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Abstract

The vulcanization transition is a crosslink-density-controlled equilibrium phase transition from the
liquid to the amorphous solid state. In order to understand the origins and consequences of the
universal aspects of this transition and the emergent solid state, we construct a minimal model in
the spirit of the Landau approach to continuous phase transitions. At the mean-field level this model
produces the essential features of the liquid state and, especially, the amorphous solid state, such
as the fraction of randomly localized particles and the scaling function that describes the statistical
distribution of localization lengths. Our investigation of the vulcanization transition beyond the
mean-field level, via both a perturbative renormalization group approach and a diagrammatic
analysis of the two- and three-point vertex functions to all orders in perturbation theory, shows
that percolation theory correctly captures the critical phenomenology of the vulcanization transition
associated with percolative aspects of the liquid and critical states. In addition, we study certain
density correlators associated with the vulcanization transition, which are accessible via various
experimental techniques. These correlators turns out to contain essential information about both

the vulcanization transition and the emergent amorphous solid state.
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Chapter 1

Introduction

1.1 Vulcanized matter—rubber and the vulcanization transition

Natural rubber is derived from the sap of a number of tropical trees, most commonly the tree known
as Hevea braziliensis. The sap is a milky-looking liquid which consists of rubber (see Fig. 1.1),
suspended in the form of microscopic globules, together with other substances including fats and
proteins. The word rubber is derived from the fact that this material can remove marks from paper,
as discovered by the chemist Priestley in 1770.

In the early nineteenth century, the American Charles Goodyear spent many years studying
natural rubber, trying to improve its properties for technological use. In 1839, He discovered the
vulcanization process, a chemical reaction in which natural rubber is mixed with sulphur under
heat. The sulphur particles act as crosslinkers to join together, at certain points along their length,
the long chain macromolecules in the natural rubber, so that the whole assembly of chains becomes
effectively a single giant random structure. The resulting vulcanized rubber overcomes many tech-
nological defects of the natural rubber, among which are the permanent loss of shape due to the

inherent tendency to flow and the stiffening or loss of elasticity occurring at low temperatures [1].

1.2 Building block: Linear polymers

The constituents of the vulcanization transition are most commonly linear polymers. Linear poly-
mers [1, 2] are very long, covalently bonded molecules made up of many small group of atoms,

chemically combined in a particular manner. Each repeating small group is called a monomer. A
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Figure 1.1: Structural formula of natural rubber, i.e., polyisoprene

typical polymer may contain thousands of monomers.

In a polymer chain with a backbone of carbon-carbon covalent bond, the length of each C-C
bond and the valance angle between successive bonds are essentially fixed, but the angle between
successive units around the axis of the bond is not fixed. It is the multiplicity of each of this angle
between successive units (available when the energetic difference between different choices of the
angle is less than or comparable to the thermal energy kT') that produces the various conformations
of a linear polymer. When the energy barrier between different choices is comparable to or smaller
than thermal energy kT, the chain conformation is able to fluctuate temporally.

A minimal model that describes the large length-scale polymer properties views the polymer
configurations as the trajectories of a random walk. The short-range spatial correlation of the
monomers along the chain is abstracted into a parameter called the persistence length ¢ (also called
the effective bond-length). The random-walk idealization works best when the chain length is much
much longer than the persistence length ¢ and details of the chain structure are not the object of
investigation. In three spatial dimensions the conformational distribution function function of such

a chain, usually called a Gaussian chain, is given by the Wiener distribution [3], i.e.,

2
) . (1.1)

Here, L is the arclength of the chain and R(o) is the position vector of the monomer an arclength

L

® {R(:)} = const. x exp (—2% do
0

d
%R(U)

distance o from a specific end of the chain. According to the Wiener distribution, the end-to-end
distance of the chain R(L) — R(0) has a Gaussian distribution with mean value (R(L) —R(0)) =0
and mean square value (|R(L) — R(0)|%) = (L/¢)¢* = L.

A more refined model takes into account the fact that distinct monomers cannot occupy the same



region of space by inclusion of a short-range repulsive interaction between monomers approaching
each other closely enough spatially. This is called the Edwards model of a linear polymer [4, 5],

and its distribution function is given by

L

® {R(-)} = const. x exp (—i do d

%R(U)

2 u L L
5 J, —ﬁ/o da/o do’é(R(o)—R(o’))), (1.2)

where ug is an interaction-strength parameter having the dimension of volume and referred to as the
excluded volume. As we are only interested in the global (i.e. large length-scale) physical properties

of ensembles of polymers, we shall adopt the Edwards model for linear polymers in our work.

1.3 Gelation and vulcanization

In a polymerization process, polyfunctional units form larger and larger macromolecules when more
and more bonds are formed between the original molecules. Gelation is said to have occurred when
a single macromolecule is formed that spans the polymerization vessel. The fraction of monomers
that constitute this infinite macromolecule is called the gel fraction (here denoted by ¢), and the
remaining fraction (whose constituents are the finite macromolecules) is called the sol fraction.

In general, there are two kinds of gelation processes, strong gelation and weak gelation. The
difference between the two cases lies in the strength of the bonding. In a weak gel (i.e. a reversible
gel), bonds form and break in thermal equilibrium, whereas in a strong gel (i.e. an irreversible gel)
the bonds, once made, are completely stable (at least on the timescales of the experiments). The two
kinds of gelation process have substantially different physical features. Whereas the strong gelation
process causes a continuous equilibrium continuous phase transition, the transition caused by weak
gelation is believed to be a non-equilibrium transition and similar to glass transition [6]. From here
on, unless specifically noted, we shall confine ourselves to the discussion of strong gelation.

The vulcanization transition is a particular example of strong gelation. In the case of the vulcan-
ization transition for randomly crosslinked macromolecular systems (henceforth denoted RCMSs),
the polyfunctional unit is the long, linear polymer chain whose functionality is equal to the number
of monomers on the chain L/¢ (3> 1). The bonding is achieved via crosslinkers (such as sulfur) that

join randomly chosen pairs of monomers (see Fig. 1.2). In the case of endlinked macromolecular



Figure 1.2: A pair of macromolecules before and after crosslinking. The two empty circles represents
the pair of monomers that are to be crosslinked, and the shaded circle represents the pair of
monomers already crosslinked together.

systems, the reactive monomers are located only at the ends of the linear macromolecules, and
these end monomers are able to link with one another so as to form permanent junctions between
some specified number of ends of macromolecules (see Fig. 1.3).

a o _ o~

)

Figure 1.3: Semi-microscopic configuration of 7 macromolecules that are connected by 3 endlinks
(shaded circles), corresponding to the case of 3-type endlinking.

The presence of crosslinks between macromolecules changes the properties of these systems in
many ways. Structurally, upon increasing the crosslink density, the average size of macromolecules
grows and eventually a single random macromolecule spanning the whole system comes into exis-
tence. In the mean time, a liquid state of matter is transformed into an amorphous solid state of
matter. As to dynamical responses, as the system approaches the transition from the liquid side,
its viscosity grows and ultimately diverges at the vulcanization transition. Into the amorphous
solid state, the material develops a zero-frequency shear elasticity. There are also differences in the
chemical behavior between uncrosslinked and crosslinked polymers, such as the way in which they

respond to heat [7]. In this thesis, we put our focus on the structures and structural changes of the
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vulcanized systems.

1.4 Percolation approach to the gelation/vulcanization transition

There has been a great deal of work on the theory of the gelation/vulcanization transition [6, 8,
9]. The primary approach has been via an identification of the vulcanization transition with the

percolation transition. In this section we present a brief overview of the percolation approach [10].

1.4.1 Classical theory

The classical theory of gelation was pioneered by Flory [11] and Stockmayer [12]. They approxi-
mated the gelation phenomena as a branching process without the presence of closed loops. Their
approach, in the language of modern statistical mechanics, is in fact the mean-field theory of the

percolation transition, i.e., the percolation transition on a Cayley tree. To build a Cayley tree,

-~ AN

Figure 1.4: A small Cayley tree, where each unit has functionality z = 3

one starts with a central point (“origin”) having z bonds. Each bond leads to another site from
which again z bonds emanate; one of these z bonds connects with the origin, the other z — 1 bonds

lead to new sites. The branching process is continued again and again to build a Cayley tree as



large as one wishes. Figure 1.4 shows a small Cayley tree, having z = 3. On the Cayley tree,
each bond has a probability p to be occupied. Two sites are in the same cluster if there exists
a path of occupied bonds between them. Percolation is said to have happened when an infinite
cluster appears (with probability unity). The percolation language can be readily translated into
the gelation/vulcanization language. In the case of gelation/vulcanization each site represents a
polyfunctional unit with functionality z. If two neighboring units react to form a chemical bond,
the corresponding bond is said to be occupied. A cluster of sites is, therefore, a molecule consisting
of monomer units bonded together.

The percolation threshold on the Cayley tree can be found by the following observation. Pick
one site downstream from the origin, assuming there already exists a path with occupied bonds from
the origin to this site. Aside from the bond through which we arrive at this site from the origin,
there are z — 1 bonds emanating from it. Each of these z — 1 bonds leads to a new neighbor. Thus,
for this particular site there are, on average, (z — 1)p occupied bonds on which we can continue
our path. If this number (z — 1)p is smaller (larger) than unity, on average the number of different
paths continuing to infinity will decrease (increase) at each generation by a factor (z — 1)p < 1

[(z —1)p > 1]. Therefore we find that the percolation threshold p. is given by

p=pc = : (1.3)

Other quantities of interest can also be found exactly in this model. For example, near the transi-
tion, the gel fraction g grows linearly with p — p. [10].

The classical theory of gelation is in fact the mean-field theory of percolation, and it has the
significance and limitations of a mean-field theory. It turns out that it does give good estimate
of the gelation threshold p. [6]. On the other hand, it necessarily breaks down if the system is

sufficiently near the transition (i.e. in the critical region).

1.4.2 Percolation model

The mathematical theory of percolation, together with its name, was introduced by Broadbent
and Hammersley in 1957. In order to improve on the understanding of the gelation transition, de

Gennes [13] and Stauffer [14] proposed to identify strong gelation with percolation on a regular



lattice. As is mentioned above, each lattice site represents a polyfunctional unit, with the number

Figure 1.5: Gelation of 4-functional monomers identified as bond percolation on a square lattice

of reactive arms equal to the number of nearest neighbors. Two neighboring monomers can react,
and a reacted bond is represented by a solid line, as shown in Fig. 1.5. The probability p of a bond
being formed is identified with the reacted fraction of the theory of gelation. In this manner, the
gelation transition is identified with the percolation transition. With this identification, one is able
to investigate the structural characteristics both around the gelation transition and in the gel state

by making use of results obtained from the study of the percolation transition.

1.4.3 Field-theoretic approaches to the percolation transition

The percolation transition has been investigated with various experimental, computational and
analytical techniques. In this section we introduce some of the field-theoretic formulations of the
percolation transition, among which we focus on the Potts field theory in its one-state limit. The

purpose of this introduction is to facilitate understanding of and comparison with the statistical



field theory of the vulcanization transition, which we shall discuss in details in Chap. 3. The present
section is organized as follows. First, we introduce the lattice Potts model and its relationship with
the percolation transition [15, 16, 17, 18]. Second, we present the correspond Potts field theory
and its percolation limit [20, 21, 22, 23, 24]. Third, we describe the Houghton, Reeve and Wallace
representation of percolation field theory [25]. Then, we briefly discuss the Lubensky and Isaacson
approach [26].

The Potts model [15, 16] is a natural generalization of Ising model. Instead of two states, as in
Ising model, there is an arbitrary number Q(= 1,2,...) of discrete states at any given site x of a d-
dimensional lattice: s(x) =1,2,...,Q. Two neighboring Potts “spins” s(x) and s(x’) have energy
—J if they are in the same state and energy 0 if they are in different states, i.e., the Hamiltonian
is given by

H == —J Z 6s(x),s(x’) 5 (14)
(x,x")

xx!
where (x,x’) means that x and x’ are nearest neighbor sites. The Potts model is ferromagnetic
if J > 0 and antiferromagnetic if J < 0. Evidently, the Ising model is the ) = 2 case of the
Potts model. Kastelyn and Fortuin [17] proved that the statistics of bond percolation can be
exactly recovered from the Potts model in the limit that the number of Potts states () tends to
unity. (For a clear and concise derivation, see Ref. [18].) By choosing the energy J such that
/KT — 1 = p/(1 — p), where p is the bond occupation probability, one sees that as @) approaches
1 the partition function for the Q)-state Potts model indeed becomes the generating function for
bond percolation statistics. Furthermore, one can establish that quantities of physical significance
in percolation can also be formulated in terms of the Potts model. Central among these is the mean
number (N.) of clusters N, in the percolation problem, the correspondence with the Potts model
being given by

. O0lnZ
<NC> = élin)l aQ .

(1.5)

In addition, the correlation function for percolation G(x1,x2), defined as the probability that x;

and x5 are in the same cluster, is connected to the Potts model via

0
G(Xl,XQ) = Clzlinﬂ % <(6s(x1),1 - Q_l)((ss(xz),l - Q_1)> ’ (1'6)



where ((63(,(1)’1 — Q_l)(5s(xZ),1 — Q‘1)> is a certain correlation function for the Potts model.

The merit of the mapping between bond percolation and the Potts model lies in the fact that
when ) < 2 the @-state Potts model has a continuous phase transition. Therefore, one can
make use of the renormalization group (RG) approach and scaling arguments to study the critical
properties of this transition, and in return one obtains the characteristics of the critical properties
of the purely geometrical transition, the percolation transition. In general, the critical exponents
of percolation are those of the Q-state Potts model evaluated at @ =1 [18].

To facilitate the analytical investigation of the critical properties the percolation transition,
it is convenient to convert the lattice Potts model into a field theory. To do this, it is useful to
formulate the Hamiltonian (1.4) alternatively in a ) — 1 dimensional internal space to reflect its
full symmetry. This is achieved by introducing a set of () vectors {e”}g:1 (0 =1,2,...,Q), each
of length +/@Q — 1. This is the set of vectors defining the @ vertices of a hypertetrahedron placed

at the origin in () — 1 dimensional space. It is easy to see that
e’ e’ =Q67 —1. (1.7)

With the help of Eq. (1.7) one can rewrite the Hamiltonian, i.e., Eq. (1.4), as (up to a constant

additional term)

H=-J Z e”(™) . () (1.8)

(xx')
Then, following a standard procedure of statistical mechanics, one arrives at a () — 1 component

field theory of the Potts model [20], the Landau-Wilson effective Hamiltonian is given by

/dd (%(—wa + 51Vl )—w Z N ot y) (1.9)

a,By=1

Here, r controls the bond-occupation probability (and hence the percolation transition), w® is the

nonlinear coupling strength, A(®) is the “Potts tensor] defined via

3
)\égw = Ze eger (1.10)



which controls the internal symmetry of the theory, i.e., (-fold permutation symmetry of field
components [which can be easily seen in the lattice version, Eq. (1.8)]. The mean-field and critical
properties of this effective Hamiltonian have been investigated extensively [20, 21, 22, 23, 24]. It
has a continuous phase transition in the limit of () — 1. Due to the cubic nonlinear term, its upper
critical dimension is six. In the vicinity of and below six dimensions, the Gaussian fixed-point
bifurcates, and the critical properties of the emergent Wilson-Fisher fixed point can be calculated
using € (= 6 — d) expansion RG techniques. The critical exponents for the percolation transition
have been calculated to third order in e, and good agreement has been found with the results of
other approaches [24].

While investigating the higher-order (in ) behaviors of ¢? field theories, Houghton, Reeve and
Wallace (whom we shall henceforth refer to as HRW) developed another field-theoretic representa-

tion for the percolation problem [25], the Landau-Wilson Hamiltonian for which is given by
_ [ ated Eova? — Lvey? 4+ Lro o2 — w4+ 4 3 1.11
U= [ ded SV = SV + 5ro(d — o)+ L+ 9)° |, (1.11)

where ¢ is an ordinary field but 1) is a so-called ghost field. As HRW have shown [25], via an analysis
of the Feynman diagrams of this theory, provided one enforces the rule that only graphs that are
connected by ¢-lines be included, the two- and three-point ¢ vertex functions are identical (order-by-
order in perturbation theory in the coupling constant g) to those of the one-state (i.e. percolation)
limit of the Potts model. (Figure 1.6 gives an example of the HRW rule.) We mention, in passing,
that this HRW representation consists of fields residing on d-dimensional space, and does not
necessitate the taking of a replica (or Potts) limit. However, it does require the additional rule by
which certain diagrams are excluded by hand. Note that due to this extra by-hand rule, the HRW
representation is not a Lagrangian field theory in the strict sense. In Chap. 4 we shall make use of
this HRW representation of the percolation transition (but only as a convenient intermediate, and
not mandatory, step) to establish the connection between the critical properties of the vulcanization
transition and those of the percolation transition.

We mention that other field-theoretic approaches have been developed to study the percolation
transition. Among these is the approach of Lubensky and Isaacson [26], who developed a field theory

that describes the statistics of branched polymers. Their approach extends the connection between
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(a) (b) (C)

Figure 1.6: An example of the HRW rule for diagrams generated by the Hamiltonian defined in
Eq. (1.11). Shown are three two-loop diagrams that contribute to two-point ¢ vertex function.
Solid lines represent ¢ propagators and dashed lines represent 1) propagators. Graph (b) is not ¢
connected and gives no contribution.

the statistics of linear macromolecules and the zero-component limit of a spin system [27, 28].
Treating the Boltzmann weight as a generating function for different cluster configurations of the
system of monomer units, Lubensky and Isaacson add to the Hamiltonian higher powers of field
variables that incorporate the effects of polyfunctional units, and configurations of branched poly-
mers are therefore generated in the Feynman-diagrammatic expansion. They concluded that in the
usual experimental settings (which means the fugacities for the number of different polyfunctional
units, number of end points and polymers are set to certain values), their field theory reduces to

that of the one-state limit of Potts model.

1.4.4 Comments on the percolation approach to the vulcanization transition

The percolation approach to the vulcanization transition appeals to the intimate relation between
the connectivity of the system of the crosslinked macromolecules and percolation theory. Neverthe-
less, the percolation transition is purely a geometrical transition, and thus in its own right is not
a statistical mechanical theory. In the percolation approach, what is under study is the statistics
of the clusters formed due to the crosslinking of the underlying macromolecules (i.e. the ensem-

ble of the configurations of quenched randomness). Hence, the thermal fluctuation of individual
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monomers (i.e. the annealed degrees of freedom) are not addressed, and neither is the interplay
between the quenched randomness produced by random crosslinking and the thermal motion of
the remaining degrees of freedom in the system. As we shall see, in the approach that we shall
adopt, both the quenched degrees of freedom and the annealed degrees of freedom are naturally
present, and the interplay between the two ensembles of degrees of freedom enables us to find the
appropriate order parameter for diagnosing the vulcanization transition, and produces rich physics
in the description of the amorphous solid state. We will discuss the relationship of the percolation
approach to our approach in more detail in the context of the RG analysis of the vulcanization

transition field theory (see Chapter 3).

1.5 Semi-microscopic theory of the vulcanization transition

During the last decade there has been an ongoing effort to obtain a detailed understanding of the
behavior of RCMSs near the vulcanization transition via an approach that is based on a microscopic
theory [29, 30, 31, 32, 2] (In addition to the technical reports just cited, we refer the reader to some
informal accounts of the physics of the vulcanization transition [33, 35, 36].) . This approach
is rooted in the pioneering work of Edwards and co-workers on the semi-microscopic formulation
of the statistical mechanics of RCMSs [37, 38] and the Edwards-Anderson theory of spin glasses
[39]. These works provide the technical foundation and physical intuition for the establishment
of a minimal Landau-Wilson Hamiltonian for the vulcanization transition. The purpose of the
present section is to collect together the basic ingredients of the semi-microscopic approach to the
vulcanization transition, including the order parameter, underlying semi-microscopic model, and
replica field theory. As the reader will see, although its construction follows a quite conventional
path, the theory does possess some intricacies. We shall therefore take various opportunities to shed
some light on the physical meaning of its various ingredients. We shall follow closely the notation
of Ref. [32] and, accordingly, we shall adopt units of length in which the characteristic size of the
underlying macromolecules is unity.

We remind the reader that the vulcanization transition is an equilibrium phase transition from
a liquid state of matter to an amorphous solid state. The transition occurs when a sufficient

density of permanent random constraints (e.g. chemical crosslinks)—the quenched randomness—
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are introduced to connect the constituents (e.g. macromolecules), whose locations are the thermally
fluctuating variables. In the resulting amorphous solid state, the thermal motion of (at least
a fraction of) the constituents of the liquid undergo a qualitative change: no longer wandering
throughout the container, they are instead localized in space at random positions about which they

execute thermal (i.e. Brownian) motion characterized by random r.m.s. displacements.

