1) Operators and matrix elements:

a) Show that if $\Lambda^{-1} \Lambda=I$ and $\Omega^{-1} \Omega=I$ then $(\Omega \Lambda)^{-1}=\Lambda^{-1} \Omega^{-1}$.
b) Suppose that $\{|i\rangle\}$ forms an orthonormal basis. Show that if $\Omega|i\rangle=\sum_{j} \Omega_{j i}|j\rangle$ then $\langle k| \Omega|l\rangle=\Omega_{k l}$.
c) Show that if, in addition, $\Lambda|i\rangle=\sum_{j} \Lambda_{j i}|j\rangle$ then $\langle k| \Lambda \Omega|l\rangle=\sum_{m} \Lambda_{k m} \Omega_{m l}$.

Consider two arbitrary kets $|\psi\rangle$ and $|\phi\rangle$.
d) Write down the adjoint of the operator $\Theta=|\psi\rangle\langle\psi|$?
e) Write down the adjoint of the operator $\Xi=|\psi\rangle\langle\psi|+i|\phi\rangle\langle\phi|$?
f) In the basis $\{|i\rangle\}$ the operator Σ is represented by the matrix

$$
\left(\begin{array}{cc}
0 & i \\
1+i & 2 i
\end{array}\right) .
$$

Construct the matrix that represents the adjoint operator Σ^{\dagger} in the same basis?
g) By using the relationship $\left(\Gamma^{\dagger}\right)_{i j}=\left(\Gamma_{j i}\right)^{*}$ show that for two arbitrary kets, $|\psi\rangle$ and $|\phi\rangle$, we have $\langle\psi| \Theta^{\dagger}|\phi\rangle=\langle\phi| \Theta|\psi\rangle^{*}$.
2) Projection operators: Operators are called projection operators if they are idempotent, i.e., $\Omega^{2}=\Omega$. Once you have acted on a ket with an idempotent operator, repeated action with such an operator will no longer change the ket; the operator has lost its potency. Consider the operator $P^{(i)} \equiv|i\rangle\langle i|$, where no sum on i is implied, and $|i\rangle$ is one particular ket from an orthonormal basis.
a) Show that $P^{(i)}$ is an example of an idempotent operator, i.e., $P^{(i)^{2}}=P^{(i)}$.
b) Calculate the eigenvalues and associated eigenvectors of $P^{(i)}$?
c) Show that $P^{(i)} P^{(j)}=\delta_{i j} P^{(i)}$.
d) Show that the eigenvalues of any projection operator can only take the values 0 or 1 .
e) Evaluate the matrix elements of $P^{(i)}$ in the $|i\rangle$-basis.
f) For any operator $A, \operatorname{Tr} A \equiv \sum_{k} A_{k k}$. Evaluate $\operatorname{Tr} P^{(i)}$.
g) How many non-zero eigenvalues does $P^{(i)}$ have?
h) Is $P^{(i)}$ hermitean?

3) Exercises from Shankar - optional:

a) Exercise 1.8 .1 on page 41 .
b) Exercise 1.8.2 on page 41 .
4) A linear vector space - optional: Consider the $\operatorname{LVS} \mathcal{V}^{(n)}(\mathcal{C})$.
a) State its dimensionality?

You are given a complete orthonormal set of vectors $\{|i\rangle\}$ for $\mathcal{V}^{(n)}(\mathcal{C})$.
b) Write a expression for an arbitrary vector $|\phi\rangle$, in terms of expansion coefficients ϕ_{i} and the basis kets $|i\rangle$.
c) As the basis is orthonormal, state the value of $\langle i \mid j\rangle$?
d) Give $\langle i \mid \phi\rangle$ in terms of your general expression for $|\phi\rangle$?
e) In terms of your general expression for $|\phi\rangle$, write down an expression for $\langle\phi|$?
f) In terms of your expansion coefficients, compute $\langle\phi \mid \phi\rangle$.
g) By considering its action on an arbitrary ket, show that the operator $\sum_{i}|i\rangle\langle i|$ is the identity operator I.
h) Compute the matrix elements between the states $|k\rangle$ and $|l\rangle$ of the operator $\sum_{i j}|i\rangle \Omega_{i j}\langle j|$.
i) By considering precisely the representation of operators found in part (g), show that the $i k^{\text {th }}$ matrix element of the product operator $\Omega \Lambda$ is given by $\sum_{j} \Omega_{i j} \Lambda_{j k}$.
j) Show that if $\Omega|\phi\rangle=\left|\phi^{\prime}\right\rangle$ implies $\langle\phi| \Omega=\left\langle\phi^{\prime}\right|$ for all kets, then $\Omega_{i j}=\left(\Omega_{j i}\right)^{*}$. What name is given to operators satisfying this condition?
k) By using the resolution of the identity, $I=\sum_{i}|i\rangle\langle i|$, show that $|\phi\rangle=\sum_{i}|i\rangle\langle i \mid \phi\rangle$.
5) Orthogonalisation of bases - optional: The three vectors, $\left|V_{1}\right\rangle,\left|V_{2}\right\rangle$, and $\left|V_{3}\right\rangle$ are elements of the three-dimensional linear vector space $\mathcal{V}^{(3)}(\mathcal{C})$. Their inner products are given by the matrix elements

