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Abstract. A natural way of quantifying the degree of entanglement for a pure quantum state is to compare how far this
state is from the set of all unentangled pure states. This geometric measure of entanglement is explored for bipartite and
multipartite pure and mixed states. It is determined analytically for arbitrary two-qubit mixed states and for generalized
Werner and isotropic states. It is also applied to certain multipartite mixed states, including two multipartite bound entangled
states discovered by Smolin and Dür. Moreover, the geometric measure of entanglement is applied to the ground state of the
Ising model in a transverse magnetic field. From this model the entanglement is shown to exhibit singular behavior at the
quantum critical point.

INTRODUCTION

The notion of entanglement has been studied extensively and the entanglement itself has been recognized as a central
resource for quantum information processing [1]. Much progress has been made in the bipartite setting; see, e.g., [2].
Entanglement in the multipartite setting turns out much richer and more delicate to characterize. In this paper we
describe a simple measure to quantify entanglement, applicable to both bi- and multipartite settings, and examine the
measure in several examples.

GEOMETRIC MEASURE OF ENTANGLEMENT

The idea of quantifying the degree of entanglement for a pure quantum state via comparing how far this state is from
the set of all unentangled states has appeared in several places previously [3, 4, 5, 6]. Let us start with a multipartite
system comprising n parts, each of which can have a distinct Hilbert space. Consider a general n-partite pure state

(expanded in the local bases {|e(i)
pi }):

|ψ〉= ∑
p1···pn

χp1 p2···pn |e
(1)
p1 e(2)

p2 · · ·e
(n)
pn 〉. (1)

We are interested in quantifying the entanglement of the system in a global way, and thus it is natural to compare this
state to the set of pure states that are completely unentangled among any two or more of the parties:

|φ〉 ≡
n
⊗

i=1
|φ (i)〉= |φ (1)〉⊗ |φ (2)〉⊗ . . .⊗|φ (n)〉. (2)

The maximal overlap
Λmax(ψ)≡max

φ
|〈ψ |φ〉| (3)

signifies the entanglement of |ψ〉; the larger Λmax is, the less entangled |ψ〉 is.



If one is interested in entanglement between two groups of the parties, e.g., {1, . . . ,k} and {k + 1, . . . ,n}, one can
replace the unentangled state |φ〉 in Eq. (3) by

|φ〉= |φ (1...k)〉⊗ |φ (k+1...n)〉, (4)

where |φ (1...k)〉 (|φ (k+1...n)〉) is any state comprising parties {1, . . . ,k} ({k + 1, . . . ,n}). Λmax then reflects the entan-
glement between the two groups. Other partitions can be considered. But throughout the present paper we shall be
concerned with the entanglement defined globally. The two particular forms of entanglement that we shall use are

Esin2(ψ)≡ 1−Λmax(ψ)2, and Elog2
(ψ)≡−2log2 Λmax(ψ). (5)

The former, Esin2 , is bounded above by unity, and is suitable for finite numbers of parties, whereas the latter Elog2
,

unbounded above, is applicable to arbitrary numbers of parties, including the thermodynamic limit n→ ∞. Moreover,
via Elog2

one can also address the question of entanglement per party by defining an entanglement density

E ≡ Elog2
/n, (6)

which we shall use to calculate the entanglement density of an infinite chain of spins. Elog2
also has the useful feature

that it gives a lower bound on the relative entropy of entanglement ER [7], i.e., Elog2
≤ ER. Cases have been found

for which the inequality becomes an equality; see Ref. [8]. We remark that the problem of determining the maximal
overlap has recently been formulated in terms of convex optimization [9].

Given the definition of entanglement for pure states, just formulated, the extension to mixed states ρ can be built
upon pure states via the convex hull construction, as was done for the entanglement of formation (EF) (see Ref. [10]).
The essence is a minimization over all decompositions ρ = ∑i pi |ψi〉〈ψi| into pure states:

E(ρ)≡ min
{pi,ψi}

∑i pi Epure(ψi). (7)

This convex hull construction ensures that the measure gives zero for separable states; however, in general it also
complicates the task of determining mixed-state entanglement. In Ref. [6], Esin2 was shown to be an entanglement
monotone, i.e., it is not increasing under local operations and classical communication.

ANALYTICAL RESULTS

In this section we catalogue analytical results of the geometric measure for several illustrative examples.

Two qubits. For two qubits we can employ the results of Wootters [10] and obtain the corresponding results for the
geometric measure for arbitrary two qubits [11, 6]:

Esin2(ρ) =
1
2

(
1−

√
1−C(ρ)2

)
, (8)

where C(ρ) is the Wootters concurrence of the state ρ .

