Physics 581
Handout 14
31 March 2010

Quantum Mechanics II
webusers.physics.illinois.edu/~goldbart P. M. Goldbart, 3135 ESB

University of Illinois
Homework 9
goldbart@illinois.edu

1) Uncorrelated (or unentangled) states: Two identical bosons or fermions are in the normalised state

$$
|\Psi\rangle=A \sum_{i j} c_{i} d_{j} a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle,
$$

where i labels an orthonormal set of single-particle states, $\left\{c_{i}\right\}$ and $\left\{d_{i}\right\}$ are complex constants parametrising $|\Psi\rangle$, and $\left\{a_{i}^{\dagger}\right\}$ and $\left\{a_{i}\right\}$ are creation and annihilation operators for the single-particle states. Such a state is said to be uncorrelated (or unentangled) except for the effect of statistics.
a) Suppose that the complex numbers $\left\{c_{i}\right\}$ and $\left\{d_{i}\right\}$ satisfy

$$
\sum_{i}\left|c_{i}\right|^{2}=\sum_{i}\left|d_{i}\right|^{2}=1
$$

Determine the normalisation constant A in terms of the sum $S=\sum_{i} c_{i}^{*} d_{i}$.
b) Compute the expectation value, in the state $|\Psi\rangle$, of a one-particle operator $\sum_{a} f^{(a)}$ in terms of the constants $\left\{c_{i}\right\}$ and $\left\{d_{i}\right\}$, and the matrix elements $\langle i| f|j\rangle$.
c) Show that if $S=0$ then this one-particle expectation value has the same result as if the particles were distinguishable and occupied two certain one-particle states (not necessarily basis states $|i\rangle$). Which are these certain states?
d) Now consider a two-particle operator V that is diagonal in the $|i\rangle$-basis (which means that $\left.(i j|V| k l)=V_{i j} \delta_{i k} \delta_{j l}\right)$. Calculate the expectation value of this operator in the state $|\Psi\rangle$ in terms of $\left\{c_{i}\right\},\left\{d_{i}\right\}$ and $V_{i j}$. Show that the result is the same as for distinguishable particles, provided that $c_{i} d_{i}=0$ for all i. Think about what this means when $\{|i\rangle\}$ is the position basis $\{|\mathbf{r}\rangle\}$.
2) Boson coherent states (optional): This question introduces a family of states known as boson coherent states. Consider a system with one eigenstate $\phi(\xi)$. As there is only one state, there is only one creation operator a^{\dagger} and one annihilation operator a. Define the so-called coherent state $|z\rangle$, in which z is an arbitrary complex number, via

$$
|z\rangle \equiv \exp \left(z a^{\dagger}\right)|0\rangle
$$

a) Show that $|z\rangle$ is an eigenket of a with eigenvalue z.
b) Show that $\left\langle z^{\prime} \mid z\right\rangle=\exp \left(\left(z^{\prime}\right)^{*} z\right)$.

A string of creation and annihilation operators is said to be normal-ordered operator if all the creation operators occur to the left of all the annihilation operators. Given an un-normalordered operator, we construct its normal-ordered counterpart by re-ordering the string of creation and annihilation operators so that the annihilation operators all lie to the right of the creation operators. For any operator $f\left(a^{\dagger}, a\right)$, the normal-ordered counterpart is denoted : $f\left(a^{\dagger}, a\right)$. .
c) Write down : $a a^{\dagger}$: . Show that for coherent states we have

$$
\left\langle z^{\prime}\right|: f\left(a^{\dagger}, a\right):|z\rangle=f\left(\left(z^{\prime}\right)^{*}, z\right) \exp \left(\left(z^{\prime}\right)^{*} z\right)
$$

where $f\left(z^{\prime}, z\right)$ is any function that is analytic in both arguments.
d) Show that the identity operator may be written in the form

$$
\mathrm{I}=\frac{1}{\pi} \int d \operatorname{Re} z d \operatorname{Im} z \mathrm{e}^{-z^{*} z}|z\rangle\langle z|
$$

e) Show that $\{|z\rangle\}$ is overcomplete.