$$
\left(\begin{array}{lll}
\left\langle V_{1} \mid V_{1}\right\rangle & \left\langle V_{1} \mid V_{2}\right\rangle & \left\langle V_{1} \mid V_{3}\right\rangle \\
\left\langle V_{2} \mid V_{1}\right\rangle & \left\langle V_{2} \mid V_{2}\right\rangle & \left\langle V_{2} \mid V_{3}\right\rangle \\
\left\langle V_{3} \mid V_{1}\right\rangle & \left\langle V_{3} \mid V_{2}\right\rangle & \left\langle V_{3} \mid V_{3}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & -i / \sqrt{2} \\
0 & 1 & 0 \\
i / \sqrt{2} & 0 & \sqrt{2}
\end{array}\right) .
$$

a) Is the set $\left\{\left|V_{i}\right\rangle\right\}$ linearly independent?
b) Use the Gram-Schmidt construction (Shankar, page $18{ }^{* *}$) to build an orthonormal basis $\{|i\rangle\}$ in terms of $\left\{\left|V_{i}\right\rangle\right\}$.
c) If the new basis, $\{|i\rangle\}$, is given in terms of the old basis, $\left\{\left|V_{i}\right\rangle\right\}$, by the equation $|i\rangle=\sum_{j} M_{j i}\left|V_{j}\right\rangle$, then what are the elements of the matrix $M_{j i}$?
d) In part (c) the matrix $M_{j i}$ connects two bases. Is $M_{j i}$ a unitary matrix?
e) If $M_{j i}$ is not unitary, what property of the set $\left\{\left|V_{i}\right\rangle\right\}$ is responsible for this?
6) Matrices and commutators: The operator M has matrix elements

$$
\left(\begin{array}{ll}
\langle 1| M|1\rangle & \langle 1| M|2\rangle \\
\langle 2| M|1\rangle & \langle 2| M|2\rangle
\end{array}\right)=\left(\begin{array}{cc}
2 & i \\
0 & 1+i
\end{array}\right) .
$$

The operator N has matrix elements

$$
\left(\begin{array}{ll}
\langle 1| N|1\rangle & \langle 1| N|2\rangle \\
\langle 2| N|1\rangle & \langle 2| N|2\rangle
\end{array}\right)=\left(\begin{array}{cc}
i & i \\
0 & 1
\end{array}\right) .
$$

a) Compute the matrix elements of the operator $M N$?
b) Compute the matrix elements of the operator $N M$?

The commutator of two operators, R and S, is denoted $[R, S]$, and is defined to be the operator $R S-S R$.
c) Compute the matrix elements of the commutator $[M, N]$?
d) Compute the matrix elements of M^{\dagger}, of N^{\dagger}, and of $M^{\dagger} N^{\dagger}$.
e) Do the matrix elements of $M^{\dagger} N^{\dagger}$ equal the matrix elements of $(M N)^{\dagger}$?
f) Write down the rule for the adjoint of a product of two operators?

The matrix $L_{i j} \equiv\langle i| L|j\rangle$ represents the operator L. The components $\phi_{i} \equiv\langle i \mid \phi\rangle$ represent the ket vector $|\phi\rangle$.
g) Write down the components of the ket vector $L|\phi\rangle$, in terms of $L_{i j}$ and ϕ_{i} ?
h) Write down the components of the ket vector $L^{\dagger}|\phi\rangle$, in terms of $L_{i j}$ and ϕ_{i} ?
i) Write down the components of the bra vector $\langle\phi|$ in terms of the components ϕ_{i} ?
j) Write down the components of the bra vector $\langle\phi| L$?
k) Write down the components of the bra vector $\langle\phi| L^{\dagger}$?

In terms of the matrix elements of M and N given explicitly above, and the components, ϕ_{i}, of the ket $|\phi\rangle$, compute:
l) the components of the ket $M|\phi\rangle$?
m) the components of the ket $M^{\dagger}|\phi\rangle$?
n) the components of the ket $M N|\phi\rangle$?

7) Exercises from Shankar - optional:

c) Exercise 1.8 .3 on page 41 .
d) Exercise 1.8.6 on page 42 .

