1) Exponential operators: In this question we shall consider a function of the two operators Λ and Ω. First, we shall specialise to the case in which the operators are such that their commutator is proportional to the identity, $[\Lambda, \Omega]=d \mathrm{I}$. Often you will see this written $[\Lambda, \Omega]=d$; a situation described by the statement 'the commutator is a c-number (or commuting or classical number)? By following the strategy below, we will prove that for operators whose commutator is a c-number: $\exp \Lambda \exp \Omega=\exp \left(\Lambda+\Omega+\frac{1}{2}[\Lambda, \Omega]\right)$.
a) Check the consistency of this equation by expanding the exponential functions retaining terms of quadratic and lower order in the operators Λ and Ω. Is the theorem consistent to this order?
b) Introduce the c-number μ and the operator-valued functions

$$
\begin{aligned}
f(\mu) & \equiv \mathrm{e}^{\mu \Lambda} \mathrm{e}^{\mu \Omega} \\
g(\mu) & \equiv \mathrm{e}^{\mu(\Lambda+\Omega)+\frac{1}{2} \mu^{2}[\Lambda, \Omega]}
\end{aligned}
$$

Evaluate $d f / d \mu$ (remembering that ordering of operator matters).
c) Evaluate $d g / d \mu$.
d) By expanding $\exp (\mu \Omega)$, and hence evaluating $[\Lambda, \exp (\mu \Omega)]$, prove that f and g satisfy the same differential equation, viz.,

$$
\frac{d h}{d \mu}=h(\mu)(\mu d+\Lambda+\Omega)
$$

e) Is $f(0)$ equal to $g(0)$? Hence prove that $f(\mu)=g(\mu)$. By setting $\mu=1$ we have the desired result.
Hint: To evaluate $[\Lambda, \exp (\mu \Omega)]$, introduce $J_{n} \Omega^{n-1} \equiv\left[\Lambda, \Omega^{n}\right]$. Then use $[M, N P]=N[M, P]+[M, N] P$ to find an equation for J_{n}.
For the remainder of this question we shall consider the general case, when $[\Lambda, \Omega]$ is not a c-number. Now the general result is not valid, but it is approximately true for small μ. To see this, consider $f(\mu)$ and $g(\mu)$ as defined in part (a).
f) By expanding f and g as power series in μ, find the order to which f and g remain equal.
2) Simultaneous Diagonalisation - optional: Shankar, 1.8.10, page 46 .
3) Logarithm operators. The general strategy for evaluating the matrix elements of a function of a hermitean operator in an arbitrary orthonormal basis is:

- transform to a basis in which the operator is diagonal;
- replace the eigenvalues by the function of the eigenvalues;
- revert to the original basis.

Suppose that the arbitrary orthonormal basis is $\left\{\left|a_{i}\right\rangle\right\}$, the function is f, and the operator is Ω (with eigenvalues $\left\{\omega_{i}\right\}$ and eigenvectors $\left\{\left|\omega_{i}\right\rangle\right\}$). Then, by applying this strategy we find that

$$
\begin{aligned}
\left\langle a_{i}\right| f(\Omega)\left|a_{j}\right\rangle & =\sum_{k l}\left\langle a_{i} \mid \omega_{k}\right\rangle\left\langle\omega_{k}\right| f(\Omega)\left|\omega_{l}\right\rangle\left\langle\omega_{l} \mid a_{j}\right\rangle \\
& =\sum_{k l}\left\langle a_{i} \mid \omega_{k}\right\rangle\left\langle\omega_{k} \mid \omega_{l}\right\rangle f\left(\omega_{l}\right)\left\langle\omega_{l} \mid a_{j}\right\rangle \\
& =\sum_{k}\left\langle a_{i} \mid \omega_{k}\right\rangle f\left(\omega_{k}\right)\left\langle\omega_{k} \mid a_{j}\right\rangle .
\end{aligned}
$$

Apply this strategy to the following example from $\mathcal{V}^{(2)}(\mathcal{R})$, with $f(x)=\ln (1-x)$.
a) The matrix representing Ω in the $\left\{\left|a_{i}\right\rangle\right\}$ basis is given by

$$
\left(\begin{array}{cc}
\left\langle a_{1}\right| \Omega\left|a_{1}\right\rangle & \left\langle a_{1}\right| \Omega\left|a_{2}\right\rangle \\
\left\langle a_{2}\right| \Omega\left|a_{1}\right\rangle & \left\langle a_{2}\right| \Omega\left|a_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
q \cos 2 \theta & q \sin 2 \theta \\
q \sin 2 \theta & -q \cos 2 \theta
\end{array}\right) .
$$

