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1) Angular momentum operators – optional: Introduce the angular momentum op-

erators {Li}3
i=1, which satisfy [Li, Lj] = ih̄εijkLk . Carefully solve the angular momentum

eigenproblem by using the operator method described in Baym, pp. 155-159.

2) Addition of spin-1/2 angular momenta: Consider the addition of two spin-1/2

angular momenta, S(1) and S(2).

a) How many states are there in the product basis?

b) If J = S(1) + S(2), what are the possible eigenvalues of J · J?

c) By using the recursive algorithm construct all the Clebsch-Gordan coefficients for this

problem

d) Consider the general problem of adding together two angular momenta, J = L(1)+L(2),

with L(1) ·L(1) = h̄2l1(l1 +1) and L(2) ·L(2) = h̄2l2(l2 +1). List the possible eigenvalues

of J · J that can arise?

e) Consider the addition of three spin-1 angular momenta, L(1), L(2) and L(3). How many

basis states are there?

f) If J = L(1) + L(2) + L(3), what eigenvalues can J · J have? What are the degeneracies

of these eigenvalues?

3) Basis of angular momentum eigenstates:

a) What is the dimension of the basis of angular momentum eigenstates for which J ·J =

h̄2j(j + 1)? We shall refer to the space spanned by this basis as Vj.

b) What is the dimension of the space Vj1 ⊗ Vj2?

c) What is the dimension of the space ⊕∑j1+j2
l=|j1−j2|Vl?

d) Reconcile these two answers by showing that

(2j1 + 1)(2j2 + 1) =
j1+j2∑

l=|j1−j2|
(2l + 1).
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4) Rotation operators and Euler angles – optional: Euler angles {φ, θ, ψ} parametrise

an arbitrary rotation. In terms of these angles, the rotation operator R may be written as

Rφ,θ,ψ = exp (−iφJz) exp (−iθJy) exp (−iψJz).

a) Give the angles that describe the inverse to this rotation.

The d-functions are matrix elements of R:

d
(j)
m,m′(φ, θ, ψ) = 〈jm|Rφθψ|jm′〉.

b) Show that d
(j)
m,m′(φ, θ, ψ) = e−imφ d

(j)
m,m′(θ) e−im′ψ, where d

(j)
m,m′(θ) corresponds to a ro-

tation about the y-axis only.

c) Show that d
(j)
m,m′(θ) is a real matrix.

5) Spherical tensor operators: The set of operators {T (k)
q } with q = −k, . . . , k are the

components of a spherical tensor operator.

a) State the transformation law for rotations through a finite angle.

b) Derive the infinitesimal version of part (a) in terms of a commutator.

c) A spinless particle has angular momentum J = R×P, where R is the position operator

and P is the momentum operator. Show that P · P is a rank-zero spherical tensor

operator.

d) State the Wigner-Eckart theorem for {T (k)
q }.

e) Deduce the selection rules for the matrix elements of rank-zero, rank-one, and rank-two

spherical tensor operators. In each case, sketch the region of the j-j′ plane correspond-

ing to non-vanishing matrix elements.

f) A perturbation is applied to a nondegenerate system the hamiltonian, H0, of which

commutes with J · J and Jz. To first order in perturbation theory, discuss which

energy eigenvalues are shifted by the perturbation, and which are not, for the cases of

rank-zero, rank-one, and rank-two spherical tensor operators. Give a physical situation

which provides a perturbation of each of these three types.

g) Consider the operator

Λ ≡ [Jx, [Jx, T
(k)
q ]] + [Jy, [Jy, T

(k)
q ]] + [Jz, [Jz, T

(k)
q ]],

which is built from the angular momentum operator J and a component T (k)
q of a

rank-k irreducible spherical tensor operator. Show that Λ = k(k + 1) T (k)
q .

h) U (k)
q and V (k)

q are components of two rank-k irreducible spherical tensor operators.

Show that the operator

Γ ≡
k∑

q=−k

(−1)q U (k)
q V

(k)
−q

is a scalar operator.

