Quantum Mechanics I
Handout 13
26 October 2010
webusers.physics.illinois.edu/~goldbart/
Homework 9

1) The algebra of angular momentum - optional:
a) By using the definition $\mathbf{L}=\mathbf{R} \times \mathbf{P}$, and the canonical commutation relations $\left[R_{i}, P_{j}\right]=$ $i \hbar \delta_{i j}$, establish the following results:
a.i) $\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}$;
a.ii) $\left[\mathbf{L} \cdot \mathbf{L}, L_{i}\right]=0$;
a.iii) $[\mathbf{R}, \mathbf{a} \cdot \mathbf{L}]=i \hbar \mathbf{a} \times \mathbf{R}$ for c-numbers \mathbf{a};
a.iv) $\left[R_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} R_{k}$;
a.v) $\left[P_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} P_{k}$;
a.vi) $\left[\mathbf{R} \cdot \mathbf{R}, L_{i}\right]=0$;
a.vii) $\left[\mathbf{R} \cdot \mathbf{R} P_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} \mathbf{R} \cdot \mathbf{R} P_{k}$.
b) The raising and lowering operators, $L_{ \pm}$, are defined via $L_{ \pm}=L_{x} \pm i L_{y}$. Use them to establish the following results:
b.i) $\left[L_{ \pm}, L^{2}\right]=0$, where $L^{2} \equiv \mathbf{L} \cdot \mathbf{L}$;
b.ii) $\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}$;
b.iii) $\left[L_{+}, L_{-}\right]=2 \hbar L_{z}$;
b.iv) $L^{2}=L_{+} L_{-}+L_{z}^{2}-\hbar L_{z}$.
c) For the Hilbert space of functions on a sphere, discuss why the set $\left\{L^{2}, L_{z}\right\}$ forms a complete set of commuting observables (CSCO), i.e., argue that inclusion of L_{x} or L_{y} violates the commuting property. Would $\left\{L^{2}, L_{x}\right\}$ also form a CSCO?
d) Show that the eigenvalues of L^{2} are positive or zero. Can they always be written in the form $\hbar^{2} l(l+1)$ with l dimensionless and greater than or equal to zero?
e) Denote the set of simultaneous eigenstates of L^{2} and L_{z} by $|l, m\rangle$, where

$$
\begin{aligned}
L^{2}|l, m\rangle & =\hbar^{2} l(l+1)|l, m\rangle \\
L_{z}|l, m\rangle & =\hbar m|l, m\rangle
\end{aligned}
$$

As yet, there is no restriction on l and m, except that $l \geq 0$. We shall now derive constraints on l and m by using only the algebraic properties of the angular momentum operators, as specified by the commutation relations.
e.i) By using the hermitean property, $\left(L_{-}\right)^{\dagger}=L_{+}$, show that $\langle\ell, m| L_{+} L_{-}|l, m\rangle \geq 0$.
e.ii) By using part (b-iv), show that $l(l+1)-m(m-1) \geq 0$.
e.iii) Similarly, by considering $\langle\ell, m| L_{-} L_{+}|l, m\rangle$, show that $l(l+1)-m(m+1) \geq 0$.
e.iv) Hence, show that $-l \leq m \leq l$.
f) Show that the ket $L_{-}|l, m\rangle$ is
f.i) an eigenket of L^{2} with eigenvalue $\hbar^{2} l(l+1)$; and
f.ii) an eigenket of L_{z} with eigenvalue $\hbar(m-1)$.

Thus, L_{-}lowers the z-component of angular momentum by \hbar.
g) Show, by a suitable choice of phase, that
g.i) $L_{-}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m-1)}|l, m-1\rangle$; and
g.ii) $L_{+}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m+1)}|l, m+1\rangle$.
h) Prove that the inequality $-l \leq m \leq l$ will not be violated if
h.i) $2 l$ is an integer greater than or equal to zero; and
h.ii) $m=-l,-l+1, \ldots l-1, l$.
j) State the orthonormality condition on $\{|l, m\rangle\}$.
k) Consider a wave function $\psi(\theta, \phi)$ that describes the quantum mechanics of a particle moving on the surface of a unit sphere. A suitable basis set is $\chi_{l m}(\theta, \phi) \equiv\langle\theta, \phi \mid l, m\rangle$. Show that if $\psi(\theta, \phi)$ is single-valued, then

$$
|\psi\rangle=\sum_{l} \sum_{m} \psi_{l m}|l, m\rangle
$$

can only include terms with integral value of m. What does this imply about allowed values of the angular momentum quantum number l ?
l) State the orthonormality condition for $\{|\theta, \phi\rangle\}$.

