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In 1839 Charles Goodyear discovered the vulcanization of rubber: by heating natural
rubber (which is a liquid), together with sulfur, he obtained an elastic solid material. This
liquid-solid transformation was later found to entail the random crosslinking of the linear
macromolecules forming natural rubber, until the crosslink density is high enough that an
equilibrium phase transition—the vulcanization transition—from the liquid to the amor-
phous solid state occurs.

In this thesis a semi-microscopic theory of the vulcanization transition is developed, and
the emergent amorphous solid state is studied in detail, close to the transition.

In the first part of this work a derivation is presented of the free energy functional for
a system of randomly crosslinked linear macromolecules, starting from a semi-microscopic
model. Stationary points of the free energy are obtained that represent, respectively, the
liquid and the amorphous solid state. A continuous phase transition between the two states
is found to occur. It is shown that in the liquid state all monomers are delocalized, but in
the amorphous solid state, some fraction (called the “gel fraction”) of the monomers become
localized near random mean positions, and thermally fluctuate about these positions with
random r.m.s. displacements (called “localization lengths”). The distribution of localization
lengths is computed, and it is shown that both this distribution and the order parameter
exhibit simple scaling properties near the transition. Both the gel fraction and the typical
inverse localization length are found to vanish continuously at the transition.

In the second part of this work the stability of the amorphous solid state is analyzed for
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a class of systems undergoing liquid—amorphous-solid phase transitions driven by the effect
of random constraints. This class of systems includes vulcanized macromolecular systems,
as well as others, including endlinked ones. This stability analysis is performed within
two different formulations: one involving a Landau theory that is common to all systems
in the class, and another involving the semi-microscopic theory for randomly crosslinked
macromolecules (discussed in the first part of this work). The results are the same in the
two formulations. The stability matrix is obtained for fluctuations around the stationary
point corresponding to the amorphous solid state. All the eigenvalues of the stability matrix
are shown to be non-negative near the transition. In fact, they are all positive, except for a
zero mode associated with the spontaneously broken continuous translational symmetry of
the system. Therefore the amorphous solid state is found to be stable.

Signatures of the transition to the amorphous solid state include not only the random
localization of a fraction of the particles but also the emergence of a nonzero static shear
modulus. In the third part of this work, a semi-microscopic statistical-mechanical theory of
the latter signature is presented that accounts for both thermal fluctuations and quenched
disorder. It is found that the shear modulus grows continuously from zero at the transition,
and does so with the classical exponent, i.e., with the third power of the excess crosslink
density. It is also found that, quite surprisingly, the external stresses do not spoil the

spherical symmetry of the localization clouds of the particles near the transition.
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Chapter 1

Introduction

1.1 Randomly crosslinked macromolecules

1.1.1 The vulcanization of rubber

Natural rubber, a substance obtained from the Hevea brasiliensis tree, had long been appre-
ciated for being highly elastic and waterproof, but it was hampered for many uses because
it yields (i.e., it “forgets” its original shape) under even the most feeble of stresses. For
example, a sample of natural rubber will adopt the shape of the container holding it. In
other words, it is a liquid.

In 1839, Goodyear discovered how to make a better material out of rubber, by the process
of vulcanization. He found that when heating natural rubber with sulfur, the undesirable
property of creep under small stress is eliminated. Vulcanized rubber is thus a solid, which
makes it immensely more useful for practical applications than natural rubber.

Although since Goodyear’s time much theoretical work has been done about this liquid-
solid transition, and some aspects of the transition are well understood, there is still no
detailed microscopic theory of it. This thesis attempts to provide some of the building

blocks for such a theory.



1.1.2 Elastomers

Vulcanized rubber was the first historical example of an elastomer, a class of materials
characterized by their unusual mechanical and structural properties [1]. An elastomer sample
can be stretched by several hundred percent, and still will recover its original shape and size
when the external stress is removed. By contrast, metals and glasses can rarely be deformed
more than one per cent without introducing irreversibility.