1.5.1 Order parameter for the vulcanization transition

The simple idea of using the monomer density as the order parameter does not work, because in the
amorphous solid state, due to the randomness of the mean positions of the localized monomers, the
system’s density (after averaging over the quenched randomness) remains uniform upon entering
the amorphous state, just as it is in the liquid state. As we need a more delicate construction,
the order parameter constructed for spin glass transition [40] gives us some hints. To motivate
this construction of an order parameter, we observe that the basic difference between the liquid
state and amorphous solid states is the emergence of static random density fluctuations in the
solid state, which leads us to consider the autocorrelation for the position c;(s) of monomer (j, s)’s
(i.e. the monomer at fractional arclength s along the ;' macromolecule) between time ¢ and 0:
(expik-(c;(s;t)—c;(s;0)))y. The bracket (---), denotes a thermal average for a specific realization
of the random constraints (indicated by x). In the liquid state, correlation decays to zero as the
time-difference t increases, whereas in the solid state, if particle j is localized, its position remains
correlated with itself even in the limit £ — oo. Therefore, the quantity (exp ik-c;(s))(exp —ik-c;(s)),
which is the ¢ — oo limit of the autocorrelation function, can tell the difference between the two
states, and this difference survives averaging over the particles and the quenched randomness.
The appropriate order parameter for the vulcanization transition is a generalization of the above

intuitive suggestion, being the following function of A wave vectors {k', k2, .- k4} [29, 32):

1Lt
[NZ/O ds (exp ik! -cj(8)>x<€XPik2-Cj(S))X---(eXPikA-cj(s))x] ) (1.12)
j=1

Here N is the total number of macromolecules, as above, (---), denotes a thermal average for a

particular realization x of the quenched disorder (i.e. the crosslinking), and [ - -] represents a suit-
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able averaging over this quenched disorder. It is worth emphasizing that the disorder resides in the
specification of what monomers are crosslinked together: the resulting constraints do not explicitly
break the translational symmetry of the system. In the liquid state, for each monomer (j,s) the
thermal average (expik-c;(s)), takes the value 51(;12) (i.e. a Kronecker 0) and thus the order param-
eter is simply Hfil (51(([?70. On the other hand, in the amorphous solid state we expect a nonzero
fraction of the monomers to be localized, and for such monomers (expik - c;(s)), takes the form
©(;,s) (k) expik - bj(s), i.e., a random phase-factor determined by the random mean position bj(s)
of the monomer (3, s) multiplied by a random Debye-Waller factor p; (k) describing the random
extent to which the monomer is localized. Using an isotropic Gaussian distribution characterized

by a localization length to approximate the random Debye-Waller factor p; ;)(k), one arrive at the

following Ansatz for the order-parameter value in the amorphous solid state [31, 32]:

H%ka + q8! >A 1ka/0 dt p(t) exp( Z|k“| /2t> (1.13)

The first term accounts for the delocalized monomers, and the second term accounts for the localized
monomers. The number ¢ is the fraction of the localized monomers, i.e., gel fraction. The Kronecker
0 factor in the second term is a reflection of the fact that the summation over monomers will add
up destructively (due to random phase factors exp ik - b;(s) as mentioned above) unless the wave
vectors happen to sum to zero. The integral represents the fact that there is a statistical distribution
of localization lengths. This Ansatz turns out to solve the mean-field theory of the vulcanization
transition exactly. Note that, unlike in the more common settings such as the Ising model, the
order parameter for the amorphous solidification transition and its value in the amorphous solid
state is a function of the set of wave vectors {k', k2, - k4}, and hence encodes a rich physical

content.

1.5.2 The underlying unconstrained macromolecular liquid

The underlying unconstrained liquid is a melt or solution of identical macromolecules subject to
short-range repulsive interactions. The Hamiltonian that accounts for these physical ingredients is

the Edwards measure, a multi-chain generalization of (1.2), the effective Hamiltonian for which is
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given by [41]

HE = lfj/lds‘ic-(s)f X fj /1 ds/lds' 5D (ci(s) — e (s)) (1.14)
2 i=1 70 ds " 2 ii'=1"0 0 Z l . .

Here, the dimensionless (real, positive) parameter A? characterizes the strength of the suppression
of statistical weight due to the (repulsive) excluded-volume interaction between monomers [4, 5].
The system can be regarded as a melt of macromolecules, in which case the interaction parameter A\
is intended to account for the monomer-monomer interaction. Alternatively, it can be regarded as a
solution of macromolecules dissolved in a good solvent, in which case A? is intended to represent the
effective monomer-monomer interaction (i.e. the bare interaction renormalized by the monomer-
solvent and solvent-solvent interactions, the solvent degrees of freedom having been integrated

out).

1.5.3 Replicated semi-microscopic model of vulcanized macromolecular

systems

On top of the semi-microscopic Hamiltonian describing a system of macromolecules interacting
via an excluded-volume interaction, Eq. (1.14), random crosslinks are introduced as permanent

constraints [37, 38]. Suppose there are M random crosslinks,
Ci, (se) = cir (s,) (with e=1,...,M). (1.15)

Then the partition function under the specific configuration of crosslinks is given by

M

2030 o (T, 0(er50) - o (s;>)>E, (1.16)

e=1

where the product of Dirac d-functions serves to remove all configurations that fail to satisfy the
constraints (1.15). The statistical average (---)¥ is taken relative the underlying unlinked liquid,
Eq. (1.14). In other words, Z is a quotient of partition functions, the numerator for a system with
crosslinks, the denominator for a system without. This quotient of partition functions furnishes

the change in the free energy that crosslinking causes, and this is the quantity of central concern
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to us.

As it is impossible to keep track of all the random constraints in the theory, we resort to
averaging the physical observables over some suitable distribution of quenched randomness, armed
with the expectations that the fluctuations of physical observables across different configurations
of the quenched randomness is negligible (in the thermodynamic limit). In order to perform the
quenched randomness average indicated by [- -], we adopt the elegant and physical choice of the
Deam-Edwards distribution [37]:

(u*)M

M Z({ije;j(lz,S;}sz\il) s (1-17)

Pri({es Sei jor s o)) o

where 2 is the parameter that controls the average constraint density, and thus the transition.
This distribution can be understood as a product of two probabilities: the partition function Z
represents the probability that the specified m pairs of monomers happen to be near each other
(pairwise) in the unlinked liquid; the Poisson-like factor (2)™ /M! is the probability that those M
pairs of monomers do indeed get crosslinked, given that they are already near each other. Therefore,
this distribution assumes that the constraints are established instantaneously and simultaneously
into the uncrosslinked fluid in equilibrium and, hence, reflects the correlations of the uncrosslinked
liquid.

The physical observable of central importance is F, the quenched-randomness-average of the free
energy, which is proportional to the quenched-randomness average of the logarithm of the partition
function for fixed quenched-randomness [In Z]. This average can be done using the replica trick,
i.e., by invoking the mathematical identity

Fo [mZ{--})] = lim w , (1.18)

n—0

where {---} specifies the precise realization of the random constraints. Thus, we have transformed
the problem into the consideration of [Z"], which can be carried out for general integer n almost
as simply as for [Z], followed by the more subtle step involving the n — 0 limit.

By making use of Egs. (1.16) and (1.17), we see that the disorder average of Z" is a disorder-free

but (n + 1)-fold-replicated effective Hamiltonian with a disorder-induced interaction coupling the
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replicas, not only n replicas arising from Z", but also the additional “zeroth” one arising from the

Deam-Edwards distribution:

(2" o< (exp(=Hpp1))ny (1.19)

P >‘2 Y ! ! ! - d !
Moy = 2% /0 ds/o ds' 3" 6@ (c3(s) — e (s'))
a=0

7y'=1

_,u2_V N 18 15, n @ (e(s) — e (s
2N Z/Od/od aHO5 (cf(s) = €5 (s"). (1.20)

Jy'=1

Here, (-- )nWH denotes a thermal average taken with respect to the Hamiltonian for n + 1 replicas
of the noninteracting uncrosslinked system of macromolecules [i.e. the replicated and multi-chain
version of Eq. (1.1)]. The parameter A? measures the strength of the excluded-volume interaction;
the parameter ;2 measures the density of the constraints and serves as the control parameter for the
vulcanization transition. As a result of there being random constraints rather than, say, fields or
pairwise interactions, the coupling between the replicas takes the form of product over all replicas
rather than, say, a pairwise sum. Let us pause to mention the symmetry content of this replica
theory: Hg 41 is invariant under arbitrary independent translations and rotations of the replicas,
as well as their arbitrary permutation.

The natural collective coordinates for the vulcanization transition are
1L !
Q) = ;/0 ds expik - &;(s), (1.21)

which emerge upon introducing Fourier representations of the two types of delta function in
Eq. (1.20), as discussed in detail in see Sec. 5.1 of Ref. [32]. (Such collective coordinates were
first introduced in the context of crosslinked macromolecular melts by Ball and Edwards [38].) We
use the symbol k to denote the replicated wave vector {k°,k',... ,k"}, and define the extended
scalar product k&-¢ by k%-c’+k!-c'+:--+k".c" (and hence, k2 = kk =k kO4+ k! k!4 -+k™-k").

The collective coordinates Q(k) are the microscopic prototype of the order parameter (1.12), i.e.,
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for k = (0,k',k?,...,k*,...,0), and we have that

- p 1L !
}LIL% (QE))py = [NZ/O ds (expik! -cj($)>x<expik2.cj(s)>x...<expikA.cj(8)>x],
J=1
A%
< o >1;+1 — < e exp(_%5+l)\;>\/n+l ) (122)

(exp(—’HEH))nH

This formula provides a connection between the physically significant order parameter and a quan-

tity that, as we shall see, can be calculated in a well-controlled manner.

1.5.4 Replica field theory for vulcanized macromolecular systems

As discussed in detail in Sec. 5.3 of Ref. [32], one can put the partition function into a form of a field
theory by applying a Hubbard-Stratonovich transformation to the collective coordinates Q(l%); we
denote the corresponding auxiliary order-parameter field by Q(l%) At this stage one encounters a
vital issue, viz., that it is essential to draw the distinction between examples of Q(k) and Q(k) that
belong to the one-replica sector (1RS) and those that belong to the higher-replica sector (HRS).
Consider the space of replicated wave vectors k. We decompose this space into three disjoint
sets:
(i) The higher replica sector, HRS, which consists of those k containing at least two nonzero
component-vectors k®. For example, if & = (0,...,0,k* #0,...,k” £ 0,0,...,0) then k lies in
the HRS. (More specifically, in this example % lies in the two-replica sector of the HRS).
(ii) The one replica sector, 1RS, which consists of those k containing exactly one nonzero component-
vector k* [e.g. k= (0,...,0,k“ #0,0,...,0)].
(iii) The zero replica sector, ORS, which consists of the vector & = 0. This decomposition is il-
lustrated schematically in Fig. 1.7 for the case of two replicas of one-spatial-dimensional systems.
It is especially straightforward to visualize this decomposition if the volume of the system is kept
finite (and periodic boundary conditions are imposed) so that replicated plane waves with discrete,
equally spaced, replicated wave vectors furnish the natural complete set of functions.
For the wave vector k lying in 1RS, we say that the corresponding Q(k) and Q(k) are 1RS
quantities. For the wave vector k lying in HRS, we say that the corresponding Q(k) and (k)

are HRS quantities. The importance of this distinction between the 1RS and the HRS lies in the
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Figure 1.7: Decomposition of the space of replicated wave vectors. Off-axis wave vectors lie in the
HRS; on-axis (but off-origin) wave vectors lie in the 1RS; the wave vector at the origin is the ORS.

fact, evident from the order parameter (1.12), that the vulcanization transition is detected by fields
residing in the HRS, whereas the 1RS fields measure the local monomer density and neither exhibit
critical fluctuations near the vulcanization transition nor acquire a nonzero expectation value in
the amorphous solid state.

Bearing in mind this distinction between the 1RS and HRS fields, the aforementioned Hubbard-
Stratonovich transformation leads to the following field-theoretic representation of the disordered-

averaged replicated partition function [42]:
2" /DLQ /5*9 exp (— ndNF,), (1.23)
n
. ~ B 1 o=t .
PE( 0000 = RNV S ST 00+ v Sl
| 12 Tabel !
—In < exp <2i)\nNV_ ZO ZkRe Q*(k)* /0 ds exp (ik - ¢%(s)) )
x exp (2 QV—HSTReQ(JQ)* " ds exp (i é(s))>>w (1.24)
1% i 0 bl ) .

where Q%(k) [which represents Q(l%) when k = (0,...,0,k® = k # 0,0,...,0)] is a 1RS field,
Q(k) is a HRS field, and X2 is the effective excluded volume after being renormalized by the

crosslinking. In this formulation of the statistical mechanics of RCMSs, one can readily establish
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exact relationships connecting average values and correlators of Q(k) with those of Q(k) (by, e.g.,
adding source terms to the effective Hamiltonian #} ,, that generate these correlators [43]). (Such
relationships between expectation values involving microscopic variables and auxiliary fields are
common in the setting of field theories derived via Hubbard-Stratonovich transformations [44].)

For example, for wave vectors lying in the HRS one has

(QU)psy = (k)7 (1.25)

Q) QU Npsre = (QUB)QE)N T~ 50 (1.26)

112N k+k' 0 0

where (---)7, | denotes an average over the field theory (1.23), and the subscript ¢ indicates that
the correlators are connected. Relationships such as those given in Egs. (1.25) and (1.26) allow one
to relate order-parameter correlators to correlators of the field theory.

As we have discussed, this semi-microscopic approach takes into account both the thermal fluc-
tuations of individual monomers, short-range excluded-volume interactions between the monomers,
and permanent random constraints resulting from crosslinking. However, there are a number of lim-
itations of this approach. First, this approach does not take into account the entanglement effect,
i.e., the interlocking of closed loops induced by the crosslinking process. In fact, no microscopic
approach has managed to take these features into account, except for some heuristic approximation
schemes [45]. Secondly, this approach, in it present form, is not suitable for the high crosslinking
regime. Other formulations, including the one developed by Edwards and collaborators, and its

continuation by Panyukov and collaborators [46], are designed to work in that regime.

1.6 Vulcanization transition in mean-field theory: Brief

summary of results

A detailed mean-field study of the effective free energy F [31, 32] makes the following predictions:
(i) For densities of crosslinks smaller than a certain critical value (on the order of one crosslink per
macromolecule) the system exhibits a liquid state in which all particles (in the context of macro-
molecules, monomers) are delocalized.

(ii) At the critical crosslink density there is a continuous thermodynamic phase transition to an
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amorphous solid state, this state being characterized by the emergence of random static density
fluctuations. This transition is contained within the HRS. Both the liquid and the amorphous solid
states have uniform densities, and therefore the order parameter is zero in the 1RS on both sides
of the transition.
(iii) In the amorphous solid state, a nonzero fraction of the particles have become localized around
random positions and with random localization lengths (i.e. r.m.s. displacements). As far as symme-
try is concerned, translational invariance is spontaneously broken at the microscopic level. However,
owing to the randomness of the localization, this symmetry-breaking is hidden. [Hence the need
for a subtle order parameter (1.12).] In the language of replicas, the symmetries of independent
translations and rotations of the replicas are spontaneously broken, and all that remains are the
symmetries of common translations and rotations (corresponding to the macroscopic homogeneity
and isotropy of the amorphous solid state). The permutation symmetry amongst the n + 1 replicas
appears to remain intact at the transition.
(iv) The fraction of localized particles grows linearly with the excess crosslink density, as does the
characteristic inverse square localization length. Furthermore, when scaled by their mean value, the
statistical distribution of localization lengths is universal for all near-critical crosslink densities, the
form of this scaled distribution being uniquely determined by a certain integro-differential equation.
Furthermore, the elastic properties of the vulcanized matter have been studied in the mean-field
level by Castillo and Goldbart [48], in which they calculate the free-energy change of the system
when it is deformed, and find that upon the transition the static shear modulus grows from zero
continuously with the third power of excessive crosslink density. In addition to this, Castillo et
al. gave a full proof of the local stability (up to the anticipated Goldstone modes) of the mean-field

solution in the amorphous solid state [49].

1.7 Outline of this thesis

This thesis is organized as follows. In Chap. 2 we present the construction of the minimal Landau
free energy using two different methods, either in terms of the replicated order parameter or in
terms of the distribution of local static density fluctuations. We study this Landau free energy at

the mean-field level, obtain the value of the order parameter in the liquid and amorphous solid
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states, and determine the chief universal characteristics. We then compare the universal predic-
tions of the theory with the results of extensive numerical simulations of randomly crosslinked
macromolecular systems, due to Barsky and Plischke, and find excellent agreement. In Chap. 3
we examine the two-field correlation function involving fluctuations of the amorphous solid order
parameter, elucidate its physical meaning and construct the associated susceptibility. Then, we
center our analysis on the minimal model of the vulcanization transition, derive the Ginzburg cri-
terion for the width (in crosslink density) of the critical region, finding it to be consistent with a
prediction due to de Gennes [50]. We develop a renormalization-group procedure within the frame-
work of an expansion around the upper critical dimension. We compute certain universal critical
exponents characterizing the vulcanization transition, and find that they are, to lowest nontrivial
order, identical to those governing physically analogous quantities in the percolation theory. We
explore the relationship between the present approach to vulcanized matter and other approaches,
such as those based on percolation ideas, in the light of this connection. In Chap. 4, in order to go
beyond the first-order calculation of e-expansion for the vulcanization-transition field theory, we
consider the appropriate long-wave-length behavior of the two- and three-point vertex functions
diagrammatically, to all orders in perturbation theory, and identify them with the corresponding
quantities in the Houghton-Reeve-Wallace field-theoretic approach to the percolation critical phe-
nomenon. Hence, we show that percolation theory correctly captures the critical phenomenology
of the vulcanization transition associated with the liquid and critical states, i.e., they are in the
same universality class. In Chap. 5 we consider certain density correlators, measurable via vari-
ous experimental techniques, in the context of the vulcanization transition. We show that these
correlators contain essential information about both the vulcanization transition and the emergent
amorphous solid state, and make contact with various physical ingredients that have featured in
experimental studies of amorphous colloidal as well as gel systems and in theoretical studies of the
glassy state.

We have performed the work presented in Chap. 2 with Dr. Horacio Castillo and Prof. Annette
Zippelius. It has been published as Universality and its origins at the amorphous solidification
transition in Physical Review B 57, 839-847 (1998) [51]. The work presented in Chaps. 3 has been

published as Renormalization-group approach to the vulcanization transition in Physical Review
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E 61, 3339-3357 (2000) [52]. We have performed the work presented in Chap. 4 with Prof. Alan
McKane and have submitted this work to Physical Review E [53]. The work presented in Chap. 5

has been published as Density-correlator signatures of the vulcanization transition in European

Physical Journal B 19, 461-466 (2001) [54].
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Chapter 2

Mean-Field Universality at the
Vulcanization Transition

2.1 Introduction

In the course of the effort to understand the vulcanization transition for RCMSs, it has become clear
that one can employ similar approaches to study randomly end-linked macromolecular systems [55],
randomly crosslinked manifolds (i.e. higher dimensional objects) [56], and chemical gels formed
by permanent random covalent bonding of small molecules [57, 58, 59] as well; in each case, a
specific semi-microscopic model has been studied. For example, in the original case of RCMSs, the
macromolecules were modeled as long, flexible linear chains, with a short-ranged excluded-volume
interaction, and the crosslinks were imposed at random arc-length locations. On the other hand, in
the case of end-linked systems, although the excluded-volume interaction remained the same, the
macromolecules were now modeled as either flexible or stiff, and the random linking was restricted
to the ends of the macromolecules. Despite the differences between the unlinked systems and the
styles of linking, in all cases identical critical behavior has been obtained in mean-field theory, right
down to the precise form of the statistical distribution of scaled localization lengths.

Perhaps even more strikingly, in extensive numerical simulations of randomly crosslinked macro-
molecular systems, Barsky and Plischke [60] have employed an off-lattice model of macromolecules
interacting via a Lennard-Jones potential, and, yet again, an essentially identical picture has
emerged for the transition to and properties of the amorphous solid state, despite the substan-
tial differences between physical ingredients incorporated in the simulation and in the analytical

theory.
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In the light of these observations, it is reasonable to ask whether one can find a common theo-
retical formulation of the amorphous solidification transition (of which the vulcanization transition
is a prime example) that brings to the fore those emergent collective properties of all these systems
that are model-independent, and therefore provide useful predictions for a broad class of experi-
mentally realizable systems. In this chapter we explain how this is done. In fact, we approach the
issue in two distinct (but related) ways, in terms of a replica order parameter and in terms of the
distribution of random static density fluctuations, either of which can be invoked to characterize
the emergent amorphous solid state.

The outline of this chapter is as follows. In Sec. 2.2 we construct the universal replica Landau
free energy of the amorphous solidification transition by employing symmetry considerations along
with three further assumptions: (i) that we need only consider order-parameter configurations
representing physical situations in which the fraction of constituents localized is at most small;
(ii) that the field components responsible for the incipient instability of the liquid phase are those
with long wavelengths (i.e. that the emergent localization is weak), and (iii) that fluctuations
representing real-space variations in the local density of the constituents are free-energetically
very costly, and should therefore be either suppressed energetically or, equivalently (as far as our
present aims are concerned), prevented via a kinematic constraint. In Sec. 2.3 we invoke a physical
hypothesis to solve the stationarity condition for the replica order parameter, thereby obtaining
a mean-field theory of the transition. We exhibit the universal properties of this solution and,
in particular, the scaling behavior of certain central physical quantities. In Sec. 2.4 we describe
an alternative approach to the amorphous solidification transition, in which we construct and
analyze the Landau free energy expressed in terms of the distribution of static density fluctuations.
Although we shall invoke the replica approach in the construction of this Landau free energy, its
ultimate form does not refer to replicas. As we show, however, the physical content of this Landau
theory is identical to that of the replica Landau theory addressed in Secs. 2.2 and 2.3. In Sec. 2.5
we exhibit the predicted universality by examining the results of extensive numerical simulations
of randomly crosslinked macromolecular networks, due to Barsky and Plischke. In Sec. 2.6 we give

some concluding remarks.
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2.2 Universal replica free energy for the amorphous solidification

transition

We are concerned, then, with systems of extended objects, such as macromolecules, that undergo
a transition to a state characterized by the presence of random static fluctuations in the particle-
density when subjected to a sufficient density of permanent random constraints (the character and
statistics of which constraints preserve translational and rotational invariance). As we shall see, in
such states, translational and rotational symmetry are spontaneously broken, but in a way that is
hidden at the macroscopic level. We focus on the long wavelength physics in the vicinity of this
transition.

In the spirit of the standard Landau approach, we envisage that the replica technique has
been invoked to incorporate the consequences of the permanent random constraints, and propose
a phenomenological mean-field replica free energy, the n — 0 limit of which gives the disorder-
averaged free energy, in the form of a power series in the replica order parameter. We invoke
symmetry arguments, requiring the effective Hamiltonian to remain invariant under translation and
rotation of each replica as well as permutation of replicas. The control parameter 7 is proportional
to the amount by which the constraint density exceeds its value at the transition. As we shall
see, the stationarity condition for this general, symmetry-inspired Landau free energy is satisfied
by precisely the order-parameter hypothesis that exactly solves the stationarity conditions derived
from semi-microscopic models of crosslinked and end-linked macromolecules. From the properties
of this solution we recover the primary features of the liquid-amorphous solid transition.

