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1) Measurements: A hermitean operator Λ has orthonormal eigenkets |λ1⟩, |λ2⟩, |λ3⟩ and
|λ4⟩. The corresponding eigenvalues are λ1 = 3, and λ2 = λ3 = λ4 = 1. In terms of the

{|λi⟩}-basis, a certain state, |ψ⟩, is given by

|ψ⟩ = i|λ1⟩+ |λ2⟩ − i|λ3⟩ − |λ4⟩.

a) Calculate the probability of obtaining the result λ = 1 upon measurement of the

physical quantity which the operator Λ represents.

b) Calculate the probability of obtaining λ = 2. Why do you get this result?

c) Calculate the probability of obtaining λ = 3.

d) Suppose that the observation is made a large number of times on an identically prepared

state |ψ⟩. Calculate the mean of the values obtained for λ.

e) Calculate the mean-square value.

f) Is the mean-square value equal to the square of the mean value?

g) In the light of your answer to part (f), would you say that this quantum mechanical

system has fluctuations?

h) Do classical systems fluctuate?

i) Suppose λ is measured and the result λ = 1 is obtained. Calculate the state vector

immediately after the measurement is made.

j) {|λi⟩} are simultaneously eigenkets of the operator Ω corresponding to the observable

ω. Their ω-eigenvalues are ω1 = ω2 = ω3 = 7, and ω4 = 5. Suppose Ω is measured

immediately after the result λ = 1 is obtained. Calculate the possible outcomes, and

their probabilities.

k) Suppose the result ω = 7 is obtained. Calculate the state vector immediately there-

after? What are the possible results if an immediate measurement of λ is now made?
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2) Angular momentum (after Shankar, 4.2.1): Consider the following matrices repre-

senting operators on the Hilbert space V3(C):

Lx ↔ 1√
2

 0 1 0
1 0 1
0 1 0

 , Ly ↔
1√
2

 0 −i 0
i 0 −i
0 i 0

 , Lz ↔

 1 0 0
0 0 0
0 0 −1

 .

a) If Lz is measured, determine the possible values one can obtain.

b) Take the state in which Lz = 1. In this state, determine the values of ⟨Lx⟩, ⟨L2
x⟩ and

∆Lx.

c) Find the eigenvalues and normalised eigenstates of Lx in the Lz basis.

d) If the system is in the state with Lz = −1 and Lx is measured, state the possible

outcomes, together with their probabilities.

e) Conside the state |ψ⟩ ∝ |1⟩ + |0⟩ +
√
2| − 1⟩ (where {|0,±1⟩} is the Lz basis). If

L2
z is measured and the result +1 is obtained, give the state after the measurement.

Determine how probable this result was. If, subsequently, Lz is measured, determine

the possible outcomes and their respective probabilities.

f) The system is in a state for which the probabilities P (ℓ) of obtaing the result ℓ for Lz are

{P (1), P (0), P (−1)} = {1/4, 1/2, 1/4}. Determine the most general normalized state

consistent with this information. Specify how many independent phases characterise

this state. Is the physical content of the state sensitive to these phases? Justify your

answer by considering the probability to find zero upon measuring Lx .

3) Mean positions and momenta: A particle moving in one dimension is in a state

described by the wave function

ψ(x) =
Neiqx√
x2 + a2

.

a) Calculate the value of N that normalises ψ.

b) Calculate the normalised probability density for finding the particle at position x.

c) Calculate the mean particle position.

d) Is the root mean square particle position finite?

e) Calculate the probability of finding the particle in the interval −a ≤
√
3x ≤ a.

f) Calculate the mean value of the momentum of the particle.

g) Calculate the root mean square value of the momentum.

[Hint: Use the substitution x = a tan θ.]
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4) Ehrenfest’s theorem: Consider a one-dimensional particle of mass m moving in an

external potential V (x). The particle is in the state |ψ⟩. Use the following steps to prove

Ehrenfest’s theorem, which says that

d

dt
⟨ψ(t)|P |ψ(t)⟩ = −⟨ψ(t)|V ′(X)|ψ(t)⟩

where V ′(X) is the operator ∂V (x)/∂x|x=X .

a) By recognising that ⟨ψ(t)|P |ψ(t)⟩ depends on t through both the bra and the ket, write

down an expression for d
dt
⟨ψ(t)|P |ψ(t)⟩.

b) By using the time-dependent Schrödinger equation, eliminate the time-derivative terms

in favour of the hamiltonian operator acting on a bra or a ket.

c) Rewrite your answer to part (b) in terms of the commutator between the operators P

and H.

d) Establish that if H = (P 2/2m) + V (X) then [P,H] = −ih̄V ′(X). Use this result to

prove Ehrenfest’s theorem.

e) Briefly discuss the time-evolution of momentum expectation values, as described by

Ehrenfest’s theorem, in relation to the classical time-evolution of momentum as de-

scribed by Hamilton’s equations.

