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1) Motion reversal in classical and quantum mechanics: In classical mechanics in

its Hamiltonian form, the state of a particle moving in three dimensions can be specified by

the canonically conjugate pair of coordinates and momentum vectors (q,p). Consider the

motion of the particle [i.e., the evolution in time t of the state, (q(t),p(t))] of an explicitly

time-independent system that obeys the initial condition (q(t0),p(t0)) = (q0,p0) at time t0,

evolves until time t0 + t1, and is motion reversed at this time, so that

(q(t0 + t1),p(t0 + t1)) → (q′(t0 + t1),p
′(t0 + t1)) := (q(t0 + t1),−p(t0 + t1)).

This motion-reversed state then evolves until time t0 + 2t1, at which time the state has

become (q′(t0 + 2t1),p
′(t0 + 2t1)).

a) We say that the system is motion-reversal invariant if, for all t0 and t1, (q′(t0 +

2t1),p
′(t0 + 2t1)) = (q0,−p0). Explain briefly why this is a sensible definition of

motion-reversal invariance.

b) By translating the condition for motion reversal invariance from classical mechanics to

quantum mechanics, show that the it becomes

e−iHt1/h̄T e−iHt1/h̄|ψ〉 = T |ψ〉
for any state |ψ〉. Here, T is the motion-reversal operator , which effects the transfor-

mation of any state |ψ〉 into the state T |ψ〉 describing reversed motion.

c) Show that the condition found in part (b) can be reduced to:

T (− iH)T −1 = iH.

d) We shall explore some properties of antiunitary operators below; for now let us accept

that the condition for motion-reversal invariance becomes

T H T −1 =
{−H for T unitary;

+H for T antiunitary.

Now, for a free particle the Hamiltonian H0 is quadratic in the momentum and there-

fore motion-reversal invariant, i.e., T H0 T −1 = H0, which requires the latter case: T
antiunitary; this property of T continues to hold for particles that are not free. Estab-

lish the antiunitarity of the motion-reversal transformations used in Questions 2 and

3, viz.,

Ψ(r) → Ψ(r)∗, for a spinless particle;

Ψα(r) → ∑

β=±1/2

σy
αβΨβ(r)∗, for a spin-half particle.
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2) Motion-reversal for a spinless particle: Consider a single, spinless particle moving

in the presence of a static potential V (r). Its wave function evolves according to the time-

dependent Schrödinger equation

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t).

a) Show that if Ψ(r, t) is a solution of the Schrödinger equation then so is the motion-

reversed solution Ψ̃(r, t) := Ψ(r,−t)∗. Identify the requisite properties of V for this

result to hold. [Note that this is a dynamical result, hinging on whether or not the

system (as described via its Hamiltonian) has motion-reversal-invariance symmetry.]

b) To see that Ψ̃(r, t) does indeed describe the motion-reversed state, relative to Ψ(r, t),

establish the following results and briefly discuss their significance:

(i) If Πt(r) is the probability of finding the particle at position r at time t in the

state Ψ(r, t) then in the motion-reversed state Ψ̃(r, t) it is Π−t(r).

(ii) If Φt(p) is the probability of finding the particle to have momentum p at time t

in the state Ψ(r, t) then in the motion-reversed state Ψ̃(r, t) it is Φ−t(−p).

(iii) If 〈L〉t is the expectation value of the orbital angular momentum of the particle

in the state Ψ(r, t) then in the motion-reversed state Ψ̃(r, t) it is −〈L〉−t.

[Note that the properties established in part (b) are kinematical consequences of the

motion-reversal transformation Ψ(r, t) → Ψ(r,−t)∗. They hold regardless of whether

or not the system (as described via its Hamiltonian) is motion-reversal invariant.]

c) By analyzing the appropriate Hamiltonian, discuss whether or not motion-reversal

invariance holds for a spinless charged particle that is subjected to

(i) a time-independent magnetic field;

(ii) a time-independent electric field;

(iii) a time-dependent electric field.
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3) Motion-reversal for a spin-half particle: The state |Ψ〉 of a spin-half particle can

be described via the spinor wave function Ψα(r), i.e., the amplitude 〈r, α|Ψ〉, where |r, α〉
is a simultaneous eigenket of the position and spin projection, R and Sz, having respective

eigenvalues r and αh̄ (with α = ±1/2). For such systems, the spinor wave function describing

the motion-reversed state is obtained via the transformation

Ψα(r) → Ψ̃α(r) :=
∑

β=±1/2

σy
αβΨβ(r)∗,

where (σy)αβ =
(

0 −i
i 0

)
is the y Pauli matrix.