We first study the transformation properties of the order parameter under translations and
rotations, and then make use of the resulting information to determine the possible terms appear-
ing in the replica free energy. [A notational issue: to keep in line with work in semi-microscopic

models, we use Q(k) as our order parameter field. In the semi-microscopic model of the vulcan-
ization transition, Q(l%) is the Hubbard-Stratonovich field conjugate to the microscopically-defined
collective coordinate Q(/Ac), and therefore must have the same transformation properties as Q(/Ac);

see Egs. (1.21), (1.22) and (1.25). Of course, a merit of the Landau approach is that one can just

as well use Q(l%) as the order parameter field, because symmetry consideration would lead to the
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same free energy functional as using Q(k).]. Under independent translations of all the replicas, i.e.,

¢ — ¢ + a®, the replica order parameter (k) transforms as
Q(k) = Q' (k) = & Za=o k" 2"Q(k). (2.1)

Under independent rotations of the replicas, defined by c{* — R%c{", the order parameter transforms

as

~ ~ ~ ~

Q(k) — (k) = QR k), (2.2)

where Ri = {Rv", ..., R"v"}. As has been shown in the semi-microscopic theories [32], no macro-
scopically inhomogeneous modes (such as crystalline modes), represented by 1RS order parameters,
order or fluctuate critically in the vicinity of the vulcanization transition, such modes being sta-
bilized by the excluded-volume interaction. Therefore, the sought free energy can be expressed in
terms of contributions referring to the HRS order parameter alone.

We express the free energy as an expansion in (integral) powers of the replica order parameter
Q(k), retaining the two lowest possible powers of Q(k), which in this case are the second and the
third (When we go beyond mean-field theory, below, RG arguments will justify our omission of
all other symmetry-allowed terms on the grounds that they are irrelevant at the fixed-points of
interest.) We consider the case in which no external potential couples to the order parameter.

Hence, e.g., there is no term linear in the order parameter. We make explicit use of translational

symmetry, Eq. (2.1), and thus obtain the following expression for the effective Hamiltonian [61]

S(Q) =N Z g2 (k)| Q(k))* = N Z 93(/;1,/%2,];3)9(/%1)9(1%2)9(/%3)5,;1+,;2+,;3,o- (2.3)
keHRS k1,k2,ks€HRS

Here, the symbol ¢ crurg denotes a summation over replicated wave vectors l%, subject to the
restriction that & lies in the HRS. In a microscopic approach, the functions go(k) and g3 (k1 ko, ks3)
would be obtained in terms of the control parameter that represents the crosslink density, together
with density correlators of an uncrosslinked liquid having interactions renormalized by the crosslink-

ing. Here, however, we will ignore the microscopic origins of g and g3, and instead use symmetry

considerations and a long-wavelength expansion to determine only their general forms.

27



The disorder-averaged free-energy density of the system is related to the effective Hamiltonian

via [42]

f o« —N~ 1313%71 In[Z"], (2.4)
7" / D' Qexp(=S), (2.5)

In the saddle-point approximation, then, the disorder-averaged free energy density f is given by
foc N7 lim minn~1S({Q(1)}). (2.6)
n—0

Bearing in mind the physical notion that near the transition any localization should occur only on
long length-scales, we examine the long wavelength limit by also performing a low-order gradient
expansion. In the term quadratic in the order parameter we keep only the leading and next-
to-leading order terms in l%; in the cubic term in the order parameter we keep only the leading
term in k. Thus, the function g3 in Eq. (2.3) is replaced by a constant and the function go is
expanded to quadratic order in k. By analyticity and rotational invariance, go can only depend on
{k%, ..., k"} via {|k°?,...,|k"|?}, and, in particular, terms linear in k are excluded. In addition,
by the permutation symmetry among the replicas, each term |k®|?> must enter the expression for
go with a common prefactor, so that the dependence is in fact on k2 (which, as we may recall, is

defined to be k° - k® + k! - k! 4+ ... + k" - k™). Thus, the replica free energy for long-wavelength

fluctuations has the general form:

s =N Y (—ar+ )RR -No Y Q) ko) ks 55 iy0- 27)
keHRS k1,k2,k3€HRS

where 7 is the reduced control-parameter measuring the crosslink density. Coeflicients a, b and g

are phenomenological parameters that contain microscopic details. Although the semi-microscopic

derivation of S contains n-dependent coefficients a,, b, and g, it is admissible for us to keep only

the n — 0 limit of these coefficients (i.e. a, b and g) at the outset because S is already proportional

to n for pertinent field-configurations.

We wish to emphasize the point that this minimal model does not contain fields outside the
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HRS. This (linear) constraint on the field embodies the notion that inter-particle interactions give
a “mass” in the 1RS (i.e. produce a free-energy penalty for density inhomogeneities) that remains
nonzero at the vulcanization transition. From the standpoint of symmetry, this constraint has
the effect of ensuring that the only symmetry of the theory (associated with the mixing of the
replicas) is the permutation symmetry S, 1. Without it, the model would have the larger orthogonal
symmetry O ((n + 1)d) of rotations that mix the (Cartesian components of the) replicas; see the
term associated with the inter-replica coupling arising from the disorder-averaging of the replicated
crosslinking constraints in Eq. (1.20). In addition to permutation symmetry, the model has the
symmetry of independent translations and rotations of each replica. The restriction to the HRS (or,
equivalently, the energetic suppression of the 1RS) is vital: it entirely changes the content of the
theory. Without it, one would be led to completely erroneous results for both the mean-field picture
of the amorphous solid state (and, as we shall see later, the critical properties of the vulcanization
transition).

For use in Sec. 3.3.2 of Chap. 3 , when we come to examine the physical implications of the
Ginzburg criterion, we list values of the dimensionful coefficients in the effective free-energy derived

for the case of RCMSs (up to inessential factors of the crosslink density control parameter p?):

N (2.8)
a = 1/2, (2.9)
b = Lt/6d, (2.10)
g = 1/6. (2.11)

Here, p? is the mean-field critical value of p?, L is the arclength of each macromolecule, and £ is
the persistence length of the macromolecules.
By taking the first variation with respect to €2 we obtain the stationarity condition for the

replica order parameter:

oS b . R R
0= m = 2( —arT + ng)Q(k') —3g Z Q(kl) Q(kz) (5]%1_’_]%2,]% . (212)
( ) k1,k2€HRS
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This self-consistency condition applies for all values of k lying in the HRS.

2.3 Universal properties of the order parameter in the

amorphous solid state

Generalizing what was done for crosslinked and end-linked macromolecular systems, we hypothesize
that the particles have a probability ¢ of being localized (also called the “gel fraction” in the context
of vulcanization) and 1 — ¢ of being delocalized, and that the localized particles are characterized
by a probability distribution 2¢3p(¢=2) for their localization lengths &. Such a characterization
weaves in the physical notion that amorphous systems should show a spectrum of possibilities for
the behavior of their constituents, and adopts the perspective that it is this spectrum that one
should aim to calculate. This hypothesis translates into the following expression for the form of
the stationary value of the HRS order parameter [31, 32]:

) = a0l [ ata(eye @13

where we have used the notation k = oo _ok®* On the right hand side the term that would

represent delocalized particles has been omitted, as it is proportional to d; 4, due to the fact

07
that not only the average particle density but the individual particle densities are translationally
invariant, and thus vanishes for k € HRS. The term representing localized particles survives,
and is only invariant under common translations (i.e. translations in which a® = a for all «) and
common rotations of the replicas. This corresponds to the fact that the individual particle density
for localized particles is not translationally invariant, so that translational invariance is broken
microscopically, but the average density remains translationally invariant (i.e. the system still is
macroscopically translationally invariant).

By inserting the hypothesis (2.13) into the stationarity condition (2.12), and taking the n — 0

limit, we obtain

0 = o9 {2 <3gq2 —arq+ bql%2/2> / dtp(t) ek /2t
k,0 0
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- 39‘12/ dtq p(tl)/ dtgp(tz)e_ifzﬂ(tlﬂz)}_
0 0

(2.14)

In the limit &% — 0, this equation reduces to a condition for the localized fraction ¢, viz.,
0 = —2aqr + 3g¢>. (2.15)

For negative or zero 7, corresponding to a constraint density less than or equal to its critical value,
the only physical solution is ¢ = 0, corresponding to the liquid state. In this state, all particles
are delocalized. For positive 7, corresponding to a constraint density in excess of the critical value,
there are two solutions. One, unstable, is the continuation of the liquid state ¢ = 0; the other,

stable, corresponds to a nonzero localized fraction,

qg=—1", g=1. (2.16)

We identify this second state as the amorphous solid state. From the dependence of the localized
fraction ¢ on the control parameter 7 and the form of the order parameter (2.13) we conclude that
there is a continuous phase transition between the liquid and the amorphous solid states at 7 = 0,
with localized fraction exponent § = 1 (i.e. the classical exponent [12]). It is worth mentioning that
microscopic approaches go beyond this linear behavior near the transition, yielding a transcendental
equation for ¢(7), valid for all values of the control parameter 7; see Ref. [31, 32]. From Eq. (2.7) it
is evident that the liquid state is locally stable (unstable) for negative (positive) 7: the eigenvalues
of the resulting quadratic form are given by A(k) = —ar + bk?/2. We note that it has been shown
that the stationary solution proposed in Eq. (2.13) is locally stable (up to the usual Goldstone
modes) in the amorphous solid state (i.e. for positive 7) [49]. However, there is, in principle, no
guarantee that this state is globally stable (i.e. that no states with lower free energy exist).

Now concentrating on the amorphous solid state, by inserting the value of the localized fraction

into Eq. (2.14), we obtain the following integro-differential equation for the probability distribution
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for the localization lengths:

t
—— = (T - 2—bt)p(t) - T/Odh p(ty) p(t —t1). (2.17)

All parameters can be seen to play an elementary role in this equation by expressing p(t) in terms

of a scaling function:
2b
=—7

at
. -2 9. 2.18
pit)= "m0 =50 (21)
Thus, the universal function 7(6) is seen to obey the nonlinear integro-differential equation
0% d o
—_ﬁzu—emwyi/dwﬂamw—wy (2.19)
2 do 0

By solving this equation numerically, together with the normalization condition 1 = [;° d6 7(6) [31,
32], one recovers the scaling function derived in the semi-microscopic model for the vulcanization
transition [31, 32]. The function 7(f) has a peak at # ~ 1 of width of order unity, and decays
rapidly both as # — 0 and § — oo (see Fig. 2.1). By combining these features of 7(f) with the

~1/2

scaling transformation (2.18) we conclude that the typical localization length scales as 7 near

the transition. The order parameter also has a scaling form near the transition:

=y 2T () 20 -,
k) = @5ﬁ,0w(\/ak ) (2.20)

w(k) = Awmean. (2.21)

Equation (2.19) and the normalization condition on 7(#) are precisely the conditions that determine
the scaling function for the crosslinked and end-linked cases [31, 32, 55].

It is a very interesting observation that the same scaling function 7(6) also appears as the kernel
of the mean-field order parameter value for the system of random resistor network [62].

As discussed in this section, the localized fraction ¢(7) and the scaled distribution of inverse
square localization lengths 7(0) are universal near the transition. We now discuss this issue in more
detail.

First, let us focus at the mean-field level. Recall the mean-field theory of ferromagnetism [63]

and, in particular, the exponent 3, which characterizes the vanishing of the magnetization density
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Figure 2.1: Scaling function 7 (@) (full line) for the probability distribution of localization lengths;
asymptotic form for # — 0 (dotted line); asymptotic form for § — oo (broken line) [32].

order parameter (from the ferromagnetic state) as a function of the temperature at zero applied
magnetic field. The exponent 3 takes on the value of 1/2, regardless of the details of the mean-field
theory used to compute it. The functions ¢(7), 7(6) and w(k) are universal in the same sense.
The case of ¢(7) is on essentially the same, standard, footing as that of the magnetization density.
What is not standard, however, is that describing the (equilibrium) order parameter is a universal
scaling function, w(k) [or, equivalently, 7(6)] that is not a simple power law. This feature arises
because the usual presence of fields carrying internal indices, such as Cartesian vector indices in
the case of ferromagnetism, is replaced here by the external continuous replicated wave vector
variable k. There are two facets to this universal scaling behavior of the order parameter. First, for
systems differing in their microscopic details and their constraint densities there is the possibility
of collapsing the distribution of localization lengths on to a single function, solely by rescaling the
independent variable. Second, there is a definite prediction for the dependence of this rescaling on
the control parameter 7.

Now, going beyond the mean-field level, in the context of the vulcanization transition de Gennes

has argued that the width of the critical region, in which fluctuations dominate and mean-field the-
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ory fails, vanishes in the limit of very long macromolecules in space-dimension d = 3 or higher [50].
Thus, one may anticipate that for extended objects the mean-field theory discussed here will be
valid, except in an narrow region around the transition.

Up to this point we have assumed that the free energy is invariant under interchange of all
replicas, including the one representing the constraint distribution (« = 0), with any of the remain-
ing n, i.e., that the free energy is symmetric under the group S,4; of permutations of all n + 1
replicas. This need not be the case, in general, as the system can be changed, (e.g. by changing the
temperature) after the constraints have been imposed. In this latter case, the free energy retains
the usual replica-induced S, symmetry under permutations of replicas a = 1,...,n. The argument
we have developed here can be reproduced for this more general case with only a minor change: in
the free energy, we can no longer invoke S, 11 symmetry to argue that all of the |k®|? must enter the
expression for go with a common prefactor. Instead, we only have permutation symmetry among

replicas a = 1,...,n and, therefore, the prefactor b for all of these replicas must be the same, but

now the prefactor by for replica @ = 0 can be different. This amounts to making the replacement
7.2 7.2 _ 7 71—1(1,0/2 n a2
o B =hob KO Y K (2.22)

in the free energy. Both the rest of the derivation and the results are unchanged, except that k2
needs to be replaced by k2, throughout.
We mention that no saddle points exhibiting the spontaneous breaking of replica permutation

symmetry have been found, to date, either for systems with S, 41 or S, symmetry [31].

2.4 Free energy in terms of the distribution of static density

fluctuations

The aim of this section is to construct an expression for the disorder-averaged Landau free energy
for the amorphous solidification transition (i.e. the effective Hamiltonian &) in terms of the distri-
bution of static density fluctuations. We present this approach as an alternative to the strategy
of constructing a replica free energy S in terms of the replica order parameter €). In the familiar

way, the equilibrium state will be determined via a variational principle: 6S = 0 and §2S > 0.
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What may be less familiar, however, is that in the present setting the independent variables for the

variation (i.e. the distribution of static density fluctuations) themselves constitute a functional.
Our aim, then, is to work not with the replica order parameter Q(k), but instead with the

disorder-averaged probability density functional for the random static density fluctuations [32, 64],

N ({px}), which is defined via

N
N({px}) = [%ZH&C <pk — {exp (z‘k-cmx)] : (2.23)

i=1 k

Here, ], denotes the product over all d-vectors k, and the Dirac d-function of complex argument
dc(z) is defined by 6.(z) = 6(Rez) d(Im z), where Re z and Im z respectively denote the real and
imaginary parts of the complex number z. From the definition of N'({px}), we see that p_x = pi
and po = 1. Thus we can take as independent variables py for all d-vectors k in the half-space
given by the condition k - n > 0 for a suitable unit d-vector n. In addition, N ({px}) obeys the

normalization condition

[ PN toc) = 1. (2.24)

It is straightforward to check that, for any particular positive integer g, the replica order parameter

Q(k) is a g*" moment of N ({pk}):

[ Do NGy i+ 1o = 2L, (2.25)

where we have used Dp to denote the measure [[, dRe px dIm py.

The merit of the distribution functional N'({px}) over the replica order parameter (k) is that,
as we shall soon see, it allows us to formulate a Landau free energy for the amorphous solidification
transition, depending on N ({pk}), in which replicated quantities do not appear, while maintaining
the physical content of the theory. At the present time, this approach is not truly independent
of the replica approach, in the following sense: we employ the replica approach to derive the free
energy, Eq. (2.7), and only then do we transform from the language of order parameters to the

language of the distribution of static density fluctuations. We are not yet in possession of either

an analytical scheme or a set of physical arguments that would allow us to construct the Landau
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free energy directly. Nevertheless, we are able, by this indirect method, to propose a (replica-free)
free energy, and also to hypothesize (and verify the correctness of) a stationary value of N ({pk}).
It would, however, be very attractive to find a scheme that would allow us to eschew the replica
approach and work with the distribution of static density fluctuations from the outset.

To proceed, we take the replica Landau free energy S, Eq. (2.7), in terms of the replica order
parameter Q(k), and replace Q(k) by its expression in terms of the (n + 1)™ moment of N'({pk}).

Thus, we arrive at the replica Landau free energy:

n+1
S/N = ar—29+ (3¢9 —GT)/Dpl N({p1x}) Dp2 N({p2,x}) (Z P1,kP2,-k>
K

—i—%b(n +1) /D,Ol N{pix}) Dp2 N ({p2x}) (Z k* p1x ,02,k> (Z P1,k PQ,k)
k k
n+1

—Q/Dm N{p1x}) Dpa N({p2x}) Pps N ({psxc}) | D praip2sceds -k, | (2:26)

ki,ko

In order to obtain the desired (replica-independent) free energy we take the limit n — 0 of Eq. (2.26):

f = N l'lmn'S

n—0

= (39 —a7) /Dpl N{p1x}) Dp2 N ({p2x}) (Z Pl P2,—k) In (Z Pl P2,—k)
K K
+g /Dpl N{p1x}) PDp2 N({p2x}) (Z k2 p1 x PQ,k) In (Z P1,k PQ,k)
K K

—Q/Dl)l N{p1x}) Dpa N({p2x}) Pps N ({p3x}) Z PLky P2.ks P3,—k; —ks

ki,ko

X In Z P1k: P2,k P3,—ki—ks | - (2.27)
ki,ko

In deriving the above free energy we have employed the physical fact that the average particle-
density is uniform. In other words, the replica order parameter is zero if all but one of the replicated
wave vectors is nonzero which, translated in the language of the distribution of static density
fluctuations, means that the first moment of the static density distribution equals dy o. It is worth

noting that within this formalism the replica limit can already be taken at the level of the free energy,
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prior to the hypothesizing of an explicit form for the stationary value of the order parameter. On
the one hand, this is attractive, as it leads to a Landau theory in which replicas play no role. On
the other hand, the approach is, at present, restricted to replica-symmetric states.

Next we construct the self-consistency condition that follows from the stationarity of the replica-
independent free energy. We then proceed to solve the resulting functional equation exactly, by
hypothesizing a solution having precisely the same physical content as the exact solution of the
replica self-consistency condition discussed in Sec. 2.3.

To construct the self-consistency condition for N ({px}) it is useful to make two observations.
First, N ({pk}) obeys the normalization condition (2.24). This introduces a constraint on the
variations of N ({px}) which is readily accounted for via Lagrange’s method of undetermined mul-
tipliers. Second, as mentioned above, not all the variables {px} are independent: we have the
relations po = 1 and p_x = pj.. In principle, one could proceed by defining a new distribution
that only depends on the independent elements of {py}, and re-express the free energy in terms of
this new distribution. However, for convenience we will retain N ({px}) as the basic quantity to
be varied, and bear in mind the fact that pg = 1 and p_x = pj;. By performing the constrained

variation of f with respect to the functional N ({px}),

0
0= SN D) <f + )\/Dﬂl N({Pl,k})> 5 (2.28)

where X is the undetermined multiplier, we obtain the self-consistency condition obeyed by N ({pk }):

0 = A+2(3g —GT)/DmN({Pl,k}) (Z P Pl,—k) In (ZPkPl,—k)
K K
+b/DP1N({P1,k}) (Z k2,0kp1,k) In (Z ﬂkm,k)
k k

—39/Dp1 N({p1x}) Do2 N ({p2,x}) Zpkl)l,k’ P2,~k—K/

kK

X In Zpkpl,k’ P2,~k-Xk | - (2.29)
K/

To solve this self-consistency condition for N'({px}) we import our experience with the replica
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approach, thereby constructing the normalized hypothesis

N(p}) = (1= a)3clpo = 1) [T 8clor) +4 / dvc/ooodtpu) [T oc(o =2, (2.30)
k

k#£0

in which ¢ (which satisfies 0 < ¢ < 1) is the localized fraction and p(¢) (which is regular and normal-
ized to unity) is the distribution of localization lengths of localized particles. It is straightforward
to show that by taking the (n + 1)" moment of N'({pk}) we recover the self-consistent form of the
replica order parameter, Eq. (2.13).By inserting the hypothesis (2.30) into Eq. (2.29), making the
replacement pg — 1, and performing some algebra, the self-consistency condition is seen to take

the form

o y .
0 = / % / dt [ 1+ Z Pk e—ick—k?/2t ) [ + Z Pk oick—k?/2t
0

K#0 K#0
d 2 2 !
X {2q(—m + 39q)p(t) — bq%(% p(t)) — 3gq /0 dt1 p(t1) p(t — t1)}
39 .9 [ 2/d__ tite
——=d dt1 p(t1) dto p(te) 1 _— A 2.31
5 (I/O 1p(t1) dta p(ta) H{V Sme(ty + 1) + A, (2.31)

in terms of the undetermined multiplier A. To determine A we insert the choice px = dx o, which

yields

39 o [ 2/d__ titz
A= —d dt1 p(ty) dte p(ts) 1 _ . 2.32
5 44 /0 1p(t1) dta p(t2) U{V Smelts + 1) (2.32)

By using this result to eliminate A from the self-consistency condition, and observing that this
condition must be satisfied for arbitrary {px}, we arrive at a condition on g and p(t), viz.,

t
0 =2q(—at + 39q) p(t) — bq% (2t2p(t)) — 39¢° /0 dt1p(t1) p(t — t1). (2.33)

We integrate this equation over all values of ¢ and use the normalization condition on p(t) to arrive
at the same equation relating ¢ and 7 as was found in Eq. (2.15) of the previous section, the
appropriate solution of which is given by ¢ = 2a7/3g, i.e., Eq. (2.16). Finally, we use this result
for ¢ to eliminate it from Eq. (2.33), thus arriving at the same self-consistency condition on p(t) as
was found in Eq. (2.17) of the previous section. Thus, we see that these conditions, one for ¢ and

one for p(t), are precisely the same as those arrived at by the replica method discussed in Sec. 2.3.
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2.5 Comparison with numerical simulations: Universality

exhibited

The purpose of the present section is to examine the conclusions of the Landau theory, especially
those concerning universality and scaling, in the light of the extensive molecular dynamics simula-
tions, performed by Barsky and Plischke [60]. These simulations address the amorphous solidifica-
tion transition in the context of RCMSs, doing so by using an off-lattice model of macromolecules

interacting via a Lennard-Jones potential. It should be emphasized that there are substantial dif-
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Figure 2.2: Localized fraction ¢ as a function of the number of crosslinks per macromolecule n, as
computed in molecular dynamics simulations by Barsky and Plischke (1997, unpublished). L is the
number of monomers in each macromolecule; N is the number of macromolecules in the system.
The straight line is a linear fit to the N = 200 data. Note the apparent existence of a continuous
phase transition near n = 1, as well as the apparent linear variation of ¢ with n, both features
being consistent with the mean-field description.

ferences between the ingredients and calculational schemes used in the analytical and simulational
approaches. In particular, the analytical approach: (i) invokes the replica technique; (ii) retains
interparticle interactions only to the extent that macroscopically inhomogeneous states are disfa-
vored (i.e. the one-replica sector remains stable at the transition); (iii) neglects order-parameter
fluctuations, its conclusions therefore being independent of the space-dimension; and (iv) is solved

via an Ansatz, which is not guaranteed to capture the optimal solution. Nevertheless, and rather
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Figure 2.3: Unscaled probability distribution P, of localization lengths ¢ (in units of the linear
system size), as computed in molecular dynamics simulations by Barsky and Plischke (1997, un-
published). In the simulations the number of segments per macromolecule is 10; and the number
of macromolecules is 200.
strikingly, the simulations yield an essentially identical picture for the transition to and properties
of the amorphous solid state, inasmuch as they indicate that (i) there exists a (crosslink—density
controlled) continuous phase transition from a liquid state to an amorphous solid state; (ii) the
critical crosslink density is very close to one crosslink per macromolecule; (iii) the localized fraction
q varies linearly with the density of crosslinks, at least in the vicinity of this transition (see Fig. 2.2);
(iv) when scaled appropriately (i.e. by the mean localization length), the simulation data for the
distribution of localization lengths exhibit very good collapse on to a universal scaling curve for the
several (near-critical) crosslink densities and macromolecule lengths considered (see Figs. 2.3 and
2.4); and (v) the form of this universal scaling curve appears to be in remarkably good agreement
with the precise form of the analytical prediction for this distribution.

