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1) Quantal and classical exponential atmosphere: Consider a particle of mass m

moving in one spatial dimension, confined to the region x > 0 and subject to the linear

potential V (x) = fx, where f is a positive constant. If, e.g., the potential were gravitational

then f would be mg and the particle would be an atmospheric particle.

a) Sketch the potential.

b) The energy eigenproblem reads(
− h̄2

2m

d2

dx2
+ fx

)
ψ(x) = ϵ ψ(x).

By introducing the shifted dimensionless length Y ≡ (x/λ) − (ϵ/fλ), where λ is the

characteristic length (h̄2/2mf)1/3, show that the eigenproblem reduces to the dimen-

sionless form Ψ′′(Y )− Y Ψ(Y ) = 0, i.e., to Airy’s equation.

c) By imposing appropriate boundary conditions, establish that the energy eigenvalues

ϵn obey the quantisation condition Ai(−ϵn/fλ) = 0 and that the (un-normalised)

eigenfunctions are given by translations of the scaled Airy function:

ψn(x) = Ai

(
x

λ
− ϵn
fλ

)
.

Give the first three eigenvalues and sketch the first three eigenfuntions.

Note: You may wish to consult a standard reference, such as Abramowitz and Stegun.

d) Now apply the Bohr-Sommerfeld quantisation scheme to motion in the potential V (x).

Compute the lowest three eigenvalues it gives, and compare them with their exact

values. Compare the Bohr-Sommerfeld eigenvalue spectrum at large n with the result

you obtain for the spectrum using the asymptotic properties of the Airy function.

Recall the problem of classical statistical mechanics in which we consider a system of non-

interacting particles that constitute an isothermal atmosphere. In that setting, we ask the

question: What is the probability density p(x) for finding a particle to be at height x,

given the gravitational potential V (x) = mgx? We find the exponential atmosphere result:

p(x) = (mg/kBT ) exp (−mgx/kBT ). Let us see how we can recover this result, starting with

quantal rather than classical motion—a problem posed by my colleague Prof. Paul Debevec.

According to the canonical ensemble of quantum statistical mechanics,

p(x) =
1

λ
P(X,B) ≡ 1

λ
∑∞

n=1 e
−BEn

∞∑
n=1

e−BEn
Ai(X − En)

2∫∞
0 dX ′ Ai(X ′ − En)2

,

where X ≡ x/λ, B ≡ fλ/kBT and En ≡ ϵn/fλ,
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e) Explain the elements of this formula.

Now let us try to understand the classical limit of this formula. The essential idea is to

neglect tunnelling into the classically forbidden region. This means that, for a given value

of x, states n only contribute to p(x) if ϵn > fx. States lower in energy come with quantal

probability densities that involve Airy functions evaluated at positive arguments, and these

are small, only being nonzero by virtue of tunnelling. Thus we have

P(X,B) ≈ 1∑∞
n=1 e

−BEn

∞∑
n>ν(X)

e−BEn
Ai(X − En)

2∫ En
0 dX ′Ai(X ′ − En)2

,

where Eν(X) ≈ X. Generally, for larger values of x fewer states contribute.

To evaluate P we approximate the sum over states (i.e. over n) by an integral over n

(characteristically, as discreteness/quantisation is an essentially quantal effect). To do the

resulting integral we exchange continuous n for continuous E = (3π/2)2/3n2/3, suggested by

the asymptotic spectrum at large n.

f) Show that this leads to

P(X,B) ≈ 1∫∞
0 dE

√
E e−BE

∫ ∞

X
dE

√
E e−BE Ai(X − E)2∫ E

0 dX ′ Ai(X ′ − E)2
.

g) The asymptotic form of the Airy function at large negative argument reads

Ai(−z) ≈ 1√
π z1/4

sin
(
ζ +

π

4

)
,

where ζ ≡ (2/3)z3/2. Show that averaging over a few periods gives for the quantal

probability factor

Ai(X − E)2 ≈ 1

2π

1√
E −X

and for its normalisation integral

∫ E

0
dX Ai(X − E)2 ≈

√
E

π
.

h) Put the pieces togther to obtain the classical result

P(X,B) ≈

∫ ∞

X
dE

1√
E −X

e−BE

2
∫ ∞

0
dE

√
E e−BE

= B e−BX .

Hence, we find the exponential atmosphere formula: p(x) = (f/kBT ) exp (−fx/kBT ).
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2) Spin-1/2 particle in a magnetic field (after Shankar, 17.2.2) – optional: Consider

a spin-half particle with gyromagnetic ration γ in a magnetic fieldB = B1ex+B0ez. Treating

B1 as a perturbation, calculate the first- and second-order shifts in energy and first-order

shift in state vector for the ground state. Compare your answers with the exact answers

expanded to the corresponding orders.

You may quote the relevant operators for the spin degrees of freedom from Shankar, Sec. 14.3.

3) Degenerate perturbation theory for a spin-1 particle (after Shankar, 17.3.2) –

optional: Consider a spin-1 particle with no orbital degrees of freedom. Let the hamiltonian

be

H = AS2
z +B

(
S2
x − S2

y

)
,

where {Sx, Sy, Sz} are 3×3 spin matrices and A≫ B. Treating the B term as a perturbation,

find the eigenstates ofH0 = AS2
z that are stable under the perturbation. Calculate the energy

shifts to first order in B. State how these are related to the exact answers.

