1) Permutation operators (optional): The permutation operator $\hat{P}_{A}$ associated with the permutation

$$
A \longleftrightarrow\left(\begin{array}{cccc}
1 & 2 & \cdots & N \\
a_{1} & a_{2} & \cdots & a_{N}
\end{array}\right)
$$

acts in the following way: $\left.\left.\hat{P}_{A} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\mid \mathbf{x}_{\bar{a}_{1}}, \ldots, \mathbf{x}_{\bar{a}_{N}}\right)$, where

$$
A^{-1} \longleftrightarrow\left(\begin{array}{cccc}
1 & 2 & \cdots & N \\
\bar{a}_{1} & \bar{a}_{2} & \cdots & \bar{a}_{N}
\end{array}\right) .
$$

a) Prove that the permutation operator $\hat{P}$ is unitary.
b) Show that for a hamiltonian $\hat{H}$ of a system of identical particles, and a permutation operator $\hat{P}$, the following relation holds: $\hat{P} \hat{H} \hat{P}^{-1}=\hat{H}$.
c) Show that if $|\psi\rangle$ is a nondegenerate eigenket of a hamiltonian $H$ for a system of identical particles, then $|\psi\rangle$ is either symmetric or antisymmetric under all pairwise exchanges.
2) Noninteracting particles: A single-particle quantum mechanical system possesses a Hilbert space spanned by three orthonormal eigenkets. Three particles occupy these states. How many distinct physical states are there if the three particles are:
a) Three identical fermions?
b) Three identical bosons?
c) Two identical fermions and a boson?
d) Two identical bosons and a fermion?
e) Three distinguishable fermions?
f) Three distinguishable bosons?
3) Identical spin-3/2 fermions: Consider 3 identical spin- $3 / 2$ fermions, for which spin and orbital degrees of freedom are not coupled. How many independent energy eigenstates are there associated with an orbital wave function $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)$ that is totally symmetric under permutation of its arguments?
4) Identical particles: Determine the conditions under which the following hamiltonians describe identical particles:
a) Two spin-1/2 degrees of freedom with

$$
\hat{H}=\sum_{\mu, \nu=1}^{3} \hat{S}_{\mu}^{(1)} \Delta_{\mu \nu} \hat{S}_{\nu}^{(2)}
$$

where $\Delta_{\mu \nu}$ are the arbitrary complex elements of a rank-2 tensor.
b) Three spin-1 bosons with

$$
\hat{H}=\sum_{i=1}^{3} \frac{\left|\hat{\mathbf{p}}^{(i)}\right|^{2}}{2 m^{(i)}}+\sum_{i=1}^{3} \gamma^{(i)} \hat{\mathbf{S}}^{(i)} \cdot \mathbf{B}^{(i)}\left(\hat{\mathbf{r}}^{(i)}\right)+\sum_{1 \leq i<j \leq 3} W^{(i j)}\left(\hat{\mathbf{r}}^{(i)}, \hat{\mathbf{r}}^{(j)}\right) .
$$

5) Exchange interaction: In this question we will examine the exchange interaction, introduced in class. Consider two electrons in an atom and neglect (i) spin-orbit coupling for each electron, and (ii) the electron-electron interaction. Suppose that the particles occupy the two orbitals $\phi_{1}(\mathbf{r})$ and $\phi_{2}(\mathbf{r})$. Electrons are spin- $1 / 2$ particles: to each one we associate a spin observable $\hat{\mathbf{S}}$.
a) By including both spin and spatial degrees of freedom, build a basis of the possible physical states.
b) The electron-electron interaction $\hat{U}$ is spin-independent and translationally invariant. What does this tell us about its matrix elements?
c) By treating the electron-electron interaction to first order in perturbation theory, show that an effective hamiltonian for this set of states takes the form

$$
\hat{H}=A \hat{\mathrm{I}}-\frac{J}{2}\left(\hat{\mathrm{I}}+\frac{4}{\hbar^{2}} \hat{\mathbf{S}}^{(1)} \cdot \hat{\mathbf{S}}^{(2)}\right)
$$

What are $A$ and $J$ in terms of the orbital functions and the electron-electron interaction?
d) Now consider the four spin functions alone, and the action on them of the operator

$$
\frac{1}{2}\left(1+\frac{4}{\hbar^{2}} \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}\right)
$$

Why is this operator called the exchange operator?
6) Real valued vectors and tensors: In this question we are going to consider the real-valued vectors and tensors with which you are familiar. However we shall use a notation which should help to illuminate the notation we have been using for Hilbert spaces in quantum mechanics.

Consider a d-dimensional linear vector space. Normally we would write an arbitrary vector as $\mathbf{t}$. It is a linear combination of unit vectors,

$$
\mathbf{t}=\sum_{\mu=1}^{d} t_{\mu} \mathbf{e}_{\mu}
$$

where $\left\{\mathbf{e}_{\mu}\right\}$ is an orthonormal set of basis vectors and

$$
\mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu}=\delta_{\mu \nu}
$$

Let us call this linear vector space $G_{1}$.
Simply change the notation:

$$
\begin{aligned}
\mathbf{t} & \rightarrow|t\rangle, \quad \text { an arbitrary vector; } \\
\mathbf{e}_{\mu} & \rightarrow|\mu\rangle, \quad \text { a basis vector; } \\
\mathbf{t} \cdot \mathbf{s} & =\langle t \mid s\rangle, \quad \text { an inner product. }
\end{aligned}
$$

Now consider the tensor

$$
\sigma=\sum_{\mu \nu} \sigma_{\mu \nu} \mathbf{e}_{\mu} \otimes \mathbf{e}_{\nu}
$$

The set of tensors $G_{2}$ is spanned by the basis $\left\{\mathbf{e}_{\mu} \otimes \mathbf{e}_{\nu}\right\}$. Instead, we shall write

$$
|\sigma\rangle=\sum_{\mu \nu} \sigma_{\mu \nu}|\mu\rangle \otimes|\nu\rangle=\sum_{\mu \nu} \sigma_{\mu \nu}|\mu, \nu\rangle .
$$

Scalar products are defined by

$$
\left(\mathbf{e}_{\mu} \otimes \mathbf{e}_{\nu}\right) \cdot\left(\mathbf{e}_{\rho} \otimes \mathbf{e}_{\tau}\right)=(\langle\mu| \otimes\langle\nu|)(|\rho\rangle \otimes|\tau\rangle)=\langle\mu \mid \rho\rangle\langle\nu \mid \tau\rangle=\delta_{\mu \rho} \delta_{\nu \tau} .
$$

a) Evaluate $\langle\sigma \mid \omega\rangle$ in terms of the components $\sigma_{\mu \nu}$ and $\omega_{\mu \nu}$.
b) How many real numbers are required to parametrise elements of $G_{2}$ ?
c) Symmetric tensors are the elements of $G_{2}$ for which $\sigma_{\mu \nu}=\sigma_{\nu \mu}$. How many real numbers are required to parametrise an arbitrary symmetric tensor?
d) How many elements are there in a basis for the symmetric tensors?
e) Write down a basis for the symmetric tensors for the case $d=3$ in terms of the tensors $|\mu, \nu\rangle$.
f) Show that an arbitrary element of $G_{2}$ can be written as the sum of two pieces, one symmetric and one antisymmetric. Can this be done for an arbitrary element of $G_{3}$, where $G_{3}$ is defined as the obvious extension of $G_{1}$ and $G_{2}$ ?