Generalized Werner states. The generalized Werner states of d⊗d bipartite system are states that are invariant under

P1 : ρ →
∫

dU (U⊗U)ρ (U†⊗U†), (9)

where U is a unitary transformation. These states can be expressed as

ρW( f ) =
d2− f d
d4−d2 Î +

f d2−d
d4−d2 F̂ , (10)

where Î is the identity and F̂ ≡ ∑i j |i j〉〈 ji| is the swap operator. By applying to Esin2 the technique of Vollbrecht and
Werner for EF [12], we arrive at the geometric entanglement function for Werner states [6]:

Esin2 (ρW( f )) =
1
2

(
1−

√
1− f 2

)
for f ≤ 0, and zero otherwise. (11)



Isotropic states. The isotropic states are invariant under

P2 : ρ →
∫

dU (U⊗U∗)ρ (U†⊗U∗†), (12)

and can be expressed as

ρiso(F)≡ 1−F
d2−1

(
I−|Φ+〉〈Φ+|

)
+F |Φ+〉〈Φ+|, (13)

where |Φ+〉 ≡ ∑d
i=1 |ii〉/

√
d and F ∈ [0,1]. Corresponding to the results of EF for these states [13], we have [6]

Esin2 (ρiso(F)) = 1− 1
d

(√
F +

√
(1−F)(d−1)

)2
, for 1≥ F ≥ 1/d, and zero otherwise. (14)

GHZ state, W state and mixtures of them. For the state |GHZ〉 ≡ (|000〉+ |111〉)/
√

2 one can readily compute Λmax,
finding that Λmax(GHZ) = 1/

√
2. For the state |W〉 ≡ (|001〉+ |010〉+ |100〉)/

√
3 one finds that Λmax(W) = 2/3.

These results show that according to the geometric measure, the W state has higher entanglement than the GHZ state
does. In fact, for these two states ER = 2log2 Λmax [8], i.e., ER(GHZ) = 1, whereas ER(W ) = log2(9/4). One can
actually go beyond pure states and consider, e.g., the mixture

x|GHZ〉〈GHZ|+ y|W〉〈W|+(1− x− y)|W̃〉〈W̃|, (15)

where |W̃〉 is obtained from |W〉 by exchanging 0 and 1. This mixture, as well as other mixtures of highly symmetric,
multipartite states have been studied in detail in Ref. [6].
Smolin’s bound entangled state. This is a four-qubit mixed state:

ρABCD ≡ 1
4

3

∑
i=0

(
|Ψi〉〈Ψi|

)
AB⊗

(
|Ψi〉〈Ψi|

)
CD, (16)

where the |Ψ〉’s are the four Bell states (|00〉 ± |11〉)/
√

2 and (|01〉 ± |10〉)/
√

2. Although bound entangled, the
amount of entanglement of Smolin’s state is actually as large as that of a four-partite GHZ state. It can be shown
that Esin2(ρABCD) = 1/2 and Elog2

(ρABCD) = 1; see Ref. [15].
Dür’s bound entangled states. Dür [16] found that for N ≥ 4 the following state is bound entangled:

ρN ≡
1

N +1

(
|ΨG〉〈ΨG|+

1
2

N

∑
k=1

(
Pk + P̄k

))
, (17)

where |ΨG〉 ≡
(
|0⊗N〉+ eiαN |1⊗N〉

)
/
√

2 is a N-partite GHZ state; Pk ≡ |uk〉〈uk| is a projector onto the state |uk〉 ≡
|0〉1|0〉2 . . . |1〉k . . . |0〉N ; and P̄k ≡ |vk〉〈vk| projects onto |vk〉 ≡ |1〉1|1〉2 . . . |0〉k . . . |1〉N . This state violates certain Bell
inequalities for N ≥ 6 [16, 17, 18]. In terms of the geometric measures, Dür’s states can be shown to have Esin2(ρN) =
1/2(N +1) and Elog2

(ρN) = log2[(2N +2)/(2N +1)]; see Ref. [15].

APPLICATION TO A QUANTUM PHASE TRANSITION

We now turn to a physical model and quantify its ground-state entanglement. The Hamiltonian H for the Ising model
in the transverse magnetic field is given by

H =−J
N

∑
i=1

(
σ x

i σ x
i+1 +hσ z

i

)
, (18)

where J > 0 is the ferromagnetic coupling and h is the relative strength of the magnetic field to the coupling. This model
exhibits a quantum phase transition at hc = 1 from quantum ferromagnet (h < 1) to quantum paramagnet (h > 1). The
ground state can be determined and its global entanglement (in terms of E ) can be calculated analytically [19]; the
results are shown in Figs. 1. The ground-state entanglement is not maximal at the critical point, but the field-derivative
of the entanglement does show divergent behavior (for an infinite chain):

∂E

∂h
≈− 1

2π ln2
ln |h−1|, for |h−1| ¿ 1. (19)

This demonstrates that the singular behavior of the global entanglement can reflect the critical point of the system.
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FIGURE 1. Entanglement density of the transverse Ising model for an infinite chain. Left: entanglement density vs. magnetic
field. Right: h-derivative of entanglement density vs. magnetic field h.

CONCLUSIONS

We have presented a geometric measure that is suitable for quantifying entanglement among any partitions of any
multiple parties of a quantum system. This measure has been determined analytically for several bi- and multipartite
states. It has also been applied to the transverse Ising spin model, which exhibits a quantum phase transition. The
behavior of the global entanglement density in the thermodynamic limit has been shown to display signature of the
critical point.
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