It should not be surprising that by focusing on universal quantities, one finds agreement between
the analytical and computational approaches. This indicates that the proposed Landau theory
does indeed contain the essential ingredients necessary to describe the amorphous solidification

transition.

Let us now look more critically at the comparison between the results of the simulation and
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Figure 2.4: Probability distribution (symbols) Py of localization lengths &, scaled with the sample-
average of the localization lengths &y, as computed in molecular dynamics simulations by Barsky
and Plischke. Note the apparent collapse of the data on to a single universal scaling distribution, as
well as the good quantitative agreement with the mean-field prediction for this distribution (solid
line). In the simulation the number of segments per macromolecule is 10; the number of macro-
molecules is 200. The mean-field prediction for Py (&/&ay) is obtained from the universal scaling
function m(6) by Pi(y) = (2s/y®) w(s/y?), where the constant s ~ 1.224 is fixed by demanding
that fooo dyy Py (y) = 1.

the mean-field theory. With respect to the localized fraction, the Landau theory is only capable
of showing the linearity of the dependence, near the transition, on the excess crosslink density,
leaving undetermined the proportionality factor. The simulation results are consistent with this
linear dependence, giving, in addition, the amplitude. There are two facets to the universality
of the distribution of localization lengths, as mentioned in Sec. 2.3. First, that the distributions
can, for different systems and different crosslink densities, be collapsed on to a universal scaling
curve, is verified by the simulations, as pointed out above. Second, the question of how the scaling
parameter depends on the excess crosslink density is difficult to address in current simulations,
because the dynamic range for the mean localization length accessible in them is limited, so that

its predicted divergence at the transition is difficult to verify.
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2.6 Summary and concluding remarks

To summarize, in this chapter we have proposed a replica Landau free energy for the amorphous
solidification transition (of which the vulcanization transition is a primary example). The theory is
applicable to systems of extended objects undergoing thermal density fluctuations and subject to
quenched random translationally-invariant constraints. The statistics of the quenched randomness
are determined by the equilibrium density fluctuations of the unconstrained system. We have
shown that there is, generically, a continuous phase transition between a liquid and an amorphous
solid state, as a function of the density of random constraints. Both states are described by
exact stationary points of this replica free energy, and are replica symmetric and macroscopically
translationally invariant. They differ, however, in that the liquid is translationally invariant at the
microscopic level, whereas the amorphous solid breaks this symmetry.

We have also shown how all these results may be recovered using an alternative formulation in
which we focus less on the replica order parameter and more on the distribution of random static
density fluctuations. In particular, we construct a representation of the free energy in terms of this
distribution, and solve the resulting stationarity condition.

Lastly, we have examined our results in the light of the extensive molecular dynamics simulations
of randomly crosslinked macromolecular systems, due to Barsky and Plischke. Not only do these
simulations support the general theoretical scenario of the vulcanization transition, but also they
confirm the detailed analytical results for universal quantities, including the localized fraction
exponent and the distribution of scaled localization lengths.

The ultimate origin of mean-field universality is not hard to understand, despite the apparent
intricacy of the order parameter associated with the amorphous solidification transition. As we
saw in Secs. 2.2 and 2.3, there are two small emergent physical quantities, the fraction of localized
particles and the characteristic inverse square localization length of localized particles. The small-
ness of the localized fraction validates the truncation of the expansion of the free energy in powers
of the order parameter. The smallness of the characteristic inverse square localization length leads
to a very simple dependence, via > n_ |k®|?, on the n + 1 independent wave vectors of the replica
theory, well beyond the permutation invariance demanded by symmetry considerations alone. As a

result, near the transition, the amorphous solid state is characterizable in terms of a single universal
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function of a single variable, along with the localized fraction.

Although throughout this chapter we have borne in mind the example of RCMSs, the circle of
ideas is by no means restricted to such systems. To encompass other systems possessing externally-
induced quenched random constraints, such as networks formed by the permanent random covalent
bonding of atoms or small molecules (e.g., silica gels), requires essentially no further conceptual
ingredients [57, 58, 59].

One may also envisage applications to the glass transition. Although it is generally presumed
that externally-induced quenched random variables are not relevant for describing the glass transi-
tion, it is tempting to view the freezing-out of some degrees of freedom as the crucial consequence of
the temperature-quench, with a form of quenched disorder thereby being developed spontaneously.
The approach presented here becomes of relevance to the glass transition if one accepts this view of
the temperature-quench, and thus models the nonequilibrium state of the quenched liquid by the
equilibrium state of a system in which some fraction of covalent bonds has been rendered permanent
(the deeper the quench the larger the fraction) [65]. This strategy, viz., the approximating of pure
systems by ones with “self-induced” quenched disorder, has also been invoked in very interesting
work on the Bernasconi model for binary sequences of low autocorrelation [66]. Interesting connec-
tions are also apparent with recent effective-potential approaches to glassy magnetic systems, in
which one retains in the partition function only those configurations that lie close to the equilibrium

state reached at the glass transition temperature [67].
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Chapter 3

Renormalization-group approach to
the vulcanization transition: Basic
issues and expansion to order 6 — d

3.1 Introduction

In Chap. 2 we presented a detailed mean-field description of the amorphous solidification transition
by using the Landau approach to continuous phase transitions. In the present chapter and the
following one, we investigate this transition beyond the mean-field level. Although most of our
results are not specific to any particular system undergoing an amorphous solidification transition,
in order to make our presentation concrete we shall from now on discuss the physical content for,
and use notation specific to, the case of vulcanization transition for RCMSs. Our goal is to provide a
description of the vulcanization transition beyond the mean-field approximation via the application
of renormalization-group (RG) ideas to a model that incorporates both the quenched randomness
(central to systems undergoing the vulcanization transition) and the thermal fluctuations of the
constituents (whose change in character is the fundamental hallmark of the transition). The aim
of the present chapter is to shed some light on certain universal properties of the vulcanization
transition within the framework of the well-controlled and systematically improvable approximation
scheme that the RG provides, viz., an expansion about an upper critical dimension that we shall
see takes the value six.

Our approach to the vulcanization transition is based on the Landau-Wilson effective Hamil-

tonian, Eq. (2.7), that describes the energetics of various order-parameter-field configurations, the

44



order parameter in question having been crafted to detect and diagnose the vulcanization transi-
tion. This order parameter and effective Hamiltonian can be derived (along with specific values for
the coefficients of the terms in the effective Hamiltonian) via the application of replica statistical
mechanics to a specific semi-microscopic model of RCMSs , viz., the Deam-Edwards model [37];
this procedure is described in detail in Ref. [32]. More generally, the form of the minimal model
can be determined from the nature of the order parameter, especially its transformation properties
and certain symmetries that the effective Hamiltonian need possess, along with the assumptions of
the analyticity of the effective Hamiltonian and the continuity of the transition [51]. This system-
nonspecific strategy for determining the minimal model was applied in Chap. 2. There, it was
shown that by regarding the effective Hamiltonian as a Landau free energy one could recover from
it the mean-field description of both the liquid and emergent amorphous solid states known ear-
lier from the analysis of various semi-microscopic models [31, 32, 55, 56]. The mean-field value
of order parameter in the solid state encodes a function rather than a number, and it possesses a
certain mean-field “universality] by which we mean that (as the transition is approached from the
amorphous solid side) both the exponent governing the vanishing of the fraction of constituents
localized (i.e. the gel fraction) and the scaled distribution of localization lengths of the localized
constituents turn out to depend not on the coefficients in the Landau free energy but only on its
qualitative structure. Support for this mean-field picture of the amorphous solid state, in the form
of results for the localized fraction and scaled distribution of localization lengths, has emerged from
extensive molecular dynamics computer simulations of three-dimensional, off-lattice, interacting,
macromolecular systems, due to Barsky and Plischke [60, 68]. In order to provide a unified theory
of the vulcanization transition that encompasses the liquid, critical and random solid states, we
shall in the present work be adopting this Landau free energy as the appropriate Landau-Wilson
effective Hamiltonian.

We shall be focusing on the liquid and critical states, rather than the amorphous solid state,
and shall therefore be concerned with the order-parameter correlator rather than its mean value.
Along the way, we shall therefore discuss the physical content of this correlator, why it signals
the approaching amorphous solid state, and how it gives rise to an associated susceptibility whose

divergence marks the vulcanization transition.
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Given the apparent precision of the picture of the amorphous solid state resulting from the
mean-field approximation [31, 32, 51, 60, 68], the reader may question the wisdom of our embark-
ing on program that seeks to go beyond the mean-field approximation by incorporating the effects
of fluctuations. We therefore now pause to explain what has motivated this program.

(i) Below six spatial dimensions, mean-field theory necessarily breaks down sufficiently close to the
vulcanization transition. Although, as we shall also see, the region of crosslink densities within
which fluctuations play an important role is narrower for dimensions closer to (but below) six and
for longer macromolecules, it is by no means necessary for this region to be narrow for shorter macro-
molecules and for lower-dimensional systems; thus, systems for which the fluctuation-dominated
regime is observably wide certainly exist.

(ii) While there have been many successful treatments of critical phenomena beyond the mean-field
approximation in systems with quenched randomness, these have, by and large, been for systems
in which the emergent order was not of the essentially random type under consideration here or
in the spin glass setting [69]. Instead the emergent order has typically been of the type arising in
pure systems, albeit perturbed by the quenched disorder. We are motivated here by the challenge
of going beyond mean-field theory in the context of a transition to a structurally random state of
matter.

(iii) The vulcanization transition has often been addressed from the perspective of percolation the-
ories [70, 14, 10, 6, 8, 26]. While this perspective can be (and certainly has been) taken beyond the
mean-field level, it possesses but a single ensemble, and therefore does not incorporate the effects
of both quenched randomness and thermal fluctuations [71]. Given that an essential aspect of the
vulcanization transition is the impact of the quenched random constraints on the thermal motion
of the constituents, the a priori identification of the vulcanization transition with percolation is
thus a nontrivial matter. By contrast with the percolation-type of approaches, the analysis given
in this chapter applies directly to the vulcanization transition exhibited by thermally fluctuating
systems and driven by quenched random constraints. It should therefore shed some light on the
relevance of the percolation-type perspective for the vulcanization transition, as we shall discuss in
Sec. 3.4.

This chapter is organized as follows. In Sec. 3.2 we discuss the order-parameter correlator and
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susceptibility for the vulcanization transition, and examine their physical content. In Sec. 3.3,
we embark on the analysis of the vulcanization transition beyond mean-field theory. We begin
by examining the self-consistency of mean-field theory by estimating the impact of fluctuations
perturbatively, which results in the construction of a Ginzburg criterion and the identification of
six as being the appropriate upper critical dimension. We then apply a momentum-shell RG scheme
to the minimal model, thus obtaining certain universal critical exponents in an expansion around six
dimensions. Finally, in Sec. 3.4 we give some concluding remarks in which we discuss connections
between our approach and those based on percolation, and we examine the role played by thermal
fluctuations, especially in lower spatial dimensionalities. In three appendices we provide technical
details associated with the derivation of the Ginzburg criterion, we investigate the effects of various
fields and vertices omitted from the minimal model, and we present the full derivation of the RG

flow equations.

3.2 Order-parameter correlator and susceptibility, and their

physical significance

Let us now consider the order-parameter correlator and the associated susceptibility from the
perspective of incipient random localization [72]. In the simpler context of, e.g., the ferromagnetic
Ising transition, the two-point spin-spin correlator quantifies the idea that the externally-imposed
alignment of a particular spin would induce appreciable alignment of most spins within roughly
one correlation length of that spin, this distance growing as the transition is approached from the
paramagnetic state. How are these ideas borne out in the context of the vulcanization transition?
Imagine approaching the transition from the liquid side: then the incipient order involves random
localization and so, by analogy with the Ising case, the appropriate correlator is the one that
addresses the question: Suppose a monomer is localized to within a region of some size by an
external agent: Over what region are other monomers likely to respond by becoming localized, and
how localized will they be? We can also consider the order-parameter correlator and the associated
susceptibility from the perspective of the formation of (mobile, thermally fluctuating) assemblages

of macromolecules, which we refer to as clusters: How do they diagnose the development of larger

47



and larger clusters of connected macromolecules, as the crosslink density is increased towards the
vulcanization transition?

Bearing these remarks in mind, we now go back to the semi-microscopic model of the vul-
canization transition, and examine in detail the physical interpretation of the microscopic order-
parameter correlator (Q(k) Q(—l%))g 41, which is directly related to the order-parameter field corre-
lator (Q(k) Q(—l%))s via Eq. (1.26). As we shall see, the correlator (Q(k) Q(— l%))n+1 captures the

physics of incipient localization and cluster formation. To see this, consider the construction

Cie(r — 1) z[ Z/ds/ ds' (0 (r — ¢j(5)) 6D (x' — c; ("))

J.y'=1

x(exp —it - (c;j(s) —r) expit - (cjiy) — 1)), (3.1)

which, in addition to depending on the separation r — r’, depends on the “probe” wave vector t.
The first expectation value in this construction accounts for the likelihood that monomers (7, s)
and (5, s") will respectively be found around r and r’; the second describes the correlation between
the respective fluctuations of monomer (j, s) about r and monomer (j',s’) about r’.

Now, the quantity Ci(r — r’) is closely related to an HRS correlator involving the semi-
microscopic order parameter Q(k), defined in Eq. (1.21). To see this, we introduce Fourier repre-

sentations of the two delta functions and invoke translational invariance, thus establishing that [73]

N r—r') e~k (cj(s)—c;r (s —it-(c;(s)—c.s (s’
Cur—x') = T3 ek N2 Z / ds ds' (o6 () (@it (es(6)=c( ))>X]
k 7,3'=1

= _Z ik hn%(Q(O,k—t,t,O,...,O)*Q(O,k—t,t,O,...,O))EH. (3.2)

Having seen that Cy(r — ') is closely related to an HRS correlator involving Q(k)] which can
be computed using the Q field theory via Eq. (1.26)], we now explain in more detail how Cy(r —r’)
detects the spatial extent of relative localization. First, let us dispense with the case of t = 0. In
this case Cy(r — r') is simply (V/N times) the real-space density-density correlation function and,
as such, is not of central relevance at the amorphous solidification transition. Next, let us consider

the small-t limit of Cy(r —r’). This quantity addresses the question: If a monomer at r is localized
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“by hand} what is the likelihood that a monomer at r’ responds by being localized at all, no matter
how weakly. It is analogous to the correlation function defined in percolation theory that addresses
the connectedness of clusters [21].

To substantiate the claim made in the previous paragraph we examine the contribution, in
Eq. (3.1), from each pair of monomers to the quantity Ci(r — r’). Let us start from the simplest
situation, in which no crosslinks have been imposed. We assume that t is small (i.e. V/3 > [t|~1 >
Ry, where R, is the radius of gyration for a single macromolecule) and that the macromolecular
system has only short-range interactions. For each term in the double summation over monomers
there are two cases to consider, depending on whether or not the pair of monomers are on the same
macromolecule. For a generic pair of monomers that are on the same macromolecule (i.e. j = j'), we
expect that (expit-(c;(s)—c;(s))) ~ 1, and that (for [r—r'| < Ry) (69 (r—c;(s)) 0@ (r'—c;(s"))) ~
vt R, 4. Then the total contribution to Cy(r — r') coming from pairs of monomers on the same
macromolecule is of order R, ¢ On the other hand, for a generic pair of monomers that are on
different macromolecules (i.e. j # j'), we expect that (expit - (¢j(s) — ¢;(s'))) ~ V!, and that
(6@ (r — ¢j(s)) 6 (" — cji(s")) ~ V2. Therefore the total contribution to Cy(r — r') coming
from pairs of monomers on different macromolecules is of order (N/V)V~!. Thus, we find that
the intra-chain (i.e. 7 = j') contribution to Ci(r — r') dominates over the inter-chain (i.e. j # j')
contribution in the thermodynamic limit.

Moving on to the physically relevant case, in which crosslinks have been introduced so as to form
clusters of macromolecules, we see that what were the intra-chain and inter-chain contributions
become intra-cluster and inter-cluster contributions. With the appropriate (slight) changes, the
previous analysis holds, which indicates that the intra-cluster contribution dominates Ct(r — r')
in the thermodynamic limit. In other words, in the small-t limit a pair of monomers located at r
and r' contribute unity to C¢(r — r’) if they are on the same cluster and zero otherwise. This view
allows us to identify the small-t limit of Cy(r — r') with the pair-connectedness function defined in
(the on-lattice version of) percolation theory [21].

What about Ci(r — r') in the case of general t? In this case it addresses the question: If a
monomer near r is localized on the scale ! (or more strongly), how likely is a monomer near r’

to be localized on the same scale (or more strongly)? This additional domain of physical issues
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associated with the strength of localization results from the effects of thermal fluctuations, and is
present in the vulcanization picture but not the percolation one.

Let us illustrate the significance of Ci(r — r') by computing it in the setting of the Gaussian
approximation to the liquid state in three dimensions. To do this, we use Eq. (1.26) to express
Cy(r —r') in terms of the (Gaussian approximation to the) correlator (Q(k) Q(k'))S, which has the

Ornstein-Zernicke form given in Eq. (3.8). Thus, we arrive at the real-space Yukawa form

exp(—|I‘ - I'I|/Ceff(t))

Ci(r—1' 3.3
Celr =) —— (33)
1 1
= — +bt? (3.4)
o (t) ¢?
where the correlation length ¢ is defined by (72 = —2ar. Hence, we see the appearance of a

probe-wavelength—dependent correlation length (g (t). The physical interpretation is as follows:
in the t — 0 limit, C¢(r — r') is testing for relative localization, regardless of the strength of that
localization and, consequently, the range of the correlator diverges at the vulcanization transition.
This reflects the incipience of an infinite cluster, due to which very distant macromolecules can
be relatively localized. By contrast, for generic t it is relative localization on a scale ¢! (or
smaller) that is being tested for. At sufficiently large separations, even if a pair of macromolecules
are relatively localized, this relative localization is so weak that the pair does not contribute to
Ci(r — r’). This picture is reflected by the fact that (cg(t) remains finite at the transition.

Given that we have identified a correlator that is becoming long-ranged at the transition, it is
natural to seek an associated divergent susceptibility ©¢. To do this, we integrate Ci(r — r’) over
space and obtain

dr d%y’! , . . p
Ot = | ———Ci(r—r') = N lim (Q(0,t, —t,0,...,0)* Q(0,t,-¢t,0,...,0)), ., . (3.5)
%4 n—0

Passing to the t — 0 limit, we have

lim ©¢ ~ (—7)77, (3.6)

t—0

where the final asymptotic equality is obtained from a computation of the (field-theoretic) correlator

(Q(E) Q(K))® [see Eq. (1.26)]. This quantity is measure of the spatial extent over which pairs of
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monomers are relatively localized, no matter how weakly, and thus diverges at the vulcanization
transition. At the Gaussian level of approximation, Eq. (3.8), this susceptibility diverges with the
classical exponent v = 1. By contrast, for generic t the susceptibility © remains finite at the
transition, even though an infinite cluster is emerging, due to the suppression of contributions to
O from pairs of monomers whose relative localization is sufficiently weak (i.e. those that lead to

the divergence in the small-t limit).

