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1) Green function for noninteracting bosons: Consider noninteracting spinless bosons

in a cube of volume V with periodic boundary conditions. The hamiltonian H is given by

H =
∑

k a†k ak εk.

a) Evaluate [ak, H] and [a†k, H].

b) Use your results from part (a) to obtain the Heisenberg operators ak(t) and a†k(t).

Define the noninteracting-boson Green function G(p, t,p′, t′) through

G(p, t,p′, t′) = −i〈0|T ap(t) a†p′(t
′) |0〉,

where T is the time-ordering operator (which puts the later operator to the left).

c) Show that the G(p, t,p′, t′) satisfies

i∂tG(p, t,p′, t′) = h̄−1εp G(p, t,p′, t′) + δ(t− t′) δpp′ .

d) (optional) By considering its definition, discuss the physical meaning of the Green

function in terms of the inner product of two states, each built by adding a boson to

the vacuum at some instant.

2) Hartree-Fock method – optional: For all but an extremely small set of cases, it is

impossible to find the eigenstates and eigenfunctions for a system of interacting particles.

Thus, to make progress, approximation schemes are required. The Hartree-Fock method is

one such approximate method for finding energy eigenstates and eigenvalues for systems of

interacting fermions. The essence of the method is to find a single-particle basis {|µ〉}, and

thus a set of single-particle creation operators {b†µ}, so that the state

|Ψ〉 = b†1b
†
2 · · · b†N |0〉

renders the expectation value of the hamiltonian stationary with respect to variations of the

single-particle basis. Said another way, we are finding the unitary transformation (e.g., from

free particles) that best incorporates the effect of the interactions. You should regard |Ψ〉 as

being a variational state vector with the variational parameters being the orthonormal set

of single-particle states.

By following the steps outlined below we will explore the Hartree-Fock approximation.

The hamiltonian that we shall consider is

H =
∑
µν

b†µ bν 〈µ|H0|ν〉+
1

2

∑
µνρσ

b†µ b†ν bρ bσ (µν|W |σρ) .

1



As usual, we shall search for stationary points by requiring that a first order variation

vanishes (c.f . the calculus of variations). In this case, the variation is in each of the occupied

single-particle states that are used to build up the many-particle ground state.

a) First we consider the independent variations of |Ψ〉. Show that under variations of the

basis, the independent variations of |Ψ〉 are |δΨµν〉 = εµνb
†
µbν |Ψ〉 with εµν complex, and

|εµν | ¿ 1, and where µ = N + 1, N + 2, . . . (i.e., unoccupied) and ν = 1, 2, . . . , N (i.e.,

occupied).

b) Show that as |Ψ〉→|Ψ〉+|δΨµν〉 is norm-preserving, the condition that 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉
be stationary implies that 〈δΨµν |H|Ψ〉 = 0.

c) Show that, for the present system, the stationarity condition becomes

〈µ|H0|ν〉+
∑

λ
{(µλ|W |νλ)− (µλ|W |λν)} = 0,

where µ is an unoccupied state, ν is occupied, and
∑

λ runs over occupied states.

d) Suppose that there exists a basis {|i〉} in which W is diagonal, i.e., (ij|W |kl) =

Wij δik δjl. Show that your solution to part (c) can be construed as expressing the

orthogonality of the eigenkets of the effective one-particle eigenproblem H̃|ν〉 = εν |ν〉,
where the effective Hartree-Fock hamiltonian H̃ is given by

H̃ = H0 +
∑

λ

∑

ij

|i〉〈λ|j〉Vij〈j|λ〉〈i| −
∑

λ

∑

ij

|i〉〈λ|j〉Vij〈i|λ〉〈j|,

and where
∑

λ runs over occupied states only.

e) Thus, show that

εν = 〈ν|H̃|ν〉
= 〈ν|H0|ν〉+

∑

λ

∑

ij

〈ν|i〉〈λ|j〉Vij〈j|λ〉〈i|ν〉 −
∑

λ

∑

ij

〈ν|i〉〈λ|j〉Vij〈i|λ〉〈j|ν〉.