Consider a single quantum-mechanical harmonic oscillator with coordinate q, momentum p, and hamiltonian

$$
H=\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} q^{2}-\frac{1}{2} \hbar \omega .
$$

f) At time $t=0$ the oscillator is prepared in the coherent state $\left|z_{\mathrm{i}}\right\rangle$. Determine the state $|\Psi(t)\rangle$ at the subsequent time t. Does a coherent state remain coherent?
g) Compute the expectation values of q and p in the state $|\Psi(t)\rangle$.
h) Compare the expectation values obtained in part (i) with those obtained in energy eigenstates of the oscillator. Compare the time-dependence of the coherent-state expectation values of q and p with those of the classical oscillator.
i) Compute the uncertainties in q and p at time t. Comment on their product.
j) Compare the coherent state with the oscillator ground state.
3) Field operators for bosons: This question introduces so-called field operators for bosons. Recall that to define creation and annihilation operators we need a complete solution to a one-body eigenproblem, i.e., a set of eigenfunctions $\psi_{i}(\xi)$, with eigenvalues ϵ_{i}. Then we
i) build the Hilbert space \mathcal{I}_{N};
ii) symmetrise to obtain the boson space \mathcal{B}_{N};
iii) collect together the boson spaces \mathcal{B}_{N} and the vacuum space \mathcal{B}_{0} to obtain the boson Fock space.

Creation and annihilation operators act on the occupation number representation of this Fock space in the following way:

$$
\begin{aligned}
a_{j}^{\dagger}\left|\ldots, n_{j}, \ldots\right\rangle & =\sqrt{n_{j}+1}\left|\ldots, n_{j}+1, \ldots\right\rangle \\
a_{j}\left|\ldots, n_{j}, \ldots\right\rangle & =\sqrt{n_{j}}\left|\ldots, n_{j}-1, \ldots\right\rangle
\end{aligned}
$$

Introduce the following linear combination of creation and annihilation operators, the socalled field operators:

$$
\begin{aligned}
\hat{\psi}^{\dagger}(\xi) & =\sum_{j} \psi_{j}^{*}(\xi) a_{j}^{\dagger} \\
\hat{\psi}(\xi) & =\sum_{j} \psi_{j}(\xi) a_{j}
\end{aligned}
$$

Think of these simply as sets of operators parametrised by ξ.
a) By recalling that $\psi_{i}(\xi)$ form a complete orthonormal set of functions for \mathcal{I}_{1}, prove that

$$
\left[\hat{\psi}(\xi), \hat{\psi}^{\dagger}\left(\xi^{\prime}\right)\right]=\delta\left(\xi-\xi^{\prime}\right)
$$

b) Show that for spinless noninteracting bosons in a potential $U(\mathbf{r})$ the hamiltonian may be written in terms of field operators in the following way:

$$
H=-\frac{\hbar^{2}}{2 m} \int d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \nabla^{2} \hat{\psi}(\mathbf{r})+\int d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) U(\mathbf{r})
$$

c) Describe in physical terms the effect of applying $\hat{\psi}^{\dagger}(\mathbf{r})$ to a state. Determine is the physical quantity to which the operator $\hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r})$ corresponds. Determine the physical quantity to which the operator $\int d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r})$ corresponds.
d) Find the Heisenberg equation of motion for the operator $\hat{\psi}(\mathbf{r})$ by evaluating the relevant commutators for the hamiltonian of part (b).
e) Give a physical interpretation to the amplitude

$$
\langle\mathrm{G}| \hat{\psi}\left(\mathbf{r}_{2}, \mathrm{t}_{2}\right) \hat{\psi}^{\dagger}\left(\mathbf{r}_{1}, \mathrm{t}_{1}\right)|\mathrm{G}\rangle,
$$

where the time-dependence indicates that the operators are in the Heisenberg representation, $|\mathrm{G}\rangle$ is the ground state of the system, and you may assume that $t_{2}>t_{1}$.
4) Nondegenerate perturbation theory: This question concerns first-order nondegenerate perturbation theory, couched in the language of the occupation number representation. Consider a system of identical particles (fermions or bosons) with hamiltonian

$$
\mathcal{H}=\sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i}+\frac{1}{2} \sum_{q r s t} a_{q}^{\dagger} a_{r}^{\dagger} a_{s} a_{t}(q r|V| t s)
$$

Show that the expectation value of \mathcal{H} in the occupation number state $\left|n_{1}, n_{2}, \ldots\right\rangle$ is given by

$$
E_{n_{1}, n_{2}, \ldots}=\sum_{i} \epsilon_{i} n_{i}+\frac{1}{2} \sum_{q \neq r} n_{q} n_{r}\{(q r|V| q r) \pm(q r|V| r q)\}+\frac{1}{2} \sum_{q} n_{q}\left(n_{q}-1\right)(q q|V| q q),
$$

where the $+(-)$ sign holds for bosons (fermions). The two matrix elements in the second term on the right hand side of this equation are known as the direct and exchange terms, respectively.

