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1) Permutation operators (optional): The permutation operator P̂A associated with

the permutation

A ←→
(

1 2 · · · N
a1 a2 · · · aN

)

acts in the following way: P̂A|x1, . . . ,xN) = |xā1 , . . . ,xāN
), where

A−1 ←→
(

1 2 · · · N
ā1 ā2 · · · āN

)
.

a) Prove that the permutation operator P̂ is unitary.

b) Show that for a hamiltonian Ĥ of a system of identical particles, and a permutation

operator P̂ , the following relation holds: P̂ ĤP̂−1 = Ĥ.

c) Show that if |ψ〉 is a nondegenerate eigenket of a hamiltonian H for a system of identical

particles, then |ψ〉 is either symmetric or antisymmetric under all pairwise exchanges.

2) Noninteracting particles: A single-particle quantum mechanical system possesses a

Hilbert space spanned by three orthonormal eigenkets. Three particles occupy these states.

How many distinct physical states are there if the three particles are:

a) Three identical fermions?

b) Three identical bosons?

c) Two identical fermions and a boson?

d) Two identical bosons and a fermion?

e) Three distinguishable fermions?

f) Three distinguishable bosons?

3) Identical spin-3/2 fermions: Consider 3 identical spin-3/2 fermions, for which spin

and orbital degrees of freedom are not coupled. How many independent energy eigenstates

are there associated with an orbital wave function ψ(r1, r2, r3) that is totally symmetric

under permutation of its arguments?
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4) Identical particles: Determine the conditions under which the following hamiltonians

describe identical particles:

a) Two spin-1/2 degrees of freedom with

Ĥ =
3∑

µ,ν=1

Ŝ(1)
µ ∆µν Ŝ(2)

ν ,

where ∆µν are the arbitrary complex elements of a rank-2 tensor.

b) Three spin-1 bosons with

Ĥ =
3∑

i=1

|p̂(i)|2
2m(i)

+
3∑

i=1

γ(i)Ŝ(i) ·B(i)(r̂(i)) +
∑

1≤i<j≤3

W (ij)(r̂(i), r̂(j)).

5) Exchange interaction: In this question we will examine the exchange interaction,

introduced in class. Consider two electrons in an atom and neglect (i) spin-orbit coupling for

each electron, and (ii) the electron-electron interaction. Suppose that the particles occupy

the two orbitals φ1(r) and φ2(r). Electrons are spin-1/2 particles: to each one we associate

a spin observable Ŝ.

a) By including both spin and spatial degrees of freedom, build a basis of the possible

physical states.

b) The electron-electron interaction Û is spin-independent and translationally invariant.

What does this tell us about its matrix elements?

c) By treating the electron-electron interaction to first order in perturbation theory, show

that an effective hamiltonian for this set of states takes the form

Ĥ = AÎ− J

2

(
Î +

4

h̄2 Ŝ(1) · Ŝ(2)
)

.

What are A and J in terms of the orbital functions and the electron-electron interac-

tion?

d) Now consider the four spin functions alone, and the action on them of the operator

1

2

(
1 +

4

h̄2 S(1) · S(2)
)

.

Why is this operator called the exchange operator?
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6) Real valued vectors and tensors: In this question we are going to consider the

real-valued vectors and tensors with which you are familiar. However we shall use a nota-

tion which should help to illuminate the notation we have been using for Hilbert spaces in

quantum mechanics.

Consider a d-dimensional linear vector space. Normally we would write an arbitrary

vector as t. It is a linear combination of unit vectors,

t =
d∑

µ=1

tµeµ,

where {eµ} is an orthonormal set of basis vectors and

eµ · eν = δµν .

Let us call this linear vector space G1.

Simply change the notation:

t → |t〉, an arbitrary vector;

eµ → |µ〉, a basis vector;

t · s = 〈t|s〉, an inner product.

Now consider the tensor

σ =
∑
µν

σµν eµ ⊗ eν .

The set of tensors G2 is spanned by the basis {eµ ⊗ eν}. Instead, we shall write

|σ〉 =
∑
µν

σµν |µ〉 ⊗ |ν〉 =
∑
µν

σµν |µ, ν〉.

Scalar products are defined by

(eµ ⊗ eν) · (eρ ⊗ eτ ) = (〈µ| ⊗ 〈ν|) (|ρ〉 ⊗ |τ〉) = 〈µ|ρ〉 〈ν|τ〉 = δµρ δντ .

a) Evaluate 〈σ|ω〉 in terms of the components σµν and ωµν .

b) How many real numbers are required to parametrise elements of G2?

c) Symmetric tensors are the elements of G2 for which σµν = σνµ. How many real numbers

are required to parametrise an arbitrary symmetric tensor?

d) How many elements are there in a basis for the symmetric tensors?

e) Write down a basis for the symmetric tensors for the case d = 3 in terms of the tensors

|µ, ν〉.
f) Show that an arbitrary element of G2 can be written as the sum of two pieces, one

symmetric and one antisymmetric. Can this be done for an arbitrary element of G3,

where G3 is defined as the obvious extension of G1 and G2?
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