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1) Exponential operators: In this question we shall consider a function of the two oper-

ators A and (). First, we shall specialise to the case in which the operators are such that

their commutator is proportional to the identity, [A, 2] = d1. Often you will see this writ-

ten [A, Q] = d; a situation described by the statement ‘the commutator is a c-number (or
5

commuting or classical number)! By following the strategy below, we will prove that for
operators whose commutator is a c-number: exp A exp ) = exp (A +Q+ %[A, Q]) .

a) Check the consistency of this equation by expanding the exponential functions retaining
terms of quadratic and lower order in the operators A and €2. Is the theorem consistent
to this order?

b) Introduce the c-number ;1 and the operator-valued functions

Jlw) = e te,
J) = i

Evaluate df /dp (remembering that ordering of operator matters).

c) Evaluate dg/dp.

d) By expanding exp (uf2), and hence evaluating [A, exp (u€2)], prove that f and g satisfy
the same differential equation, viz.,

ah _

0 h(p) (pd + A+ Q).

e) Is f(0) equal to ¢(0)? Hence prove that f(u) = g(p). By setting p = 1 we have the
desired result.
Hint: To evaluate [A, exp(u2)], introduce J, Q"' = [A, Q"].
Then use [M, NP] = N[M, P] + [M, N|P to find an equation for J,.
For the remainder of this question we shall consider the general case, when [A, ()] is not a
c-number. Now the general result is not valid, but it is approximately true for small u. To
see this, consider f(u) and g(u) as defined in part (a).

f) By expanding f and g as power series in pu, find the order to which f and ¢ remain
equal.



2) Simultaneous Diagonalisation — optional: Shankar, 1.8.10, page 46.

3) Logarithm operators. The general strategy for evaluating the matrix elements of a
function of a hermitean operator in an arbitrary orthonormal basis is:

e transform to a basis in which the operator is diagonal;
e replace the eigenvalues by the function of the eigenvalues;
e revert to the original basis.

Suppose that the arbitrary orthonormal basis is {|a;)}, the function is f, and the operator is
Q (with eigenvalues {w;} and eigenvectors {|w;)}). Then, by applying this strategy we find
that

(@il f(Daz) = 3, (ailwr) {wil f(Q)wr) (wilaz)
= > lailwn) (wilwn) fw) (wilas)
= Zk<ai|wk> fwi) (welay).
Apply this strategy to the following example from V®)(R), with f(z) = In(1 — z).
a) The matrix representing € in the {|a;)} basis is given by

((almlaﬁ (a1]Q|a2>>_(q00829 qsin29>
(ag|Qlar)  (az|Qaz)/) — \gsin20 —qcos26)"

Evaluate the matrix (a;|f(2)|a;).

The matrix representing the operator W in the {|a;)} basis is given by

(fouwle tewien) = (6 %)

b) By using the two methods outlined below, show, in two different ways, that

<<a1|ln(1—\11)|a1) <a1|ln(I—\IJ)|a2)> _ <ln(1 —q) 0 >
(ag]In(I—U)|ar) (az|In(I — ¥)|as) 0 In(l+gq)/"

Method 1: Recognise that, in this basis, ¥ is already diagonal. Thus, by series expansion of
In(1 — z), we can replace the eigenvalues of ¥ by the functions of the eigenvalues.

Method 2: Recognise that in the series expansion of In(I — ¥) only two matrices occur,

(1 o> o <1o>
“WNo -1 a WNo 1)

By regrouping the terms in the expansion, prove the desired result.



4) The resolvent operator: In this question we shall consider the connection between the
density of eigenvalues {w;} of a hermitean operator €2 and a different operator called the
resolvent operator (or Green operator) R(z).

The density of eigenvalues is a function n(w) that is a histogram of the eigenvalues of the
operator 2:

n(w)=>" 0w —w).
Often, such a function is called the density of states.

a) Show that the mean eigenvalue Y, w;/ >, 1 is given by

/dwwn(w)//dwn(w).

We introduce the resolvent operator R(z), which depends on the complex variable z and on

the operator 2
1

z—Q
Think of the resolvent operator as a function of the operator €2 and the complex variable z.

Rz)=(z-Q) =

Notice the convention that the operator z1I is written z.

b) By going to the {|w;)} representation, in which € is diagonal [and by using part (m)
of question (3) of Homework 3| show that

T -1 .
n(w) = 11_1&1(1)# Im Tr R(w + i€),

where the trace operation, Tr, is defined via Tr A = 3, (w;|Alw;). Thus, we see that
the resolvent operator encodes the density of states. Usually the operator 2 is the
hamiltonian, in which case n(w) is the density of energy levels. From the density of
energy levels one can compute, for example, the specific heat capacity of the system.
¢) Suppose that ) consists of a dominant piece, €2y, and a small perturbation, €2y, i.e.,

Q= Qo+t

Then the resolvent operator of the full system is R(z) = (2 —Q)~!, whilst the resolvent
operator of the unperturbed system is Ro(z) = (z — Q)~!. Show that R(z) satisfies
Dyson’s equation,
R(z) = Ro(2) + tRo(2) 1 R(z).
d) By iteratively solving Dyson’s equation, write down the first three terms in an expan-
sion of R(z) in powers of ¢, in terms of Ry(z) and €.

It is often the case in quantum mechanics that the small perturbation prevents exact diag-
onalisation. In such cases, the Dyson equation provides a compact scheme for computing
perturbative corrections to R(z), in powers of the strength of the perturbation t.

5) Theta function — optional: Shankar, 1.10.3, page 63.



