Physics 580 Handout 9 28 September 2010

$\label{eq:Quantum Mechanics I} \\ \text{webusers.physics.illinois.edu/\sim goldbart/}$

Homework 5

Prof. P. M. Goldbart 3135 (& 2115) ESB University of Illinois

1) Exponential operators: In this question we shall consider a function of the two operators Λ and Ω . First, we shall specialise to the case in which the operators are such that their commutator is proportional to the identity, $[\Lambda, \Omega] = dI$. Often you will see this written $[\Lambda, \Omega] = d$; a situation described by the statement 'the commutator is a c-number (or commuting or classical number)'. By following the strategy below, we will prove that for operators whose commutator is a c-number: $\exp \Lambda \exp \Omega = \exp \left(\Lambda + \Omega + \frac{1}{2}[\Lambda, \Omega]\right)$.

- a) Check the consistency of this equation by expanding the exponential functions retaining terms of quadratic and lower order in the operators Λ and Ω . Is the theorem consistent to this order?
- b) Introduce the c-number μ and the operator-valued functions

$$f(\mu) \equiv e^{\mu\Lambda} e^{\mu\Omega},$$

 $g(\mu) \equiv e^{\mu(\Lambda+\Omega)+\frac{1}{2}\mu^2[\Lambda,\Omega]}.$

Evaluate $df/d\mu$ (remembering that ordering of operator matters).

- c) Evaluate $dq/d\mu$.
- d) By expanding $\exp(\mu\Omega)$, and hence evaluating $[\Lambda, \exp(\mu\Omega)]$, prove that f and g satisfy the same differential equation, viz.,

$$\frac{dh}{d\mu} = h(\mu) \ (\mu d + \Lambda + \Omega).$$

e) Is f(0) equal to g(0)? Hence prove that $f(\mu) = g(\mu)$. By setting $\mu = 1$ we have the desired result.

Hint: To evaluate $[\Lambda, \exp(\mu\Omega)]$, introduce $J_n \Omega^{n-1} \equiv [\Lambda, \Omega^n]$. Then use [M, NP] = N[M, P] + [M, N]P to find an equation for J_n .

For the remainder of this question we shall consider the general case, when $[\Lambda, \Omega]$ is *not* a c-number. Now the general result is not valid, but it is approximately true for small μ . To see this, consider $f(\mu)$ and $g(\mu)$ as defined in part (a).

f) By expanding f and g as power series in μ , find the order to which f and g remain equal.

- 2) Simultaneous Diagonalisation optional: Shankar, 1.8.10, page 46.
- **3) Logarithm operators**. The general strategy for evaluating the matrix elements of a function of a hermitean operator in an arbitrary orthonormal basis is:
 - transform to a basis in which the operator is diagonal;
 - replace the eigenvalues by the function of the eigenvalues;
 - revert to the original basis.

Suppose that the arbitrary orthonormal basis is $\{|a_i\rangle\}$, the function is f, and the operator is Ω (with eigenvalues $\{\omega_i\}$ and eigenvectors $\{|\omega_i\rangle\}$). Then, by applying this strategy we find that

$$\langle a_{i}|f(\Omega)|a_{j}\rangle = \sum_{kl}\langle a_{i}|\omega_{k}\rangle \langle \omega_{k}|f(\Omega)|\omega_{l}\rangle \langle \omega_{l}|a_{j}\rangle$$

$$= \sum_{kl}\langle a_{i}|\omega_{k}\rangle \langle \omega_{k}|\omega_{l}\rangle f(\omega_{l}) \langle \omega_{l}|a_{j}\rangle$$

$$= \sum_{k}\langle a_{i}|\omega_{k}\rangle f(\omega_{k}) \langle \omega_{k}|a_{j}\rangle.$$

Apply this strategy to the following example from $\mathcal{V}^{(2)}(\mathcal{R})$, with $f(x) = \ln(1-x)$.

a) The matrix representing Ω in the $\{|a_i\rangle\}$ basis is given by

$$\begin{pmatrix} \langle a_1 | \Omega | a_1 \rangle & \langle a_1 | \Omega | a_2 \rangle \\ \langle a_2 | \Omega | a_1 \rangle & \langle a_2 | \Omega | a_2 \rangle \end{pmatrix} = \begin{pmatrix} q \cos 2\theta & q \sin 2\theta \\ q \sin 2\theta & -q \cos 2\theta \end{pmatrix}.$$

Evaluate the matrix $\langle a_i | f(\Omega) | a_i \rangle$.

