Physics 581	Quantum Mechanics II	P. M. Goldbart, 3135 ESB
Handout 11	webusers.physics.illinois.edu/ \sim goldbart	University of Illinois
$3 March \ 2010$	Homework 6	goldbart@illinois.edu

1) Measurements and spin-1/2 particles:

- a) A spin-1/2 particle is in a state with a definite value $\hat{S}_z = +\hbar/2$. Determine the probabilities of the possible outcomes of the measurement of $\mathbf{n} \cdot \hat{\mathbf{S}}$, where the unit vector \mathbf{n} makes an angle θ with the z axis.
- b) Reduce an arbitrary function of the scalar operator $a\hat{\mathbf{I}} + \mathbf{b} \cdot \hat{\mathbf{S}}$, linear in the spin-1/2 operator $\hat{\mathbf{S}}$, to another linear function.

2) Spin-1 algebra: Let $\hbar \hat{\sigma}$ be the intrinsic angular momentum of a spin-1 particle, so that $\hat{\sigma} \cdot \hat{\sigma} = 2\hat{I}$. Show that for any component $\hat{\sigma}_u \equiv \mathbf{u} \cdot \hat{\sigma}$ (where \mathbf{u} is any unit vector) we have:

a)
$$\hat{\sigma}_u^3 = \hat{\sigma}_u;$$

b) $\exp(-i\varphi\hat{\sigma}_u) = 1 - i\hat{\sigma}_u\sin\varphi - \hat{\sigma}_u^2(1 - \cos\varphi).$

3) Crown-shaped texture: Consider a neutral, spin-1/2 particle of mass m confined to a thin ring of radius a. Let the location of the particle on the ring be given by the plane polar angle θ . The spin of the particle is coupled an external static magnetic field $\mathbf{B}(\theta)$ via the Zeeman coupling:

$$H_{\rm Z} = -g\mathbf{B}\cdot\hat{\mathbf{S}}.$$

a) Write down the hamiltonian describing the system in terms of the z-component of the orbital angular momentum operator \hat{L}_z and the coordinate operator $\hat{\theta}$.

Suppose that $\mathbf{B}(\theta)$ is given by the crown-shaped texture

$$\mathbf{B}(\theta) = \mathbf{e}_r \sin \chi + \mathbf{e}_z \cos \chi,$$

where $\{r, \theta, z\}$ are cylindrical polar coordinates and $\{\mathbf{e}_r, \mathbf{e}_{\theta}, \mathbf{e}_z\}$ are the cylindrical polar basis vectors, and χ is a constant parameter.

- b) Discuss the symmetry properties of the system, and the resulting conserved quantities, and list the good quantum numbers.
- c) Determine the energy eigenvalue spectrum.
- d) Compute the current in the ground state. When is your result nonzero? Is this consistent with the symmetry properties of the system?

4) Spin-1 freedom: Consider a quantum-mechanical system consisting of a single spin-1 degree of freedom. Let the state vectors $|\alpha\rangle$ (for $\alpha = 0, \pm 1$) be normalised eigenvectors of the z-component \hat{S}_z of the angular momentum operator $\hat{\mathbf{S}}$, so that $\hat{S}_z |\alpha\rangle = \hbar \alpha |\alpha\rangle$ (for $\alpha = 0, \pm 1$). You may use without proof the following matrix representations of the operator $\hat{\mathbf{S}}$:

$$\langle \alpha | \hat{S}_x | \alpha' \rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \ \langle \alpha | \hat{S}_y | \alpha' \rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}, \ \langle \alpha | \hat{S}_z | \alpha' \rangle = \hbar \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Suppose that the hamiltonian operator \hat{H} is given by

$$\hat{H} = \hbar^{-1} \Omega (\mathbf{N} \cdot \hat{\mathbf{S}})^2,$$

where **N** is an arbitrary unit vector and Ω is an arbitrary positive constant (having the dimensions of an angular frequency).

- a) Give all the possible outcomes of a measurement of the energy of this system.
- b) Suppose that $\mathbf{N} = (\mathbf{e}_x + \mathbf{e}_y)/\sqrt{2}$, where $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ forms a cartesian basis. Find a complete orthonormal set of stationary state-vectors, expressing them in terms of $\{|\alpha\rangle\}$.
- c) Suppose that $\mathbf{N} = \mathbf{e}_z$ and that the system is prepared at time t = 0 in the state $|\Psi\rangle$ given by

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |-1\rangle).$$

Calculate the amplitude that, at the subsequent time t = T, the system is again found to be in the state $|\Psi\rangle$.

d) Suppose that the system is prepared at a certain time in the state

$$|\Theta\rangle = \frac{1}{\sqrt{14}}(3|1\rangle + 2|0\rangle + |-1\rangle).$$

Immediately thereafter, the quantity $(\hat{S}_z)^2$ is measured, and the largest possible result is found. Give the normalised state vector immediately after the measurement.

- e) Immediately after the measurement of $(\hat{S}_z)^2$ described in part (d) the quantity \hat{S}_z is measured. Give the probability that the result \hbar is obtained.
- f) Suppose that $\mathbf{N} = \mathbf{e}_z$ but that Ω now varies with time as $\Omega(t) = \tilde{\Omega} \exp(-t/\tau)$, where $\tilde{\Omega}$ and τ are constants. Suppose further the system is again prepared at time t = 0 in the state $|\Psi\rangle$, given in part (c). Calculate the probability that, at time $t = \infty$, the system is found to be in the state $|\Psi\rangle$. State, giving a brief explanation, whether or not the z-component of angular momentum is conserved as the system evolves in time.