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This particular homework is optional, but I encourage you to work through the problems.

1) Adiabatic approximation and Berry’s geometric phase: In this question we shall

consider the dynamics of a quantum-mechanical spin-1/2 degree of freedom S = h̄σ/2 gov-

erned by the Hamiltonian

H(t) = −B n(t) · σ .

The time-dependent unit vector n(t) describes the instantaneous orientation of the magnetic

field, and the constant B describes its magnitude. We introduce the pair of states |±, ez〉
which are eigenstates of σz, i.e., σz|±, ez〉 = ±|±, ez〉, where ez is one of three orthonormal

basis vectors {ex, ey, ez}. Furthermore, it will be convenient to parametrise n in terms of

spherical polar coordinates, i.e., {nx, ny, nz} = {sin θ cos φ, sin θ sin φ, cos θ}
a) Consider the states |+,n〉 defined by

|+,n〉 ≡ +e−iφ/2 cos(θ/2)|+, ez〉+ e+iφ/2 sin(θ/2)|−, ez〉,
|−,n〉 ≡ −e−iφ/2 sin(θ/2)|+, ez〉+ e+iφ/2 cos(θ/2)|−, ez〉.

Show that the states |±,n〉 are eigenstates of the operator n · σ.

a-i) Calculate the corresponding eigenvalues?

a-ii) Is there degeneracy for any value of n?

a-iii) Are the states |±,n〉 single-valued functions of n?

We refer to the states |±,n〉 as instantaneous energy eigenstates because

H(t)|±,n(t)〉 = E±(n(t))|±,n(t)〉,
where E±(n(t)) = ∓B, and we refer to E±(n(t)) as instantaneous energy eigenvalues.

Now, according to the adiabatic theorem, provided (i) that the magnetic field Bn(t)

varies sufficiently slowly, and (ii) that no degeneracy is encountered, a system prepared at

time t = 0 in a certain instantaneous eigenstate of H(0) will evolve into the eigenstate of

H(t) with the same quantum number, i.e., if |ψ(0)〉 = |+,n(0)〉 then

|ψ(t)〉 = |+,n(t)〉 exp
(
iγ+(t)− i

h̄

∫ t

0
dt′E+(n(t′))

)
,

where γ+(t) is some phase angle, and γ+(0) may be chosen to vanish.

b) By requiring that |ψ(t)〉 approximately satisfies the time-dependent Schrödinger equa-

tion, find an expression for dγ+(t)/dt in terms of the inner product 〈+,n|
{

∂
∂n
|+,n〉

}
,

evaluated at n = n(t), and the rate of change of the orientation of the magnetic field

dn(t)/dt.
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c) Now suppose that n(t) executes a closed path C, so that n(T ) = n(0). By integrating

your answer to part (b), or otherwise, show that

γ+(T ) = i
∮

C
〈+,n|

{ ∂

∂n
|+,n〉

}
· dn,

and hence show that the resulting phase γ+(T ) depends only on the geometry of the

closed path C and not on the manner in which it is traversed.

In fact, it can be shown that γ+(T ) is simply related to one half of the solid angle swept out by

n as it completes its closed path closed path C, a rather appealing result due to M. V. Berry.

For a discussion of this and many related issues, see A. Shapere and F. Wilczek, Geometric

Phases in Physics (World Scientific, Singapore, 1989), especially the article by M. V. Berry

[Proc. R. Soc. Lon., Ser. A 392, 45 (1984)] reprinted therein.

2) A version of Foucault’s pendulum: Consider a classical point particle of mass m

attached to the origin O of three-dimensional space by the harmonic potential U(r) =

mω2|r|2/2, where r is the position vector of the particle and the frequency ω is a (real)

parameter. The particle is constrained to a plane that contains O, the unit vector normal

to the plane being N. Suppose that for times |t| > T/2 the normal N does not vary, but

that for times |t| < T/2 it does vary, albeit adiabatically slowly (i.e., |Ṅ| ¿ ω). Suppose,

further, that for t < −T/2 the particle oscillates linearly, along a direction S.

a) Show that it the adiabatic limit the oscillation direction obeys the equation of motion

dS

dt
=

(
N× Ṅ

)
× S.

b) (optional) Suppose that over the course of the interval |t| < T/2 the normal N varies

adiabatically, but ultimately returns to its original value. Show that the total angle

through which S consequently rotates is simply related to the solid angle swept out by

N.

At least two issues are worth pointing out here. First, we have an example of “anholonomy:

the geometrical phenomenon in which nonintegrability causes variables [S] to fail to return to

their original values, when others, which drive them [N], are altered round a cycle.” Second,

the phenomenon is geometric, in the sense that the (dynamical) system has a property (the

change in the oscillation direction) that depends only on the shape of the path taken by

N but not the details of when those values of N were visited. For a discussion of this and

many related issues, see A. Shapere and F. Wilczek, Geometric Phases in Physics (World

Scientific, 1989), especially one of the articles by M. V. Berry, p. 8 et seq .