Evaluate the matrix $\left\langle a_{i}\right| f(\Omega)\left|a_{j}\right\rangle$.
The matrix representing the operator Ψ in the $\left\{\left|a_{i}\right\rangle\right\}$ basis is given by

$$
\left(\begin{array}{cc}
\left\langle a_{1}\right| \Psi\left|a_{1}\right\rangle & \left\langle a_{1}\right| \Psi\left|a_{2}\right\rangle \\
\left\langle a_{2}\right| \Psi\left|a_{1}\right\rangle & \left\langle a_{2}\right| \Psi\left|a_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
q & 0 \\
0 & -q
\end{array}\right) .
$$

b) By using the two methods outlined below, show, in two different ways, that

$$
\left(\begin{array}{cc}
\left\langle a_{1}\right| \ln (\mathrm{I}-\Psi)\left|a_{1}\right\rangle & \left\langle a_{1}\right| \ln (\mathrm{I}-\Psi)\left|a_{2}\right\rangle \\
\left\langle a_{2}\right| \ln (\mathrm{I}-\Psi)\left|a_{1}\right\rangle & \left\langle a_{2}\right| \ln (\mathrm{I}-\Psi)\left|a_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\ln (1-q) & 0 \\
0 & \ln (1+q)
\end{array}\right) .
$$

Method 1: Recognise that, in this basis, Ψ is already diagonal. Thus, by series expansion of $\ln (1-z)$, we can replace the eigenvalues of Ψ by the functions of the eigenvalues.
Method 2: Recognise that in the series expansion of $\ln (I-\Psi)$ only two matrices occur,

$$
q\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad q\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

By regrouping the terms in the expansion, prove the desired result.
4) The resolvent operator: In this question we shall consider the connection between the density of eigenvalues $\left\{\omega_{i}\right\}$ of a hermitean operator Ω and a different operator called the resolvent operator (or Green operator) $R(z)$.

The density of eigenvalues is a function $n(\omega)$ that is a histogram of the eigenvalues of the operator Ω :

$$
n(\omega) \equiv \sum_{i} \delta\left(\omega-\omega_{i}\right)
$$

Often, such a function is called the density of states.
a) Show that the mean eigenvalue $\sum_{i} \omega_{i} / \sum_{i} 1$ is given by

$$
\int d \omega \omega n(\omega) / \int d \omega n(\omega) .
$$

We introduce the resolvent operator $R(z)$, which depends on the complex variable z and on the operator Ω :

$$
R(z) \equiv(z-\Omega)^{-1} \equiv \frac{1}{z-\Omega}
$$

Think of the resolvent operator as a function of the operator Ω and the complex variable z. Notice the convention that the operator $z \mathrm{I}$ is written z.
b) By going to the $\left\{\left|\omega_{i}\right\rangle\right\}$ representation, in which Ω is diagonal [and by using part (m) of question (3) of Homework 3] show that

$$
n(\omega)=-\lim _{\epsilon \rightarrow 0} \pi^{-1} \operatorname{Im} \operatorname{Tr} R(\omega+i \epsilon)
$$

where the trace operation, Tr, is defined via $\operatorname{Tr} A \equiv \sum_{j}\left\langle\omega_{j}\right| A\left|\omega_{j}\right\rangle$. Thus, we see that the resolvent operator encodes the density of states. Usually the operator Ω is the hamiltonian, in which case $n(\omega)$ is the density of energy levels. From the density of energy levels one can compute, for example, the specific heat capacity of the system.
c) Suppose that Ω consists of a dominant piece, Ω_{0}, and a small perturbation, $t \Omega_{1}$, i.e.,

$$
\Omega=\Omega_{0}+t \Omega_{1} .
$$

Then the resolvent operator of the full system is $R(z)=(z-\Omega)^{-1}$, whilst the resolvent operator of the unperturbed system is $R_{0}(z)=\left(z-\Omega_{0}\right)^{-1}$. Show that $R(z)$ satisfies Dyson's equation,

$$
R(z)=R_{0}(z)+t R_{0}(z) \Omega_{1} R(z) .
$$

d) By iteratively solving Dyson's equation, write down the first three terms in an expansion of $R(z)$ in powers of t, in terms of $R_{0}(z)$ and Ω_{1}.

It is often the case in quantum mechanics that the small perturbation prevents exact diagonalisation. In such cases, the Dyson equation provides a compact scheme for computing perturbative corrections to $R(z)$, in powers of the strength of the perturbation t.
5) Theta function - optional: Shankar, 1.10.3, page 63.

