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We can now decompose D into irreducible representations; the result is

D=1}

1 + 2 cos %n + cos mirJ (D™ + D]

+ ;‘;[i — 2cos ? + cos mﬂr] [D® + D™

(16-50)

I'hus, if m is even, the representation is reducible and is the sum of two one-
dimensional representations, so that the perturbation can split the degener-
acy. If, on the other hand, m is odd, the representation is irreducible and no
.plitting is possible since the symmetry connects all states.

Notice that in this example we have drawn qualitative conclusions from
proup theory; the amounts of splitting due to the perturbation are not explored.
I'his is a general feature of group-theoretic arguments. However, we shall
now do a problem where we actually calculate numbers by using group
theory.

Consider three point masses m, at the vertices of an equilateral triangle,
connected by springs of spring constant k (see Figure 16-2). 'What are the
normal modes of this mechanical system? We suppose the masses are only
illowed to move in the plane of the page.

We shall number the masses as shown in the figure. Let the coordinates
ol m; relative to its equilibrium position be x,;, y;, and similarly for the
other two masses. We represent the configuration of the system by a six-
dimensional * state vector™ €. In an ‘“‘elementary coordinate system,” such
ias the one on page 155, £ has components

EZ\:(JC],_P;, X2, Va2 xaaya) (16'51)

Figure 16-2 The vibrating triangle
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The kinetic and potential energies of our system are [compare Egs. (6-58) and
(6-60)]

T=imy &

V = 3h{(xs = 2% + [=3062 = %2) + 3/303 = )T’
+ D = x3) + 3/300 =y

Z‘H‘Z Vijéiéj (16-52)
y
Newton’s second law gives
: av
mé=——=—kY V;¢ (16-53)
aéi i

For vibration in a normal mode, we will have & ~ e " Then (16-5)
becomes

maw?

k

Y V& =28  where A= (16-54)
J

The normal modes are the eigenvectors of the matrix V, with the eigenvalucs
giving the frequencies.

Let us see what group theory can do to find these eigenvalues. In the
first place, each eigenvector generates an irreducible representation when we
act on it with all the elements of our symmetry group. Thus, in a coordinalc
system which diagonalizes V,

A

a

D{a)

V= Ay (16-55)
“a D(b)
Ay
etc.

The first n, of our new coordinate vectors are eigenvectors belonging to
the eigenvalue 1,, and transforming among each other according to the
irreducible representation D@, the next n, eigenvectors belong to 4, and
transform according to D'®, and so on.

As usual, we must discuss the symmetry group briefly. It consists of six
elements

I R R? P PR PR?

where 7 is the identity, R rotates the triangle 120° in a positive sense (counter-
clockwise), and P reflects about a vertical line through the center.  The
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character table is shown in Table 16-8. This symmetry group is just Sy;
compare Tables 16-1 and 16-3.

When various group elements act on the triangle, they induce linear trans-
[ormations of the &;.  For example, if R operates on the triangle,

& = D(R)¢& (16-56)
where the matrix D(R) is
1 3
00 ) =
D(R)=(r 0 0 r=| _ (16-57)
(0 r oo V3 1
B P
Similarly,
(0 p 0) —1 ©
DP)=|p 0 O p=( ) (16-58)
0 1
00 p

What representations does this representation D contain? Its character is
wC)=6  xC)=0  x(C3)=0
and this gives [compare (16-32) and (16-33)]
D= ptv @® D2 @ 2p3) (16-59)

Note that D is just (equivalent to) the regular representation of our symmetry
group. This particular feature is an accident, and not very general.

Now we can be more specific and write, in a coordinate system with the
eigenvectors of V as basis,

‘:{1 D(l}
Aa 0 D@
V= &1 D® (16-60)
'J'-Sl
0 '132 }D(z)
32|

where we have indicated the transformation properties of the various eigen-
vectors. Note that the two pairs of eigenvectors transforming like D® need
not have the same eigenvalue.

Table 16-8
C;a.\'ﬂ’ x( 1) x{zj xl3\
() 1 1 2
C2(R, R?) 1 1 -1
CA(P, PR, PR?) 1 -1 0




448 Introduction to Groups and Group Representations

What does the matrix D(G)V, where G is an arbitrary element of our
symmetry group, look like in this special coordinate system? The answer is
clearly

2, DY(G)
2, DG
D(G)V = 210 (16-61)
231 DPNG)

A3, D(G)

This is not directly useful, of course, because we do not know what this
coordinate system is; that is, we do not know the eigenvectors. However,
the trace of this matrix is invariant to coordinate transformations, so thal

Tr D(G)V = L x'"AG) + 4, ¥ 2(G) + (A3; + A3)1N(G)  (16-62)

in any coordinate system.

Now it is straightfoward to compute the following traces by making
use of the specific forms (16-52), (16-57), and (16-58) of ¥, D(R), and D(/")
respectively.

Tr D)V =6
Tr DRV =3 (16-61)
Tr D(P)V =3

Our eigenvalues therefore obey the equations
Ay + A + 23 + A3,) =6
M+ A=Ay +43;)=3
A—A,=3

from which
=3 =0 A3+ 21;,=% (16-0e)
We could determine A5, and A5, separately by looking at things like
Tr V2=2} + A3 + 2043, + 43,)

but a simpler way is to note that there must be three degrees ol freedom having
zero eigenvalue, two translational and one rotational. Thus
Agg=0 Ay =32 (16-08)

and we have determined all the eigenvalues without solving any seculud
equation.



