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1) Super-adiabatic transitions (Landau-Zener tunnelling): Consider a quantum-

mechanical system governed by a time-dependent hamiltonian that slowly evolves from Hi

at time ti to Hf at time tf . If at ti the system is in an eigenstate of Hi then at tf the system

will be in the eigenstate of Hf that derives from it by continuity, provided the evolution

is infinitely slow (and certain other conditions hold: e.g., continuity, differentiability, non-

crossing of eigenvalues). This is the quantum adiabatic theorem of Born and Fock (see, e.g.,

Messiah, Quantum Mechanics II, p. 739 et seq .).

The purpose of this question is to study the probability of super-adiabatic transitions,

i.e., quantum-number–changing transitions occurring in situations in which the evolution of

the hamiltonian is slow but not infinitely so (i.e., not quite adiabatic). The investigation of

such processes is associated with the names of L. D. Landau and C. Zener; it is relevant,

e.g., to the physics of dielectric breakdown. We will study a model problem, due to Zener,

which captures the essential physics.

Consider a two-state system having a Hilbert space spanned by the orthonormal pair of

states |1〉 and |2〉. In this basis the hamiltonian is given by
(

H11(t) H12(t)
H21(t) H22(t)

)
= ∆

(
t/T 1
1 −t/T

)
,

where ∆ and T are real positive parameters, and t is the time.

a) Find and sketch the instantaneous eigenvalues of H as a function of t. Contrast your

results with those in the case ∆ → 0 and T → 0 with ∆/T = δ (fixed).

Let ε±(t) be the pair of (straight line) asymptotes to the instantaneous eigenvalues (such

that ε+ < ε− for t < 0 and ε+ > ε− for t > 0). Express the general state in the form

|1〉C1(t) e−ih̄−1
∫ t

0
dτ ε+(τ) + |2〉C2(t) e−ih̄−1

∫ t

0
dτ ε−(τ),

where C1 and C2 are arbitrary time-dependent complex amplitudes.

b) By using the time-dependent Schrödinger equation construct a pair of coupled first-

order ordinary differential equations satisfied by C1 and C2 [in terms of ∆ and ε±(·)].
At the initial time (t → −∞) the system is prepared in a state proportional to |2〉.

c) Give an initial condition for C1 and C2.

d) Give a ket proportional to the state of the system at all times, valid under the assump-

tion that the evolution is truly adiabatic.

The evolution is not truly adiabatic, and our aim is to determine the (small) probability

that, at late times, the system has undergone a quantum-number–changing transition.
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e) Explain the connection between this probability and the amplitude C1(∞).

f) Construct a second-order ordinary differential equation satisfied by C1. By making

suitable transformations of the dependent and independent variables, cast this equa-

tion into the standard form of the Weber equation, and hence show that the general

solutions are parabolic cylinder functions. Note: You may wish to refer to one or more

of the following books: Abramowitz and Stegun §19; Gradshteyn and Ryzhik §9.24-25;

and Whittaker and Watson’s Modern Analysis §16.5.

g) By considering the asymptotic properties of the parabolic cylinder functions, deter-

mine the asymptotic probability that the system suffers a quantum-number–changing

transition. Identify an adiabaticity parameter . Briefly discuss the analytical behaviour

of your result, as a function of the adiabatic parameter, in the adiabatic limit. Should

your result be classified as non-perturbative?

Dykhne has derived an approximate formula for the probability P of a quantum-number–

changing transition valid in the adiabatic limit:

P (− → +) ∼ e−2h̄−1 Im
∫ tc

0
dt {E+(t)−E−(t)},

where E+(t) and E−(t) [with E+(t) > E−(t)] are instantaneous eigenvalues of the (non-

degenerate) hamiltonian, and tc is the (complex) root of the degeneracy condition E+(t) =

E−(t). It is easier to obtain results by using Dykhne’s formula than by following Zener’s

asymptotic analysis.

h) Obtain the probability of a quantum-number–changing transition for the Zener problem

by applying Dykhne’s formula. Compare your result with that obtained in part (g).

In contrast with their probabilities , the quantal phases of adiabatically-evolving quantum

states were not thoroughly studied until surprisingly recently. In 1984, Michael Berry pub-

lished a beautiful analysis of this issue [M. V. Berry, Proc. R. Soc. Lond. A 392 (1984)

45-57]. This has richly elucidated the subject by identifying an important and unifying

concept known as the geometric (or Berry) phase.
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2) Spin-1/2 dynamics (optional): Consider the quantum dynamics of a spin-1/2 parti-

cle.

a) Ŝy is measured at time t = 0 and the result h̄/2 is found. Give a state vector |ψ(t = 0)〉
immediately after the measurement.

Between t = 0 and t = T a uniform magnetic field is applied. This field depends on time,

and the hamiltonian becomes Ĥ = Ω0(t)Ŝz.

b) Let Ω0(t) = Ω̄t/T , where Ω̄ is a constant frequency. Show that for times 0 ≤ t ≤ T

the state vector takes the form

|ψ(t)〉 =
1√
2

{
eiθ(t)|+〉+ ie−iθ(t)|−〉

}
,

and find the appropriate function θ(t).

c) The field is removed at time t = T , and at some later time Ŝy is measured. Calculate

the probability of finding the result h̄/2.

d) State the values of T for which one can be certain of the outcome of the measurement

of Ŝy.
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