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1) Quantifying entanglement: Consider a quantum system involving two parties , tradi-

tionally called Alice and Bob. We call such systems bipartite. They may each be, e.g., a

quantum spin (say, one spin-1 and one spin-5/2), but for now let us leave them arbitrary and

denote orthonormal sets of vectors spanning Alice’s Hilbert space {|α⟩} and Bob’s Hilbert

space {|β⟩}. Then arbitrary states |ψA⟩ of Alice can be written |ψA⟩ =
∑na

α=1Aα|α⟩; arbitrary
states |ψB⟩ of Bob can be written |ψB⟩ =

∑nb
β=1Bβ|β⟩.

The generic states of the composite bipartite system |Ψ⟩ can be expressed in terms of

the amplitude Ψαβ as

|Ψ⟩ =
∑
αβ

Ψαβ |α⟩ ⊗ |β⟩.

The unentangled states of the composite bipartite system are the subset for which the ampli-

tude Ψαβ factorises: Ψαβ = AαBβ. The entangled states of the composite bipartite system

are the subset for which the amplitude Ψαβ does not factorise.

a) Show that if the amplitude Ψαβ factorises then the state of the composite bipartite

system |Ψ⟩ factorises.
Let OA and OB be operators, respectively acting solely on Alice’s and Bob’s Hilbert spaces.

(Think, e.g., of the spin and position operators for a particle with spin.)

b) Show that for unentangled states the expectation value ⟨Ψ|OAOB|Ψ⟩ of the product

operator OAOB factorises into a product of expectation values, one involving each

party. Briefly explain why we say that such states possess no quantum correlations

between the parties.

Suppose we are concerned only with properties of one of the parties, say Alice. Rather than

retain the full information |Ψ⟩ (or, equivalently, the full density matrix |Ψ⟩⟨Ψ|) describing

the composite system, we may trace out Bob’s Hilbert space. In this way, we develop a

reduced density matrix

ρA ≡ TrB |Ψ⟩⟨Ψ|,

acting solely on Alice’s Hilbert space. As long as we are only concerned with computing

expectation values of operators on Alice, i.e., operators of the form OA⊗ IB, where IB is the

identity on Bob’s Hilbert space, this tracing presents no loss of options.

c) Show that if |Ψ⟩ is unentangled then ρA represents a pure state.

Note that if |Ψ⟩ is entangled then ρA is mixed. Thus, one strategy for quantifying the

entanglement, at least for bipartite systems, is via the quantity SB ≡ −TrB ρA ln ρA, familiar

from the distinct setting of thermodynamics, which is non-negative, and zero only if ρA
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describes a pure state. In summary, only if parties are unentangled does each of the parties

individually inhabit a particular quantum state. Think about this in the setting of Bose-

Einstein condensation: If a large number of bosonic atoms are in the same quantum state,

are their fermionic constituent electrons (or neutrons, protons, quarks,...) all in the same

quantum state? If so, how would this be consistent with the Pauli exclcusion principle?

As a strategy for quantifying the entanglement of a quantum state of a multi- (i.e. not

necessarily bi-) partite system, we may invoke the notion of the accuracy with which a generic

state can best be approximated by an unentangled one. If the best approximant is far from

the state in question then that state must have been strongly entangled; if near then the

state must have been weakly entangled.

Translating this idea into mathematics, we define the distance D between between a pair

of normalised quantum states |Ψ⟩ and |Φ⟩ via

D(Ψ,Φ) ≡ | |Ψ⟩ − |Φ⟩ |,

where | · · · | indicates the norm of the enclosed vector in Hilbert space. Then, for a particular

quantum state |Ψ⟩ we can define its geometric measure of entanglement D(Ψ) to be the

distance from |Ψ⟩ to the closest unentangled normalised approximant:

D(Ψ) = min
Φ∈ΣU

D(Ψ,Φ),

where ΣU is the set of normalised unentangled states. The distance D(Ψ) measures the en-

tanglement of |Ψ⟩ in the sense that small/large D(Ψ) means weak/strong entanglement.

d) Show that we can equivalently define D(Ψ) by minimising not | |Ψ⟩ − |Φ⟩ | but rather
1
2
| |Ψ⟩ − |Φ⟩ |2 and, therefore, by maximising the cosine of the angle ϑ between a pair

of normalised quantum states |Ψ⟩ and |Φ⟩, this being defined via

cosϑ(Φ,Ψ) ≡ Re ⟨Φ|Ψ⟩.

Hence, once can equivalently define the geometric measure of entanglement of the

quantum state |Ψ⟩ to be 2| sin (ϑ(Ψ)/2)|, where

cosϑ(Ψ) = max
Φ∈ΣU

cosϑ(Φ,Ψ).

This angle ϑ(Ψ), measures the entanglement of |Ψ⟩, in the sense that small/large ϑ(Ψ)

[or, equivalently, 2| sin (ϑ(Ψ)/2)|] means weak/strong entanglement.

e) Show that ϑ(Ψ) can also be interpreted via the energy expectation value in the best

variational ground state of the auxilliary Hamiltonian H ≡ −|Ψ⟩⟨Ψ| over the set ΣU .

