Physics 580Quantum Mechanics IProf. P. M. GoldbartHandout 8webusers.physics.illinois.edu/~goldbart/3135 (& 2115) ESB21 September 2010HOMEWORK 4University of Illinois

1) Operators and matrix elements:

- a) Show that if $\Lambda^{-1}\Lambda = I$ and $\Omega^{-1}\Omega = I$ then $(\Omega\Lambda)^{-1} = \Lambda^{-1}\Omega^{-1}$.
- b) Suppose that $\{|i\rangle\}$ forms an orthonormal basis. Show that if $\Omega|i\rangle = \sum_j \Omega_{ji}|j\rangle$ then $\langle k|\Omega|l\rangle = \Omega_{kl}$.
- c) Show that if, in addition, $\Lambda |i\rangle = \sum_j \Lambda_{ji} |j\rangle$ then $\langle k | \Lambda \Omega | l \rangle = \sum_m \Lambda_{km} \Omega_{ml}$.

Consider two arbitrary kets $|\psi\rangle$ and $|\phi\rangle$.

- d) Write down the adjoint of the operator $\Theta = |\psi\rangle\langle\psi|$?
- e) Write down the adjoint of the operator $\Xi = |\psi\rangle\langle\psi| + i|\phi\rangle\langle\phi|$?
- f) In the basis $\{|i\rangle\}$ the operator Σ is represented by the matrix

$$\begin{pmatrix} 0 & i \\ 1+i & 2i \end{pmatrix}$$

Construct the matrix that represents the adjoint operator Σ^{\dagger} in the same basis?

g) By using the relationship $(\Gamma^{\dagger})_{ij} = (\Gamma_{ji})^*$ show that for two arbitrary kets, $|\psi\rangle$ and $|\phi\rangle$, we have $\langle \psi | \Theta^{\dagger} | \phi \rangle = \langle \phi | \Theta | \psi \rangle^*$.

2) Projection operators: Operators are called projection operators if they are idempotent, i.e., $\Omega^2 = \Omega$. Once you have acted on a ket with an idempotent operator, repeated action with such an operator will no longer change the ket; the operator has lost its potency. Consider the operator $P^{(i)} \equiv |i\rangle\langle i|$, where no sum on *i* is implied, and $|i\rangle$ is one particular ket from an orthonormal basis.

- a) Show that $P^{(i)}$ is an example of an idempotent operator, *i.e.*, $P^{(i)^2} = P^{(i)}$.
- b) Calculate the eigenvalues and associated eigenvectors of $P^{(i)}$?
- c) Show that $P^{(i)}P^{(j)} = \delta_{ij} P^{(i)}$.
- d) Show that the eigenvalues of any projection operator can only take the values 0 or 1.
- e) Evaluate the matrix elements of $P^{(i)}$ in the $|i\rangle$ -basis.
- f) For any operator A, $\text{Tr}A \equiv \sum_{k} A_{kk}$. Evaluate $\text{Tr}P^{(i)}$.
- g) How many non-zero eigenvalues does $P^{(i)}$ have?
- h) Is $P^{(i)}$ hermitean?

3) Exercises from Shankar – optional:

- a) Exercise 1.8.1 on page 41.
- b) Exercise 1.8.2 on page 41.

4) A linear vector space – optional: Consider the LVS $\mathcal{V}^{(n)}(\mathcal{C})$.

a) State its dimensionality?

You are given a complete orthonormal set of vectors $\{|i\rangle\}$ for $\mathcal{V}^{(n)}(\mathcal{C})$.

- b) Write a expression for an arbitrary vector $|\phi\rangle$, in terms of expansion coefficients ϕ_i and the basis kets $|i\rangle$.
- c) As the basis is orthonormal, state the value of $\langle i|j\rangle$?
- d) Give $\langle i | \phi \rangle$ in terms of your general expression for $| \phi \rangle$?
- e) In terms of your general expression for $|\phi\rangle$, write down an expression for $\langle\phi|$?
- f) In terms of your expansion coefficients, compute $\langle \phi | \phi \rangle$.
- g) By considering its action on an arbitrary ket, show that the operator $\sum_i |i\rangle\langle i|$ is the identity operator I.
- h) Compute the matrix elements between the states $|k\rangle$ and $|l\rangle$ of the operator $\sum_{ij} |i\rangle \Omega_{ij} \langle j|$.
- i) By considering precisely the representation of operators found in part (g), show that the ik^{th} matrix element of the product operator $\Omega\Lambda$ is given by $\sum_{j} \Omega_{ij}\Lambda_{jk}$.
- j) Show that if $\Omega |\phi\rangle = |\phi'\rangle$ implies $\langle \phi | \Omega = \langle \phi' |$ for all kets, then $\Omega_{ij} = (\Omega_{ji})^*$. What name is given to operators satisfying this condition?
- k) By using the resolution of the identity, $I = \sum_i |i\rangle \langle i|$, show that $|\phi\rangle = \sum_i |i\rangle \langle i|\phi\rangle$.

