θ) . (D.3)

To solve, first note that the above system of equations is augmented by the incom-

pressibility condition on the strain

tr ε = 0 . (D.4)

However, with this extra condition, the system of 3 differential equations for the strain

is now overspecified and can lead to inconsistent results.

To overcome this problem, we regularize the problem by adding a term that pe-
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nalizes compression to the free-energy ∆F ,

∆F =

∫ L

0

ds

{
· · ·+

∫
Rxsr

d2x
[
· · ·+K(tr ε)2

]}
(D.5)

where K is a fixed bulk modulus. The regularized constitutive equations are

σrmn = 2µΛ2
t εmn +KΛ2

t δmntr ε

σrm3 = µ(Λ2
` + 3Λ2

t )εm3

σr33 = µ(Λ2
` + Λ2

t )ε33 +KΛ2
t tr ε

σpTT = µ[(Λ2
t + 3Λ2

n)εTT + 2Λ2
nε33]

σpT3 =
1

2
µ(Λ2

` + Λ2
t + 2Λ2

n)εT3

σp33 = µ[(Λ2
` + 3Λ2

n)ε33 + 2Λ2
nεTT ]

(D.6)

which resemble the result for a linear, isotropic elastic medium in the case of a homo-

geneous gel where Λ0 = 1. With the regularization parameter K introduced, we solve

the system of equilibrium equations with boundary conditions, taking K →∞ limit

at the end of the calculation, resulting in an infinitely high cost of compressing the

gel. Thus, the incompressible solutions are obtained as a limit of the more general

solutions with finite K.

Applying the constitutive relations, the equilibrium equations are

2µ∂′nεmn +K∂′mtr ε = 0

∂′mεm3 = 0

(D.7)

where the deformation matrix elements conveniently drop out, leading to isotropic

elasticity equations. Recall that the strain ε is a superposition of strain due to external

constraints, εext, and strain that is the result of an internal displacement field allowed
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to attain equilibrium under the constraints, εint, and is thus

εmn =
1

2
(∂′mun + ∂′num)

εm3 =
1

2
εmn3

(
∆τ +

Λ` − 1

Λ`

)
x′n +

1

2
∂mu3

ε33 = εpq3

(
∆κp +

Λt − 1

Λt

κp

)
x′q + η

(D.8)

where under the quasistatic approximation, ∂sum ≈ 0 and ∂su3 ≡ η, where η is

an extensile strain of the rod. In terms of the displacement field, the equilibrium

equations are given by

µ∇2
tum + (µ+K)∂′m∂

′
nun = Kεmn3

(
∆κn +

Λt − 1

Λt

κn

)
∇2
tu3 = 0

(D.9)

with transverse Laplacian ∇2
t ≡ ∂′mm. In cylindrical coordinates,

[
(2µ+K)

(
1

ρ′
∂′ρρ

′∂′ρ −
1

ρ′2

)
+ µ

1

ρ′2
∂′θθ

]
uρ

+

[
−(3µ+K)

1

ρ′2
∂′θ + (µ+K)

1

ρ′
∂′ρθ

]
uθ = K

(
∆κn +

Λt − 1

Λt

κn

)
θ̂′n[

(2µ+K)
1

ρ′2
∂′θθ + µ

(
1

ρ′
∂′ρρ

′∂′ρ −
1

ρ′2

)]
uθ

+

[
(3µ+K)

1

ρ′2
∂′θ + (µ+K)

1

ρ′
∂′ρθ

]
uρ = −K

(
∆κn +

Λt − 1

Λt

κn

)
ρ̂′n[

1

ρ′
∂′ρρ

′∂′ρ +
1

ρ′2
∂′θθ

]
u3 = 0 .

