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1) Exponential operators: In this question we shall consider a function of the two oper-

ators Λ and Ω. First, we shall specialise to the case in which the operators are such that

their commutator is proportional to the identity, [Λ,Ω] = d I. Often you will see this writ-

ten [Λ,Ω] = d; a situation described by the statement ‘the commutator is a c-number (or

commuting or classical number)’. By following the strategy below, we will prove that for

operators whose commutator is a c-number: expΛ expΩ = exp
(
Λ + Ω + 1

2
[Λ,Ω]

)
.

a) Check the consistency of this equation by expanding the exponential functions retaining

terms of quadratic and lower order in the operators Λ and Ω. Is the theorem consistent

to this order?

b) Introduce the c-number µ and the operator-valued functions

f(µ) ≡ eµΛ eµΩ,

g(µ) ≡ eµ(Λ+Ω)+ 1
2
µ2[Λ,Ω].

Evaluate df/dµ (remembering that ordering of operator matters).

c) Evaluate dg/dµ.

d) By expanding exp (µΩ), and hence evaluating [Λ, exp (µΩ)], prove that f and g satisfy

the same differential equation, viz.,

dh

dµ
= h(µ) (µd+ Λ + Ω).

e) Is f(0) equal to g(0)? Hence prove that f(µ) = g(µ). By setting µ = 1 we have the

desired result.

Hint: To evaluate [Λ, exp(µΩ)], introduce JnΩ
n−1 ≡ [Λ,Ωn].

Then use [M,NP ] = N [M,P ] + [M,N ]P to find an equation for Jn.

For the remainder of this question we shall consider the general case, when [Λ,Ω] is not a

c-number. Now the general result is not valid, but it is approximately true for small µ. To

see this, consider f(µ) and g(µ) as defined in part (a).

f) By expanding f and g as power series in µ, find the order to which f and g remain

equal.
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2) Simultaneous Diagonalisation – optional: Shankar, 1.8.10, page 46.

3) Logarithm operators. The general strategy for evaluating the matrix elements of a

function of a hermitean operator in an arbitrary orthonormal basis is:

• transform to a basis in which the operator is diagonal;

• replace the eigenvalues by the function of the eigenvalues;

• revert to the original basis.

Suppose that the arbitrary orthonormal basis is {|ai⟩}, the function is f , and the operator is

Ω (with eigenvalues {ωi} and eigenvectors {|ωi⟩}). Then, by applying this strategy we find

that

⟨ai|f(Ω)|aj⟩ =
∑

kl
⟨ai|ωk⟩ ⟨ωk|f(Ω)|ωl⟩ ⟨ωl|aj⟩

=
∑

kl
⟨ai|ωk⟩ ⟨ωk|ωl⟩ f(ωl) ⟨ωl|aj⟩

=
∑

k
⟨ai|ωk⟩ f(ωk) ⟨ωk|aj⟩.

Apply this strategy to the following example from V(2)(R), with f(x) = ln(1− x).

a) The matrix representing Ω in the {|ai⟩} basis is given by( ⟨a1|Ω|a1⟩ ⟨a1|Ω|a2⟩
⟨a2|Ω|a1⟩ ⟨a2|Ω|a2⟩

)
=

(
q cos 2θ q sin 2θ
q sin 2θ −q cos 2θ

)
.

Evaluate the matrix ⟨ai|f(Ω)|aj⟩.
The matrix representing the operator Ψ in the {|ai⟩} basis is given by( ⟨a1|Ψ|a1⟩ ⟨a1|Ψ|a2⟩

⟨a2|Ψ|a1⟩ ⟨a2|Ψ|a2⟩

)
=

(
q 0
0 −q

)
.

b) By using the two methods outlined below, show, in two different ways , that( ⟨a1| ln(I−Ψ)|a1⟩ ⟨a1| ln(I−Ψ)|a2⟩
⟨a2| ln(I−Ψ)|a1⟩ ⟨a2| ln(I−Ψ)|a2⟩

)
=

(
ln(1− q) 0

0 ln(1 + q)

)
.

Method 1: Recognise that, in this basis, Ψ is already diagonal. Thus, by series expansion of

ln(1− z), we can replace the eigenvalues of Ψ by the functions of the eigenvalues.

Method 2: Recognise that in the series expansion of ln(I−Ψ) only two matrices occur,

q
(
1 0
0 −1

)
and q

(
1 0
0 1

)
.

By regrouping the terms in the expansion, prove the desired result.
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4) The resolvent operator: In this question we shall consider the connection between the

density of eigenvalues {ωi} of a hermitean operator Ω and a different operator called the

resolvent operator (or Green operator) R(z).

The density of eigenvalues is a function n(ω) that is a histogram of the eigenvalues of the

operator Ω:

n(ω) ≡
∑
i

δ(ω − ωi).

Often, such a function is called the density of states .

a) Show that the mean eigenvalue
∑

i ωi/
∑

i 1 is given by∫
dω ω n(ω)

/∫
dω n(ω).

We introduce the resolvent operator R(z), which depends on the complex variable z and on

the operator Ω:

R(z) ≡ (z − Ω)−1 ≡ 1

z − Ω
.

Think of the resolvent operator as a function of the operator Ω and the complex variable z.

Notice the convention that the operator zI is written z.

b) By going to the {|ωi⟩} representation, in which Ω is diagonal [and by using part (m)

of question (3) of Homework 3] show that

n(ω) = − lim
ϵ→0

π−1 ImTrR(ω + iϵ),

where the trace operation, Tr, is defined via TrA ≡ ∑
j⟨ωj|A|ωj⟩. Thus, we see that

the resolvent operator encodes the density of states. Usually the operator Ω is the

hamiltonian, in which case n(ω) is the density of energy levels. From the density of

energy levels one can compute, for example, the specific heat capacity of the system.

c) Suppose that Ω consists of a dominant piece, Ω0, and a small perturbation, tΩ1, i.e.,

Ω = Ω0 + tΩ1.

Then the resolvent operator of the full system is R(z) = (z−Ω)−1, whilst the resolvent

operator of the unperturbed system is R0(z) = (z − Ω0)
−1. Show that R(z) satisfies

Dyson’s equation,

R(z) = R0(z) + tR0(z)Ω1R(z).

d) By iteratively solving Dyson’s equation, write down the first three terms in an expan-

sion of R(z) in powers of t, in terms of R0(z) and Ω1.

It is often the case in quantum mechanics that the small perturbation prevents exact diag-

onalisation. In such cases, the Dyson equation provides a compact scheme for computing

perturbative corrections to R(z), in powers of the strength of the perturbation t.

5) Theta function – optional: Shankar, 1.10.3, page 63.
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