3.3 Vulcanization transition beyond mean-field theory

3.3.1 Gaussian correlator: Liquid and critical states

Before embarking on the investigation the critical properties of the vulcanization transition beyond
mean-field theory, in the present section, we introduce the Gaussian propagator and prescribe
the scaling form for the two-point correlation function near the vulcanization transition. The
incipient amorphous solidification, as the vulcanization transition is approached from the liquid
side, is marked by strong order-parameter fluctuations, which are diagnosed via the correlator
G(k) defined through

N1 5%}}5 G(k) = (k) Qi))S . (3.7)

The unusual factor of 1/N is due to our choice of the normalization of Q(k) in Eq. (1.21). In
Sec. 3.2, we have explained the physical content of this correlator and precisely how, via Eq. (1.26),

it is able to detect incipient random solidification. The value of the correlator in the mean-field

approximation follows from the quadratic terms in Eq. (2.7) and is given by

1

W)= G = =

9 (3-8)

which below will play the role of the bare propagator. Notice that GO(I;‘) obeys the homogeneity

relation

Gk, 7) ~ k|7 g(|E| || ™), (3.9)

in which g(z) ~ 227" for + — +0, and approaches a constant value for large z. Moreover, the

exponents take on the mean-field values n = 0, v = 1/2 and v = v(2 — n) = 1, this last relationship
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guaranteeing that the susceptibility lim; , G(k, ) diverges as |7|77.

3.3.2 Ginzburg criterion for the vulcanization transition

To begin the process of analyzing the vulcanization transition beyond the mean-field (i.e. tree)
level, we estimate the width §7 of reduced constraint-densities 7 within which the effects of order-
parameter fluctuations about the saddle-point value cannot be treated as weak, i.e., we construct
the Ginzburg criterion. To do this, we follow the conventional strategy (see, e.g., Ref. [74]) of
computing a loop expansion for the two-point vertex function to one-loop order and examining
its low-wave-vector limit (i.e. the inverse susceptibility). Note that in the present setting the loop

expansion amounts to an expansion in the inverse monomer density. Our starting point is the

N
k
- []- -

Figure 3.1: One-loop correction to the two-point vertex function. Full lines indicate bare HRS
correlators; dashed lines indicate amputated external bare HRS correlators.

minimal model, Eq. (2.7), for which the bare correlator is given by Eq. (3.8). Then the one-loop
correction to the two-point vertex function comes from the diagram shown in Fig. 3.1, which is

calculated in App. A. We obtain for the inverse susceptibility Z2~! the result [75]

dp

v d
NE) ' = —2ar +18¢%— | — 2P
(N=Z) ot + 189 N/(—2m

1
+bp2)2 ? (3 0)

in which a large wave-vector cut-off at [k| = A is implied. The (one-loop) shifted critical point 7

marks the vanishing of 271, i.e., solves

V dp
— 2
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Now, in mean-field theory the transition occurs at 7 = 0, with positive (resp. negative) values
corresponding to the amorphous solid (resp. liquid) states. From Eq. (3.11) we see that that
inclusion of fluctuations enlarges the region of crosslink densities in which liquid state is stable,
as one would expect on general physical grounds. However, it is worth noting that without the
exclusion of the one-replica sector the converse would occur (i.e. fluctuations would enlarge the
region of stability of the amorphous solid state). By subtracting Eq. (3.11) from Eq. (3.10) in the
standard way, replacing 7, by its mean-field value (of zero) in the loop correction, and rescaling the

integration variable p? according to bp? = —2a1k?, we arrive at
(N2)~! = —2a(r — 1) (1 - 1892(V/N)b’d/Q(—2m)(d’6)/2jd) : (3.12)

where J; is a dimensionless number dependent on d (and weakly on A, at least in regime of interest,
i.e., d below 6). Equation (3.12) shows that for d < 6 a fluctuation dominated-regime is inevitable
for sufficient small 7, and hence that the upper critical dimension for the vulcanization transition
is six, in agreement with naive power-counting arguments applied to the n — 0 limit of the cubic
field theory, Eq. (2.7). The Ginzburg criterion amounts to determining the departure of 7 from
its critical value such that in Eq. (3.12) the one-loop correction is comparable in magnitude to the
mean-field level result.

To determine the physical content of the Ginzburg criterion, we invoke the values of the coeffi-
cients of the minimal model appropriate for the semi-microscopic model of RCMSs, Egs. (2.8-2.11),
and we exchange the macromolecule density N/V for the volume fraction ¢ = (N/V')(L/£)¢¢. Thus
we arrive at the following form of the Ginzburg criterion: for d < 6, fluctuations cannot be neglected

for values of u? satisfying

2 pu? - _2
\—“ He| < (L1 (pfg?) 5T, (3.13)
C

from which we see that the fluctuation-dominated regime is narrower for longer macromolecules
and higher densities (for 2 < d < 6). In three dimensions, the width of the critical region goes as
(L/£)~'/3. Such dependence on the degree of polymerization L /¢ is precisely that argued for long
ago by de Gennes on the basis of a percolation-theory picture [50].

Besides the fields and vertices featuring in the minimal model, there are other symmetry-
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allowed fields and vertices that are generated by the semi-microscopic theory of RCMSs. Examples
are provided by the 1RS field, which describes density fluctuations, along with vertices of cubic,
quartic or higher-order that couple the 1RS field to the HRS field. In App. A.2 we investigate the
effect of these fields and vertices, which are omitted from the minimal model, and show: (i) that
the inclusion of their effects (at the one-loop level) does not change the Ginzburg criterion derived
in the present section; and (ii) that the HRS critical fluctuations do not provide any singular

contributions to the 1RS density-density correlation function (at least to one-loop order).

3.3.3 Renormalization-group procedure and its subtleties

We now describe the RG procedure that we are using, a schematic depiction of which is given in
Fig. 3.2. The main thrust of our approach is the standard “momentum-shell” RG, via which we
aim to determine how the parameters of the theory (viz. 7 and g) flow under the two RG steps of
coarse-graining and rescaling. However, in the present context there are some significant subtleties

owing to the need to constrain the fields to lie in the HRS.

0 A/b A

A H - (d)

Figure 3.2: Schematic one-dimensional depiction of the basic steps of the RG procedure (the field
variables are defined only at the hash marks denoting the quantized wave vectors): from (a) to
(b) integrate out the fields at the quantized wave vectors k in the “momentum shell” (shaded);
from (b) to (c) rescale lengths to restore the wave-vector cut-off, and rescale the field to restore
the gradient term; from (c) to (d) restore the density of the degrees of freedom. (In practice, we
employ a momentum shell of infinitesimal width.)

In the coarse-graining step, we integrate out the rapidly-varying components of Q(k) (i.e. those
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corresponding to wave vectors satisfying A/b < |k| < A). Here, the constraint that only the HRS
field is a critical field demands that one treat the HRS and the 1RS distinctly. We handle this
by working with a large but finite (replicated) system contained in a hyper-cubic box of volume
V™! on which periodic boundary conditions are applied. As a consequence, the wave vectors
are “quantized} and therefore we can directly make the appropriate subtractions associated with
the removal of the zero- and one-replica sectors. Having made the necessary subtractions, we
compute the various Feynman diagrams (for the construction of the Ginzburg criterion and the
coarse-graining step of the RG) by passing to the continuous wave-vector limit (so that wave-vector
summations become integrations).

The replica technique has the following curious feature. In the infinite-volume limit the different
sectors are spaces of different dimensionalities, and thus the contributions from the lower replica
sectors appear to be sets of measure zero relative to the contributions from the HRS. However,
in the replica limit, the contributions from different sectors are comparable and, hence, the lower
sectors cannot be neglected.

The coarse-graining step is followed by the rescaling step, in which the aim is to return the
theory to its original form. The field- and length-rescaling aspects of this step (to recover the
original wave-vector cut-off and form of the gradient term) are standard, but there is a subtlety
associated with the fact that the original theory is defined on a finite volume (in order that the wave
vectors be quantized and the various replica sectors thereby be readily identifiable). This subtlety
is that upon coarse-graining and rescaling one arrives at a theory that is almost of the original
form, but is defined on a coarser lattice of quantized wave vectors associated with the reduced
(real-space) volume. If we wish to return the theory to its truly original form, we are required to
increase the density of the coarsened wave-vector lattice. To accomplish this, we choose to make
use of the extension to (n + 1)d dimensions of the following one-dimensional relation, exact in the

thermodynamic (i.e. large real-space size B) limit:

oo fymvt Y f(k). (3.14)

ke{2mnb/B} ke{2mn/B}

One way to understand this is to regard the two sides of Eq. (3.14) as providing different discrete
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approximations to the same continuous-wave-vector (i.e. infinite-volume) limit. Thus, we expect
the difference between them to be unimportant in the thermodynamic limit. Another way is to
regard the right hand side of Eq. (3.14) as pertaining to a system with a larger number of degrees of
freedom than the left hand side, but that the factor b~ appropriately diminishes the weight of each
degree of freedom. It would be equally satisfactory if we chose, in our RG scheme, not to restore

the wave-vector lattice spacing, which would amount to our using the left-hand-side of Eq. (3.14).

3.3.4 Expansion around six dimensions

In Secs 3.3.2 and 3.3.3 we have established that the upper critical dimension for the vulcanization
transition is six, and we have described an RG procedure capable of elucidating certain universal
features of the transition. We now examine the RG flow equations near the upper critical dimension
that emerge from this procedure, and discuss the resulting fixed-point structure and universal
critical exponents. To streamline the presentation we have relegated the technical details of the

derivation of the flow equations to App. B.

Flow equations

As with the mean-field theory and the Ginzburg criterion, our starting point is the replicated cubic
field theory, Eq. (2.7). By suitably redefining the scales of Q(k) and k we can absorb the coefficients

a and b, hence arriving at the Landau-Wilson effective Hamiltonian

1. - S
SH{N}) =N Z ( -7+ §|k|2) |Q(k)|” — Ng Z Q(k1) Qko) Q(ks3) (5,%1“%24_,%3,6, (3.15)
keHRS k1,ko,k3s€HRS
in which all wave-vector summations are cut off beyond replicated wave vectors of large magnitude

A, from which we can read off the bare correlator

1

N

(3.16)

We shall be working to one-loop order and, correspondingly, the diagrams that contribute to the

renormalization of the parameters of the Landau-Wilson effective Hamiltonian are those depicted
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(a) (b)

Figure 3.3: Contributing one-loop diagrams. Full lines indicate bare HRS correlators for short-
wavelength fields (i.e. fields lying in the momentum shell); wavy lines indicate long-wavelength
fields.

in Figs. 3.3 (a) and 3.3 (b). The resulting flow equations are

dr

o= = 27-Cog’ = Cyrg’ = Cimg" + O(r7¢" 7eg, e9%, g'), (3.17)
_dg = £ 23 2 2 _ 2 4

dlnb 9(5‘039 — 509" +0(7g%,e9%,97) |, (3.18)
dz 1 2 2 2 4

= §(d+2—01g )+ O(19%,e9%,97), (3.19)

where ¢ = 6 — d, b is the length-rescaling factor, z is the field-rescaling factor, and the (constant)

coefficients in the flow equations are given by

Se
(2m)®

(Co,Ch,C1,C3) = (9A2,36,—6,72), (3.20)

2| <

in which Sg is the surface area of a 6-dimensional sphere of unit radius.



Fixed-point analysis and its consequences

We proceed in the standard way by first finding the fixed points (74, g«) of the flow equations,

at which d(7,g)/dlnb = (0,0). We linearize the flow equations about each of the resulting fixed

- : (3.21)
dinb \ 5 _ g 0 3¢ —3(C3+3C1)gZ ) \ g — gx

where we have dropped higher-order corrections. We then establish the RG eigenvalues at each

points,

fixed point by finding the eigenvalues of the linearized RG transformation matrices. Finally, we
solve Eq. (3.21) to obtain the flow near each fixed point.
For € both negative and positive (i.e. for d both above and below six) we find a Gaussian fixed

point (GFP): (74, g+) = (0,0). Solving Eq. (3.21) about this fixed point gives the flow

7(b) 7(1) b¥t
~ , 3.22
(g(b)> (9(1) b2 ) 522

with the RG eigenvalues y; and y respectively given by y, = 2 and y, = /2.

As one can see from Eq. (3.22), above six dimensions (i.e. for ¢ < 0) the GFP is unstable in the
7 direction and stable in the g direction. However, below six dimensions the GFP also becomes un-
stable in the g direction, and a new fixed point—the Wilson-Fisher fixed point (WFFP)—emerges,
located at (., 92) = ((A?/28),(1/126)((2m)®/Ss)(V/N)~!) e. (Let us mention, in passing, that if
we had not correctly implemented the constraint that wave-vector summations exclude contribu-
tions for the 1RS then the structure of the flow equations would have been utterly different; e.g.,
the WFFP would have occurred at a complex value of g.) By solving Eq. (3.21) for the WFFP we
find the flow

(T(b) —T*) ((7(1) —7.) — A(g(1) —9*)> (A(g(l) —9*))
~ bt + bv, (3.23)
g9(b) — g. 0 9(1) — g«

where A = (3/V 14)((V/N)(SG/(27T)6))1/2(A251/2) and the RG eigenvalues are given by y; = 2 —
(5¢/21) and yo = —e.
We now proceed to obtain the critical exponents for physical quantities from the RG eigenvalues

at each fixed point. The homogeneity relation for the correlator G(l%), following from a standard
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RG analysis [76], reads
G(k,7) = 22 b= G(bk, b¥' 7). (3.24)

We eliminate b by choosing blk| = 1; then comparison with Eq. (3.9) leads to v = 1/y; and
n = C1¢2. Thus, for the GFP we have

vl =2, n=0, (3.25)
and for the WFFP we have, to first order in ¢,
vl =2 (5¢/21), n=—¢e/21. (3.26)

Both above and below six dimensions, the critical exponents v and n (and (3, to be discussed
below) are identical to those governing analogous quantities in percolation theory at first order in
e, as computed via the Potts field theory [77]. We discuss the significance of this result and the
relationship between the present approach and percolation/gelation-based approaches in Sec. 3.4.

We have focused on the cubic interaction in the vulcanization field theory. There are, of course,
additional symmetry-allowed interactions, such as the quartic interaction. Near to six dimensions,
however, the fact that such interactions are irrelevant at the GFP can be shown by naive power-
counting arguments, which hold in the replica limit (and remain uncompromised at the WFFP,

owing to its proximity to the GFP).

3.3.5 Scaling for gel fraction and wave-vector-dependent order parameter

In order to relate properties of the amorphous solid state to those computed in the liquid and critical
states, we now follow the standard scaling analysis. To do this, we add to the minimal model,
Eq. (3.15), a source field that couples linearly to the order parameter: —N ) ; ppe Q(k)U(—Fk).
We assume that U contains only long wavelength components, so that it does not couple to any
field featuring in any momentum-shell integrations. Then the renormalization of U (—12:) comes only

from the rescalings of k and Q(k), and thus we have

U' (k) =2b"%U(k). (3.27)
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To obtain the exponent 5, which describes the scaling of the gel fraction ¢, the conventional method
prescribes the application of a uniform source field. In the present theory, the (zero replica sector)

field variable £2(0), which would couple to such a uniform source, is excluded, and instead we choose

U(k) = hé;

it ho.07 where kg lives in the HRS but is otherwise arbitrarily small. (This prescription

is consistent with the notion that the gel fraction follows from the long-wavelength limit of the
order parameter, the limit being taken via wave vectors in the HRS.) Hence we arrive the recursion
relation for h:

h' = zh =¥, yp=(d+2—-mn)/2. (3.28)

As we are already in possession of n at the GFP and the WFFP, we thus arrive at the scaling
dimension y;, of the source field h.
Having obtained ¥, we now use it, together with y,, y, and the singular part of the free energy

density f, to determine §, in the following way. According to homogeneity, f has the form
f(r,9,h) = b= f(7bY, gb¥s, ™). (3:29)

By taking the derivative with respect to h so as to form the order-parameter equation of state,
choosing h = 0, and passing to the small ko limit, one finds the following scaling behavior of the

gel fraction:
q(7,9,0) ~ Hm 8f JOh|,_o ~ b~ M (1b¥7, gb¥s ,0) = 7(d=u)/¥m M (1, g7~ Y9 /47 (). (3.30)
ko—0

Let us first consider the regime d > 6, for which the appropriate fixed point is the GFP and,
therefore one expects the exponents to take on their classical values. Now, as one can see from the
mean-field value for the order parameter  (and thus the gel fraction q), Egs. (2.13) and (2.16),
both of which are proportional to ¢!, the cubic interaction is dangerously irrelevant at the GFP,
and thus one has

1
M(1,g,0) ~ 7 for g — +0. (3.31)
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Hence, near the GFP one has

q(1,9,0) ~ 77, for g— +0, (3.32)
d— d— 42 4 6-d
g=0"Y% Y "7 5 T3 _q (3.33)
Yr Yr 2

which is precisely the mean-field value of the exponent g given in Sec. 2.3.
Now let us turn to the regime d < 6, for which the exponents are nonclassical. The appropriate
fixed point is now the WFFP, at which the cubic interaction is irrelevant but not dangerously so.

Thus, in this regime one has the standard scaling relation

5:d;yh:1—@ﬁy (3.34)

where the second equality holds only to order e.

In fact, under the (not unreasonable) assumption that there is only one characteristic length-
scale in the ordered state (i.e. that the fluctuation correlation length does not provide a length-scale
independent from the localization length-scale), we can go beyond the establishing of the scaling
of the gel fraction (i.e. the long-wavelength limit of the order parameter) and propose a more
general scaling hypothesis, which incorporates the scaling of the (singular part of the) wave-vector-

dependent order parameter [78]. This takes the form of the scaling hypothesis:
(k) o 7P w(k?r~%). (3.35)

The quantity 77, which plays the role of the fluctuation correlation length in the liquid state, is
here seen to play the role of the characteristic scale for the localization lengths in the ordered state.
Presumably, it also governs the scale over which (amplitude-type) fluctuations are correlated in
the solid state. Let us note that the mean-field result for the order parameter not only obeys this

scaling relation (with 8 = 2v = 1) but also provides an explicit form for the function w.
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3.4 Concluding remarks: Connections with other approaches

and the role of thermal fluctuations

Having constructed an RG theory for the liquid and critical states of vulcanized matter, we now
examine the results of this RG theory and discuss the relationship between these results and the
results of other approaches to the vulcanization transition. As we have seen in Sec. 3.3.4, via an
expansion around six spatial dimensions our minimal model for the vulcanization transition yields
values for certain critical exponents that characterize the behavior of the system near to and at
the transition. These exponents turn out to be numerically equal to those characterizing physically
analogous quantities in percolation theory, to first order in the departure ¢ from six dimensions
(see Chap. 4 for further results that is valid to all orders in ).

This equality between exponents seems reasonable in view of the intimate relationship between
percolation theory and the connectivity of the system of crosslinked macromolecules, this connec-
tivity pertaining to the statistics of systems formed according to the Deam-Edwards distribution of
quenched randomness (and hence to the statistical mechanics of the uncrosslinked macromolecular
liquid) [79]. Indeed, a connection between the percolation transition and the vulcanization transi-
tion already shows up at the level of mean-field theory: the dependence of the gel fraction ¢ on the
crosslink-density control parameter ;2 obtained via the semi-microscopic approach (in the case of

RCMSs), viz., that ¢ obeys

1—q=exp(—p’q), (3.36)

is identical to the mean-field—percolation dependence of the fraction of sites participating in the

infinite cluster, obtained by Erdds and Rényi in their work on random graphs [80], this identity

2

¢ is linear, but for

holding not just near the transition, where the dependence of ¢ on u? — u
all crosslink densities. Moreover, the mean-field result emerging from the minimal model of the
vulcanization transition yields this linear dependence (but cannot, of course, be applied beyond the
transition regime). The relevance of percolation theory to the vulcanization transition also manifests
itself beyond the mean-field level in the physical meaning of the order-parameter correlator, as

we have discussed in Sec. 3.2. This connection has long been realized, and supports the use of

percolative approaches as models of certain aspects of the vulcanization transition [70, 14, 10, 6, 8,

62



26].

In addition to direct applications of percolation theory [70, 14, 10, 6, 8] to the vulcanization
transition, mentioned in the preceding paragraph, an approach has been developed by Lubensky
and Isaacson [26] in which a correspondence is established between the statistics of branched,
polydisperse, macromolecules and a multi-component field theory. This field theory reduces to the
one-state limit of the Potts model under circumstances appropriate for the gelation/vulcanization
transition.

An essential ingredient of the approaches discussed in the previous paragraph is the Potts model
in its one-state limit—a representation of percolation [17, 18]. It is therefore worth considering sim-
ilarities and differences between the minimal field theory of the vulcanization transition, Eq. (2.7),
and the minimal field theory for the Potts model, Eq. (1.9). To facilitate comparison, we write the

minimal field theory for the Potts model in a slightly different notation, i.e.,

n

/Vddx ( 3 (%m/}g n %|V¢a|2> —w® ST A gy ¢7). (3.37)

a:1 a!ﬁ?’yzl

As discussed Sec. 1.4.3, the percolation transition can be mapped into the n — 0 limit of this cubic
n-component field theory.