(D.10)

To solve, we assume a series solution

ui =
∞∑

m,n=0

ρ′n (αmni cosmθ′ + βmni sinmθ′) (D.11)

which is periodic in θ′ and finite as ρ′ → 0. Plugging our Ansatz into the equilibrium
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equations Eq. (D.10) yields general solutions

uρ = ρ′α01
ρ +

(
α10
θ +

ρ′2

5µ+ 3K
(−K(∆κ2 + . . . ) + (K − µ)α12

θ )

)
sin θ′

−
(
β10
θ + ρ′2(−K(∆κ3 + . . . ) + (K − µ)β12

θ )
)

cos θ′

+
∑
m>1

[(
ρ′m−1αm,m−1

θ + ρ′m+1 (µ+K)m− 2µ

(µ+K)m+ 2(2µ+K)
αm,m+1
θ

)
sinmθ′

−
(
ρ′m−1βm,m−1

θ + ρ′m+1 (µ+K)m− 2µ

(µ+K)m+ 2(2µ+K)
βm,m+1
θ

)
cosmθ′

]
uθ = ρ′α01

θ +
∑
m=1

[ (
ρ′m−1αm,m−1

θ + ρ′m+1αm,m+1
θ

)
cosmθ′

+
(
ρ′m−1βm,m−1

θ + ρ′m+1βm,m+1
θ

)
sinmθ′

]
u3 = α0

3 +
∑
n=1

ρ′n (αn3 cosnθ′ + βn3 sinnθ′)

(D.12)

where the ∆κm + . . . is shorthand for ∆κm + ((Λt − 1)/Λt)κm. The general strain is

thus

ερρ = α01
ρ −

2ρ′

5µ+ 3K
(−K(∆κ3 + . . . ) + (K − µ)β12

θ ) cos θ′

+
2ρ′

5µ+ 3K
(−K(∆κ2 + . . . ) + (K − µ)α12

θ ) sin θ′

+
∑
m>1

ρ′m
[
−
(
m− 1

ρ′2
βm,m−1
θ +

(m+ 1)((µ+K)m− 2µ)

(µ+K)m+ 2(2µ+K)
βm,m+1
θ

)
cosmθ′

+

(
m− 1

ρ′2
αm,m−1
θ + (m+ 1)

(m+ 1)((µ+K)m− 2µ)

(µ+K)m+ 2(2µ+K)
αm,m+1
θ

)
sinmθ′

]
(D.13)

ερθ =
ρ′

10µ+ 6K
(−K(∆κ2 + . . . ) + 4(µ+K)α12

θ ) cos θ′

+
ρ′

10µ+ 6K
(−K(∆κ3 + . . . ) + 4(µ+K)β12

θ ) sin θ′

+
∑
m>1

ρ′m
[(

m− 1

ρ′2
αm,m−1
θ +

(m+ 1)m(µ+K)

(µ+K)m+ 2(2µ+K)
αm,m+1
θ

)
cosmθ′

+

(
m− 1

ρ′2
βm,m−1
θ +

(m+ 1)m(µ+K)

(µ+K)m+ 2(2µ+K)
βm,m+1
θ

)
sinmθ′

]
(D.14)

112



εθθ = α01
ρ +

ρ′

5µ+ 3K
(K(∆κ3 + . . . ) + 2(3µ+K)β12

θ ) cos θ′

− ρ′

5µ+ 3K
(K(∆κ2 + . . . ) + 2(3µ+K)α12

θ ) sin θ′

+
∑
m>1

ρ′m
[(

m− 1

ρ′2
βm,m−1
θ +

(m+ 1)((µ+K)m+ 2µ)

(µ+K)m+ 2(2µ+K)
βm,m+1
θ

)
cosmθ′

−
(
m− 1

ρ′2
αm,m−1
θ + (m+ 1)

(m+ 1)((µ+K)m+ 2µ)

(µ+K)m+ 2(2µ+K)
αm,m+1
θ

)
sinmθ′

]
(D.15)

ερ3 =
1

2

∑
n=0

ρ′n(n+ 1)
[
αn+1

3 cos(n+ 1)θ′ + βn+1
3 sin(n+ 1)θ′

]
(D.16)

εθ3 =
1

2

(
∆τ +

Λ` − 1

Λ`

)
+

1

2

∑
n=0

ρ′n(n+ 1)
[
−αn+1

3 sin(n+ 1)θ′ + βn+1
3 cos(n+ 1)θ′

] (D.17)

ε33 = η + εpq3

(
∆κp +

Λt − 1

Λt

κp

)
x′q (D.18)

with unknown coefficients that are determined by the stress boundary conditions.