2



6) Fluctuation dissipation theorem: The purpose of this problem set is to explore the

fluctuation-dissipation theorem, due to H.B Callen and T.A. Welton and set forth in their

1951 paper: Irreversibility and Generalized Noise, Physical Review 83, 34-40 (1951). This

theorem relates:

(i) the efficacy with which a large, dissipative system absorbs energy irreversibly from an

external source system that perturbs it in a time-dependent manner, to

(ii) the internal equilibrium fluctuations characteristic of the dissipative system.

The fluctuation dissipation theorem generalizes Nyquist’s 1928 result relating the resistance

of an electrical conductor to equilibrium fluctuations of the voltage across (or electrical cur-

rent through) the conductor. In Nyquist’s example, the dissipative system is the conductor

and the source system is the device that creates an external electric field that drives the

current according to the dissipative system’s resistance. The interplay between equilibrium

fluctuations and the nonequilibrium, entropy-creating process of Ohmic electrical transport

is a striking feature that should be noted.

The Callen-Welton exposition is an outstanding example of scientific writing; I especially

value the Conclusion section, which, in a pair of succinct paragraphs (the second and third),

provides the intuitive ideas underlying the theorem. I also value the clear and logically

economical presentation of the fluctuation-dissipation theorem given by L.D. Landau and

E.M. Lifshitz in Statistical Physics I, Sec. 124.

We now address the theorem itself. Consider a large quantum system—our dissipa-

tive system—that has fundamental collections of coordinates and momenta that we shall

respectively denote by q and p. We suppose that this system is governed by a time-

independent Hamiltonian H0(q, p), and that H0 has a complete set of eigenstates {|En〉}
and corresponding eigenvalues {En}, indexed by the quantum number n. The dissipative

system can be coupled to a source system, which perturbs the dissipative system through a

term H1(q, p; t) = −F (t) D(q, p) that augments the Hamiltonian H0. We shall refer to the

time-dependent c-number F (t) as the force and the conjugate, dissipative-system-dependent

physical observable D(q, p) as the displacement , although they need not have these physical

interpretations. For convenience, we shall suppose that the quantum mechanical mean value

of D vanishes in any eigenstate {|En〉} of H0.

At time t, the internal energy E(t) of the dissipative system in any (normalised) quantum

state |Ψ(t)〉 is given by 〈Ψ(t)|H0(q, p) + H1(q, p; t)|Ψ(t)〉.
a) Show that the rate d

dt
E(t) at which the dissipative system absorbs energy from the

source system is given exactly by

−〈Ψ(t)|D(q, p)|Ψ(t)〉 d

dt
F (t).

In the presence of the force F , the quantum statistical mechanical mean value of the displace-
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ment 〈D〉 (defined below) is driven away from zero. We suppose that the force is sufficiently

small that, to a good approximation, the response of 〈D〉 to F is given, phenomenologically,

by

〈D〉(t) = −
∫ ∞

0
dt′ A(t′) F (t− t′),

i.e., the linear response regime holds. Here, A(τ) is called the response function, and the

limits and argument structure of the relationship between 〈D〉 and F reflect (i) causality

(i.e., that future values of the force cannot influence past values of the displacement), and

(ii) the time-homogeneity (i.e., time translation invariance) of the unperturbed dissipative

system.

b) By taking Fourier transforms, show that 〈D〉(ω) = −A(ω) F (ω), where the Fourier

transform and its inverse are, respectively, defined via

K(ω) =
∫ ∞

−∞
dt e−iωtK(t),

K(t) =
∫ ∞

−∞
d̂ω eiωtK(ω),

in which d̂ω := dω/2π. [Note that A(τ) can be taken to vanish for negative argument,

and therefore that its Fourier transform is defined by a semi-infinite integral. This

consequence of causality is of significance for the analytic structure of A(τ).]

c) Assume that F (t) is perfectly harmonic, i.e., that F (t) = F0 sin(Ωt). Show that,

provided one averages over a period of the applied force, the energy absorbtion rate is

given by 1
2
Ω A′′(Ω) F 2

0 , where A′′(Ω) is the imaginary part of the Fourier transform of

the response function.

