Physics 581
Handout 13
17 March 2010

Quantum Mechanics II
webusers.physics.illinois.edu/~goldbart
Homework 8
P. M. Goldbart, 3135 ESB

University of Illinois
goldbart@illinois.edu

1) Noninteracting spin- $3 / 2$ fermions: Consider a system of N noninteracting spin- $3 / 2$ fermions in a cube of volume V with periodic boundary conditions.
a) Determine the single-particle energy spectrum.
b) Assuming that N and V are large, so that the sum may be replaced by an integral, compute the ground state energy as a function of \hbar, N, V and the particle mass m.
c) Compute the energy of the highest occupied single particle state (the so-called Fermi energy).
2) Boson Fock space: Consider the boson Fock space $\mathcal{B}_{0} \oplus \mathcal{B}_{1} \oplus \cdots$. The creation operator is defined in the occupation number representation (ONR) by

$$
a_{j}^{\dagger}\left|\ldots, n_{j}, \ldots\right\rangle=\sqrt{n_{j}+1}\left|\ldots, n_{j}+1, \ldots\right\rangle .
$$

a) Evaluate the inner product $\left\langle n_{1}^{\prime}, \ldots \mid n_{1}, \ldots\right\rangle$.
b) Evaluate the matrix elements of a_{j}^{\dagger} in the ONR.
c) By using the definition of a_{j}^{\dagger} given in this question, show that $\left[a_{j}, a_{k}^{\dagger}\right]=\delta_{j k}$.
d) Consider noninteracting bosons. Suppose that the ONR is built up using the eigenkets of the one-body hamiltonian. Write down the total hamiltonian, in terms of creation and annihilation operators and the one-body eigenvalues.
e) Suppose that you are now given another one-body hamiltonian, the matrix elements of which in the basis of part (d) are $h_{i j}$. If this hamiltonian describes a collection of noninteracting bosons, write down the the total hamiltonian, in terms of creation and annihilation operators a_{j}^{\dagger} and a_{k} and the matrix elements $h_{i j}$.
f) (optional) Prove that a general one-body operator $\sum_{a} f^{(a)}$ has the second quantised representation

$$
\sum_{i j} a_{i}^{\dagger} a_{j}\langle i| f|j\rangle .
$$

g) Consider free spinless bosons in a cube of volume V with periodic boundary conditions. A natural set of eigenfunctions is the set of normalised plane waves:

$$
\psi_{\mathbf{p}}(\mathbf{r})=\frac{1}{\sqrt{V}} \exp (i \mathbf{p} \cdot \mathbf{r} / \hbar)
$$

Write down the total orbital angular momentum operator, in terms of creation and annihilation operators and a summation over momentum space.
h) Now consider noninteracting spin-half fermions in a cube of volume V with periodic boundary conditions. Write down the total spin operator, in terms of creation and annihilation operators, Pauli matrices and Planck's constant.
i) Write down the representation of a general two-body operator $\sum_{a<b} w^{(a b)}$ in second quantised form.
3) Anticommutation relations (optional): From the definition of fermion creation and annihilation operators given in class, i.e., as operators that connect states of different particle number, establish the three anticommutation relations between the creation and annihilation operators.
4) Matrix representation of the creation and annihilation operators: Consider a particular single-particle state and a single species of fermion. Find a 2×2 matrix representation of the creation and annihilation operators. Show that your matrices satisfy the correct anticommutation relations (including having zero square).
5) Grand-canonical density operator: For a system consisting of a single species of identical particles the statistical mechanical density operator in the grand canonical ensemble is given by $\rho \equiv Z^{-1} \exp \left(-\beta(H-\mu N)\right.$), where $\beta \equiv 1 / k_{\mathrm{B}} T$ (with T being the temperature), μ is the chemical potential, H is the Hamiltonian operator, N is the total particle-number operator, and the normalisation factor (i.e., the partition function) $Z \equiv \operatorname{Tr} \exp (-\beta(H-\mu N))$. The trace Tr is taken over a complete set of orthonormal physical states, i.e., states with all possible occupation numbers (including all possible total particle numbers). Thermal averages are defined through

$$
\langle A\rangle \equiv \operatorname{Tr} A \rho \equiv \sum_{n_{1}, \ldots}\left\langle n_{1}, \ldots\right| A \rho\left|n_{1}, \ldots\right\rangle
$$

a) If the particles are spin- $1 / 2$ fermions that are noninteracting and have eigenvalue spectrum $\epsilon_{\mathbf{k}, \sigma}$, show that the mean number of particles in the state (\mathbf{k}, σ) is given by the Fermi function:

$$
\left\langle n_{\mathbf{k}, \sigma}\right\rangle=\left\{1+\exp \beta\left(\epsilon_{\mathbf{k}, \sigma}-\mu\right)\right\}^{-1}
$$

b) If the particles are spinless bosons that are noninteracting and have eigenvalue spectrum $\gamma_{\mathbf{k}}$, show that the mean number of particles in the state \mathbf{k} is given by the Bose function:

$$
\left\langle n_{\mathbf{k}}\right\rangle=\left\{-1+\exp \beta\left(\gamma_{\mathbf{k}}-\mu\right)\right\}^{-1}
$$

What restriction do you need to impose on μ ?