The boundary conditions supplied by Eqs. (D.3) are in terms of components of

the stress tensor that are tangential and normal to the boundary and are thus rotated

from polar directions ρ̂ and θ̂ by an small angle that scales with ∂θΓ. However, the

interface displacement Γ results in a strain; we consider the leading order response

so that ε, and thus σ, contains terms proportional to Γ. Thus, we can linearize the

boundary conditions, keeping only leading order terms in Γ and ε, resulting in reduced

113



boundary conditions

2µερρ +Ktr ε+ µ
h0

b0

(
Λ2
t + 3Λ2

n

Λ2
t

εθθ + 2
Λ2
n

Λ2
t

ε33

)
= µ

Λ2
t − Λ2

n

Λ2
t

(
h0

b0

(−1 + ∂′θθΓ + Γ) + Γ

)
2ερθ −

h0

b0

(
Λ2
t + 3Λ2

n

Λ2
t

∂′θεθθ + 2
Λ2
n

Λ2
t

∂′θε33

)
= −Λ2

t − Λ2
n

Λ2
t

∂′θΓ

2ερ3 −
h0

b0

Λ2
` + Λ2

t + 2Λ2
n

Λ2
` + 3Λ2

t

∂′θεθ3 = 0

(D.19)

where the Laplace pressure is clearly present in the first with mean curvature equal

to the result of Eq. (2.70). The second equation involves a gradient Γ arising from a

gradient of the surface stress, resulting in a Marangoni-like force.

Using Eq. D.19 to determine the unknown coefficients and taking limit K → ∞
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to recover the incompressibility constraint, we find

ερρ = −1

2
ε33 −

1

4

h0

b0

Λ2
t − Λ2

n

Λ2
t

εpq3

(
∆κp +

Λt − 1

Λt

κp

)
x′q

− 1

4

Λt − Λ2
n

Λ2
t

∑
m=1

m

[
(m+ 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m
− (m− 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m−2 ]
Γm(θ′)

ερθ = −1

4

h0

b0

Λ2
t − Λ2

n

Λ2
t

(
∆κp +

Λt − 1

Λt

κp

)
x′p

− 1

4

Λt − Λ2
n

Λ2
t

∑
m=1

m

[
(m+ 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m
− (m− 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m−2 ]
∂′θΓm(θ′)

εθθ = −1

2
ε33 +

1

4

h0

b0

Λ2
t − Λ2

n

Λ2
t

εpq3

(
∆κp +

Λt − 1

Λt

κp

)
x′q

+
1

4

Λt − Λ2
n

Λ2
t

∑
m=1

m

[
(m+ 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m
− (m− 1)

(
1 +

1

2

h0

b0

(
Λ2
t − 3Λ2

n

Λ2
t

m− 2

))(
ρ′

b′0

)m−2 ]
Γm(θ′)

ερ3 = 0

εθ3 =
1

2

(
∆τ +

Λ` − 1

Λ`

τ

)
ρ′

ε33 = η + εpq3

(
∆κp +

Λt − 1

Λt

κp

)
x′q

(D.20)

where Γm(θ′) is the mth mode of Γ(θ′), as defined in Eq. 2.38. Note that Eqs. D.20

satisfy the incompressibility constraint ερρ + εθθ + ε33 = 0. Furthermore, the effect of

torsion only contributes to εθ3 and ερ3 = 0, recovering the case of twisting a circular

rod [36]. Finally, the form of ε33 also agrees with the rod theory prediction.

115



APPENDIX E

LINEAR STABILITY OF RING SYMMETRIC EQUILIBRIUM

Starting with the expansion of the Landau free-energy about the symmetric equilib-

rium of the planar toroid, Eq. (3.31) We make a change of variables s = Rs̃ so that

ḟ → ḟ/R and we take χ = χ̃− (ζ̈ + ζ)/R so

δ2L =
1

2
R

∫ 2π

0

ds̃

[(
B

1

R2
+
k1|ψ∗1|
R

)(
1

R
(ζ̈ + ζ)− χ̃

)2

+
J

R2
˙̃χ2 +

C|ψ∗1|2

R2
ϕ̇2

+
k2|ψ∗1|
R

ϕ2 − k1|ψ∗1|
R

(
1

R2
(ζ̈2 − 2ζ̇2)− 2

(
1

R
(ζ̈ + ζ)− χ̃

)
ϕ

)]
.

