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1) Schwarz inequality; triangle inequality: Let |S⟩ and |T ⟩ be two vectors.

a) By considering the positivity of the norm of the vector

|S⟩ − ⟨T |S⟩
⟨T |T ⟩

|T ⟩

establish the validity of the Schwarz inequality, i.e., ⟨S|S⟩⟨T |T ⟩ ≥ |⟨S|T ⟩|2.
b) Give, and describe the origin of, the condition under which the inequality becomes an

equality.

c) By considering the norm of the vector |S⟩+ |T ⟩, and then using the Schwarz inequality,

prove the triangle inequality√
{⟨S|+ ⟨T |}{|S⟩+ |T ⟩} ≡ |S + T | ≤ |S|+ |T | ≡

√
⟨S|S⟩+

√
⟨T |T ⟩ .

d) Give, and describe the origin of, the condition under which the inequality becomes an

equality.

2) Bras as linear functionals: The two-dimensional linear vector space over the real

numbers V(2)(R) is spanned by the two orthonormal basis vectors |1⟩ and |2⟩.
a) What are the values of the elements of the matrix of inner products( ⟨1|1⟩ ⟨1|2⟩

⟨2|1⟩ ⟨2|2⟩

)
?

An arbitrary ket |ψ⟩ is a linear combination of these basis vectors: |ψ⟩ = |1⟩a1 + |2⟩a2.
b) Show that the appropriate expansion coefficients, a1 and a2, are given by a1 = ⟨1|ψ⟩

and a2 = ⟨2|ψ⟩.
Recall that a linear functional is an object ⟨ϕ|, called a bra, that acts on a ket |θ⟩ and returns

the scalar ⟨ϕ|θ⟩. It is natural to choose as a basis for the set of linear functionals on V(2)(R)

the bras ⟨1| and ⟨2|. For example, when we act with ⟨1| on |θ⟩ the result is ⟨1|θ⟩. A general

bra may be expanded in terms of the basis as ⟨ϕ| = b1⟨1|+ b2⟨2|.
c) Show that the correct expansion coefficients, b1 and b2, are given by b1 = ⟨ϕ|1⟩ and

b2 = ⟨ϕ|2⟩.
d) Hence show that, together, the set of expansion coefficients {⟨i|ψ⟩}2i=1 (for the ket

|ψ⟩) and the set of expansion coefficients {⟨ϕ|i⟩}2i=1 (for the bra ⟨ϕ|) are sufficient to

calculate the scalar ⟨ϕ|ψ⟩ that results from the action of the bra ⟨ϕ| on the ket |ψ⟩.
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3) A linear vector space: Consider the linear vector space (LVS) V(2)(C).
a) What is the dimension of this LVS?

b) From what field do the scalars come?

c) Suppose you are given the basis: {|1⟩, |2⟩}. Write down an expression for an arbitrary

ket |ϕ⟩ in terms of this basis.

Suppose that the inner products between basis kets are given by( ⟨1|1⟩ ⟨1|2⟩
⟨2|1⟩ ⟨2|2⟩

)
=
(

1 1/2
1/2 1

)
.

d) Are the basis kets normalised?

e) Is the basis orthogonal?

f) For your arbitrary ket in part (c), calculate the value of ⟨1|ϕ⟩.
g) For your arbitrary ket in part (c), calculate the value of ⟨2|ϕ⟩.
h) If your arbitrary ket |ϕ⟩ is α|1⟩ + β|2⟩, why are your answers to parts (f) and (g) not

α and β?

i) Calculate the value of ⟨ϕ|ϕ⟩ in terms of α and β.

j) Write down a normalised version |ϕ̃⟩ of the ket |ϕ⟩
k) Consider a second arbitrary ket |ψ⟩ = γ|1⟩+ δ|2⟩. Compute ⟨ψ|ϕ⟩.
l) Why is ⟨ψ|ϕ⟩ not equal to γ∗α+ δ∗β?

m) Calculate |ψ⟩+ |ϕ⟩ in terms of basis kets.

n) Calculate |ψ⟩+ i|ϕ⟩ in terms of basis kets.

o) Use the Gram-Schmidt orthogonalisation procedure, and the process of normalisation,

to construct an orthonormal basis, {|a1⟩, |a2⟩} from the basis {|1⟩, |2⟩}. Start with

|a1⟩ ∝ |1⟩.
p) Is your resulting orthonormal basis unique?

q) Express |ϕ⟩ in the orthonormal basis, in terms of α and β.

r) Express |ψ⟩ in the orthonormal basis, in terms of γ and δ.

s) Calculate ⟨ψ|ϕ⟩ using the orthonormal basis.

t) Does this agree with your calculation in part (k)?