Consider the special case of bipartite quantum systems, and let the state whose entanglement

is being quantified be characterised by the amplitides Ψαβ mentioned in the introduction.
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f) By varying cosϑ(Φ,Ψ) with respect to the normalised unentangled state Φ, show that

the amplitudes Aα and Bβ characterising the best unentangled approximant obey the

linear (na + nb)× (na + nb) eigenproblem(
0 X
X† 0

)(
B∗

A

)
= Λ

(
B∗

A

)
,

where X is the na × nb matrix with elements Xαβ = Ψαβ, A is the na-entried column

matrix with elements Aα, and B is the nb-entried column matrix with elements Bβ.

g) Show that the largest of the entanglement eigenvalues Λ warrants its name by having

the value cosϑ(Ψ).

h) Show that by “squaring” the eigenproblem one arrives at the block-diagonal form(
X ·X† 0

0 X† ·X

)(
B∗

A

)
= Λ2

(
B∗

A

)
.

Explain how the eigenproblem thus reduces to one no harder than the smaller of na×na

and nb × nb. Note that the matrices X ·X† and X† ·X are square and Hermitian, and

can be shown to be isospectral (up to zero modes).

Now consider the general case of P -partite entanglement, in which case the generic state |Ψ⟩
can be expressed as

|Ψ⟩ =
n1∑

α1=1

n2∑
α2=1

· · ·
nP∑

αP=1

Ψα1α2···αP
|E(1)

α1
⟩ ⊗ |E(2)

α2
⟩ ⊗ · · · ⊗ |E(P )

αP
⟩,

where {|E(p)
αp

⟩}np

p=1 is the Hilbert-space basis for the states of party p (with p = 1, 2, . . . , P ).

The general unentangled state has the form

|Φ⟩ =
n1∑

α1=1

n2∑
α2=1

· · ·
nP∑

αP=1

φ(1)
α1
φ(2)
α2

· · ·φ(P )
αP

|E(1)
α1

⟩ ⊗ |E(2)
α2

⟩ ⊗ · · · ⊗ |E(P )
αP

⟩,

in which the individual components {φ(p)
αp
}np

p=1 of the factorised amplitude can themselves be

taken to be normalised, i.e.,
∑dp

αp=1 |φ(p)
αp
|2 = 1 (for p = 1, 2, . . . , P ).

i) For the multipartite (i.e. P ≥ 3) case, derive the the nonlinear eigenproblem deter-

mining both the best unentangled approximant and the corresponding entanglement

eigenvalue.
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2) Supersymmetry (after G. Junker, Supersymmetric Methods in Quantum and

Statistical Physics) – optional: Consider quantum systems involving a Hamiltonian H,

along with N (= 1, 2, . . . , N) hermitian operators Qi (i = 1, 2, . . . , N), acting on a Hilbert

space H. If it is true that the anticommutation relations

{Qi, Qj} = H δij

hold for all i and j then we call the system supersymmetric (SUSY); we call the Qi super-

charges and the Hamiltonian H the SUSY Hamiltonian. The symmetry characterised by

these anticommutation relations (or superalgebra) is called N -extended supersymmetry.

a) Show that the superalgebra guarantees that

H = 2Q2
1 = 2Q2

2 = · · · = 2Q2
N =

2

N

N∑
i=1

Q2
i ,

i.e., the supercharges are “square roots” of the Hamiltonian.

b) Show that [H,Qi] = 0 (for i = 1, 2, . . . , N). That is, if the supercharges have no

explicit time dependence then they are conserved.

c) Show that the hamiltonian does not have any negative eigenvalues.

It is useful to introduce the notions of good and broken SUSY. If the energies of the ground

states the system are zero we say that SUSY is good; if it is larger than zero we say that

SUSY is broken.

d) Show that if SUSY is good then all ground states are annihiliated by all supercharges.

e) Show that if SUSY is broken then at least one supercharge fails to annihilate at least

one ground state.

Consider the Pauli Hamiltonian, which describes the dynamics of a spin-half particle of mass

m and charge e moving in, say, three dimensions in a magnetic field B = ∇×A:

HP ≡ 1

2m
|p− e

c
A|2 − eh̄

2mc
B · σ.

Here, A is the vector potential and the gyromagnetic ratio is two.

f) Show that the system is N = 1 supersymmetric, with supercharge

Q1 ≡
1√
4m

(
p− e

c
A
)
· σ.

It is a curious fact that supersymmetry constrains the gyromagnetic ratio to be ±2, absent

any considerations of special relativity. (Recall that a gyromagnetic ratio of two is usually

taken to follow from the Dirac equation.)
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Witten’s N = 2 SUSY quantum mechanics describes the dynamics of a spin-half particle

of mass m moving in one dimension in a potential. The two supercharges are

Q1 =
1√
2

(
p√
2m

σ1 + Φ(x)σ2

)
,

Q2 =
1√
2

(
p√
2m

σ2 − Φ(x)σ1

)
,

where Φ, which is known as the SUSY potential (not the superpotential), is assumed to be

continuous.

g) Show that the Hamiltonian of the Witten model is

HW ≡
(
p2

2m
+ Φ(x)2

)
+

h̄√
2m

Φ′(x)σ3,

where the prime indicates a derivative. Note that in the eigenbasis of σ3 the Hamilto-

nian is block diagonal:

HW =
(
H+ 0
0 H−

)
,

H± ≡ p2

2m
+ Φ(x)2 ± h̄√

2m
Φ′(x) .

3) Variational approach to the particle in a box – optional: Shankar, 16.1.2.

4) Variational approach to the attractive potential (after Shankar, 16.1.3): Con-

sider a particle of mass m moving in one spatial dimension. For the attractive delta-function

potential V (x) = −aV0 δ(x) use a Gaussian trial wave function to calculate an upper bound

on the ground state energy. Compare your answer to the exact answer, −ma2V 2
0 /2h̄

2.
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