Physics 580	Quantum Mechanics I	Prof. P. M. Goldbart
Handout 13	webusers.physics.illinois.edu/ \sim goldbart/	3135 (& 2115) ESB
26 October 2010	Homework 9	University of Illinois

1) The algebra of angular momentum – optional:

- a) By using the definition $\mathbf{L} = \mathbf{R} \times \mathbf{P}$, and the canonical commutation relations $[R_i, P_j] = i\hbar \delta_{ij}$, establish the following results:
 - a.i) $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k;$
 - a.ii) $[\mathbf{L} \cdot \mathbf{L}, L_i] = 0;$
 - a.iii) $[\mathbf{R}, \mathbf{a} \cdot \mathbf{L}] = i\hbar \mathbf{a} \times \mathbf{R}$ for c-numbers \mathbf{a} ;
 - a.iv) $[R_i, L_j] = i\hbar\epsilon_{ijk}R_k;$
 - a.v) $[P_i, L_j] = i\hbar\epsilon_{ijk}P_k;$
 - a.vi) $[\mathbf{R} \cdot \mathbf{R}, L_i] = 0;$
 - a.vii) $[\mathbf{R} \cdot \mathbf{R} P_i, L_j] = i\hbar\epsilon_{ijk}\mathbf{R} \cdot \mathbf{R} P_k.$
- b) The raising and lowering operators, L_{\pm} , are defined via $L_{\pm} = L_x \pm iL_y$. Use them to establish the following results:
 - b.i) $[L_{\pm}, L^2] = 0$, where $L^2 \equiv \mathbf{L} \cdot \mathbf{L}$;
 - b.ii) $[L_z, L_{\pm}] = \pm \hbar L_{\pm};$
 - b.iii) $[L_+, L_-] = 2\hbar L_z;$
 - b.iv) $L^2 = L_+ L_- + L_z^2 \hbar L_z$.
- c) For the Hilbert space of functions on a sphere, discuss why the set $\{L^2, L_z\}$ forms a complete set of commuting observables (CSCO), *i.e.*, argue that inclusion of L_x or L_y violates the commuting property. Would $\{L^2, L_x\}$ also form a CSCO?
- d) Show that the eigenvalues of L^2 are positive or zero. Can they always be written in the form $\hbar^2 l(l+1)$ with l dimensionless and greater than or equal to zero?
- e) Denote the set of simultaneous eigenstates of L^2 and L_z by $|l, m\rangle$, where

$$L^{2}|l,m\rangle = \hbar^{2}l(l+1)|l,m\rangle;$$

$$L_{z}|l,m\rangle = \hbar m|l,m\rangle.$$

As yet, there is no restriction on l and m, except that $l \ge 0$. We shall now derive constraints on l and m by using only the algebraic properties of the angular momentum operators, as specified by the commutation relations.

- e.i) By using the hermitean property, $(L_{-})^{\dagger} = L_{+}$, show that $\langle \ell, m | L_{+} L_{-} | l, m \rangle \geq 0$.
- e.ii) By using part (b-iv), show that $l(l+1) m(m-1) \ge 0$.
- e.iii) Similarly, by considering $\langle \ell, m | L_{-}L_{+} | l, m \rangle$, show that $l(l+1) m(m+1) \geq 0$.
- e.iv) Hence, show that $-l \leq m \leq l$.
- f) Show that the ket $L_{-}|l,m\rangle$ is
 - f.i) an eigenket of L^2 with eigenvalue $\hbar^2 l(l+1)$; and

f.ii) an eigenket of L_z with eigenvalue $\hbar(m-1)$.

Thus, L_{-} lowers the z-component of angular momentum by \hbar .

- g) Show, by a suitable choice of phase, that
 - g.i) $L_{-}|l,m\rangle = \hbar \sqrt{l(l+1) m(m-1)}|l,m-1\rangle$; and

g.ii)
$$L_+|l,m\rangle = \hbar \sqrt{l(l+1) - m(m+1)|l,m+1}$$

- h) Prove that the inequality -l ≤ m ≤ l will not be violated if
 h.i) 2l is an integer greater than or equal to zero; and
 h.ii) m = -l, -l + 1, ... l − 1, l.
- j) State the orthonormality condition on $\{|l, m\rangle\}$.
- k) Consider a wave function $\psi(\theta, \phi)$ that describes the quantum mechanics of a particle moving on the surface of a unit sphere. A suitable basis set is $\chi_{lm}(\theta, \phi) \equiv \langle \theta, \phi | l, m \rangle$. Show that if $\psi(\theta, \phi)$ is single-valued, then

$$|\psi\rangle = \sum_{l} \sum_{m} \psi_{lm} |l, m\rangle$$

can only include terms with integral value of m. What does this imply about allowed values of the angular momentum quantum number l?

1) State the orthonormality condition for $\{|\theta, \phi\rangle\}$.

2) Unit angular momentum:

- a) Use the angular momentum raising and lowering operators L_{\pm} to construct the two 3×3 matrices that represent L_{\pm} in the l = 1 sector and in the L_z basis.
- b) Use the matrices found in part (a) to construct the matrices that represent L_x and L_y in the same sector. Write down the matrix that represents L_z , and compute the matrix that represents L^2 .
- c) Show, by calculating commutators, that your three matrices representing L_x , L_y and L_z obey the angular momentum commutation relations.