How does this Potts field theory compare the vulcanization field theory that we have been
analyzing in the present chapter? The Potts field theory has, a cubic interaction, as does the vul-
canization field theory, and therefore its upper critical dimension is also six. If we examine the RG
analysis of the Potts field theory (in an expansion around six dimensions) [23] we see that, at the
one-loop level, diagrams identical in form (i.e. those shown in Fig. 3.3) enter the renormalization of
the various vertices. (In fact, this is true to all order of loops, see Chap. 4 and App. C for details.)
Moreover, in the n — 0 limit the RG flow equations for the two theories turn out to be identical.
This striking result is connected to the following observations:

(i) In Potts case, aside from the d-dimensional integrals corresponding to the diagrams, the coef-
ficients in the flow equations are determined by the contractions of Potts-tensor )‘243,@)17 associated

with each cubic vertex, these contractions being the origin of the n-dependence of the coefficients

in the flow equations.
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(ii) In the vulcanization case, the diagrams intrinsically correspond to (n + 1)d-dimensional inte-
grals but, due to the constraints on the summations over wave vectors, these diagrams produce
(n + 1)d-dimensional integrals (which smoothly reduces to d-dimensional integrals in the n — 0
limit), together with d-dimensional integrals; see Eqgs. (A.2,B.17).
(iii) Despite the explicit differences in the forms of the two theories, it turns out that, in the n — 0
limit, the integrals and the combinatorics conspire to produce precisely the same flow equations.
In some delicate way, which we do not fully understand, the constraints on the wave-vector sum-
mations in the vulcanization theory play a similar role to the field-index contractions in the Potts
theory.

Having discussed the similarities of the Potts and vulcanization approaches, let us now catalogue-
the many distinctions between them:
(i) The Potts field theory has a multiplet of n real fields on d-dimensional space; the vulcanization
field theory has a real singlet field living on (n + 1)-fold replicated d-dimensional space.
(ii) The Potts field theory represents a setting involving a single ensemble [71], the ensemble of
percolation configurations, whereas the vulcanization field theory describes a physical problem in
which two distinct ensembles (thermal and disorder) play essential roles. As such, the vulcaniza-
tion field theory is capable of providing a unified theory not only of the transition but also of the
structure, correlations and (e.g. elastic) response of the emerging amorphous solid state. This is
already manifested at the mean-field level, inasmuch as the vulcanization field theory presents an
order parameter that is far richer in its physical content that the one presented by the Potts model.
(iii) The entire symmetry structures possessed by the percolation and vulcanization field theories
are quite different. The Potts field theory has translational and rotational invariance (in unrepli-
cated space), along with the discrete symmetry of (n+1)-fold permutations of the field components.
The vulcanization field theory has the symmetries of the independent translations and rotations of
the (n+1) replicas of space, along with the discrete symmetry of (n+ 1)-fold permutations amongst
the replicas.
(iv) The nature of the spontaneous symmetry breaking at the percolation and vulcanization phase
transitions is distinct. The percolation transition (in its Potts representation) involves the sponta-

neous breaking of the (n — 0 limit) of a discrete (n 4 1)-fold permutation symmetry. By contrast,
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the vulcanization transition involves the spontaneous breaking of the (n — 0 limit of the) continu-
ous symmetry of relative translations and rotations of the n+1 replicas; the permutation symmetry
remains intact in the amorphous solid state, as does the symmetry of common translations and
rotations of replicated space. Thus, the vulcanization transition is associated with the appearance
of low-energy, long-wavelength, Goldstone-type excitations [49], which we expect to lead to the
restoration of the broken continuous symmetry in and below a lower critical dimension of two.
By contrast, fluctuations destroy the percolation transition only at and below the lower critical
dimension of unity.

While there are these apparent distinctions between the percolation and vulcanization ap-
proaches, especially in low dimensions, there is also evidence in favor of some sort of sharp corre-
spondence between the physics of percolation and vulcanization coming from the computation of
critical exponents near the upper critical dimension. This apparent dichotomy can, however, be
reconciled if we carefully delineate between three logically distinct physical properties pertaining
to RCMSs and other randomly constrained systems:

(i) Macroscopic network formation (by which we mean that constraints are present in sufficient
density to connect a nonzero fraction of the constituents into a giant random molecule);

(ii) Random localization (by which we mean the change in thermal motion of a nonzero fraction of
the constituents from wandering throughout the container to fluctuating only over finite distances
from their random mean positions); and

(iii) The acquisition of rigidity (by which we mean the emergence of a nonzero static shear modu-
lus).

Within mean-field theory (and hence above six spatial dimensions), these three properties go hand
in hand, emerging simultaneously at the phase transition. At and below six dimensions they appear
to continue to go hand in hand (although, strictly speaking, we have not yet investigated the issue
of the acquisition of rigidity beyond mean-field theory) until one reaches two dimensions where we
believe this broad picture will change (as we shall discuss shortly). Thus, it appears that, within the
limited sphere of issues concerning amorphous solidification that percolation-based approaches are
capable of addressing, such approaches do not lead one astray. In other words, the superposition of

thermal fluctuations on the positions of the constituents of the macroscopic network that emerges
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as the constraint density is increased towards the phase transition does not lead to any changes in
the critical exponents governing percolation-type quantities: disorder fluctuations appear to play a
more important role than do thermal fluctuations, as far as the percolative aspects of the critical
phenomenon are concerned.

This brings up the interesting issue of the nature of the vulcanization transition and its relation-
ship with the percolation transition as the dimensionality of space is reduced to the neighborhood
of two spatial dimensions, two being the lower critical dimension of the vulcanization transition.
(The ideas reported in this paragraph result from an ongoing collaboration with H. E. Castillo [82].)
Indeed, the case of two dimensions is especially fascinating in view of the fact that there is a conven-
tional percolation transition in two dimensions, whereas the thermal fluctuations are expected to be
sufficiently prominent to destabilize the amorphous solid phase, in which case the macroscopic net-
work formation no longer occurs simultaneously with the random localization of constituents of the
network. It is tempting to speculate [82] that in two dimensions an anomalous type of vulcanization
transition (not accompanied by true localization) continues to happen simultaneously with perco-
lation transition. As the constraint density is tuned from below to above criticality, the amorphous
solidification order parameter would remain zero, whereas the order-parameter correlations would
change from decaying exponentially to decaying algebraically with distance. One might say that
(constraint-density controlled) cluster fragmentation (rather than the thermal excitation of lattice
defects, as in regular two-dimensional melting) would be mediating the melting transition. If this
scenario should happen to be borne out then, at sufficiently high crosslink densities one would have
a quasi-amorphous solid state—the random analogue of a two-dimensional solid [83]—exhibiting

quasi-long-range positional order but of a random rather than regular type.
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Chapter 4

Connecting the vulcanization
transition to percolation:
Renormalization-group analysis to all
orders in 6 — d

4.1 Introduction and overview

In Chap. 3 we employed the momentum-shell RG scheme to investigate the critical properties of
the vulcanization transition to the first order in 6 — d [52], and found the critical exponents, at
this order, to be the same as those governing physically analogous quantities in the percolation
transition. In addition, we discussed the intimate relationship (which has long been anticipated on
physical grounds [84, 8, 26]) between the vulcanization transition and the percolation transition, via
a discussion of mean-field results, a detailed analysis of the physical significance of the vulcanization
order-parameter correlator and a comparison of the field-theoretic formulations of the vulcanization
transition and the percolation transition. The next step, naturally, is to go beyond first order in
€, and to seek a definite conclusion as to whether the vulcanization transition and the percolation
transition belong to the same universality class. The present chapter aims to answer this question.
In doing so, we first carry on the RG analysis of the vulcanization transition to second order in €, by
using a field-theoretic RG method instead of the momentum-shell method; the latter would become
very awkward if used beyond first-order RG analysis. As shown in App. C, we find that the critical

exponents turn out to be the same as those of percolation transition, not just to order e, but also
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to order £2. Then, motivated by the £ RG results, we develop an all-orders perturbative approach,
which, in essence, constructs a mapping between the relevant operators in the vulcanization field
theory and those in the percolation field theory, to relate the critical properties of the vulcanization
transition and the percolation transition. We shall focus on this all-orders approach in the present
chapter, and relegate the second-order RG calculation to App. C.

The central result of this chapter is the explicit reduction of certain basic critical properties of
the vulcanization transition to equivalent basic critical properties of the percolation transition. As
we shall see, this reduction can be accomplished via an exact diagrammatic analysis of the complete
perturbative expansion of the appropriate vertex functions of the vulcanization transition. These
are shown to furnish, in the replica limit, precisely the field-theoretic formulation of the percolation
transition due to Houghton, Reeve and Wallace [25]. Hence, we establish that the critical properties
of the vulcanization transition and the percolation transition are identical, not just to first order
but to all orders in the departure of the spatial dimension d from the upper critical dimension.

It is worth observing that the vulcanization transition and the percolation transition do, nev-
ertheless, represent distinct physical phenomena. This is exemplified, e.g., by the amorphous solid
state that emerges at the vulcanization transition, which does not have an evident counterpart
in percolation transition. Another point of distinction is revealed by the role of fluctuations in
low-dimensional systems, which are expected to have qualitatively different impacts on the states
emerging at the vulcanization transition and the percolation transition [85]. Yet another point of
distinction concerns the nature of the degrees of freedom involved in the description of the vul-
canization transition and the percolation transition. The former arises in systems having both
quenched and equilibrating randomness, whereas the latter takes place in systems involving just
one type of randomness (typically taken to be the quenched randomness); see Ref. [85].

We note that Janssen and Stenull [62] have arrived at, inter alia, essentially the same results
as those contained in the present chapter via a related approach, conducted independently of and

simultaneously with the present work.
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4.2 Demonstrating the equivalence of the critical properties of

the vulcanization and percolation transitions

Our analysis is based upon the minimal model of the vulcanization transition, Eq. (4.1), introduced

in Chap. 3

1 1 S . 1 g -
S(Q) = T > (7’0+ k| >|Q(’f)| t a3 > Q) ko) Qk3) 6, o s
kcHRS k1 k2, ks €HRS
(4.1)
To ease comparison with the HRW field theory of the percolation transition, the coefficients and

fields featuring in S are not defined exactly as they have been in the preceding chapters [86].

4.2.1 Overall strategy

We now explain the strategy that we shall use to relate the vulcanization transition and the per-
colation transition. We shall focus on the replica limit of the long-wave-length behavior of the
two- and three-point vertex functions, Fg)(iﬁ) and T (k1, ko) in the vulcanization field theory.
The physical significance Fg)(l%) as a probe of connectedness has been elucidated in Sec. 3.2 [52].
Now, the symmetry of the vulcanization field theory dictates that the only suitably invariant term

quadratic in the wave vector k is k - k (recall that bk k=k=k"kK"+k' - k' +-. . +k". k™).

Thus, in a long-wave-length expansion for F%Q)(l%), we have

5 R 1 " 9 0 . ..
(2) - 1@ - 2 . 2 \r®
)7 (k) 7 (0) + 1 (;:0 (aka aka> )7 (k) - k + (4.2)
= A, +Bpk-k+--- . (4.3)

As the upper critical dimension for the vulcanization transition is six, and this is the dimension
about which one may imagine expanding, general renormalizability considerations demand that
just these two vertex functions (F,(f) and F,({g)) contain the primitive divergences, and do so via the
constants A,, B, and C), = T (0,0) (see Ref. [87)).

Having identified the quantities central to a renormalization-group analysis of the vulcanization
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transition, we shall establish that these quantities are identical, in the replica limit, to the corre-
sponding quantities in percolation theory, more specifically, the one-state () — 1) limit of Potts
field theory, the Hamiltonian of which is shown in EQ. (1.9). To do this we shall make use of a
convenient representation of the critical properties of percolation theory, viz., the HRW field theory
representation [25]. So that we know what we need to make contact with, we write down the HRW

Landau-Wilson Hamiltonian, Eq. (1.11), again,
W= [ s {068 - V0P 4 prl? - )+ Slo 40P} (4.4

Here ¢ is an ordinary field but ¢ is a ghost field, both of which residing in d-dimensional space. As
HRW [25] have shown, provided one enforces the rule that only graphs that are connected by ¢-lines
are included (an example of this rule is given in Sec. 1.4.3, Fig. 1.6) , the two- and three-point ¢
vertex functions are identical (order by order in perturbation theory in the coupling constant g) to
those of the one-state (i.e. percolation) limit of the Potts model.

Our strategy for demonstrating the equivalence of the critical properties of the vulcanization
and percolation transitions is as follows. Consider the standard Feynman diagram expansion for
the two- and three-point vertex functions of the vulcanization field theory in powers of the coupling
constant ¢g in the Hamiltonian (4.1).

(i) To deal with the constraint that the internal wave vectors in the resulting diagrams reside in
the HRS, we relax this constraint on summations over internal wave vectors but compensate for
this by making appropriate subtractions of terms.

(i) Next, we observe that all diagrams for the two- and three-point vertex functions can be organized
into two categories: those in which there is at least one route between every pair of external points
via propagators having unconstrained wave vectors (which we call freely-connected diagrams); and
the remaining diagrams, in which there is at least one pair of external points between which no
paths exist consisting solely of propagators having unconstrained wave vectors (which we call freely-
unconnected diagrams). Having made this categorization, we show that the appropriate version of
wave-vector conservation renders the freely-unconnected diagrams negligible in the thermodynamic
limit, leaving us with a representation that is already reminiscent of the HRW approach.

(iii) At this stage we have reduced the construction of the two- and three-point vertex functions
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to the computation of freely-connected diagrams only. Next, via a straightforward combinatorial
analysis, we show that, in the replica limit, only a small class of diagrams survive.

(iv) Finally, we explain how, again in the replica limit, the values of the remaining diagrams are
precisely those occurring in the HRW prescription for percolation.

We now set about implementing this strategy.

4.2.2 Relaxing the constraint to higher replica sector wave vectors

In the vulcanization field theory the internal wave vectors occurring in the Feynman diagrams
are constrained to lie in the HRS. In order to perform summations over these wave vectors, it is
convenient to work with the continuum of wave vectors (i.e. to take the thermodynamic limit) rather
than the discrete lattice of them. In order to be able to take this limit, we re-express summations
over HRS wave vectors in terms of unconstrained summations over (n + 1)d-dimensional wave
vectors, together with further unconstrained summations over d-dimensional wave vectors (and
certain trivial additional terms). In what follows, we use {é“}7_, as the collection of unit vectors
in replicated wave-vector space, so that, e.g., a generic vector p can be expressed as Y »_,p®é®.

We note that for a generic function F'(k) we have

SRk = Y 1—(225,;,@&)—5,;,0 F(k) (4.5)

keHRS k a=0q7#0
n
- 3 (1 () + 0o 4o
i a=0 q

a=0 q¢

= Y F(k)->_ Y F(0,...,0,q%0,...) + nF(0), (4.7)
i

which effects the re-expression of the summations just described. Note that, as it always comes
with the factor n, the § o term will vanish in the replica limit, and can therefore be safely ignored.
We shall refer to the wave vectors included in the term ), >, as lower replica sector (LRS) wave
vectors. Via these steps one can relax a constrained summation over HRS wave vectors, instead

freely summing over all replicated wave vectors, provided one compensates by augmenting the

71



summand with the factor

1- Z > 6 qen - (4.8)

a=0 q
How does this constraint relaxation manifest itself in the setting of Feynman diagram compu-

tations? One simply augments every internal propagator V"G (k) with a factor (4.8):
= ]. _ . 1 - Za Zf‘ 6]%,qé0¢
ro + |k|? ro + |k[?

L1 znjz%qéa. (4.10)

o + |]A§|2 ro + |i€|2 a0 q

Go(

P bl
N—

How this decomposition is expressed diagrammatically is shown in Fig. 4.1.

Figure 4.1: Decomposition of an HRS propagator (indicated by H) into an unconstrained propagator
(the unadorned line), less an LRS propagator (indicated by L).

In this manner, each HRS internal line in an original Feynman diagram can be decomposed into
an unconstrained internal line, less an LRS internal line. Thus, the various vertex functions can
be expressed in terms of Feynman diagrams composed of unconstrained lines together with LRS
internal lines. Note, for future reference, that physically meaningful vertex functions have external
wave vectors in the HRS.

We illustrate this decomposition for the case of a simple diagram in Fig. 4.2. More generally,
we arrive at the following modified Feynman rules for the vulcanization field theory:

(i) Write down all diagrams arising from the original theory. In these diagrams all wave vectors are

constrained to the HRS.
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(ii) Replace each diagram with the collection of diagrams obtained by allowing each internal line
to carry either an unconstrained replicated wave vector or a LRS wave vector. (Thus, an original
diagram with L internal lines spawns a total of 2% diagrams.) Identically-valued diagrams can be
represented by a single diagram, together with a suitable combinatorial factor (see, e.g., the factor
of 2 in Fig 4.2).

(iii) Provide a factor of —1 for each LRS internal line.

From now on, when we say Feynman diagrams we mean those composed of unconstrained inner
lines together with LRS internal lines. At this stage we observe that the combinatorics of our
diagrammatic expansion coincides with those of the HRW expansion, provided one identifies the
internal unconstrained and LRS lines of the vulcanization theory with, respectively, the correspond-

ing internal ¢- and -lines of the HRW representation.

[

]
=©—2+

Figure 4.2: Decomposition of the one-loop diagram for the two-point vertex function. On the
right-hand side of this equation, the first and second diagrams are freely-connected diagrams, and
the third is a freely-unconnected diagram. Dashed lines denote amputated external HRS bare
propagators.

We have, however, yet to show that the diagrams removed by hand in HRW can be safely
omitted from the vulcanization field theory, and that the numerical values of the (replica limits of)
the vulcanization diagrams are identical to those of the HRW diagrams. We shall establish these

facts in the following subsections.

4.2.3 Elimination of freely-unconnected diagrams

We remind the reader that in the HRW theory for the two- and three-point ¢-field (i.e. the physical)

vertex functions, one is instructed to remove, by hand, those diagrams in which there is at least one
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pair of external points between which no paths exist consisting solely of ¢-field propagators. The
corresponding diagrams in the vulcanization theory are those in which there is at least one pair of
external points between which no paths exist consisting solely of propagators having unconstrained
wave vectors, i.e., freely-unconnected diagrams. We now show that these freely-unconnected dia-

grams of the vulcanization theory automatically vanish in the thermodynamic limit.

replica 0
&0
)
L]
J

replica 1

replica 2

Figure 4.3: Schematic illustration of a piece of a diagram in the vulcanization field theory obtained
by cutting LRS lines in a freely-unconnected diagram. Note that the wave vector k flowing through
the external point lies in the HRS. The shaded circle represents any way to connect the exhibited
lines using the cubic interaction vertex, unconstrained propagators and LRS propagators.

To do this, consider a generic vulcanization theory diagram for the two- or three-point vertex
functions. Observe that freely-unconnected diagrams have the following property: as there exists
a pair of external points not connected by a path of unconstrained internal lines, there must exist
at least one scheme of cutting solely LRS internal lines that causes the diagram to separate into
disconnected pieces with the external points shared amongst the pieces. As we are considering
only two- and three-point vertex functions, at least one of these pieces involves only a single HRS
external point, along with a number of cut LRS lines. A schematic illustration of such a piece is
shown in Fig. 4.3.

Let us examine the consequences of applying wave-vector conservation to this piece, noting that

the wave vector k flowing in through the external point must lie in the HRS, whereas the wave

74



vectors flowing out through the remaining (i.e. cut) lines lie in the LRS. Now, according to the
vulcanization field theory, wave-vector conservation requires that the incoming HRS wave vector k
be equal, replica by replica, to the sum of the outgoing (m = 2,3,...) LRS wave vectors flowing in

a given replica, i.e., that

m
k* = Zéa’o‘jpj , (fora=0,1,2,...,n) (4.11)
Jj=1
where a, ag, . .. indicate the replicas through which wave vectors p1, p2, ... flow. As a consequence,
because the incoming wave vector lies in the HRS, the outgoing LRS wave vectors must flow out
through more than one replica. This is the key observation, as the following example, depicted in
Fig. 4.3 reveals. Here, there are six outgoing LRS lines, two with wave vectors flowing in replica
0, one with wave vector flowing in replica 1, and three with wave vectors flowing in replica 2. For
replica 0, wave-vector conservation reads k” = p; + p2, so that, e.g., p; determines p,. Similarly,
for replica 1, wave-vector conservation reads k! = ps, so that p3 is determined. More generally,
as this special case exemplifies, the number of independent outgoing LRS wave vectors is reduced
by at least two (rather than the one that total wave-vector conservation demands) simply because
of the fact that the outgoing LRS wave vectors must flow out through more than one replica.
This, in turn, means that in the uncut diagram there are fewer independent wave vectors to be
summed over than the number of loop wave vectors suggested by simple topological counting. As a
result, additional denominators of V™! remain, even after the summation over independent wave
vectors in the uncut diagram are replaced by their thermodynamic-limit integrals, which renders
the corresponding freely-unconnected diagram negligible.

As a concrete example of the foregoing argument, we compute the third diagram on the right-
hand side of the equation depicted in Fig. 4.2. In this diagram, both of the internal lines lie in the
LRS, and the diagram does not (by simple wave-vector conservation) contribute unless the external
wave vector & has nonzero d-vector components in precisely in two replicas (e.g. replicas one and

two). In this case, the diagram makes the contribution

2
2V Gy (k1) VG (K2) (g V—2<"+1>) =202 V20D G (k') Go(K?) . (4.12)
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The coefficient 2 comes from the two ways of distributing the external wave vector on the two
internal lines. On the right-hand side, one denominator of V"*! will combine with the Kronecker -
function to maintain overall wave-vector conservation (via a Dirac d-function in the thermodynamic
limit); the other V" *! denominator (which, in usual cases, would combine with the summation over
a loop wave vector to produce an integral) makes this diagram vanish. This special case exemplifies
the general emergence, in the setting of the vulcanization transition, of the central aspect of the

HRW formulation, viz., the removal of the ¢-unconnected diagrams.

4.2.4 Replica sums and their decomposition in the replica limit

Now that we have demonstrated that only the freely-connected vulcanization field theory diagrams
contribute, we make a closer examination of these diagrams for the relevant cases of the two- and
three-point vertex functions. We begin by noting that each diagram exhibits the full symmetry
of the vulcanization field theory, viz., invariance under separate d-dimensional rotations in each
replica and permutations of the replicas. Therefore, the small-wave-vector expansion of F%Q)(l%)
given in Eq. (4.3) remains valid, diagram by diagram.