2



3) Photon polarization and the Poincaré sphere: Consider a monochromatic beam of

light of frequency ω propagating along the positive z direction. As a function of position r

and time t the electric field E can be expressed as

E(r, t) = E Red exp iω ((z/c)− t) ,

where E is a real, positive amplitiude and d is a vector in the x-y plane having complex

components dx and dy and normalized such that d∗ ·d = 1. The complex vector d describes

the polarization of the beam.

a) Determine the nature of the polarization when

i) dx and dy have the same phase but arbitrary magnitudes, and

ii) dx = ±idy, i.e., the components have the same magnitude but are out of phase.

b) In a word, state the nature of the polarization when neither of these conditions hold.

Our aim is to relate the complex polarization vector d to a two-component spinor |ψd〉
and, thence, to a real, three-dimensional unit vector rd. Here, |ψd〉 is a particular linear

combination of |±〉, a pair of orthnormal spinors spanning the space of spinors. In terms of

|±〉 and the components of d we construct the spinor

|ψd〉 ≡ dx + idy√
2

|+〉+
dx − idy√

2
|−〉 .

Note that this is the eigenvalue +1/2 eigenspinor of the spin-half Hamiltonian

H = |ψd〉〈ψd| − I

2
,

where I is the identity operator. For a suitable real, three-dimensional (ordinary) unit vector

rd, this Hamiltonian can be expressed as a linear combination of Pauli operators:

H =
1

2
rd · σ.

(Recall that any two-component spinor is a +1/2 eigenspinor of a Hamiltonian of this form.)

In this way, we are connecting a polarization state d to a point rd on the unit sphere in three

dimensions, via the spinor |ψd〉 (or any rephasing of it). This sphere is called the Poincaré

sphere; it is a useful way of representing states of polarization (and their rephasings).

c) Determine the nature of the polarization associated with

i) the poles of the Poincaré sphere; and

ii) the equator of the Poincaré sphere.

d) State the the nature of the polarizations associated the points on the Poincaré sphere

that are neither at the poles nor at the equator.

This problem should shed some light on “the paradox of polarization being governed by

the same algebra as quantum states of spin-1/2 particles. . . even though photons are quan-

tum particles with spin 1. . . ” [M. V. Berry, J. Mod. Optics, 34, 1401 (1987); reprinted in

A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989)].
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4) Cartesian vectors – optional: The aim of this question is to familiarise you with some

of the notational conventions that we shall be using throughout the course, and also to give

you some practice with the so-called summation convention, due to Einstein.

Consider a cartesian basis , {e1, e2, e3}, for 3-dimensional vectors x. Suppose that the

basis vectors are normalised to unity and are mutually orthogonal (i.e., they are orthonor-

mal); then they possess the scalar products eµ · eν = δµν , where µ and ν take the values 1,

2, or 3 (or x, y or z). Here, δµν is the Kronecker symbol, which equals 1 when µ = ν, and

equals 0 otherwise. You may think of this as the (3× 3) identity matrix



δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33


 =




1 0 0
0 1 0
0 0 1


 .

An arbitrary vector x is a linear combination of basis vectors, x =
∑3

µ=1 xµeµ, with the

set of coefficients (called components) {xµ}3
µ=1. Notice that we can extract a component by

taking the scalar product of a vector with the appropriate basis vector,

eµ · x = eµ ·
3∑

ν=1

xνeν =
3∑

ν=1

eµ · eνxν =
3∑

ν=1

δµνxν = xµ.

It is very useful to adopt a convention, called summation convention, in which summation

is implied over any twice-repeated indices; e.g.,

x =
3∑

µ=1

xµeµ ≡ xµeµ.

In true tensorial equations a given index, say µ, never need occur more than twice. Singly

occurring indices are called effective indices, whilst repeated indices are called dummy indices,

and may be replaced by another index: e.g., x = xνeν = xµeµ. Dummy indices are rather

like dummy variables in integrals.

If two vectors a and b are equal then their components are equal, i.e., aµ = bµ. This

follows from taking the scalar product of both sides of the equation a = b with the basis

vector eµ. Notice that unrepeated indices balance throughout all terms of an equation. For

example, if a + b = c then aµ + bµ = cµ. Indices are only considered repeated if they occur

in the same term. For example, the equation aµ = bµ contains one effective index and no

repeated indices. Using eµ · eν = δµν and eµ · x = xµ, and also the definition of δµν , verify

the following statements:

a-1) x · x = xµxµ

a-2) x · y = xµyµ

a-3) δµν δνρ = δµρ

a-4) aµ = aνδνµ
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a-5) δµµ = 3.

