Physics 581Quantum Mechanics IIP. M. Goldbart, 3135 ESBHandout 9webusers.physics.illinois.edu/~goldbartUniversity of Illinois17 February 2010HOMEWORK 4goldbart@illinois.edu

1) Nuclear magnetic resonance: The cartesian components of the spin-1/2 Pauli operator $\hat{\sigma}$ obey $\hat{\sigma}_j \hat{\sigma}_k = \delta_{jk} \hat{\mathbf{I}} + i\epsilon_{jkm} \hat{\sigma}_m$, where $\hat{\mathbf{I}}$ is the the identity operator. The spin-1/2 Hilbert space rotation operator corresponding to a rotation through an angle θ about an axis θ/θ , is given by $\hat{\mathcal{R}}(\theta) = \exp(\theta \cdot \hat{\sigma}/2i)$. The spin is governed by the hamiltonian $\hat{\mathcal{H}} = -(\hbar \Omega/2) \cdot \hat{\sigma}$.

- a) Derive the Heisenberg equation of motion for the Heisenberg-picture operator $\hat{\sigma}(t)$. Briefly describe the form of motion that the expectation value of $\hat{\sigma}(t)$ exhibits.
- b) Demonstrate that the ket $|\psi\rangle_t \equiv \hat{\mathcal{R}}(-\Omega t) |\psi\rangle_0$ satisfies the appropriate time-dependent Schrödinger equation.
- c) Construct an explicit expression for $\hat{\mathcal{R}}(\boldsymbol{\theta})$, linear in both $\hat{\boldsymbol{\sigma}}$ and \hat{I} .

Now suppose that Ω is aligned along the z axis and that the spin is subject to an additional, time-dependent torque, so that its hamiltonian becomes

$$\hat{\mathcal{H}} = -(\hbar\Omega/2)\left(\hat{\sigma}_z + \lambda\,\hat{\sigma}_x\,\cos\omega t - \lambda\,\hat{\sigma}_y\,\sin\omega t\right),\,$$

where Ω and ω are positive frequencies and λ is a positive constant.

- d) Give a simple sketch to indicate the properties of the field acting on the spin.
- e) Show that the ket

$$|\psi\rangle_t = \hat{\mathcal{R}}(-\omega t \mathbf{e}_z) \,\hat{\mathcal{R}}(-\boldsymbol{\Gamma} t) \,|\psi\rangle_0 \,,$$

in which $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ form an orthonormal cartesian basis, satisfies the relevant timedependent Schrödinger equation. State the necessary value of $\boldsymbol{\Gamma}$ in terms of λ , Ω , ω . *Hint*: You may find it helpful to transform to a basis rotating about the z axis at a frequency ω , *i.e.*, to exchange the equation of motion obeyed by the Schrödinger picture state vector $|\psi\rangle_t$ for an equation of motion obeyed by a state vector

$$|\widetilde{\psi}\rangle_t \equiv \hat{\mathcal{R}}(\omega t \mathbf{e}_z) |\psi\rangle_t$$
.

Be sure to *think* about the effects of $\hat{\mathcal{R}}(\pm \omega t \mathbf{e}_z)$, especially on operators, rather than just launch into some extended calculation.

- f) Compute the *exact* probability for the system to be in the spin-down state (with respect to the z-axis) at time $t \ (> 0)$, given that is was in the spin-up state at time t = 0. Express your answer in terms of λ , Ω , ω and t.
- g) Identify a circumstance under which an approach based on time-dependent perturbation theory would be *invalid*, even if the parameter λ were numerically small. Briefly explain the physical origin of this phenomenon.

2) Spin-1/2 Hilbert space: Consider the spin-1/2 Hilbert space, in which the kets $|\pm\rangle$ are eigenkets of \hat{S}_z with eigenvalues $\pm\hbar/2$. Define the unit vector **n** in terms of the spherical polar coordinates $\{\theta, \phi\}$: $\mathbf{n} = \sin\theta\cos\phi\,\mathbf{e}_x + \sin\theta\sin\phi\,\mathbf{e}_y + \cos\theta\,\mathbf{e}_z$.

- a) The ket $|\mathbf{n}, +\rangle$ is defined by $|\mathbf{n}, +\rangle \equiv \cos(\theta/2)e^{-i\phi/2}|+\rangle + \sin(\theta/2)e^{i\phi/2}|-\rangle$. Show that it is an eigenket of the operator $\mathbf{n} \cdot \hat{\mathbf{S}}$. Compute the corresponding eigenvalue? Write down a ket that has eigenvalue $-\hbar/2$?
- b) Given a state vector $|\psi\rangle$ one can, of course, compute the expectation value of the spin operator $\langle \psi | \hat{\mathbf{S}} | \psi \rangle$. Show that the converse is true for spin-1/2, *i.e.*, that you can work *backwards* from the expectation value to obtain $|\psi\rangle$ (to within a phase factor).
- c) Explain why every ket in spin-1/2 Hilbert space is an eigenket, with eigenvalue $\hbar/2$, of the operator $\mathbf{n} \cdot \hat{\mathbf{S}}$ for *some* unit vector \mathbf{n} .
- d) Explain why, and also verify by explicit calculation that, $|\mathbf{n}, +\rangle = \hat{R}(\phi \mathbf{e}_z) \hat{R}(\theta \mathbf{e}_y) |+\rangle$.

3) Spin-operator algebra – optional: Let A and B be classical vectors (or operators that commute with σ). By using the properties of the spin operators σ show that

$$(\mathbf{A} \cdot \boldsymbol{\sigma}) (\mathbf{B} \cdot \boldsymbol{\sigma}) = (\mathbf{A} \cdot \mathbf{B}) \hat{\mathbf{I}} + i (\mathbf{A} \times \mathbf{B}) \cdot \boldsymbol{\sigma},$$

where \hat{I} is the identity operator.

- 4) More spin-operator algebra: Consider any complex 2×2 matrix \mathcal{M} .
 - a) Show that \mathcal{M} can always be written in the form $\mathcal{M} = \sum_{i=0}^{3} \mu_i \sigma_i$, where $\{\sigma_i\}_{i=0}^{3}$ are the Pauli *matrices* (including the identity matrix I for i = 0).
 - b) Show that the expansion coefficients $\{\mu_i\}_{i=0}^3$ may be extracted from \mathcal{M} as

$$\mu_i = (1/2) \operatorname{Tr} \left(\mathcal{M} \sigma_i \right).$$

Express the following quantities as linear combinations of the Pauli matrices and the identity matrix:

c)
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
, d) $(\mathbf{I} + i\sigma_1)^{1/2}$, e) $(2\mathbf{I} + \sigma_1)^{-1}$, and f) $(\sigma_1)^{-1}$

5) Yet more spin-operator algebra – optional:

- a) Show that any matrix that commutes with all three Pauli matrices must be a multiple of the identity matrix.
- b) Show that any matrix that anticommutes with all three Pauli matrices must be the zero matrix.