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1) Uncorrelated (or unentangled) states: Two identical bosons or fermions are in the

normalised state

|Ψ〉 = A
∑

ij

ci dj a†i a†j |0〉,

where i labels an orthonormal set of single-particle states, {ci} and {di} are complex con-

stants parametrising |Ψ〉, and {a†i} and {ai} are creation and annihilation operators for the

single-particle states. Such a state is said to be uncorrelated (or unentangled) except for the

effect of statistics.

a) Suppose that the complex numbers {ci} and {di} satisfy

∑

i

|ci|2 =
∑

i

|di|2 = 1.

Determine the normalisation constant A in terms of the sum S =
∑

i c
∗
i di.

b) Compute the expectation value, in the state |Ψ〉, of a one-particle operator
∑

a f (a) in

terms of the constants {ci} and {di}, and the matrix elements 〈i|f |j〉.
c) Show that if S = 0 then this one-particle expectation value has the same result as

if the particles were distinguishable and occupied two certain one-particle states (not

necessarily basis states |i〉). Which are these certain states?

d) Now consider a two-particle operator V that is diagonal in the |i〉-basis (which means

that (ij|V |kl) = Vij δik δjl). Calculate the expectation value of this operator in the

state |Ψ〉 in terms of {ci}, {di} and Vij. Show that the result is the same as for

distinguishable particles, provided that ci di = 0 for all i. Think about what this

means when {|i〉} is the position basis {|r〉}.
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2) Boson coherent states (optional): This question introduces a family of states known

as boson coherent states. Consider a system with one eigenstate φ(ξ). As there is only one

state, there is only one creation operator a† and one annihilation operator a. Define the

so-called coherent state |z〉, in which z is an arbitrary complex number, via

|z〉 ≡ exp(za†)|0〉.

a) Show that |z〉 is an eigenket of a with eigenvalue z.

b) Show that 〈z′|z〉 = exp ((z′)∗z).

A string of creation and annihilation operators is said to be normal-ordered operator if all the

creation operators occur to the left of all the annihilation operators. Given an un–normal-

ordered operator, we construct its normal-ordered counterpart by re-ordering the string of

creation and annihilation operators so that the annihilation operators all lie to the right of

the creation operators. For any operator f(a†, a), the normal-ordered counterpart is denoted

:f(a†, a) : .

c) Write down :a a† : . Show that for coherent states we have

〈z′| :f(a†, a) : |z〉 = f ((z′)∗, z) exp((z′)∗z),

where f (z′, z) is any function that is analytic in both arguments.

d) Show that the identity operator may be written in the form

I =
1

π

∫
d Rez d Imz e−z∗z |z〉〈z|.

e) Show that {|z〉} is overcomplete.

Consider a single quantum-mechanical harmonic oscillator with coordinate q, momentum p,

and hamiltonian

H =
1

2m
p2 +

1

2
mω2q2 − 1

2
h̄ω.

f) At time t = 0 the oscillator is prepared in the coherent state |zi〉. Determine the state

|Ψ(t)〉 at the subsequent time t. Does a coherent state remain coherent?

g) Compute the expectation values of q and p in the state |Ψ(t)〉.
h) Compare the expectation values obtained in part (i) with those obtained in energy

eigenstates of the oscillator. Compare the time-dependence of the coherent-state ex-

pectation values of q and p with those of the classical oscillator.

i) Compute the uncertainties in q and p at time t. Comment on their product.

j) Compare the coherent state with the oscillator ground state.
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3) Field operators for bosons: This question introduces so-called field operators for

bosons. Recall that to define creation and annihilation operators we need a complete solution

to a one-body eigenproblem, i.e., a set of eigenfunctions ψi(ξ), with eigenvalues εi. Then

we

i) build the Hilbert space IN ;

ii) symmetrise to obtain the boson space BN ;

iii) collect together the boson spaces BN and the vacuum space B0 to obtain the boson

Fock space.

Creation and annihilation operators act on the occupation number representation of this

Fock space in the following way:

a†j| . . . , nj, . . .〉 =
√

nj + 1 | . . . , nj + 1, . . .〉,
aj| . . . , nj, . . .〉 =

√
nj | . . . , nj − 1, . . .〉.

Introduce the following linear combination of creation and annihilation operators, the so-

called field operators:

ψ̂†(ξ) =
∑

j

ψ∗j (ξ) a†j ,

ψ̂(ξ) =
∑

j

ψj(ξ) aj .

Think of these simply as sets of operators parametrised by ξ.

a) By recalling that ψi(ξ) form a complete orthonormal set of functions for I1, prove that

[ψ̂(ξ), ψ̂†(ξ′)] = δ(ξ − ξ′).

b) Show that for spinless noninteracting bosons in a potential U(r) the hamiltonian may

be written in terms of field operators in the following way:

H = − h̄2

2m

∫
dr ψ̂†(r)∇2ψ̂(r) +

∫
dr ψ̂†(r) ψ̂(r) U(r).

c) Describe in physical terms the effect of applying ψ̂†(r) to a state. Determine is the

physical quantity to which the operator ψ̂†(r)ψ̂(r) corresponds. Determine the physical

quantity to which the operator
∫

dr ψ̂†(r) ψ̂(r) corresponds.

d) Find the Heisenberg equation of motion for the operator ψ̂(r) by evaluating the relevant

commutators for the hamiltonian of part (b).

e) Give a physical interpretation to the amplitude

〈G| ψ̂(r2, t2) ψ̂†(r1, t1) |G〉,
where the time-dependence indicates that the operators are in the Heisenberg repre-

sentation, |G〉 is the ground state of the system, and you may assume that t2 > t1.
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4) Nondegenerate perturbation theory: This question concerns first-order nondegener-

ate perturbation theory, couched in the language of the occupation number representation.

Consider a system of identical particles (fermions or bosons) with hamiltonian

H =
∑

i

εi a
†
i ai +

1

2

∑

qrst

a†q a†r as at (qr|V |ts) .

Show that the expectation value of H in the occupation number state |n1, n2, . . .〉 is given

by

En1,n2,... =
∑

i

εi ni +
1

2

∑

q 6=r

nq nr {(qr|V |qr)± (qr|V |rq)}+
1

2

∑
q

nq (nq − 1) (qq|V |qq) ,

where the +(−) sign holds for bosons (fermions). The two matrix elements in the second

term on the right hand side of this equation are known as the direct and exchange terms,

respectively.
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