Now consider scalar and vector fields, i.e., scalar-valued functions, f(x), and vector-

valued functions, g(x) = eµ gµ(x), of a position vector, x. For cartesian coordinates, the

gradient operator ∇ is defined by

∇ ≡
3∑

µ=1

eµ
∂

∂xµ

= eµ
∂

∂xµ

= eµ ∂µ

where, for convenience, we have written ∂µ for ∂/∂xµ.

Verify the following results:

b-1) ∇ · g(x) = ∂µgµ(x)

b-2) ∇f(x) = eµ∂µf(x)

b-3) (x · ∇) f(x) = xµ ∂µf(x)

b-4) ∇ · (∇f(x)) = ∇2f(x) where ∇2 ≡ ∂2
x + ∂2

y + ∂2
z = ∂µ∂µ

b-5) ∇ · x = ∂µ xµ = δµµ = 3

b-6) ∇(x · x) = 2x

b-7) ∇2 (x · x) = 6

b-8) ∇|x| = x/|x|
b-9) ∂µ(xν/|x|) = (x2δµν − xµ xν)/x

3 .

b-10) ∇2 (1/|x|) = −4π δ(x) [Hint: Apply the divergence theorem.]

b-11) ∇ (x · g(x)) = g(x) + eµxν∂µgν(x)

b-12) ∇ · (x f(x)) = 3 f(x) + (x · ∇) f(x)

b-13) For constant h,
∮
Γ dx · (1

2
h×x) = πh · n, where Γ is a any circle of unit radius, and

the unit vector n specifies the axis of the circle and the sense in which it is traversed.

[Hint: Apply the Stokes theorem.]

b-14) ∇ exp(ik · x) = ik exp(ik · x)

b-15) f(x + a) = f(x) + (a · ∇)f(x) + · · · = ea·∇f(x). [Note: This is a compact form of the

multidimensional Taylor theorem.]

A large selection of further practice problems can be found in: M. R. Spiegel, Vector Analysis

(McGraw-Hill, 1974), especially Chapters 4–6.
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5) More on cartesian vectors – optional: The purpose of this question is two-fold.

Firstly, we will investigate some of the properties of the vector product, denoted ×, and the

related differential operator, curl, denoted ∇×. Secondly, we will solve the problems using

summation convention so that we get some more practice with it. As with Homework 0 , we

consider an orthonormal basis, {e1, e2, e3}, for 3-dimensional cartesian vectors, x. The basis

is said to be right-handed because

e1×e2 = e3

e2×e3 = e1

e3×e1 = e2.

We can express these relationships much more compactly using the symbol εµνρ, known

as the Levi-Civita symbol, or the antisymmetric third-rank tensor. This tensor takes on the

following values in all cartesian coordinate systems:

εµνρ =





+1, if µνρ = 123, 231, or 312;
−1, if µνρ = 132, 213, or 321;

0, otherwise.

Notice that εµνρ is totally antisymmetric, i.e., its value changes sign whenever any pair of

indices are exchanged, e.g., ε123 = −ε213 = 1. This requirement forces εµνρ to vanish whenever

two or more of its indices are the same, e.g., ε113 = 0. This property is extremely useful, as

we shall see, when it comes to proving certain results involving vector products and the curl

operator.

In terms of εµνρ, the vector products between basis vectors become

eµ×eν = εµνρ eρ,

where the implied summation on ρ recovers the previously-given results for the cases µ 6= ν,

and also includes results when µ = ν. Starting with these definitions, and the results

from last week’s homework if necessary, verify the following statements using summation

convention:

a-1) εµνρ εµστ = δνσ δρτ − δντ δρσ

a-2) εµνρ εµντ = 2 δρτ

a-3) εµνρ εµνρ = 6

a-4) A×B = Aµ Bν εµνρ eρ

a-5) (A×B)ρ = Aµ Bν εµνρ

a-6) A · (B×C) = εµνρ Aµ Bν Cρ

a-7) (A×B) ·C = (B×C) ·A
a-8) A×A = 0

6



a-9) A×(B×C) = B (A ·C)− (A ·B)C

Now consider scalar and vector fields, i.e., scalar-valued functions, f(x), and vector-valued

functions, g(x) = eµ gµ(x), of a position vector, x. The curl operator, ∇×, operates on a

vector field, g(x) to produce new vector field, denoted ∇×g(x). It is defined in the following

way:

∇×g(x) ≡
3∑

µ,ν,ρ=1

eµ εµνρ
∂

∂xν

gρ(x) = eµ εµνρ
∂

∂xν

gρ(x) = eµ εµνρ ∂ν gρ(x).

Using these definitions, verify the following statements:

b-1) ∇×x = 0

b-2) ∇× (H×x) = 2H, for constant H

b-3) ∇ · (∇×g(x)) = 0

b-4) ∇×(∇f(x)) = 0

b-5) ∇×(f(x)g(x)) = f ∇×g + (∇f)×g

b-6) ∇×(g(x)×h(x)) = g∇ · h− h∇ · g + (h · ∇)g − (g · ∇)h
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