Now, the computation of any contributing diagram involves summations over a number of
independent LRS (but otherwise unconstrained) wave vectors, as well as summations over the
replicas through which these wave vectors flow. These latter summations over replicas can be

decomposed as follows:

S Faamea=| Y o+ >+ Y+ Y | Favasan (413)
oy ay ay

01,002 erey ] Q1,009,..0y Q1,009,..0y Q1,009,..0y Q1,009,000 g
all equal two distinct three distinct all distinct

where Fy, ..., 18 a generic function of the [ replica indices. Said equivalently, the summation

1
can be decomposed into: terms in which all wave vectors flow through a common replica; those in
which the wave vectors flow through two distinct replicas; etc.

Now let us make use of this decomposition. For A, and C, in Eq. (4.3) the external wave
vector is zero [87], and therefore the summand Fy, q,,..q, is invariant under permutations of the

replicas [88]. Thus, in the first term of the decomposition, F' is constant [i.e. independent of the

(common) value of the replica arguments], and hence this term contributes (n + 1)Fpp . 0. In
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the replica limit, this becomes Fpp, . 0. As for the second term, let us further decompose it into
partitionings of the set of replica indices into two subsets, the replica indices in each subset having
a common value. In each such partitioning F' is constant, and thus each partitioning contributes
(n + 1)nF, which vanishes in the replica limit. By continuing with this decomposition tactic via
tri-partitioning, tetra-partitioning, etc., we establish that all of the terms on the right-hand side of
Eq. (4.13) except the first vanish in the replica limit.

We next consider the coefficient B,,. As mentioned above, symmetry considerations dictate that

each diagram contributing to the two-point vertex function has the small-wave-vector expansion

A%dia) + BT(Ldia)]; k 4o (4.14)

where A,(ldia) and B,(ldia) are the contributions to A, and B, from the diagram in question. We

exploit the (larger than mandated) (n + 1)d-dimensional rotational invariance of the terms retained
in this small-wave-vector expansion by choosing k to be rotated into a single replica: {k,O0,...,0}.
(Although it has, until this stage, been vital to ensure that k lies in the HRS, e.g., in order
to eliminate the freely-unconnected diagrams, one is now at liberty to ignore this requirement.)
Repeating the tactic just used for the analysis of A, and C,,, with the slight elaboration needed
to accommodate the fact that the (suitably rotated) external wave vector {k,O0,...,0} breaks the
permutation symmetry group from P, down to P,. In this way, we see that the only contributions
that survive the replica limit are from the all-equal partition and, furthermore, from the case in
which all of the independent LRS wave vectors lie in replica zero.

Let us look at the diagram shown in Fig. 4.4 to exemplify the arguments above. Its contribution

to the two-point vertex function is

V30D 38" Go(p) Gola) Go (e +aé’)? Golk + pé® + aé’) (4.15)
a,f P4

For this diagram,

V3(n+1)An — Z Z Go(p) Go (q) Go (péa + Qéﬁ)S

a,8 P,d

7



L\q\
AN

Figure 4.4: A two-loop diagram for the exemplification of replica decomposition. This diagram
that has two internal LRS lines.

> Go(p) Go(a) | Y Go(pe® +qé®)® + Z Go(pe® + qé”)?
P,a ¢4

(a#?)
= Y Golp) Gola) ((n + DGo(pe” + ai®)? + (n + 1)nGo(pé + aé')*)

= Go(p) Gola) Go(pe® + qe°)? . (4.16)

On the other hand, the contribution from this diagram to B, is the coeffcient of the quadratic
term of an expansion in k of Eq. (4.15). As we have argued on symmetry grounds, rotating the
external wave vector k does not affect the extraction of this coefficient. By choosing k= keé°,

Expression (4.15) becomes,

3(nt1) Z Z Go(p q) Go(pe® + qé?)? Go(ke® + pe® + qé”)
P4 a,

3(nt1) Z Go(p (Go(pe + qé®)? Gy (ke + pé® + qé°)
+ Z GO (PE* + qé“)? Go(ké® + pé® + qé%)

+ 2 Z Go(pe® + qé®)? Go(ke® + pe® + qé°)
(a#B3,5=0)
+ > Golpe +ad’) Go(ké + pec + qe))
(a#B, gfo B#0)
= Y3t Z Go(p (Go(pe +qé”)? Go(ké® + pé® + qé?)
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+nGo(pe® + qé®)? Go(ké® + pé! + qét)
+2nGo(pé! + qé®)? Go(ké® + pée' + qé?)
+n(n —1)Go(pé! + qé?)? Go(ké® + pé! + qé?))

-3 Z Go(p q) Go(pé® + qé®)? Go(ké® + pe’ + qé’) . (4.17)

The result exhibited in Eq. (4.17) demonstrates the arguments given above for B, the last line
showing that the contribution from this diagram to B, can be extracted from the term in which

all of the independent LRS wave vectors lie in replica zero.

4.2.5 Feynman integrals and their reduction to HRW integrals in the replica
limit

Having shown that the topology and combinatorics of the vulcanization field theory diagrams for

A, B, and C), coincide with those of the HRW field theory diagrams, the task that remains is to

show that, for every diagram contributing to these coefficients, the actual value of the corresponding

Feynman integral reduces, in the replica limit, to the appropriate HRW value. That this is so can

most straightforwardly be seen by employing the Schwinger representation [89] of the powers of the

propagator, viz.,

# :/a“e”(mﬂff'z) :/051(3("0 [[eo™ (for s=1,2,...), (4.18)
(ro +[k[?)*  Jo o a=0

where the Schwinger parameter o ranges between 0 and co. Observe that Eq. (4.18) presents the
propagator in a form that is very conveniently factorized on the replica index.
Let us begin with a concrete example. In the thermodynamic limit, the diagram depicted in

Fig. 4.5 contributes to A,, a term proportional to

g / AV gy Go (k)2 Go(p)? Golk + p)?

= 94/ddk0 d’p / 010903 ¢ (91102108)70 4 —(01403)KO KD o —(02+03)p-p o205k p
010203

n
H/ddk,a —(o1+03)k*-k*

79



>

Figure 4.5: A two-loop diagram used to exemplify the decoupling of the replicas furnished by the
Schwinger representation.

=g /ddko d’p / 010903 ¢ (91102108)70 4 —(01403)KO KD o —(02+03)p-p o205k p
ag

10203

X </ddke(“1+03)k‘k>n

n—0 — — k - D — .
}g4/ddkddp/ 010903 € (o1+02+03)r0 o —(01+03)kk ,—(02403)p-P o —203k-p
010203

_ g / dk d'p Go(k)? Go(p)? Golk + p)2. (4.19)

This limiting value is precisely that occurring for the corresponding diagram in the HRW field
theory for the percolation transition.

The tactic that we have just employed, viz., the use of the Schwinger representation to decouple
the replicas from one another, provides easy and explicit access to the replica limit and, hence, to
the precise correspondence with the HRW prescription. It can straightforwardly be invoked not
only for all diagrams that contribute to the coefficients A,, and (by the same procedure) C,,, but
also for the coefficient B,,.

When considering diagrams contributing to A, and C),, we saw that what survived were terms
in which all internal LRS wave vectors flowed in a common (but otherwise arbitrary) replica. Now,
as we consider B,, there is a slight complication arising from the presence of an external wave
vector, which spoils the full P,,1 permutation symmetry. However, this external wave vector has
been chosen to lie in replica zero and, as we have shown above, the only surviving contribution is
the one in which all internal LRS wave vectors also flow in replica zero (see Fig. 4.4 and Eq. (4.17

for an example). Then, via the Schwinger representation of the propagators, and via factorization
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on the replica indices, we see that the Feynman integral, in the replica limit, is identical to that in
the HRW approach. Hence, the vulcanization transition presents not only the same coefficients Ay
and Cj of the two- and three-point vertex functions as does the HRW representation, but also the

same coefficient By.

4.3 Concluding remarks

Let us summarize what we have presented in this chapter. We have addressed the vulcanization
transition via a minimal field-theoretic model. This model is built from an order parameter whose
argument is the (n + 1)-fold replication of ordinary d-dimensional space. [The structure of this
theory should be contrasted with that of more familiar replica field theories, in which it is the
(internal) components of the field that are replicated rather than the (external) argument.] We
have considered appropriate long-wave-length aspects of the two- and three-point vertex functions
for this model, to all orders in perturbation theory in the cubic nonlinearity. Via a detailed analysis
of the diagrammatic expansion for these quantities, we have found that, in the replica limit, these
vulcanization-theory vertex functions precisely coincide with the corresponding vertex functions of
a certain field-theoretic representation (due to Houghton, Reeve and Wallace) of the percolation
transition. Hence, percolation theory correctly captures the critical phenomenology the liquid and

critical states of vulcanized matter, just as has long been conjectured.
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Chapter 5

Density-correlator signatures of the
vulcanization transition

5.1 Introduction and basic ingredients

In the present chapter, we investigate the properties of correlators that solely involve the local
monomer density. We are motivated to explore the properties of these density correlators in the
context of the vulcanization transition for the following reasons. First, from the theoretical per-
spective, the natural collective coordinate from which to view the vulcanization transition is not the
local density; rather it is the amorphous solid order parameter [see (1.12)], which becomes nonzero
as the amorphous solid state is entered and whose correlator-decay properties directly mark the
onset of amorphous solidification. However, as we shall discuss further below, from the perspective
of experiment, the amorphous solid order parameter is rather more elusive than one would like, the
most direct way to measure it being via incoherent quasi-elastic neutron scattering, whereas probes
that couple to the density are more plentiful. Second, density correlators closely related to the ones
we shall be considering also feature in the diagnostics of “non-ergodic media” studied by Pusey,
Van Megen and collaborators in their work on amorphous states of colloidal and gel systems [90],
as well as in certain recent approaches to structural glasses [91]. It would be interesting to compare
the behaviors of these density correlators in different physical situations. For these reasons, we
wish to examine these density correlators in the vicinity of the vulcanization transition, and the
extent to which they can provide access to both the structure of the amorphous solid state and

the long-ranged amorphous solid order-parameter correlations that develop near the vulcanization
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transition. Along the way, we shall explore the relationship of these density correlators to various
experimental probes, and the connections of these density correlators with related studies by other
researchers.

Let us now turn to the issue of the order parameter for the vulcanization transition, Eq. (1.12).

We remind the reader that it is the following function of A wavevectors {k!, k2, .- k4}:
1Lt
[N Z/O ds (expik’ - c;(s)), {expik? - ¢j(s)), -~ (expik? - cj(s)>x]. (5.1)
j=1

Why is the amorphous solid order parameter measurable in neutron scattering experiments? In
quasi-elastic neutron scattering the incoherent contribution of the scattering cross-section is pro-
portional to

N o
<Z/0 ds exp (iq . Cj(s,O)) exp ( —iq - cj(s,t)>> ) (5.2)
j=1

X

where c;(s,t) is the position of the monomer s at time ¢, the ¢ — oo limit of the correlator being

proportional (up to disorder averaging) to a special case of Eq. (1.12), viz.,

%jil/ol ds<expiQ'Cj(3)>X<eXp —iQ'Cj(3)>X . (5.3)

On the other hand, in several other experimental techniques, such as those to be discussed below,

it is certain form of correlator involving the local monomer density p(r,t), which is defined via

N oM
p(r,t) = ;/0 dsd(r —cj(s,t)) (5.4)

that is probed. One frequently-measured correlator is the auto-correlation function of the local
density (p(x,0) p(y,t))y, or equivalently (p(q,0)p(—q,?))y, where p(q) is the Fourier transform
of p(x), i.e., p(q) = [d% p(x)exp(—iq - x) [92]. For example, in neutron scattering experiments
this quantity is proportional to the coherent part of the quasi-elastic neutron scattering cross-
section (see, e.g., Ref. [32], Sec. IIIE), and in dynamical light scattering experiments, such as those
performed on “non-ergodic” media by Pusey and van Megen [90], this quantity is proportional

to the intermediate scattering function (also known as the dynamical structure factor) F'(k,t).
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(The average over quenched disorder [---] in the present work essentially plays the role of the
ensemble average (---)p of Ref. [90].) The present theoretical framework is a static equilibrium
framework and, as such, is not suitable for computing dynamical correlators. However, by using
the cluster property (i.e. the fact that the connected correlators vanish for ¢ — oo) we see that the
long-time limit of the density-density auto-correlation function is built from the equilibrium entity
(p(x))y (p(y¥))y or, equivalently, its Fourier transform (p(q)), (p(—q))y, an entity that is calculable
(up to disorder averaging) within our static equilibrium framework. In fact, our approach to the
vulcanization transition is capable of calculating precisely this kind of quantity and, therefore, of
providing contact with experiments.

As our results for density correlators are relatively straightforward, we first report the results,
deferring the construction and operation of the necessary theoretical machinery to subsequent sec-
tions. Specifically, we find that:

(i) The usual (i.e. disorder-averaged) density-density correlator [(p(q)p(—q))y] is insensitive to the
vulcanization transition, depending only analytically (i.e. smoothly) on the constraint density, both
at the level of mean-field theory and beyond (i.e. to one-loop order).

(ii) The density-density correlator involving two thermal averages, [(p(q))y (p(—a))y], is zero in the
liquid phase but becomes nonzero, continuously, as the system enters the amorphous solid phase.
This behavior is a manifestation of the freezing-in of random density fluctuations, which is the
hallmark of the amorphous solid state. This correlator turns out to be proportional to the order
parameter (at least for weak coupling between the density and the order parameter fluctuations).
As the order parameter encodes the fraction of localized particles and the distribution of localization
lengths, this result indicates that these physical diagnostics are accessible via this density-density
correlator.

(iii) The four-density correlator involving two thermal averages, [(p(k)p(—k))y(p(a)p(—Qq))y], Te-
alizable as lim;_,[(p(k,0) p(—k,0) p(q,t) p(—q,t))y], becomes long-ranged as the vulcanization
transition is approached from the liquid side. We exhibit this phenomenon at the level of mean-
field theory.

(iv) The two density-chanel signatures of the vulcanization transition given in (ii) and (iii) also pro-

vide a means for identifying certain critical exponents at the vulcanization transition, such as the
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gel-fraction exponent 3, and the correlation-length exponent v. Therefore, these density signatures
provide another avenue for accessing experimentally the critical exponents of the vulcanization

transition.

5.2 Field-theoretic formulation: Minimal model and coupling to

density field

The approach that we shall adopt to study these density correlators is based upon the minimal
model, Eq. (2.7). We now extend the effective free energy, Eq. (2.7), by including the field R that is
associated with spatial monomer density fluctuations, i.e., R = Z;vzl fol ds expik - c;(s) [93]. The
field R takes as its argument 1RS replicated wavevectors ké®*. (We remind the reader that {é*}"_,
is the collection of unit vectors in replicated space, so that, e.g., a generic replicated vector p can
be expressed as > - _, p*é®.) We incorporate the energetics of the 1RS fields R(ké*) [94], and add
the significant symmetry-allowed cubic term that couples the order-parameter and density fields,

thus arriving at

h . . .
Fa(L,R) = S(Q)JrﬁllRS(R)—N Z R(k1) R(k2) QE3) 64 4 hyiia oo (5.5)
AI%3A€HRS
k1,ko€1RS
1 C o~ .
IRS _ L 2, 72 2
SR = 5 3 (7 P IRGB (5.6)
kelRS

The term F!RS(R) is the effective free energy for the density fluctuations; in principle, it also
includes nonlinear couplings between the R fields. This effective free energy term already incor-
porates the effects of the short-range repulsion between macromolecules. The parameter r is the
correlation length for density fluctuations. (In the context of a dense melt, it is simply deter-
mined by the monomer density and the effective excluded-volume interaction strength [5].) The
correlation length r remains large and varies analytically (with the constraint density) across the
vulcanization transition, and the R field remains a non-ordered field. This is representative of the
fact the disorder-averaged physical monomer-density is homogeneous in both the liquid state and

the amorphous solid state.
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In addition to the coupling presented in Eq. (5.5), there is one further term at cubic order that
couples the R and  fields, i.e., the vertex QQR consisting of two HRS fields and one 1RS field. It
can readily be shown by dimensional analysis that both this cubic vertex and that given in Eq. (5.5)
are irrelevant with respect to the fixed points of HRS €2 theory near d = 6 and, therefore, the critical
properties of the vulcanization transition (i.e. the fixed point structure, the flow equation and the
critical exponents) are not affected by the coupling to density fluctuations (at least near d = 6).
Based on the effective free energy (5.5), our approach is to explore the correlators of the 1RS fields
(and hence the density correlators), taking into account the effects of the vulcanization transition
in the HRS fields by treating what happens in the HRS as “input” to be added to the effective free
energy of the 1RS theory, and working perturbatively (i.e. effectively we assume that the coupling
h is small).

The reason why we ignore the cubic coupling QQQR, besides its irrelevance in the RG sense, is
that it does not contribute to the density correlators that we are interested in (at least to one-loop
order). There are two points to make in this regard. First, at the mean-field level, the HRS field can
be viewed as an external source for the 1RS field in the cubic coupling QQR. Due to translational
invariance, (Q(k1)Q(k2))S = 0. Therefore, on average, the term QQR will not generate a non-
zero (R). [{---) denotes an average weighted by the replicated effective free energy presented in
Eq. (5.5).] Second, at the one-loop level (and beyond), this term will renormalize the coefficient
r~2 (in a singular way) but, as has already been shown in App. A.2.2, at least to the one-loop level,
there is (in the replica limit) no contribution to the density-density correlator coming from HRS
critical fluctuations via this kind of vertex.

In order to help make the physical content of the results that we shall present clear, we pause
to give the relationship between the physical density correlators and the R correlators:

lim <R(ké0‘)R(—kéf3)> _ [<p(k) p(—k)>x] ; for a = 3, -

0 © | [4000) (oK), |5 for B,

where ¢ denotes that a correlator is connected. (Such relationships can be established by following
the replica technique used in Appendix A of Ref. [32].) On the right hand side of Eq. (5.7), the

correlators differ in the locations of the thermal averages; on the left hand side they differ in their
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replica indices, the former being diagonal and the latter being off-diagonal in replica space.

5.3 Freezing-in of density fluctuations

Now that we have constructed an extended model containing not only the critical order parameter
(i.e. HRS) fields but also the noncritical replicated density (i.e. 1RS) fields, we proceed to study the
effect of critical HRS phenomena on the density fields, treating the latter at the tree level. The basic
mechanism at work is that the order parameter field, which is capable of ordering spontaneously,
couples to the density fluctuations via a cubic vertex that is replica-off-diagonal as far as the density

S

fields are concerned. A non-zero value of Q = ()%, as occurs in the amorphous solid state due to

3

spontaneous symmetry breaking in the HRS, contributes replica-off-diagonal terms to the “mass
matrix” of the R-field and, hence, leads to the existence of nonzero replica-off-diagonal density-field
correlators.

In order to see this more clearly, we replace ) by its expectation value plus fluctuations, i.e.,

we write Q = Q + §Q and, hence, arrive at the effective free energy

. — h . . .

Fa(B,Q) = SO +FCRY -+ Y Rlki) R(k2) 0ks) 0 g, 10
k3€HRS
k1,ko€1RS

FIRS(RQ) = % % <(7“_2 + §k2)6a’5 — hO(~ké' +ke?)(1 - 5%5)) R(ké®)R(—ké?)
k£0 a,8=0
b (5.8)

To arrive at this result, we have taken advantage of the facts that both F,, and Q are replica
(i.e. permutation) symmetric, and that Q(—k;é* — kyé?) is macroscopically translational invariant
(i.e. it contains a factor of dx, k,.0) [51].

We now aim to compute the correlator (R(ké%) R(—ké?)). By treating h as a small quantity

and expanding perturbatively, a direct calculation yields

j:rll RS

<R(kéa)R(—ké5)> - <R(kéa) R(—ké5)> + O(h?). (5.9)

To obtain the correlator at the tree (in R) level, we neglect the nonlinear self-couplings of R and
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then invert the coefficient matrix of the quadratic term in Eq. (5.8). Thus, in the n — 0 limit we

arrive at
N/2 7 for o = f3;
r=2 + Sck?
lim <R(ké0‘) R(—kéﬁ)> - (5.10)
n—0

NhQ/2(—keé! + keé?)
(r=2 + 5ck?)((r=2 + 5ck?) + hQ(—ke! + ké?))’

for a # B.

In the liquid state we have Q = 0, and therefore (R(ké®) R(—ké®)) = 0 (for a # (). However, in

the amorphous solid state, according to Egs. (2.20) and (2.21),

2b

ﬁ(klél + k2é2) = q5k1+k2,0 UJ( E

(k3 +k3))#0, (5.11)

and therefore (R(ké®) R(—ké?)) # 0 (for a # B). Here, the number ¢ is the gel fraction and the
function w(|k|), which decays rapidly with increasing wavevector magnitude on the characteristic
wavevector scale 7 [52], encodes the distribution of localization lengths. The simplest setting for
the density-density correlator emerges near the vulcanization transition, where ¢ is small and w(|l%|)

is negligible unless |k| < 7¥. In this regime, by making use of Eq. (5.7) we find that
glig ~ g , DY g q

0, liquid;
[ (p9)), (p(-K)), | = {

(Nhrt2)Q(—ké! 4+ ké?) = (Nhr*/2)7P w(|k|7™), amorphous S(zl5idl.2)

On the other hand, the diagonal correlator [(p(k)p(—k)), | does not vary with 7 (and hence varies
smoothly with the physical constraint density).

Deeper into the amorphous solid state, the order parameter Q does not decay so rapidly with
k, and hence the quantity [ (p(k)), (p(—k)), |should remain appreciable (and thus experimentally
accessible) over a wider range of k. Now, we expect Eq. (5.10) to remain valid, provided the
coupling A is small and both the wavevector dependence of h and the finer wavevector dependence
of 1RS bare correlator are incorporated. (We have omitted the wavevector dependence of h so
as to simplify our presentation.) Under these circumstances, the wavevector dependence of the
replica-off-diagonal correlator has the possibility of exhibiting additional features, representative of
the ordinary density-density correlator [(p(k)p(—k)),], superposed on the decaying trend due to

the factor w (i.e. due to random monomer localization) [96].
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5.4 Inherited criticality of density correlators

In the HRS field theory, the vulcanization transition is signaled in two ways: (i) via the emergence of
a nonzero order parameter, and (ii) via the divergence of the correlation length of order-parameter
fluctuations. We have already studied the replica-off-diagonal density correlator, which is closely
related to the order parameter and becomes nonzero upon entering the amorphous solid state. We
now examine the four-field density correlator [(p(k) p(—k)), (p(pP) p(—P))y], which has the property

that it becomes long-ranged at the vulcanization transition.