This mechanical behavior hints at the structure of elastomers: their molecules must be
able to adopt widely different spatial arrangements, stretching and bending significantly in
response to stress. A long chain macromolecule at a temperature above its glass transition is a
good candidate to exhibit such a behavior. It has very many accessible spatial configurations,
which differ significantly in the spatial distances that separate the points of the chain. These
linear macromolecules must be permanently attached (crosslinked) to each other in order for
the system to be able to recover its original shape when the stress is removed. Otherwise, the
macromolecules slide past one another, and the material yields permanently under stress, as
happens for example with natural rubber.

The shear modulus of a typical elastomeric material increases approximately linearly
with (absolute) temperature. This suggests that the elastic free energy of the system is
dominated by the entropy rather than the internal energy. The thermal expansion coefficient
is negative: the material releases heat and sometimes even undergoes partial crystallization
upon stretching. This suggests that the entropy decreases when the system is stretched.

Before any detailed discussion of the thermodynamics of elastomers, let us review here

some basic facts about linear chain polymers and crosslinks.

1.1.3 Polymers

Polymer chains are macromolecules, i.e., very large covalently bonded molecules, made up

of many small, simple chemical units [4]. The individual units are called repeat units or



monomer residues, although we will mostly use the term monomers. The number of repeat
units is called the “degree of polymerization” N,. The degree of polymerization is usually
more than 100 for a molecule to be called a polymer, but it is possible to have values of the
order of 10° in synthetic polymers, and up to 10? in biological macromolecules. In Fig. (1.1)
the chemical formulas are shown for some common polymer chains.

ese — CH;— CH—CH;— ese Or |_ CH;— |N polyethylene

| — CH—CH— polystyrene

||N
©

|_ CH _CH2_|N polyvinylchloride

a

— — C—CH—CH— polyisoprene cis (natura rubber)
CH—C=—=CH—CH; |N

|
CH,

_— _ — CH— — polybutadiene
CH— CH=—=CH—CH,; |N

Figure 1.1: Some common linear polymers. The last two, polyisoprenecis and
polybutadiene, give rise, when crosslinked, to elastomeric materials in common
industrial use

Although many preparation procedures give wide distributions for the degree of poly-
merization, the distribution can be narrowed after the synthesis (for example by physical
selection, using chromatography, precipitations, etc.), or a narrow range of degrees of poly-
merization can be obtained directly by using some special methods of synthesis, such as
anionic polymerization.

In a carbon-carbon chain such as polyethylene, the length of each C—C bond and the

valence angle § between successive bonds are essentially fixed, but the angle between suc-



cessive units ¢, around the axis of the bond is not fixed. The conformation of the polymer
is determined by the values of the N, — 1 angles ¢,,. The energy V of the bond between two
monomer units is a function of ¢, that depends in its details on the specific chemical species
involved but has some generic features common to typical polymers.

In the example of polyethylene, the potential energy V(¢) has three minima (at ¢ = =,
7/3, and 57 /3), corresponding respectively to the trans and +gauche states (see Fig. 1.2).
The deepest minimum is the one for the trans state, and the two gauche states are degenerate.
This potential energy is characterized by two parameters: the energy difference Ae between
minima, and the energy barrier AFE separating the minima. For polyethylene, Ae ~ 400K

and AE ~ 2000K.

0.0 ‘ ‘ ‘ ‘ ‘ ‘
0.0 90.0 180.0 270.0 360.0

Figure 1.2: Bond energy V as a function of the angle ¢ around the bond
(schematic).



The minimum energy configuration of the polymer is all trans, and is totally extended.
However, for a typical degree of polymerization of 10000, there are of the order of 31990°

other configurations for the macromolecule. Most of them could be described as random

coiled states, such as the one displayed in Fig. (1.3).

Figure 1.3: A randomly coiled polymer chain.

When Ae is smaller than the thermal energy kg7, the polymer is statically flexible. All
three states for each bond have probabilities of the same order of magnitude, and therefore
a huge number of configurations of the macromolecule have non-negligible thermodynamic
weights. For slightly higher values of Ae/kgT, there will be a definite preference for the

trans state, and the polymer will be locally rigid. Still, on a large enough scale, it appears



as a flexible chain. This defines a parameter ¢ called the persistence length, such that for
lengths larger than ¢ the chain appears continuous and flexible. The persistence length can

be computed in terms of microscopic parameters:

= lyexp(Ae/kgT), (1.1)

where {; is of the order of a few Angstroms. If £ is much smaller than the total length L of
the polymer, it is appropriate to consider the molecule as flexible for scales larger than ¢. If
( is larger than L, the molecule has to be considered as a rigid rod at all scales.