The matrix representing the operator Ψ in the $\{|a_i\rangle\}$ basis is given by

$$\begin{pmatrix} \langle a_1 | \Psi | a_1 \rangle & \langle a_1 | \Psi | a_2 \rangle \\ \langle a_2 | \Psi | a_1 \rangle & \langle a_2 | \Psi | a_2 \rangle \end{pmatrix} = \begin{pmatrix} q & 0 \\ 0 & -q \end{pmatrix}.$$

b) By using the two methods outlined below, show, in two different ways, that

$$\begin{pmatrix} \langle a_1 | \ln(\mathbf{I} - \Psi) | a_1 \rangle & \langle a_1 | \ln(\mathbf{I} - \Psi) | a_2 \rangle \\ \langle a_2 | \ln(\mathbf{I} - \Psi) | a_1 \rangle & \langle a_2 | \ln(\mathbf{I} - \Psi) | a_2 \rangle \end{pmatrix} = \begin{pmatrix} \ln(1-q) & 0 \\ 0 & \ln(1+q) \end{pmatrix}.$$

Method 1: Recognise that, in this basis, Ψ is already diagonal. Thus, by series expansion of $\ln(1-z)$, we can replace the eigenvalues of Ψ by the functions of the eigenvalues.

Method 2: Recognise that in the series expansion of $ln(I - \Psi)$ only two matrices occur,

$$q\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $q\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

By regrouping the terms in the expansion, prove the desired result.

4) The resolvent operator: In this question we shall consider the connection between the density of eigenvalues $\{\omega_i\}$ of a hermitean operator Ω and a different operator called the resolvent operator (or Green operator) R(z).

The density of eigenvalues is a function $n(\omega)$ that is a histogram of the eigenvalues of the operator Ω :

$$n(\omega) \equiv \sum_{i} \delta(\omega - \omega_{i}).$$

Often, such a function is called the *density of states*.

a) Show that the mean eigenvalue $\sum_i \omega_i / \sum_i 1$ is given by

$$\int d\omega \,\omega \,n(\omega) / \int d\omega \,n(\omega).$$

We introduce the resolvent operator R(z), which depends on the complex variable z and on the operator Ω :

$$R(z) \equiv (z - \Omega)^{-1} \equiv \frac{1}{z - \Omega}.$$

Think of the resolvent operator as a function of the operator Ω and the complex variable z. Notice the convention that the operator zI is written z.

b) By going to the $\{|\omega_i\rangle\}$ representation, in which Ω is diagonal [and by using part (m) of question (3) of Homework 3] show that

$$n(\omega) = -\lim_{\epsilon \to 0} \pi^{-1} \operatorname{Im} \operatorname{Tr} R(\omega + i\epsilon),$$

where the *trace* operation, Tr, is defined via Tr $A \equiv \sum_j \langle \omega_j | A | \omega_j \rangle$. Thus, we see that the resolvent operator encodes the density of states. Usually the operator Ω is the hamiltonian, in which case $n(\omega)$ is the density of energy levels. From the density of energy levels one can compute, for example, the specific heat capacity of the system.

c) Suppose that Ω consists of a dominant piece, Ω_0 , and a small perturbation, $t\Omega_1$, i.e.,

$$\Omega = \Omega_0 + t\Omega_1$$
.

Then the resolvent operator of the full system is $R(z) = (z - \Omega)^{-1}$, whilst the resolvent operator of the unperturbed system is $R_0(z) = (z - \Omega_0)^{-1}$. Show that R(z) satisfies Dyson's equation,

$$R(z) = R_0(z) + tR_0(z)\Omega_1 R(z).$$

d) By iteratively solving Dyson's equation, write down the first three terms in an expansion of R(z) in powers of t, in terms of $R_0(z)$ and Ω_1 .

It is often the case in quantum mechanics that the small perturbation prevents exact diagonalisation. In such cases, the Dyson equation provides a compact scheme for computing perturbative corrections to R(z), in powers of the strength of the perturbation t.

5) Theta function – optional: Shankar, 1.10.3, page 63.