(E.1)

Now we expand each of the perturbing fields in Fourier modes

ζ = R
∞∑′

n=−∞

ζ̂ne
ins̃, ζ̂−n = ζ̂∗n

χ̃ =
∞∑′

n=−∞

ˆ̃χne
ins̃, ˆ̃χ−n = ˆ̃χ∗n

ϕ =
∞∑′

n=−∞

ϕ̂ne
ins̃, ϕ̂−n = ϕ̂∗n

(E.2)

where we use
∑′ to denote a sum with the restrictions that n 6= 0, removing homo-

geneous perturbations and we additionally require that each of the fields be real. As

δ2L is quadratic in the perturbing fields, it is diagonalized in Fourier space and can

be expressed as the sum of contributions from individual modes,
∑′

n δ
2Ln, where

δ2Ln
πR

=

(
B

1

R2
+
k1|ψ∗1|
R

)[
(n2 − 1)2|ζ̂n|2 + | ˆ̃χn|2

+ (n2 − 1)(ζ̂∗n ˆ̃χn + ζ̂n ˆ̃χ∗n)
]

+
J

R2
n2| ˆ̃χn|2 +

(
C|ψ∗1|2

R2
n2 +

k2|ψ∗1|
R

)
|ϕ̂n|2

− k1|ψ∗1|
R

(
n2(n2 − 2)|ζ̂n|2 + 2(n2 − 1)(ζ̂∗nϕ̂n + ζ̂nϕ̂n

∗) + 2( ˆ̃χ∗nϕ̂n + ˆ̃χ∗nϕ̂n)
)
.

(E.3)
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As δ2Ln is a quadratic form, it may be represented in matrix form as

δ2Ln = σ†nA
(n)σn (E.4)

where σn = (ζ̂n, ˆ̃χn, ϕ̂n), with σ†n the Hermitian conjugate, and

A(n) =
π

R


B(n2 − 1)2 +M1R (B +M1R)(n2 − 1) −2M1R(n2 − 1)

(B +M1R)(n2 − 1) B +M1R + Jn2 −M1R

−2M1R(n2 − 1) −M1R C ′n2 +M2R

 (E.5)

where we have defined coefficients

C ′ ≡ C|ψ∗1|2

M1 ≡ k1|ψ∗1|

M2 ≡ k2|ψ∗1|

(E.6)

Note that A(n) has a block form where the upper left matrix

(
A(n)

)
ψ

=
π

R

 B(n2 − 1)2 +M1R (B +M1R)(n2 − 1)

(B +M1R)(n2 − 1) B +M1R + Jn2

 (E.7)

describes the effect of varying whilst holding ψ fixed.

Instability occurs if there are variations that result in a decrease of the free-energy.

Noting that the eigenvalues of A(n) determine the extremal response to the variations,

the condition for the loss of stability is detA(n) = 0.
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APPENDIX F

MOORE-PENROSE GREEN’S FUNCTION

Consider spectral representations

Ĥ =
∞∑
n=0

εn |n〉 〈n| =
∞∑
n=1

εn |n〉 〈n| as ε0 ≡ 0

Γ =
∞∑
n=1

1

εn
|n〉 〈n|

(F.1)

where are using Dirac notation ηn = |n〉 for convenience. Note that Γ is not a true

inverse of Ĥ as

ĤΓ =
∞∑
n=1

|n〉 〈n| = 1−
6∑

α=1

∣∣0(α)
〉 〈

0(α)
∣∣ (F.2)

where {
∣∣0(1)

〉
, . . . ,

∣∣0(6)
〉
} is the set of zero-modes. We define

K ≡
6∑

α=1

∣∣0(α)
〉 〈

0(α)
∣∣

1̃ ≡ 1−K

(F.3)

where K is a projection onto the null space of Ĥ and 1̃ (which we call δ̃ij(x,y) in

position representation) is the complement of K and describes an “identity” on the

space transverse to the null space so that

ĤΓ = 1̃ (F.4)

provides us the interpretation of Γ as the inverse of Ĥ in the complement of the null

space.

