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For this integral p(s) = s — In 5. Thus, p'(s) = 1 — 1/s and p’ = 0 when s = 1. So there is a simple
(second-order) saddle point at s = 1.

To ascertain the structure of the saddle point we let s = u + iv and identify the real and
imaginary parts of p: p(s) = u — In \/u> + v* 4 i(v — arc tan v/u). At s =1, p = 1. Therefore,
paths of constant phase (steepest curves) emerging from s = 1 must satisfy

v —arctan v/u = 0.

There are two solutions to this equation: v = 0 and u = v cot v. These two curves are shown on
Fig. 6.12. In Prob. 6.64 you are asked to verify that (a) the steepest-descent curves are correctly
shown on Fig. 6.12; (b) as s moves away from s = 1, steepest-descent curves emerge from s = |
initially parallel to the Im s = v axis; (c) the steepest-descent curves cross the v axis at + in/2 and
approach s = — oo + im.

To use the method of steepest descents, we simply shift the contour C so that it is just the
steepest-descent contour on Fig. 6.12 which passes through the saddle point at s = 1. Let us
review why we choose such a contour. In general, we always choose a steepest-descent contour
because on such a contour we can apply the techniques of Laplace’s method directly to complex
integrals. If the steepest-descent contour is finite and does not pass through a saddle point, then
the maximum value of |e*”| must occur at an endpoint of the contour and we need only perform
a local analysis of the integral at this endpoint. However, in the present example the contour has
no endpoint and is infinitely long. It is crucial that it pass through a saddle point because |e** |
reaches its maximum at the saddle point and decays exponentially as s — oo along both of the
steepest-descent curves. If there were no saddle point, then, although |e** | would decrease in one
direction along the contour, it would increase in the other direction and the integral would not
even converge!

Now we proceed with the asymptotic expansion of the integral in (6.6.23). We can approxi-
mate the steepest-descent contour in the neighborhood of s = 1 by the straight line s = 1 + iv.
This gives the Laplace integral
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which we evaluate by letting ¢ — o0
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We thereby recover the result in (6.6.21).

Example 10 Steepest-descents approximation of a real integral where Laplace’s method fails. In
this example we consider the real integral

1

I(x) = J dte™*** cos (Sxt — xt?) (6.6.24)

0
in the limit x - + co. This integral is not a Laplace integral because the argument of the cosine
contains x. Nonetheless, one might think that one could use the ideas of Laplace’s method to
approximate the integral. To wit, one would argue that as x — + oo, the contribution to the
integral is localized about x = 0. Thus, a very naive approach is simply to replace the argument of
the cosine by 0. If this reasoning were correct, then we would conclude that
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This result is clearly incorrect because e™** does not become exponentially small until ¢ is
larger than l/\/;. Thus, when ¢ ~ 1/\/; (x = +0), the argument of the cosine is not small. In

particular, the term Sxt is large and the cosine oscillates rapidly. This suggests that there is
destructive interfarence and that I(x) decays much more rapidly than /r/16x as x — + w.
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Can we correct this approach by including the 5xt term but neglecting the xt® term? After
all, when ¢ lies in the range from O to 1'/\/;, the term x> — 0 as x » +00. Thus, xt* does not even
shift the phase of the cosine more than a fraction of a cycle. If we were to include just the Sxt term,

we would obtain
1
I(x) ~ J dte *®" cos (5xt), X = + 0,
0
~ j dte ** cos (5xt), x— +o,
0
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Although this result is exponentially smaller than the previous wrong result, it is also wrong! Itis
incorrect to neglect the xt> term (see Prob. 6.65).

But if we cannot neglect even the xt3 term, then how can we make any approximation at all?
It should not be necessary to do the integral exactly to find its asymptotic behavior!

The correct approach is to use the method of steepest descents to approximate the integral
at a saddle point in the complex plane. To prepare for this analysis we rewrite the integral in the
following convenient form:

I(x) = % Jl dte—4xt1+5ix!—ix¢3
-1
1

=1 j dt e, (6.6.25)

where p(t)= —(t — i) —ilt - i) (6.6.26)

Our objective now is to find steepest-descent (constant-phase) contours that emerge from
¢t =1 and t = — 1, to distort the original contour of integration t: —1 — 1 into these contours,
and then to use Laplace’s method. To find these contours we substitute t =u + iv and identify the
real and imaginary parts of p:

plt)=¢ + iy
= 0?4 40 — 50+ 3uPv — 4u? + 2 + i(Buv® — Buv + Su — u?). (6.6.27)
Note that the phase of y =Imp at t= 1 and at t= —1 is different: Im p(—l) = —4,
Im p(1) = 4. Thus, there is no single constant-phase contour which connects t = —1tot =1
Our method is similar to that used in Examples 1 and 2. We follow steepest-descent
contours C, and C, fromt = — 1 and from ¢ = 1 out to co. Next, we join these two contours at o0

by a third contour C; which is also a path of constant phase. C; must pass through a saddle point
because its endpoints lie at oo; otherwise, the integral along C; will not converge (see the
discussion in Example 9).

There are two saddle points in the complex plane because p'(t) = —2(t — i) = 3i(t — iy =0
has two roots, t = i and t = 5i/3. The contour C, happens to pass through the saddle point at i.
On Fig. 6.13 we plot the three constant-phase contours Cy, C,,and C,. It is clear that the original
contour C can be deformed into C, + C, + Ci. (In Prob. 6.66 you are to verify the results on Fig.
6.13)

The asymptotic behavior of I(x) as x — +a0 is determined by just three points on the
contour C, + C, + C.: the endpoints of C, and C; at t = —1 and at t = +1 and the saddle
point at i. However, the contributions to I(x) at t = +1 are exponentially smali compared with



298 LOCAL ANALYSIS

¢ Down .

¥ Down

Complex-t plane

Figure 6.13 To approximate the integral in (6.6.25) by the method of steepest descents we deform
the original contour connecting the points t = —1to t = | along the real axis into the three distinct
steepest-descent contours above, one of which passes through a saddle point at ¢t =1i. Steepest-
ascent and -descent curves near a second saddle point at ¢t = 5i/3 and steepest-ascent curves going
from 1 and —1 to —icc are also shown, but these curves play no role in the calculation.

that at t = i (see Prob. 6.67). Near t = i we can approximate the contour C, by the straight line
t =1+ uand p(t) by p(t) ~ —u? (u— 0). Thus,

I(x)~%e‘2"j e du,  x- +o0,

~ e 2 /m/x, x> + 0. (6.6.28)
This, finally, is the correct asymptotic behavior of (x)! This splendid example certainly shows the
subtlety of asymptotic analysis and the power of the method of steepest descents.

Example 11 Steepest-descents analysis with a third-order saddle point. In Example 5 of Sec. 6.5
and Prob. 6.55 we showed that

1 1
Jx(x)~7—t2'2’33‘”61" (5) xT1 x4 0. (6.6.29)

Here we rederive (6.6.29) using the method of steepest descents.
We begin with the complex-contour integral representation for J Jx):
J(x)= —IJ de exsinht=vi, (6.6.30)
2mi .
where C is a Sommerfeld contour that begins at + oo — in and ends at + oo + i, Setting v = x
gives

1 ;
Tde)= o [ dreinni-o, (6.6.31)
C