To see that Ψ̃α(r) does indeed describe the motion-reversed state, relative to Ψα(r),

establish the following kinematical results and briefly discuss their significance:

a) If Π(r) is the probability of finding the particle at position r in the state Ψα(r) then

in the motion-reversed state Ψ̃α(r) it is Π(r).

b) If Φ(p) is the probability of finding the particle to have momentum p in the state

Ψα(r) then in the motion-reversed state Ψ̃α(r) it is Φ(−p).

c) If 〈S〉 is the expectation value of the spin angular momentum of the particle in the

state Ψα(r) then in the motion-reversed state Ψ̃α(r) it is −〈S〉.
d) By analyzing the appropriate Hamiltonian, discuss whether or not motion-reversal

invariance holds for a spin-half charged particle that is subjected to

(i) a time-independent magnetic field;

(ii) a time-independent electric field;

(iii) a time-dependent electric field.
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4) Antilinear and antiunitary operators – optional: Antilinear operators A act on ket

vectors and operators O as follows:

c1|ψ1〉+ c2|ψ2〉 → A (c1|ψ1〉+ c2|ψ2〉) = c∗1A|ψ1〉+ c∗2A|ψ2〉,
c3 O → Ac3 O A−1 = c∗3 AO A−1.

Note of the essential feature: the conjugation of the complex coefficients c1, c2, and c3.

To be antiunitary , an antilinear operator B must possess an inverse B−1 and leave the

magnitude of any ket vector unchanged. Antiunitary operators can be expressed as products

UK of standard unitary operators U and the important special case of an antilinear operator,

the “complex conjugation only” operator K.

a) By working in a complete and orthonormal but otherwise arbitrary basis show the

following important properties of inner products and matrix elements under antiunitary

transformations: If |ψ′〉 := B|ψ〉, |φ′〉 := B|φ〉, and O′ := B O′ B−1, then

(i) 〈φ′|ψ′〉 = 〈φ|ψ〉∗ = 〈ψ|φ〉;
(ii) 〈φ′|O|ψ′〉 = 〈φ|O|ψ〉∗ = 〈ψ|O†|φ〉.

b) Consider the tunnelling of a particle through a potential barrier of arbitrary shape.

Show that if the system is motion-reversal invariant, the probability of tunnelling

between any two points is the same, regardless of the direction in which the tunnelling

occurs. [Hint: You may wish to make use of the properties stated in part (a).]

The complex conjugation operator K, unlike a linear operator, depends on the basis in which

its action is defined. For example, consider the two complete orthonormal bases {|a〉} and

{|α〉}, along with the corresponding pair of complex conjugation operators, K(a) and K(α),

which are defined to act as follows:

K(a)|ψ〉 = K(a)
∑

a
ψa|a〉 :=

∑
a
ψ∗a|a〉,

K(α)|ψ〉 = K(α)
∑

α
ψα|α〉 :=

∑
α
ψ∗α|α〉.

c) Determine the condition on the relationship between the two bases such that K(a) =

K(α). In particular, if the two bases differ merely by arbitrary phases {φa}, so that

{|α〉 = exp iφa|a〉}, state whether or not K(a) = K(α).

d) Show that one can consistently obtain both the position and momentum eigenstate

results T |r〉 = +|r〉 and T |p〉 = −|p〉 whether one works in the position or momentum

basis.

Note again the conjugation feature, which is a characteristic of antilinear operators. Recall

that for linear operators we were able to define their action to the left on bra vectors 〈ψ|
in a simple way. No such simple way structure can be developed for antilinear operators.

For this reason, we shall assert that antilinear operators only act to the right, on ket vec-

tors. Accordingly, we shall not introduce the notion of the adjoints of antilinear operators,

including T .
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5) Applications of the motion-reversal operator – optional: The purpose of this

question is to explore the motion-reversal formally, in terms of the motion reversal operator,

and to explore some of the consequences of motion reversal. This topic, whose chief architect

was Eugene P. Wigner (1902-1995), is usually referred to as time reversal but it should have

been named motion reversal .