Now, the Moore-Penrose pseudoinverse X of a matrix A, which may not be in-
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vertible and need not be square, satisfies [88]

(i) AXA = A,

(ii) XAX = X,

(iii) (AX)† = AX,

(iv) (XA)† = XA,

where X is unique and a solution can be found to the above equations for any A. It is

simple to show, using the spectral representations Eq. (F.1) that the above conditions

are satisfied for A = Ĥ and X = Γ. Thus, the Green’s function Γ is a Moore-Penrose

pseudoinverse of the operator Ĥ.

F.0.1 Representation of the null space projection kernel

The real-space representation of the projection kernel K requires specification of the

6 zero-modes η(α)
0 . We choose center of mass coordinates such that

∫
Ω

dV x = 0 (F.5)

and basis {ê1, ê2, ê3} corresponding with the continuum’s principle axes, where the

inertia tensor

I ≡ êµ ⊗ êν

∫
Ω

dV (|x|2δµν − xµxν) = ê1 ⊗ ê1I1 + ê2 ⊗ ê2I2 + ê3 ⊗ ê3I3 (F.6)

is diagonal. An orthonormal zero mode basis is therefore given by

η
(α)
0 =


1√
V

êα for α = 1, 2, 3

1√
Iα−3

êα−3 × x for α = 4, 5, 6
(F.7)
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Therefore, the null space projection kernel is

K(x,y) =
1

V

3∑
i=1

(êi ⊗ êi) +
3∑
i=1

1

Ii
(êi × x)⊗ (êi × y) (F.8)

which can be condensed as

K(x,y) =
1

V
1− x× I−1 × y . (F.9)

Finally, the identity in the complement to the null space is

δ̃ij(x,y) =

(
δ(x− y)− 1

V

)
δij − εikmεjlnI−1

kl x
myn (F.10)

where we note that δ(x−y)− 1/V is the modified identity used when solving for the

Green’s function for Laplace’s equation with Neumann boundary conditions [89].
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APPENDIX G

DEVELOPMENT OF THE GREEN’S FUNCTION DOMAIN

PERTURBATION THEORY

Starting with Eq. (4.27), we need to determine the effect of the coordinate change

x′ = x + s(x). Note, however, that the restriction to the space of located shapes is

a technical difficulty: as the two protein shapes Ω and Ω′ have different null spaces,

the domain of functional integration is different between the two. We overcome this

difficulty by regularizing the zero modes with a “mass” m

Γm ≡
∑
α

∣∣0(α)
〉 〈

0(α)
∣∣

m2
+
∑
n≥1

|n〉 〈n|
εn

=
1

m2
K + Γ (G.1)

that is introduced in the elastic energy

Hm =
1

2

(
Cijkl ∂iuj ∂kul +m2|u|2

)
(G.2)

with the idea that the perturbation expansion will be carried out with finite m,

characterizing an energy penalty for translations and rotations, and then the m→ 0

limit will be taken at the end of the calculation. Note that K/m2 is the singular part

of Γm and Γ is the regular part.

Transforming from x′ to x, we can write the elastic energy density as

H ′m =
1

2

∫
Ω

dVx
√

det g
(
Cabcd ∇aub ∇cud +m2gabuaub

)
(G.3)

where

∇aub =
∂ub
∂xa
− γcabuc (G.4)
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is a covariant derivative. Keeping up to linear order in s

∂x′i

∂xa
≈ δai + ∂asi

∂xa

∂x′i
≈ δai − ∂asi

(G.5)

we we find that

Cabcd(x) = Cijkl(x
′(x))