Now follow these alternative steps to prove Ehrenfest’s theorem, using the Heisenberg picture

rather than the Schrödinger picture. (Of course, the result is picture-independent.)

f) For an arbitrary operator F define the Heisenberg operator F (t) through F (t) =

eiHt/h̄Fe−iHt/h̄. Use this definition to establish an equation of motion for P (t).

g) If the commutator between two arbitrary operators A and B, is the operator C, i.e.,

[A,B] = C, evaluate the commutator [A(t), B(t)] in terms of C(t)? Use this result to

prove that

ih̄
d

dt
P (t) = [P (t), H] = −ih̄V ′(X(t)).

h) By taking the expectation value of this operator equation in the state |ψ⟩, establish
Ehrenfest’s theorem.

5) Density matrices – optional but strongly recommended: In class, we considered

ensembles of identical systems, prepared in identical quantum states. Practically, this might

be achieved by measuring some observable and retaining only cases for which some specified

non-degenerate eigenvalue is obtained. Often, particularly in statistical mechanics, it is

useful to consider more general ensembles. Instead of retaining a single state, we retain a

variety of states, each with a certain statistical frequency. To be more precise, our ensemble

contains systems in a variety of distinct states {|ψi⟩}. The ensemble is defined by giving the

probability pi of finding each of the possible states |ψi⟩. Notice that there is no requirement
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for {|ψi⟩} to be orthogonal, or for them to be complete. We shall, however, require them to

be normalised, so that ⟨ψi|ψi⟩ = 1 for each i. As the {pi} are probabilities,

0 ≤ pi ≤ 1 for each i, and
∑
i

pi = 1.

An ensemble, such as this, is described by an operator, ρ, usually called the density matrix ,

and defined by

ρ ≡
∑
i

pi |ψi⟩⟨ψi|.

For any operator Ω the quantity TrΩ is known as the trace of Ω and is defined by

TrΩ ≡
∑
n

⟨un|Ω|un⟩,

where {|un⟩} is some complete orthonormal basis.

a) Show that

TrΩρ = Tr ρΩ =
∑
i

pi ⟨ψi|Ω|ψi⟩.

b) Discuss why Tr ρΩ is the mean value of the results of observations of the quantity Ω,

when observations of Ω are made on systems drawn from the the ensemble specified

by ρ.

c) Demonstrate the following statements:

c-i) Tr ρ = 1;

c-ii) Tr ρ2 ≤ 1;

c-iii) If Tr ρ2 = 1 then all but one of the probabilities {pi} vanish.

c-iv) An ensemble for which Tr ρ2 = 1 is called a pure state, because it is defined by

a single quantum state. Which state is this? Note that if Tr ρ2 ≤ 1 then the

ensemble is defined by more than one state, and is called a mixed state;

c-v) The operator ρ is hermitean;

c-vi) ρ2 = ρ for a pure state only.

d) Suppose the observable Λ is measured in the ensemble defined by ρ. The eigenvalues of

Λ are {λa}. Show that the probability of obtaining the result λ is given by TrP(λ)ρ,

where P(λ) is the projection operator on to the λ-subspace (i.e., the subset of states

with eigenvalue λ).

e) To describe a system in thermal equilibrium at temperature T , we often use an ensemble

called the canonical ensemble, which is defined by the density matrix

ρ = Z−1 exp (−H/kBT ).

Here, kB is Boltzmann’s constant, H is the hamiltonian operator, and the partition

function Z ≡ Tr exp(−H/kBT ) provides the normalisation. The Helmholtz free energy

F is given by F = −kBT lnZ; the internal energy U is given by U = Tr ρH; and the

entropy S is given by S = −kBTr ρ ln ρ. Show that F = U − TS.
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6) General projection operators – optional: Consider the normalised kets |u⟩ and

|w⟩.
a) Show that Pu ≡ |u⟩⟨u| is a projection operator.

b) On to what subspace does Pu project?

c) Now also consider Pw ≡ |w⟩⟨w|. Under what condition is the operator (Pu + Pw) also

projection operator?

7) Symmetrisation of operators – optional: Consider the classical variable ω = x2p

built from the position, x, and momentum, p, of a one-dimensional classical particle. Suppose

we quantise by promoting the classical variables x and p to hermitean operators X and

P .

a) Is the operator X2P hermitean?

b) Form the fully symmetrised operator, Ω, corresponding to the classical variable ω.

c) Show that this symmetrised operator is hermitean.

8) Uncertainty principle – optional: Shankar, 9.4.2, page 244.
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