The motion-reversal operator T is defined to be the operator that effects the transfor-

mation of any state |ψ〉 into the state |ψ̃〉 := T |ψ〉 in which motion is reversed. Repeating

the time reversal operation restores the physical content of the original state, so that

T T |ψ〉 = a phase factor× |ψ〉.

Now, a theorem of Wigner’s forces any such operator having this property to be either unitary

or antiunitary . [We are already familiar with unitary operators (which are special cases of

linear operators); antiunitary operators (which are special cases of antilinear operators) are

less familiar, so we explore some of their properties in Question 4.] For reasons mentioned

in Question 1, T turns out to be antiunitary. Being antiunitary, T can be expressed as

UK, where U is a unitary operator and K is the complex conjugation operator discussed in

Question 4.

a) By working in the position basis, show that the kinematic operators R and P transform

under motion reversal so as to maintain the position R and reverse the momentum P:

R → R′ = T R T −1 = R,

P → P′ = T P T −1 = −P.

[Note that spin, if present would also be reversed: S → S′ = T S T −1 = −S.]

b) Show that these transformation properties guarantee that under motion reversal eigen-

states of (i) position and (ii) momentum transform in the following natural ways:

|r〉 → |r〉 and |p〉 → | − p〉.
c) Show that motion reversal reverses the orbital angular momentum, i.e., L := r × p

transforms to −L.

d) Show that if A is antilinear and B is hermitian then

Ae−iBA−1 = eiABA−1

.

e) Geometrical considerations indicate that the operations of spatial translation and ro-

tation should be invariant under motion reversal. Use the result stated in part (d) to

show that this invariance of translations and rotations dictates that the momentum and

angular momentum operators P and J be reversed under motion reversal. [Note: The

latter result is consistent with the notion that orbital and intrinsic angular momenta

each is reversed under motion reversal.]
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f) Show that the fundamental commutators involving position and momentum, i.e.,

[Rµ, Pν ] = ih̄δµν

and, if present, spin, i.e., [Sµ, Sν ] = ih̄εµνρSρ are preserved under motion reversal,

provided that the condition T zI T −1 = z∗I holds, where z is any complex c-number

and I is the identity operator. Note that this is condition is consistent with T being

antiunitary.

g) Determine how the orbital angular momentum L (:= R×P) transforms under motion

reversal, and show that the orbital angular momentum commutator [Lµ, Lν ] = ih̄εµνρLρ

is thus preserved under motion reversal.

h) The time-reversal operator does not explicitly transform the time variable in quan-

tum mechanics t into the −t. Rather, show that if |ψ(t)〉 obeys the time-dependent

Schrödinger equation, ih̄ d
dt
|ψ(t)〉 = H|ψ(t)〉, and that if the Hamiltonian H is time-

reversal invariant so that H → H ′ = T H T −1 = H, then T |ψ(−t)〉 obeys the same

Schrödinger equation. Note that one can also consider the issue of motion reversal from

the perspective of the Heisenberg equations of motion for the position and momentum

operators.

6) Motion-reversal-even and -odd systems:

a) By expressing the motion-reversal operator T as the product UK of a unitary operator

U and the complex conjugation operator K, show that T 2 = ±I, where I is the identity

operator. Systems for which T 2|Ψ〉 = +|Ψ〉 are referred to as even; systems for which

T 2|Ψ〉 = −|Ψ〉 are referred to as odd . In this sense, systems containing an odd number

of half-integral-spin particles are odd, regardless of the numbers of spinless or integer-

spin particles they contain.

b) Show that odd states and their motion-reversed counterparts are linearly independent.

c) Show that the energy eigenstates of odd but motion-reversal-invariant systems are

necessarily degenerate. This result is known as Kramers’ theorem.

d) For spinless particles motion reversal is equivalent to complex conjugation. As a conse-

quence, the complex conjugate of any energy eigenstate of a motion-reversal-invariant

system is an energy eigenstate having the same energy eigenvalue. Hence, show that

nondegenerate energy eigenfunctions are real functions (up to an overall phase factor).

[Note: One useful application of this result is that it can allow the narrowing—by

almost a factor of two—of the number of parameters in a variational wave function.]
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