%é‘ﬁ ke
%

LH]

ke®— pe

A éo AN

Figure 5.1: Divergent 4-field tree level density correlator. The solid line labeled with “H” indicates
the bare HRS correlator; The solid lines labeled with “1” indicate bare 1RS correlators.

We calculate the correlator mentioned in the previous sentence at the tree level (with respect
to h vertices) in the liquid state and at the vulcanization transition itself: at the tree level the
Feynman diagram shown on Fig. 5.1 is the only contribution, and gives

[p(k) p(=K))y (p(P) p(—P))x] = lim (R(ke®) R(—pé”) R(~ké®)R(pé"))
2 2
o (h/N)*{(R(ke®) R(—ke®)) "+ } {(R(pe”) R(~pe”)) ™" }

X (ke — pe?)Q(—ke® + peéf))S. (5.13)

As anticipated, this density correlator becomes long-ranged at the vulcanization transition, due to
the factor of the HRS order-parameter correlator () which itself becomes long-ranged at the

vulcanization transition.
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5.5 Discussion and conclusions

We have studied density-sector correlators that furnish analogs of the two principal order-parameter
signatures of the vulcanization transition: the off-diagonal density correlator [(p(q))y (p(—q))y]s
which becomes nonzero as the amorphous solid state is entered; and the four-field correlator
[(p(k) p(=k))y (p(P) p(—P))x], which becomes long-ranged at the vulcanization transition. We have
shown that these density correlators provide useful information about both the emergent amorphous
solid state and the critical properties of the transition itself. They provide schemes for accessing
experimentally the kinds of quantities that have been found useful in theoretical investigations of
the liquid, critical and amorphous solid states, e.g., of vulcanized matter. We are not aware of any
explorations of such signatures in the density correlators via percolation/gelation approaches to the
vulcanization transition.

Although, as we have seen, the off-diagonal density correlator [(p(q))y (0(—q))y] is closely re-
lated to the order parameter of the vulcanization transition, its non-zero value being induced by
a non-zero order parameter, the off-diagonal density correlator can be used to diagnose a more
general class of systems. By looking at the microscopic definition of the order parameter for the
vulcanization transition, Eq. (1.12) (especially for the special case in which only two thermal aver-
ages are involved), we see that it involves only a single summation over monomers and, therefore,
the order parameter cannot be expressed in terms of local monomer densities. In essence, the or-
der parameter signals the amorphous solid phase via its detection of all individual monomers that
are localized (and, owing to the explicit crosslinks, distinguishable). On the other hand, the off-
diagonal density correlator [(p(q))y (p(—q))y] signals the amorphous solid state via the detection
of the frozen structure of the local density fluctuations. In RCMSs, the localization of monomers
invariably induces the freezing of this structure, so these two quantities are equivalent. However
in systems such as glasses, the (local density) structure is, presumably, frozen but each individual
particle is able to wander throughout the system, given enough time, and therefore all particles
retain their indistinguishability [95]. A quantity essentially identical to the off-diagonal correlator
considered here has been employed by Mézard and Parisi [91] in the context of their theoretical
approach to glassy systems. A similar quantity is employed in the diagnosis of the freezing-in of

structure in colloidal glassy systems and gel systems in the dynamical light scattering experiments
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of Pusey and Van Megen and collaborators [90, 97]

Vulcanized matter certainly is different from glassy systems, inasmuch as it possesses explicit
quenched disorder in the form of permanent random crosslinks. Because of this, it affords a frame-
work in which the off-diagonal density correlator and other density correlators are directly calculable
in a well controlled way, both near the transition and in the amorphous solid state. Despite the
difference with glassy systems, we hope that results such as those presented here in the setting of
vulcanized matter will not only be useful but also shed some light on the more difficult problem of

glassy systems.
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Appendix A

Derivation of the Ginzburg criterion

A.1 Inverse susceptibility

In this Appendix we calculate the one-loop correction to the two-point vertex function F(2)(/;‘),

using the Hamiltonian (2.7). To do this, we first calculate the self-energy %, (k) (i.e. the sum of
all two-point one-particle-irreducible amputated diagrams), in terms of which T® (k) is given by

r@(k) = Go(k)™! — Zu(k)| To one-loop order, ¥, (k) is given by the amputated diagram

n—0"
shown in Fig. 3.1, i.e.,
Sa(k) =18¢> > Golk) Go(kr — k). (A.1)
AchEHRS
(k—ki €HRS)

Let us emphasize the meaning of the notation: one is directed to sum over all replicated wave
vectors ki € HRS subject to the constraint that k—Fk e HRS; one should also bear in mind the
fact that the external wave vector k lies in the HRS. This constrained summation can be expressed
in terms of several unconstrained summations (for cases in which k has nonzero entries in at least

three replicas, i.e., lies in the 3*RS) as

n

Y. O(n) = Y O(k)=> > Ok)|. _  +nO(k)|
ky€HRS PN a=0 p 1=pe =
(k—kq €HRS)
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for any O(k;). When k belongs to the 2RS [e.g. k = (0,1',12,0,...,0), 1! # 0 and 12 # 0] there is

a slight modification of Eq. (A.2) and, instead, we have

> o) = Yotk - Y Y 0t|,_ wnot|, - Yo,
k1 €HRS ky a=0 p a=0 p
(k—k1 €HRS)

+n0(k1)‘fﬁ e O(kl)‘fﬁ et O(kl)‘h:pé? : (A.3)

For the moment, let us focus on the case of k € 3TRS. By making use of Eq. (A.2), and subsequently

transforming each unconstrained summation into an integral, we obtain

Sa(k) = 1897 (V! / A Go i) Go(ky — B)

—ZZV/ddpGo pe) Go(pe® — ) +2n.Go(0) Go(h)).  (A4)

The limit of the validity of the Landau theory (i.e. the tree-level approximation) can be ascertained
by enquiring when the loop corrections to the inverse susceptibility become comparable its tree-
level value. Thus we take the long-wavelength limit of the correction (A.1) via a sequence of wave

vectors k lying in the HRS, obtaining
S (k)i = 18¢° (V"+1 / d" Ve Go(k)? — 2(n + 1)V / d%p Go(p)? +2nG0(0)2). (A.5)

At this stage, the n — 0 limit may be taken [the reason for this is discussed in Sec. 2.2, shortly
after Eq. (2.7)]. In addition, the integral over the (n + 1)-fold replicated space goes smoothly into

an integral over the ordinary (i.e. unreplicated) space. Thus, we arrive at

S0 = lim SaBlg =187 (V [ dpGoe? —2v [ dhpGoe)).  (a0)

From this expression, we see an example of what turns out to be a typical effect of the exclusion
of the 1RS, viz., that it reverses the sign relative to the unconstrained version. By collecting this

loop correction together with the tree-level inverse susceptibility, we arrive at the result that we
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shall use to establish the Ginzburg criterion:

d

_ _ - AL _ ~ V d%p
=\ —1 Ip(2 A L 1 S = CIME I S
(NE)™ =N I( )(k)|k 5 = Go(0) N™"%(k)|j_o = —2a7 +18¢ N / C2ar +0p2)? (A.7)

We mention that when k lies in the 2RS, we need to use Eq. (A.3) instead of Eq. (A.2) in
evaluating the constrained summation. The resulting two extra terms in Z~!' turn out to be
nonextensive and non-divergent at the transition, and hence vanish in the expression for (NZ)~!
(in the thermodynamic limit ) and do not change the result for the Ginzburg criterion. [The
appearance of non-extensive terms may seem strange; it is related to the way we define our fields,

i.e. Eq. (1.21). If we rescale the fields and coefficients appropriately, as we do in Eq. (4.1) of Chap. 4,

then those terms disappear in the thermodynamic limit, as shown in Eq. (4.12).]

A.2 Subleading elements: Additional semi-microscopically

generated fields and vertices

The inspiration for the minimal model, Eq. (2.7), discussed in Sec. 2.2, comes from experience
with detailed statistical-mechanical investigations of various semi-microscopic models of RCMSs
and related systems [31, 32, 55, 56]. The field theories obtained in these investigations contain
additional fields and vertices beyond those featuring in the minimal model. Among them are: the
1RS field [variously denoted as Q(ké®) or Q%(k)], which describes density fluctuations; various
vertices that couple the 1RS field to itself and to the HRS field; and quartic or higher-order HRS
vertices. In the present section we discuss the role of these additional fields and vertices. We shall
confine our attention to effects that show up at the one-loop level. To avoid confusion we shall, in

this section, denote the bare HRS and 1RS correlators respectively by GOHRS and G})RS.

A.2.1 Subleading influences on the higher replica sector

We begin by considering the possible corrections to the HRS self-energy %, (k)| i, arising from
the additional fields and vertices. At the one-loop level, the only contributions arising from an
omitted vertex are those associated with the quartic vertex, for which there are two situations to

consider, depending on whether the loop wave vector lies in the 1RS or the HRS. Figure A.1 shows
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Figure A.1: Example of a one-loop correction to the self-energy due to a vertex omitted from the
minimal model.
the relevant diagram.

Let us first look at the contribution of this diagram when the loop wave vector lies in the HRS.

In this case, evaluating the diagram involves the constrained summation:

Z GHRS — Z GHRS Z Z GHRS ke + ’I’LGHRS(())

keHRS a=0 k
= Z GETS (k) — (n+1) Y G (k) + nGERS(0), (A.8)
k

which vanishes in the n — 0 limit.
Let us now look at the contribution of this diagram when the loop wave vector lies in the 1RS.
In this case, no critical bare correlators feature, so that the resulting contribution to %, (k)| g 18

finite. There are also contributions to 3, ( ) arising from one-loop diagrams involving two cubic

|k—>0
vertices, in which either one or both loop-wave-vectors lie in the 1RS. None of these contributions

alters the Ginzburg criterion established in Sec. 3.3.2.

A.2.2 Absence of feedback of critical fluctuations on the density-density

correlator

As we have discussed in Sec. 1.6, the 1RS field ©(ké®), which describes density fluctuations, remains
“massive” at the vulcanization transition (i.e. the coefficient of the term quadratic in this field
remains positive at the transition), and the corresponding bare correlator is nonsingular at the

vulcanization transition. We now examine the effects of HRS critical fluctuations on the correlator
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of the 1RS field. We approach this issue by studying those one-loop diagrams for the 1RS self-energy
in which at least one internal wave vector lies in the HRS; there are three types of contribution to
consider:

(i) There is the contribution associated with the diagram shown in Fig. A.1 but with the external
wave vectors now lying in the 1RS. By the same reasoning that we applied to Eq. (A.8), this
contribution vanishes in the n — 0 limit.

(ii) There are the two contributions associated with the type of diagram shown in Fig. 3.1. When
one of the internal wave vectors lies in the 1RS and the other lies in the HRS, the contribution
involves a constrained summation over k with k& € HRS and (pé® — k) € 1RS (where k is the loop
wave vector and pé® is the external wave vector). In this case, the constraints on the summation
require that k € 2RS and k = pé® + 168, where  # @ and 1 # 0. Then, the contribution to the

1RS self-energy reads

> GER G e —k) = ) Y G (per +167) Gt (-17)
keHRS B(#a) 1#£0
(pé® —k€1RS)
= n) Gi*(pe® +167) Gg™ (-1¢%) . (A9)
170 B#a

which evidently vanishes in the n — 0 limit. On the other hand, when both internal wave vectors
lie in the HRS, the contribution involves the constrained summation over & with k& € HRS and

(pe® — l%) € HRS. In this case, the contribution to the 1RS self-energy reads

Z GHRS G(})IRS (péa - ];_)

keHRS
(pé® —k€HRS)

Z GgIRS( GHRS( Z GHRS GSIRS(péa _ ]%)
keHRS keHRS
(pé®—k€e1RS)
xn, (A.10)

which also evidently vanishes in the n — 0 limit. [In the last step we have used Eq. (A.9), as well
the strategy for handling constrained summations employed in Eq. (A.8).]
We conclude that, to one-loop order, the 1RS self-energy does not acquire any singular contri-

butions due to critical fluctuations in the HRS. In this sense, the two sectors are separated in the
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neighborhood of the vulcanization transition.
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Appendix B

Derivation of flow equations within
the epsilon expansion

B.1 Implementation of the momentum-shell RG

The first step in the momentum-shell RG approach that we are adopting is to integrate out Fourier

components of the field Q(k) having wave vectors in the shell A/b < |k| < A. To do this, we define

Q< and 27, respectively the long and short wavelength components of Q(k), by

. {0, for A/b < |k| < A;
Q<(k) = ) ) (B.1)
Q(k), for 0< k| <A/b;
) { Q(k), for A/b < |k| < A;
0> (k) = ) (B.2)
0, for 0<|k] <A/b.

Then, by exchanging Q(k) for Q7 (k) and Q<(k) in Eq. (3.15) we can re-express the effective

Hamiltonian as

SUQ) = SUEN+N X (=74 k)i B - Vi), (B.3)

keHRS

VARY = Ng o Y i (27 ()97 (k) 9 (k)
k1,k2,k3€HRS

+3053) Q7 (he) Q7 (i) + 39 (1) Q< (ko) Q>(1%3)) . (B.4)
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Now, focusing on the partition function, we integrate out the aforementioned short-wavelength field

components 2~ in the context of a cumulant expansion in V. Thus, Eq. (2.5) becomes

2" o / DO exp (= S | (B.5)
ST} = ;9({9<}) —In(exp V)., (B.6)
/ﬁm exp(~NY (e %|I%|2)|Q>(l%)|2> expV

[P0 e (=N Y, (- IR G)

V)45 (V2 = 02) 4 2 (V2 =30,V +20)2 ) + OV (B.7)

In(expV), =1In

Q

Note that we have not explicitly given the factor associated with Gaussian fluctuations in the wave-
vector shell because it is nonsingular and, therefore, does not contribute to the quantities that we
are focusing on, viz., the RG flow equations.

Next, we calculate S<*f to the one-loop level by computing the cumulant expansion to o?)
and discarding operators that are irrelevant in the vicinity of d = 6. This amounts to retaining
only terms of the form of those present in the original minimal model, and thus we are in a position
to begin the task of recasting the resulting theory in its original form. The terms that must be
considered correspond to the diagrams shown in Fig. 3.3, and are computed in Sec. B.2. When

included, they produce the following intermediate form for the effective coarse-grained Hamiltonian:

S =8<— 3" KRIQEIZ = D falkr, ko, k) Q% (k1) Q% (ky) Q% (ks) Oy iyt hogd
keHRS ki,ko,k3s€HRS
(B.8)
where the functions fs and f3 can be found in Sec. B.2. In fact, only their long-wavelength parts

are needed, i.e., we shall only need the constants fQ(O), f2(1) and f?EO) in the Taylor expansions

fo(k)

fg(lgil,];,‘g,];?g) ~ f?EO) + O(l;‘%,];‘%,];‘g,l;‘l . ];?2,];?1 . ];‘3,];?2 . ]2,‘3) . (BlO)

%

1 . .
1+ S5V IRP + OGRY, (B.9)
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The next step is to rescale Q< and k via

Q<(k) = 2Q'(K), (B.11)

E = bk. (B.12)

The recasting of the theory in its original form also involves the restoration of the wave-vector
lattice, as discussed in Sec. 3.3.3. Having made this restoration, we arrive at recursion relations
for 7 and g, along with the condition that the coefficient of the gradient term be restored to its

original value:

7= (r+ fY/N)2 (e (B.13)
g = (g+ f0/N)Pp 2D (B.14)
1 = (1— fI/N)2p (-2 (B.15)

The computation of the coefficients in the recursion relations simplifies under the convenient choice
of b = 14z with x positive and very small, because it allows the approximation of the shell integrals
by the product of end-point values of the integrands and the shell volumes. Thus, we arrive at the
differential RG recursion relations (i.e. flow equations) given in the main text in Egs. (3.17) and

(3.18), along with the coefficients (3.20).

B.2 Evaluation of two diagrams

The renormalizations of 7 and the gradient term acquire a nontrivial contribution associated with
diagram (a) of Fig. 3.3, which determines fy(k) in Eq. (B.8). Thus, including the symmetry factor

of the diagram, we need to evaluate

folk) =99 Y Go(k) Go(ky — k). (B.16)
k1 €HRS
(k1—k€HRS)

We have encountered this kind of constrained summation in App. A, and we use the recipe given

there, together with the facts that the external wave vector satisfies |k| € (0,A/b) whereas the
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internal wave vectors satisfy |ki| € (A/b,A) and |k; — k| € (A/b, A). In practice, we are concerned
with the small-k behavior of fg(l%), in which case the latter two constraints are equivalent (the

difference in their effects being sub-dominant). Thus, by invoking Eq. (A.2) we arrive at

R yntl R R R
fa(k) = 9¢° (2m) (e / d™ V4 Go(ky) Go(ky — k)
T
A/b<|k|<A
& V d ~ N 7.
=) ) d?p Go(pe®) Go(pe® — k) | . (B.17)
a=0

A/b<|p|<A

Then, by expanding for small k and taking the n — 0 limit, we obtain

(0)
2

S A pd-lgg
2 d 4
/ 5+ 0(g"), (B.18)

2m)d Jap (=7 +K2/2)

9
4
A d—1 A d+1
D (_/ iJrg/ %> O(g"), (B.19
? 49 (2m)d A/b(—T+k2/2)3 d A/b(—7+k2/2)4 +0(g"), (B.19)

where Sy is the surface area of a d-dimensional sphere of unit radius.
The renormalization of ¢ acquires a nontrivial contribution associated with diagram (b) of
Fig. 3.3, which determines f3 (/%1, ko, k‘g) in Eq. (B.8). Thus, including the symmetry factor of the

diagram, we need to evaluate

I 8 N A JN
fa(ky, kg, kig) = 5(39)3 Y Golk) Golk + k) Go(k — k). (B.20)
) _ heHRS
(k+ko€HRS)
(k—kq€HRS)

This constrained sum is similar to the one analyzed in the context of Eq. (A.2), but is more lengthy,

yielding
1
P = 360% [ [ a0 G (B Golh + o) Go(F —
f3( 1y 2, 3) g (27‘(‘)(n+1)d 0( ) O( + 2) 0( 1)
AJb<|k|<A
n v . .
-3 G [ Golp) Golpe + k) Golpe ~ )
a=0 A/b<|p|<A
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n v ) A ) ) )
- Z )d / ddp Go(pea — kz) Go(p) Go(pea — kZQ — k?l)
A/b<|p|<A

V N 7 A 7. 7 AQ
— Z ) / ddp Go(pe + ]ﬁ) Go(pe + ki + k2) Go(pe )) .(B.21)
A/Jb<|p|<A

In fact, what we need is the n — 0 limit of f3(0,0,0), which is given by

7 = -9g°v

S, A a1k
"/ -+ 0(g). (B.22)

2m)? Japp (=7 + k2/2)

It is worth emphasizing that, once again, the essential consequence of the exclusion of the 1RS from
the theory. Without it, even signs of all three coefficients, fQ(O) 2(1) and fs, would be reversed, and

the fixed-point structure of theory would be completely changed.
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Appendix C

Evaluation of two-loop diagrams
contributing to the
renormalization-group analysis

Motivated by our results of the RG analysis of the vulcanization transition to the first order in e,
we proceed to calculate the second order contributions. The momentum-shell method is not well
suited for this purpose because the complexity associated with computing diagrams having loop
momentums in the momentum-shell increase dramatically as the number of loops in the diagrams
increases, even from one to two. Instead, we follow closely the field-theoretic RG method that
was used in Bonfim et al. [24], where they calculated the critical exponents of the percolation
transition to €3 on the basis of the field-theoretic Potts model, Eq. (3.37). As with the vulcanization
field theory, the non-linear term in the Potts field theory is cubic, the Potts field theory and the
vulcanization field theory have the same two-loop diagrams (in the sense of the topology of the
diagrams). The replica limit of the diagrams in the vulcanization field theory can be relatively
easily found by via the decomposition scheme discussed in Chap. 4, and the resulting expressions is
a combinatorial factor times a d-dimensional integral, with exactly the same d-dimensional integrals
appearing in the work of Bonfim et al. [24]. As a result, once we find out the combinatorial factor
for each vulcanization diagram, we can borrow the results from Bonfim et al. [24] to obtain the
critical exponents.

Below, we list all the two-loop diagrams that contribute to the two- and three-point vertex
function, as well as their values in the replica limit. After detailed calculation, we find that the

combinatorial factor for each diagram is exactly the same as that of (the percolation limit of) Potts
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Figure C.1: The one-part-irreducible two-loop diagrams that contribute to the two-point vertex
function. On the left-hand side are the vulcanization diagrams; on the right-hand side are their
corresponding values in the replica limit. The number in the front are the combinatorial factors,
the diagrams represent values taken by the diagram provided that the all the internal wave vectors
reside in the same d-dimensional space.

field theory for the diagram that is topologically the same. (In the language of Bonfim et al., in
the order of the diagrams shown in Figs. C.1 and C.2, they are: af = 2; o® = 1; 82 = 4; Ba = 2
and v = 5.) Therefore, we find that even at the two-loop level, the critical exponents are the same

as those of the percolation transition.
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Figure C.2: The one-part-irreducible two-loop diagrams that contribute to the three-point vertex
function. On the left-hand side are the vulcanization diagrams; on the right-hand side are their
corresponding values in the replica limit. The numbers in the front are the combinatorial factors,
and the diagrams represent values taken by the diagrams provided that the all the internal wave
vectors reside in the same d-dimensional space.
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