We now turn to the issue of the intrinsic fluctuations of the dissipative system.

d) Show that in the energy eigenstate |En〉 the quantal fluctuation of the displacement,

〈En|(D − 〈En|D|En〉)2|En〉, is given by

∑
m

|〈En|D|Em〉|2.

e) Next, introduce the density of states of the dissipative system, ρ(E) :=
∑

m δ(E−Em),

and use it to express the quantal fluctuation of the displacement as

h̄
∫ ∞

0
dω {ρ(En + h̄ω) |〈En|D|En + h̄ω〉|2 + ρ(En − h̄ω) |〈En|D|En − h̄ω〉|2}.

Now allow for thermal fluctuations by averaging over the states |En〉, weighted by the canon-

ical distribution f(E) [i.e., f(E) := Z−1 exp(−E/T ), normalized by the canonical partition

function Z :=
∫

dE ρ(E) exp(−E/T )] to obtain the quantum statistical mechanical average

〈· · ·〉 in the equilibrium state associated with H0 and temperature T . Note that we have set

Boltzmann’s constant kB to unity.

4



f) Hence show that

〈D2〉 = h̄
∫ ∞

0
dω {1 + exp(−h̄ω/T )}

∫
dE f(E) ρ(E) ρ(E + h̄ω) |〈E + h̄ω|D|E〉|2,

where the mean value 〈· · ·〉 is defined as the thermal equilibrium average
∑

n f(En) · · ·
of the quantal average 〈En| · · · |En〉.

We now return to the issue of the response function A and, in particular, its imaginary (i.e.,

dissipative) part A′′. To determine this microscopically, we account for the perturbation H1

using time-dependent perturbation theory.

g) By recalling that the partial transition rate from state n to state m is given by

2π

h̄

F 2
0

4
|〈Em|D|En〉|2{δ(h̄Ω− (Em − En)) + δ(h̄Ω + (Em − En))},

explain why the the rate at which the dissipative system absorbs energy from the source

system is given, to leading order in perturbation theory, by
π

2
F 2

0 Ω
∑
m

|〈Em|D|En〉|2{δ(h̄Ω− (Em − En))− δ(h̄Ω + (Em − En))}.

h) Hence, by introducing the density of states, thermally averaging over the initial state

n, and using the specific form of the canonical distribution function f(E), show that

the energy absorption rate becomes
π

2
F 2

0 Ω
∫

dE ρ(E) f(E){|〈E + h̄ω|D|E〉|2ρ(E + h̄ω)− |〈E − h̄ω|D|E〉|2ρ(E − h̄ω)}.
i) By comparing the results of parts (c) and (h), show that the dissipative part A′′ of the

response function A is given by

A′′(ω) = π{1− exp(−h̄ω/T )}
∫

dE ρ(E) ρ(E + h̄ω) f(E) |〈E + h̄ω|D|E〉|2.
j) By using the result for the dissipative part of the response function A′′ from part (i),

together with the result for the equilibrium fluctuation 〈D2〉 from part (f), show that

the fluctuation and the response function are precisely correlated via the fluctuation-

dissipation theorem:

〈D2〉 =
2

π

∫ ∞

0

dω

ω
A′′(ω) E(ω, T ) =

h̄

π

∫ ∞

0
dω A′′(ω) coth(h̄ω/2T ),

where E(ω, T ) is the mean value of internal energy of a harmonic oscillator of natu-

ral frequency ω in equilibrium at temperature T . It can readily be shown (but you

need not do it now) that this result also holds at the level of individual frequencies:

〈 1
2
(D(ω) D(ω′)† + D(ω′)† D(ω)) 〉 = 2πh̄ δ(ω − ω′) A′′(ω) coth(h̄ω/2T ).

k) Show that when the classical limit holds [i.e., if A′′(ω) is appreciably large only for

ω ¿ T/h̄] the the fluctuation-dissipation theorem reduces to

〈D2〉 =
2

π
T

∫ ∞

0
dω A′′(ω)

1

ω
.

l) Read and think about the Conclusion section of the Callen-Welton paper.
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