Notice that the Hartree-Fock energy 〈Ψ|H|Ψ〉 is not simply the sum of the Hartree-Fock

one-particle energies εν . Thus, it is not necessarily true that the Hartree-Fock ground state

will correspond to the occupation of N lowest values of εν .

f) To see this, show that the expectation value of the energy in the Hartree-Fock state,

i.e., the Hartree-Fock energy, is given by

EHF = 〈Ψ|H|Ψ〉 =
N∑

λ=1

ελ − 1

2

N∑

λ,σ=1

{(λσ|W |λσ)− (λσ|W |σλ)} .
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3) Cooper pairs: Let us explore Cooper’s problem, the problem of one-pair of electrons

interacting with one another outside a quiescent Fermi sea. The only role played by the

Fermi sea is that, via the Pauli exclusion principle, it blocks the two electrons of the pair

from occupying any of the single-particle states within the sea. Dynamical interactions

involving one or more electrons in the Fermi sea are neglected. Our aim is to solve the

corresponding energy eigenproblem

We shall take the interaction between the members of the pair to be translationally

invariant and spin-independent. Thus, the eigenstates can be characterized by sharp values

of the total momentum and total spin. Let us focus on the spin-singlet state, which is

antisymmetric in spin indices; the corresponding orbital factor must then be symmetric in

orbital coordinates.

a) Explain why the orbital factor Ψ(r1, r2) can be taken to have the form

Ψ(r1, r2) = ΦQ(r) exp iQ ·R ,

where the relative coordinate r is r1 − r2, the centre of mass R is (r1 + r2)/2, and the

total momentum is Q.

Let us express the relative orbital factor ΦQ(r1 − r2) in terms of the amplitudes Ak(Q):

ΦQ(r) =
∑

k(k>kF)

Ak(Q) exp ik · r .

b) Focusing on the Q = 0 eigenstate, show that the amplitudes ak [≡ Ak(0)] obey the

energy eigenproblem

2εk ak +
∑

k′(k′>kF)

Vk,k′ ak′ = E ak ,

where the interaction between the pair is characterized by the scattering matrix ele-

ments Vk,k′ = (k,−k|V |k′,−k′), the quantity εk is the free-particle dispersion relation,

and E is the energy eigenvalue.

c) To obtain a solvable situation, let us take the interaction to be factorizable:

Vk,k′ = Λ Uk U∗
k′ .

Show that the energy eigenvalues obey

1

Λ
=

∑

k(k>kF)

|Uk|2
E − 2εk

.

d) Recall that the system is large but finite, so that the single-particle energy levels are

discrete. By sketching the left and right hand sides of this equation as a function of

the eigenvalue E, show that attractive (Λ < 0) interactions lead to a bound (negative

energy) state, split off from the spectrum, whereas repulsive (Λ > 0) interactions do

not.
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e) Let us further take the interaction to be confined to a limited range of energies:

Uk =

{
1, for EF < εk < EF + εc,
0, otherwise,

where εc parametrizes the range. Show that the bound-state energy is given by

E = 2EF − 2εc

exp[2/|Λ|N(EF)]− 1
≈ 2EF − 2 εc e−2/|Λ|N(EF),

where N(EF) is the density of states at the Fermi energy, which we assume varies

slowly on the scale εc, and the approximate result occurs for the weak-coupling case,

|Λ|N(EF) ¿ 1. Discuss briefly why this result cannot be obtained via perturbation

theory

It can be shown that the energy EQ of the bound state with nonzero momentum Q varies,

for small Q, as

|EQ| = |E0| − 1

2
vFh̄ |Q|,

where vF is the Fermi velocity. Note that this is a linear rise in the energy, with Q. Assuming

E0 to be of order kBTc (where kB is Boltzmann’s constant and Tc is the superconducting tran-

sition temperature), the bound state has lost most of its binding energy when Q ∼ kBTc/h̄vF.

This gives a length-scale ξ0 ∼ h̄vF/kBTc ∼ EF/kBTc, the superconducting coherence length,

which gives the size-scale of the Cooper wave function. For Tc ≈ 2 K and vF ≈ 106 m s−1,

one finds ξ0 ∼ 10−6 m.
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4) Weakly interacting boson gas – optional: The purpose of this question is to follow

Bogoliubov’s approach to the issue of Bose-Einstein condensation in a weakly interacting

boson gas. Although this approach is only of qualitative value for the context in which is

was developed, namely the superfluidity of 4He, it has quantitative validity for the context

of Bose-Einstein condensation in atomic gases.

Consider a large cubic container of volume V , containing a large number N of identical,

non-interacting, free, spinless, bosons, each of mass m. Impose periodic boundary conditions

on the box. Choose the set of momentum eigenstates {|p〉} as the set of single-particle state

vectors from which is built a basis for the space of physical many-boson states.

a) Write down the wave functions 〈r|p〉 corresponding to the single-particle state vectors

|p〉. What values can the momenta take?

b) What extra requirement must the state vector for a system of many bosons satisfy if

the bosons are identical?

c) Write down the hamiltonian for this system of free bosons in terms of the creation and

annihilation operators a†p and ap.

d) What commutation relations do these creation and annihilation operators satisfy?

f) Write down the normalised ground state vector for the system of bosons in terms of

occupation number representation kets; and

g) Write it down in terms of operators acting on the vacuum state vector.

h) Write down the many-body wave function in real space for this normalised ground

state.

i) Write down the energy of this normalised many-body ground state.

j) Write down the occupation number of the lowest single-particle state when the many-

boson system is in this non-interacting ground state.

k) Write down the occupation numbers for the remaining single-particle states.