∂xa

∂x′i
∂xb

∂x′j
∂xc

∂x′k
∂xd

∂x′l

≈ (1 + s ·∇)Cabcd − Cpbcd∂psa − Capcd∂psb − Cabpd∂psc − Cabcp∂psd

gab =
∂x′

∂xa
· ∂x′

∂xb
≈ δab + ∂asb + ∂bsa

gab = (gab)
−1 ≈ δab − ∂asb − ∂bsa

γcab = gcd(∂dx) · ∂abx ≈ ∂absc

(G.6)

Thus, the energy can be expressed as H ′m ≈ Hm + hm where Hm is the elastic

energy for Ω and

hm =
1

2

∫
Ω

dVx

{
− Cabcd(∂absr)ur∂cud + (∂rsrCabcd)(∂aub)(∂cud)

− 2Cabcd(∂asq) [∂qub + ∂buq] ∂cud +m2
[
(∇ · s)|u|2 − 2(∂psq)upuq

]}
.

(G.7)

The functional integral Eq. (4.27) is transformed from integration over Du′ to Du

kBTΓ′m,ij(x
′(x),y′(y)) =

∂xa

∂x′i
∂yb

∂y′j

∫
Du e−β(Hm+hm)ua(x)ub(y)∫

Du e−β(Hm+hm)
(G.8)

which we expand to leading order in s

kBTΓ′m,ij(x
′(x),y′(y)) ≈ ∂xa

∂x′i
∂yb

∂y′j
{
〈ua(x)ub(y)〉m

− β 〈hmua(x)ub(y)〉m + β 〈hm〉m 〈ua(x)ub(y)〉m
} (G.9)
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where averages are taken with respect to the bare energy Hm:

〈O〉m ≡
∫
Du e−βHmO∫
Du e−βHm

. (G.10)

Noting that the perturbation hm is quadratic in u, we can expand 〈hmua(x)ub(y)〉m

using Wick’s theorem (see e.g., [50])

〈uaubucud〉m = 〈uaub〉m 〈ucud〉m + 〈uauc〉m 〈ubud〉m + 〈uaud〉m 〈ubuc〉m . (G.11)

After simplifying the resulting expression by integrating by parts and using the mod-

ified Green’s function equation

(−∂jCijkl∂k +m2δil)Γlm(x,y) = δimδ(x− y) (G.12)

we find

Γ′m,ij(x
′(x),y′(y)) ≈ Γm,ij(x,y) + (s(x) ·∇x + s(y) ·∇y)Γm,ij(x,y)

−
∮
∂Ω

dSαn̂ · s
{
Cabcd∂aΓm,bi(α,x) ∂cΓm,dj(α,y)

+m2Γm,bi(α,x)Γm,bj(α,y)

}
.

(G.13)

The right hand side can be shifted from x→ x′ using the Taylor expansion

Γm,ij(x
′,y′) = Γm,ij(x + s(x),y + s(y))

≈ Γm,ij(x,y) + (s(x) ·∇x + s(y) ·∇y)Γm,ij(x,y)

(G.14)

so that

Γ′m,ij(x
′,y′) ≈ Γm,ij(x

′,y′)−
∫

Σ

dSαn̂ · s
{
Cabcd∂aΓm,bi(α,x

′) ∂cΓm,dj(α,y
′)

+m2Γm,bi(α,x
′)Γm,bj(α,y

′)

} (G.15)
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where ζ(α) ≡ n̂(α) · s(α) and the integration is taken over Σ ⊂ ∂Ω, the region where

ζ 6= 0. Finally, using Eq. (G.1) to decompose Γm and Γ′m into singular and regular

parts yields, upon taking m→ 0, we find

∆Γij(x,y) ≈ −
∫

Σ

dSα ζ(α)

{
Cklmn(α)

∂Γik(x,α)

∂αl
∂Γnj(α,y)

∂αm

+Kik(x,α)Γkj(α,y) + Γik(x,α)Kkj(α,y)

}
∆Kij(x,y) ≈ −

∫
Σ

dSα ζ(α) Kib(x,α)Kbj(α,y)

(G.16)

where the ∆Γ equation is our central result. Furthermore, we are obtain a formula

for the change in the null space projection kernel, ∆K.
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