4) Dirac delta function – optional: In this question we shall explore some of the proper-

ties of the Dirac delta function (the generalisation to the continuum of the Kronecker delta

symbol). The Dirac delta function δ(x) has as its argument the real variable x. It has the

following rather striking properties:

δ(x) = 0 for x ̸= 0, and
∫ ∞

−∞
dx δ(x) = 1.

From these properties you can see that one way to think of δ(x) is that it has an infinitely

high spike at the origin, is zero elsewhere, and has unit area.
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a) Give a heuristic (i.e., sloppy) proof that, for sufficiently smooth f(x),∫ ∞

−∞
dx δ(x) f(x) = f(0).

b) Show that ∫ ∞

−∞
dx δ(x− a) f(x) = f(a).

Often we shall neglect to write the limits on integrals.

c) By using integration by parts, show that∫ ∞

−∞
dx δ′(x) f(x) = −f ′(0),

where f ′(x) ≡ df(x)/dx and δ′(x) ≡ dδ(x)/dx.

d) Consider the family of gaussian functions,

∆ξ(x) ≡
1√
2πξ2

exp

(
− x2

2ξ2

)
,

parametrised by the width ξ. Show that the defining properties of δ(x) are satisfied

by limξ→0 ∆ξ(x) and, hence, that this limit represents δ(x).

Hint:
∫∞
−∞ dy exp(−y2/2) =

√
2π.

e) By considering the Fourier transform,

f̃(q) =
∫ ∞

−∞
dx f(x) e−iqx,

and its inverse,

f(x) =
∫ ∞

−∞

dq

2π
f̃(q) eiqx,

establish that

f(y) =
∫ ∞

−∞
dx f(x)

∫ ∞

−∞

dq

2π
eiq(y−x).

Thus, demonstrate that

δ(y) =
∫ ∞

−∞

dq

2π
eiqy.

This integral representation of the Dirac delta function is known as the Fourier repre-

sentation of the Dirac delta function.

f) By considering the equation

f(y) =
∫ ∞

−∞
dx δ(y − x) f(x),

justify the statement that the delta function is a representation of the identity operator.

g) By considering the Fourier representation, show that δ(ax) = |a|−1 δ(x).

h) Demonstrate this result by starting with the gaussian representation of part (d).
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We can also have higher dimensional delta functions, by which we mean delta functions with

vector arguments. For example, if r is a three-dimensional cartesian vector with cartesian

components x, y and z, then the delta function δ(3)(r) is defined to be δ(3)(r) = δ(x) δ(y) δ(z).

Often the superscript (3) is omitted.

i) Write down the Fourier representation of δ(3)(r) in terms of the vector r and an integral

over the vector q.

j) Write down a representation for δ(3)(r) in terms of the gaussian function.

k) A real function f(x) of a single variable x has zeros at the set of points {xi}. At these
zeros, the gradient of f is non-vanishing, and takes the values {f (1)

i }. Show that

δ(f(x)) =
∑
i

δ(x− xi)

|f (1)
i |

.

l) The real symmetric 3× 3 matrix A is positive-definite. (This means that all its eigen-

values are positive real numbers.) Demonstrate, by using either the gaussian or the

Fourier representation, that

δ(3)(Ax) =
δ(3)(x)

|detA|
.

A third representation of the delta function is very convenient in the context of complex

variables. Consider the real variables ω and ϵ. Follow the strategy given below to establish

that

lim
ϵ→0

1

π
Im

1

ω − iϵ
= δ(ω),

where Im denotes the imaginary part.

m.i) Show that

Im
1

ω − iϵ
=

ϵ

ω2 + ϵ2
.

m.ii) Show that

lim
ω→0

lim
ϵ→0

ϵ

ω2 + ϵ2
= 0,

lim
ϵ→0

lim
ω→0

ϵ

ω2 + ϵ2
= ∞.

m.iii) By using the substitution ω = ϵ tan θ, or otherwise, show that∫ ∞

−∞
dω

ϵ

ω2 + ϵ2
= π.

m.iv) Put together these pieces to argue that, indeed,

lim
ϵ→0

1

π
Im

1

ω − iϵ
= δ(ω)

is a representation of the delta function.
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