3) Particle confined to a disk: Solve the energy eigenproblem (*i.e.*, find the energy eigenvalues and eigenfunctions) for a particle confined to a disk of radius d.

4) Orbital angular momentum (after Shankar, 12.3.3): A particle moving in two dimensions is described by the wave function

$$\psi(\rho,\phi) = A \,\mathrm{e}^{-\rho^2/2\Delta^2} \cos^2 \phi,$$

where ρ and ϕ are plane polar coordinates and Δ is a real parameter. Show that the probabilities of observing the z component of angular momentum and finding the results $0\hbar$, $2\hbar$ and $-2\hbar$ are, respectively, 2/3, 1/6 and 1/6. Note that it is unnecessary to compute any radial integrals.

5) Spherical harmonics – optional but strongly recommended: In this problem, we will set up and solve the angular momentum eigenproblem in the $|\theta, \phi\rangle$ representation.

First we find representations of the operators **L** that act on scalar functions $\psi(\theta, \phi)$. To do this, recall from class that the operators **L** act on bras in the following way:

$$\langle \mathbf{r} | e^{-\mathbf{a} \cdot \mathbf{L}/i\hbar} = \langle e^{ia_j \ell^j} \mathbf{r} |,$$

where summation is implied over j = 1, ... 3. The rotation matrix $e^{ia_j\ell^j}$ is built by exponentiating the matrix $a_j\ell^j$, which itself is a linear combination of the three matrices ℓ^j with coefficients a_j . The matrices ℓ^j are the generators of rotations of ordinary three-dimensional vectors and have matrix elements $(\ell^j)_{kn} = i\epsilon_{jkn}$.

a) Assume $|\mathbf{a}|$ is infinitesimal, and expand the exponential function to obtain

$$\langle \mathbf{r}| - \frac{1}{i\hbar} \langle \mathbf{r}| (\mathbf{a} \cdot \mathbf{L}) \simeq \langle (\mathbf{r} + \mathbf{a} \times \mathbf{r})|.$$

b) Make a Taylor expansion of the right hand side to show that

$$\langle \mathbf{r} | \mathbf{a} \cdot \mathbf{L} = \frac{\hbar}{i} (\mathbf{a} \times \mathbf{r}) \cdot \frac{\partial}{\partial \mathbf{r}} \langle \mathbf{r} |,$$

where $\partial/\partial \mathbf{r}$ is an alternative notation for the gradient operator ∇ .

c) Rewrite the operator

$$\frac{\hbar}{i}(\mathbf{a} \times \mathbf{r}) \cdot \frac{\partial}{\partial \mathbf{r}}$$

in such a way that definition, in terms of angular momentum and angular momentum, becomes apparent.

d) Now return to your answer to part (a). Choose **a** to lie along the z-axis, so that the rotation is about the z-axis. By working in spherical polar coordinates, (r, θ, ϕ) , find the changes in (r, θ, ϕ) when $\mathbf{r} \to \mathbf{r} + \mathbf{a} \times \mathbf{r}$. Hence, show that

$$\langle r, \theta, \phi | L_z = -i\hbar \frac{\partial}{\partial \phi} \langle r, \theta, \phi |.$$

e) Now consider a rotation around the x-axis, again with infinitesimal $|\mathbf{a}|$. Find the changes induced in (r, θ, ϕ) under the rotation $\mathbf{r} \to \mathbf{r} + \mathbf{a} \times \mathbf{r}$. Hence, show that

$$\langle r, \theta, \phi | L_x = i\hbar \{ \sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \} \langle r, \theta, \phi |.$$

f) Similarly, show that

$$\langle r, \theta, \phi | L_y = i\hbar \{ -\cos\phi \frac{\partial}{\partial\theta} + \cot\theta \sin\phi \frac{\partial}{\partial\phi} \} \langle r, \theta, \phi |.$$

g) Hence, show that

$$\langle r, \theta, \phi | L_{\pm} = -i\hbar e^{\pm i\phi} \{ \pm i\frac{\partial}{\partial\theta} - \cot\theta \frac{\partial}{\partial\phi} \} \langle r, \theta, \phi | .$$

h) Recall that $L^2 = L_+L_- + L_z^2 - \hbar L_z$. Using this result, show that

$$\langle r, \theta, \phi | L^2 = (i\hbar)^2 \{ \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \} \langle r, \theta, \phi |.$$

i) By recalling the definition of ∇^2 in spherical polar coordinates, show that

$$\nabla^2 f(r,\theta,\phi) = \{\frac{1}{r}\frac{\partial^2}{\partial r^2}r - \frac{1}{\hbar^2 r^2}L^2\}f(r,\theta,\phi).$$

j) Show that, together,

$$\begin{array}{lll} L_+ |l,l\rangle &=& 0; \\ L_z |l,l\rangle &=& \hbar l |l,l\rangle; \end{array}$$

imply that $\langle \theta, \phi | l, l \rangle \propto \exp(i l \phi) \sin^l \theta$.

k) Briefly describe how you might construct $\langle \theta, \phi | l, m \rangle$ from $\langle \theta, \phi | l, l \rangle$.