For the non-interacting system, the elementary excitation spectrum is defined as the collec-

tion of possible values by which the total energy of an N -boson state is raised above the

N -boson ground state when two occupation numbers each differ by unity from those of the

N -boson ground state.

l) Give the elementary excitation spectrum for the present system.

Now consider the effect of a weak repulsion between pairs of bosons. Our aim is to describe

the effect of this interaction on the ground state and the elementary excitation spectrum

of this N -boson system. Note that you do not need any prior knowledge about interacting

boson systems, Bose-Einstein condensation, or superfluidity to address this problem.

m) Write down the most general operator describing pairwise boson interactions, in terms

of the creation and annihilation operators, carefully defining any symbols you intro-

duce.
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A simplified model of interacting bosons is described by the hamiltonian H that includes, in

addition to your answer to part (c), a term describing boson-boson repulsion:

Hint =
U

2V

∑
p1 p2 p3 p4

(p1+p2=p3+p4)

a†p4
a†p3

ap2
ap1

.

n) What form should the interaction matrix elements take in order to reproduce this

term?

o) Explain the physical content of the constraint on the summation over momenta?

To investigate the impact of this interaction term we shall make two related assumptions:

[i] that the ground state of the interacting system is similar to that of the non-interacting

system, in the sense that the fraction of bosons occupying the single-particle ground

state remains close to unity whilst the total fraction occupying all the remaining single-

particle states is small; and

[ii] that as the occupation of the ground state is a large number, of order N , we may treat

the creation and annihilation operators associated with the lowest single-particle state

as commuting variables rather than quantum mechanical operators .

To use these assumptions, recall that a†0a0 = N0, and make the replacement

a†0 →
√

N0,

a0 →
√

N0,

where N0 is the occupation of the lowest single-particle state in the many-boson ground

state.

p) What physical assumption are we making about the quantum mechanical fluctuations

in this state of the observable a†0a0?

q) In the given interaction term Hint eliminate the operators a†0 and a0 in favour of the

(as yet unknown) occupation of the lowest single-particle state N0 using a†0 →
√

N0

and a0 →
√

N0, retaining only terms of order N0 or greater . Write down the complete

hamiltonian that you obtain using this scheme.

The next step is to eliminate the unknown occupation number N0 in favour of the known

total particle-number N . To do this, recall that

N = N0 +
∑′

p
a†pap,

where the prime on the sum denotes the omission of the p = 0 term.

r) Use this equation to eliminate N0 from the hamiltonian that you have given as the

answer to part (q). In doing this, treat N and N0 as large quantities , and their
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difference as a small quantity , consistent with assumption (i). By retaining only terms

of order N or greater, show that the hamiltonian that results is

H =
UN2

2V
+

∑′
p

(
p2

2m
+

UN

V

)
a†pap +

UN

2V

∑′
p

(
a†pa†−p + apa−p

)
.

Discuss the nature of the terms in this hamiltonian. Are there interactions? Is the

problem a single- or a many-particle problem?

Finally, we make a transformation (known as a Bogoliubov transformation) to diagonalise

the hamiltonian given in part (r). To do this we introduce new operators bp and b†p such

that

ap ≡ upbp + vpb†−p

a†p ≡ upb†p + vpb−p.

The parameters up and vp are real, satisfy up = u−p and vp = v−p, and otherwise are as-yet

arbitrary.

s) If the operators b†p and bp also create and annihilate bosons, what constraint must up

and vp satisfy?

t) Show that by choosing up and vp to satisfy

(
p2

2m
+

UN

V

)
upvp +

(
UN

2V

) (
u2

p + v2
p

)
= 0

the hamiltonian acquires the diagonal form

H = E0 +
∑′

p
ε̂(p) b†pbp.

State the appropriate forms of E0 and ε̂(p) in terms of up and vp.

u) By introducing tp ≡ vp/up show that the condition on up and vp given in part (t)

amounts to choosing

tp = −1− (p2/2m)

UN/V
+

ε(p)

UN/V
,

where

ε(p) =

√√√√
(

p2

2m

)2

+

(
p2

m

) (
UN

V

)
.

v) Show that ε̂(p) = ε(p). Discuss the nature of the elementary excitation spectrum for

this system of interacting bosons, and compare it with that of noninteracting bosons.
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