5) Orthogonalisation of bases – optional: The three vectors, $|V_1\rangle$, $|V_2\rangle$, and $|V_3\rangle$ are elements of the three-dimensional linear vector space $\mathcal{V}^{(3)}(\mathcal{C})$. Their inner products are given by the matrix elements

$$\begin{pmatrix} \langle V_1 | V_1 \rangle & \langle V_1 | V_2 \rangle & \langle V_1 | V_3 \rangle \\ \langle V_2 | V_1 \rangle & \langle V_2 | V_2 \rangle & \langle V_2 | V_3 \rangle \\ \langle V_3 | V_1 \rangle & \langle V_3 | V_2 \rangle & \langle V_3 | V_3 \rangle \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 0 & -i/\sqrt{2} \\ 0 & 1 & 0 \\ i/\sqrt{2} & 0 & \sqrt{2} \end{pmatrix}$$

- a) Is the set $\{|V_i\rangle\}$ linearly independent?
- b) Use the Gram-Schmidt construction (Shankar, page 18 **) to build an orthonormal basis $\{|i\rangle\}$ in terms of $\{|V_i\rangle\}$.
- c) If the new basis, $\{|i\rangle\}$, is given in terms of the old basis, $\{|V_i\rangle\}$, by the equation $|i\rangle = \sum_i M_{ii} |V_i\rangle$, then what are the elements of the matrix M_{ii} ?
- d) In part (c) the matrix M_{ji} connects two bases. Is M_{ji} a unitary matrix?
- e) If M_{ii} is not unitary, what property of the set $\{|V_i\rangle\}$ is responsible for this?

6) Matrices and commutators: The operator M has matrix elements

$$\begin{pmatrix} \langle 1|M|1\rangle & \langle 1|M|2\rangle \\ \langle 2|M|1\rangle & \langle 2|M|2\rangle \end{pmatrix} = \begin{pmatrix} 2 & i \\ 0 & 1+i \end{pmatrix}$$

The operator N has matrix elements

$$\begin{pmatrix} \langle 1|N|1\rangle & \langle 1|N|2\rangle \\ \langle 2|N|1\rangle & \langle 2|N|2\rangle \end{pmatrix} = \begin{pmatrix} i & i \\ 0 & 1 \end{pmatrix}.$$

- a) Compute the matrix elements of the operator MN?
- b) Compute the matrix elements of the operator NM?

The commutator of two operators, R and S, is denoted [R, S], and is defined to be the operator RS - SR.

- c) Compute the matrix elements of the commutator [M, N]?
- d) Compute the matrix elements of M^{\dagger} , of N^{\dagger} , and of $M^{\dagger}N^{\dagger}$.
- e) Do the matrix elements of $M^{\dagger}N^{\dagger}$ equal the matrix elements of $(MN)^{\dagger}$?
- f) Write down the rule for the adjoint of a product of two operators?

The matrix $L_{ij} \equiv \langle i|L|j \rangle$ represents the operator L. The components $\phi_i \equiv \langle i|\phi \rangle$ represent the ket vector $|\phi\rangle$.

- g) Write down the components of the ket vector $L|\phi\rangle$, in terms of L_{ij} and ϕ_i ?
- h) Write down the components of the ket vector $L^{\dagger}|\phi\rangle$, in terms of L_{ij} and ϕ_i ?
- i) Write down the components of the bra vector $\langle \phi |$ in terms of the components ϕ_i ?
- j) Write down the components of the bra vector $\langle \phi | L$?
- k) Write down the components of the bra vector $\langle \phi | L^{\dagger} ?$

In terms of the matrix elements of M and N given explicitly above, and the components, ϕ_i , of the ket $|\phi\rangle$, compute:

- l) the components of the ket $M|\phi\rangle$?
- m) the components of the ket $M^{\dagger} |\phi\rangle$?
- n) the components of the ket $MN|\phi\rangle$?

7) Exercises from Shankar – optional:

- c) Exercise 1.8.3 on page 41.
- d) Exercise 1.8.6 on page 42.