2) Unit angular momentum:

a) Use the angular momentum raising and lowering operators $L_{ \pm}$to construct the two 3×3 matrices that represent $L_{ \pm}$in the $l=1$ sector and in the L_{z} basis.
b) Use the matrices found in part (a) to construct the matrices that represent L_{x} and L_{y} in the same sector. Write down the matrix that represents L_{z}, and compute the matrix that represents L^{2}.
c) Show, by calculating commutators, that your three matrices representing L_{x}, L_{y} and L_{z} obey the angular momentum commutation relations.
3) Particle confined to a disk: Solve the energy eigenproblem (i.e., find the energy eigenvalues and eigenfunctions) for a particle confined to a disk of radius d.
4) Orbital angular momentum (after Shankar, 12.3.3): A particle moving in two dimensions is described by the wave function

$$
\psi(\rho, \phi)=A \mathrm{e}^{-\rho^{2} / 2 \Delta^{2}} \cos ^{2} \phi
$$

where ρ and ϕ are plane polar coordinates and Δ is a real parameter. Show that the probabilities of observing the z component of angular momentum and finding the results $0 \hbar$, $2 \hbar$ and $-2 \hbar$ are, respectively, $2 / 3,1 / 6$ and $1 / 6$. Note that it is unnecessary to compute any radial integrals.
5) Spherical harmonics - optional but strongly recommended: In this problem, we will set up and solve the angular momentum eigenproblem in the $|\theta, \phi\rangle$ representation.

First we find representations of the operators \mathbf{L} that act on scalar functions $\psi(\theta, \phi)$. To do this, recall from class that the operators \mathbf{L} act on bras in the following way:

$$
\langle\mathbf{r}| e^{-\mathbf{a} \cdot \mathbf{L} / i \hbar}=\left\langle e^{i a_{j} \ell^{j}} \mathbf{r}\right|,
$$

where summation is implied over $j=1, \ldots 3$. The rotation matrix $e^{i a_{j} \ell^{j}}$ is built by exponentiating the matrix $a_{j} \ell^{j}$, which itself is a linear combination of the three matrices ℓ^{j} with coefficients a_{j}. The matrices ℓ^{j} are the generators of rotations of ordinary three-dimensional vectors and have matrix elements $\left(\ell^{j}\right)_{k n}=i \epsilon_{j k n}$.
a) Assume $|\mathbf{a}|$ is infinitesimal, and expand the exponential function to obtain

$$
\langle\mathbf{r}|-\frac{1}{i \hbar}\langle\mathbf{r}|(\mathbf{a} \cdot \mathbf{L}) \simeq\langle(\mathbf{r}+\mathbf{a} \times \mathbf{r})| .
$$

b) Make a Taylor expansion of the right hand side to show that

$$
\langle\mathbf{r}| \mathbf{a} \cdot \mathbf{L}=\frac{\hbar}{i}(\mathbf{a} \times \mathbf{r}) \cdot \frac{\partial}{\partial \mathbf{r}}\langle\mathbf{r}|,
$$

where $\partial / \partial \mathbf{r}$ is an alternative notation for the gradient operator ∇.
c) Rewrite the operator

$$
\frac{\hbar}{i}(\mathbf{a} \times \mathbf{r}) \cdot \frac{\partial}{\partial \mathbf{r}}
$$

in such a way that definition, in terms of angular momentum and angular momentum, becomes apparent.
d) Now return to your answer to part (a). Choose a to lie along the z-axis, so that the rotation is about the z-axis. By working in spherical polar coordinates, (r, θ, ϕ), find the changes in (r, θ, ϕ) when $\mathbf{r} \rightarrow \mathbf{r}+\mathbf{a} \times \mathbf{r}$. Hence, show that

$$
\langle r, \theta, \phi| L_{z}=-i \hbar \frac{\partial}{\partial \phi}\langle r, \theta, \phi| .
$$

e) Now consider a rotation around the x -axis, again with infinitesimal $|\mathbf{a}|$. Find the changes induced in (r, θ, ϕ) under the rotation $\mathbf{r} \rightarrow \mathbf{r}+\mathbf{a} \times \mathbf{r}$. Hence, show that

$$
\langle r, \theta, \phi| L_{x}=i \hbar\left\{\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right\}\langle r, \theta, \phi| .
$$

f) Similarly, show that

$$
\langle r, \theta, \phi| L_{y}=i \hbar\left\{-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right\}\langle r, \theta, \phi| .
$$

g) Hence, show that

$$
\langle r, \theta, \phi| L_{ \pm}=-i \hbar e^{ \pm i \phi}\left\{ \pm i \frac{\partial}{\partial \theta}-\cot \theta \frac{\partial}{\partial \phi}\right\}\langle r, \theta, \phi| .
$$

h) Recall that $L^{2}=L_{+} L_{-}+L_{z}^{2}-\hbar L_{z}$. Using this result, show that

$$
\langle r, \theta, \phi| L^{2}=(i \hbar)^{2}\left\{\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}\right\}\langle r, \theta, \phi| .
$$

i) By recalling the definition of ∇^{2} in spherical polar coordinates, show that

$$
\nabla^{2} f(r, \theta, \phi)=\left\{\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{1}{\hbar^{2} r^{2}} L^{2}\right\} f(r, \theta, \phi)
$$

j) Show that, together,

$$
\begin{aligned}
L_{+}|l, l\rangle & =0 \\
L_{z}|l, l\rangle & =\hbar l|l, l\rangle ;
\end{aligned}
$$

imply that $\langle\theta, \phi \mid l, l\rangle \propto \exp (i l \phi) \sin ^{l} \theta$.
k) Briefly describe how you might construct $\langle\theta, \phi \mid l, m\rangle$ from $\langle\theta, \phi \mid l, l\rangle$.