You have studied the relevant operators for the spin degrees of freedom for a prior homework.

4) Anharmonic oscillator – optional: Shankar, 17.2.1.

Note that you have obtained several relevant results for an earlier homework.

5) Hydrogen atom – optional: Shankar, 17.2.3.

6) Thomas-Reiche-Kuhn sum rule – optional: Shankar, 17.2.4.
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7) Nearly degenerate perturbation theory (after Davydov, sec. 49) – optional:

The aim of this question is to work out how to handle eigenproblems perturbatively in

settings in which a small collection of unperturbed eigenvalues are close in energy. By

close in energy we mean that typical matrix elements of the perturbation are larger than

typical differences between close unperturbed eigenvalues. The resulting “small” energy

denominators preclude the use of ordinary perturbation theory for computing corrections to

eigenvectors and eigenvalues. What is the remedy?

Let H0 be an unperturbed hamiltonian having eigenvectors {|a⟩} and nondegenerate

eigenvalues {Ea}, i.e., H0|a⟩ = Ea|a⟩. Let H1 be a perturbation, so that the full hamiltonian

is H ≡ H0 + H1. For the sake of simplicity, let us suppose that only two eigenvalues are

close, and let them be E1 and E2. (Extension to the more general case is straightforward.)

The remedy is to treat the subspace spanned by the vectors |1⟩ and |2⟩ more accurately,

before applying perturbation theory. To do this, we modify the separation into unperturbed

hamiltonian and perturbation as follows:

H0 → H̃0 ≡ H0 +
2∑

a,b=1

|a⟩ ⟨a|H1|b⟩ ⟨b|,

H1 → H̃1 ≡ H1 −
2∑

a,b=1

|a⟩ ⟨a|H1|b⟩ ⟨b|.

Said equivalently, we move the diagonal block associated with the close eigenvalues from the

perturbation to the unperturbed Hamiltonian; the latter is now not quite diagonal.

Next, we find the eigenvectors of the new unperturbed Hamiltonian H̃0. For a ̸= 1, 2 the

unperturbed eigenvectors and eigenvalues are unchanged.

a) Determine the new eigenvalues associated with the a = 1, 2 subspace.

b) Usual (i.e., nondegenerate) perturbation theory would hold if |E1 − E2| ≫ |⟨1|H1|2⟩|.
Show that under this condition the new unperturbed energies are those determined

by usual perturbation theory, taken to second order, at least as far as the coupling

between states in the a = 1, 2 subspace is concerned.

c) Suppose instead that |E1 − E2| ≪ |⟨1|H1|2⟩|. Determine, to leading order, the new

unperturbed eigenvalues. Sketch them as a function of the parameter

δ ≡ (E1 + ⟨1|H1|1⟩)− (E2 + ⟨2|H1|2⟩)

for fixed ⟨1|H1|2⟩. Observe that the coupling ⟨1|H1|2⟩ between the levels always in-

creases their separation; this is the phenomenon of level repulsion.

Conclusion: The effects of the new perturbation H̃1 can now be taken into account via usual

perturbation theory. Difficulties associated with “small” energy denominators no longer arise

because the corresponding numerators, the relevant matrix elements of H̃1 from the a = 1, 2

subspace, vanish.
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8) Rayleigh-Schrödinger and Brillouin-Wigner perturbation schemes (after Tay-

lor and Heinonen, sec. 2.5) – optional: Let |ψ⟩ be an eigenvector of a full hamiltonian

H0+H1 with eigenvalue E, and let |ψ0⟩ be the corresponding eigenvector of the unperturbed

hamiltonian H0 with eigenvalue E0. Thus: (H0 +H1) |ψ⟩ = E|ψ⟩ and H0|ψ0⟩ = E0|ψ0⟩.
a) Show that if |ψ⟩ is normalized such that ⟨ψ0|ψ⟩ = 1 then ⟨ψ0|H1|ψ⟩ = (E − E0).

b) By rearranging the full eigenproblem and using the result of part (a), or otherwise,

show that |ψ⟩ obeys the equation

|ψ⟩ = |ψ0⟩+ (E0 −H0)
−1 (1− |ψ⟩⟨ψ0|)H1|ψ⟩.

Observe that the sole unknown quantity on the right hand side of this inhomogeneous

equation is the sought eigenstate |ψ⟩. Thus, by interation one can develop a pertur-

bative solution for |ψ⟩, the Rayleigh-Schrödinger perturbation series. Note that the

unknown quantity |ψ⟩ occurs in more than one place on the right hand side. As a

result, there is some intricacy to the resulting perturbation expansion.

c) By making an alternative rearrangement of the full eigenproblem and using the result

of part (a), or otherwise, show that |ψ⟩ also obeys the equation

|ψ⟩ = |ψ0⟩+ (E −H0)
−1 (1− |ψ0⟩⟨ψ0|)H1|ψ⟩.

Observe that there are now two unknown quantities on the right hand side of this in-

homogeneous equation: the sought eigenstate |ψ⟩ and the corresponding eigenvalue E.

Iterating this equation yields the Brillouin-Wigner perturbation series for |ψ⟩, which
depends on the unknown quantity E; however, the unknown quantity |ψ⟩ no longer

occurs in more than one place on the right hand side. The price of this simplification

of the resulting perturbation expansion is its dependence on the unknown quantity E,

which must be determined self-consistently, a posteriori , e.g., via the expectation value

of the full hamiltonian.
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