Another important question related to polymer conformations is how fast the bonds can
switch between trans and gauche. This depends on the height AE of the barrier between
those states. The characteristic time associated with this process is called persistence time

7, and has the form

T =19exp(AE/kgT), (1.2)

where 7y is of the order of 10711s. If the timescale of interest is longer than 7, the polymer can
be considered to be dynamically flexible. For very high barriers AFE, the polymer behaves
like a random coil that is frozen in one conformation.

At low enough temperatures a system of polymers can partially crystallize, and at an even
lower temperature it can undergo a glass transition, below which the individual molecules
do not have enough thermal energy to change their conformations. In this work only the
regime of temperatures above the glass transition and the crystallization transition will be
considered. In this regime, the macromolecules can fluctuate freely and rapidly between
different conformations.

A useful idealization that is very commonly employed in polymer physics is the concept
of ideal chain. An ideal chain is a chain where the only interactions between monomers come
from the rigidity of the backbone. It can be simply modeled as a random walk composed

of L/{ uncorrelated steps represented by vectors {l,,}, m = 1,..., L/{, each one of length



(. Tts end to end distance R = ), 1,, has the following statistical properties: due to the

independence of the steps, the average square of R is linear in L/,

(R?) = Lz/f (1,,2) = (L/ell)f* = L, (1.3)

and in the case that ¢ < L, the central limit theorem implies that the probability distribution

of R is Gaussian, with the form

p(R) = (Z:M)d/2 exp (- %RQ), (1.4)

where d is the dimensionality of the space [7]. One can interpret p(R) as the sum of the
individual probabilities for all polymer conformations such that the total end to end distance
of the polymer is R. Therefore p(R) is proportional to the constrained partition function
of the polymer, and by taking its logarithm one immediately obtains the entropy for an

individual polymer chain with its ends fixed at the origin and R (up to a constant):

S(R) = S(0) — %RQ. (1.5)

In addition to the interactions between monomers associated with the rigidity of the
backbone chain, there are additional interactions that come about when monomers that are
far apart along the backbone become spatially close to each other because the macromolecule
is coiled. Because they act between monomers that are far apart along the backbone, these
interactions are sometimes called “long range interactions” in the polymer literature, even
when (as is usually the case, at least for electrically neutral systems) they are short-ranged

in real space.

1.1.4 Gelation and vulcanization

Polymer gels are (random) networks of flexible polymer chains, and can be obtained by a
variety of chemical or physical processes, generally involving the bonding, or crosslinking, of

smaller units.



There are two kinds of gelation processes. If the crosslinks are, once made, completely
stable (for the stresses and time scales involved in the relevant experiments), the process
is called strong gelation. If the crosslinking reaction can proceed in both directions (i.e.,
bonding < non-bonding), the process is called weak gelation. Only strong gelation will be
considered in this work.

For example, a common and conceptually simple method of gel preparation is based on
the condensation of polyfunctional units. The number of bonding sites that a monomer has
is referred to as the functionality. Bifunctional monomers can only combine to form linear
macromolecules, but any monomer with functionality three or higher can form a branch
point. For example, molecules with three bonding sites, such as trialcohool, can react with
molecules that have two bonding sites, such as di-isocyanate, and after the reaction has
proceeded long enough, a macroscopic branched object (the gel) is obtained. The part of
the system that is not linked to the gel is made up of finite molecules, and it is called the
sol.

The focus of this thesis is on the vulcanization transition, which is the special case of
the sol-gel transition in which one starts from a dense system of long, linear chains and then

crosslinks them (Fig. 1.4).

e

Figure 1.4: Crosslinking two polymer chains.

There are many ways to obtain the vulcanization transition in practice. In the process of



vulcanization discovered by Goodyear, sulfur reacts with double bonds along the polymers,
resulting in a chain of between 2 and 4 sulfur atoms joining two chains of the original polymer
(and forming a crosslink).

Another crosslinking reaction involves the use of peroxides. A peroxide radical removes
hydrogen from the polymer chain and thus creates a radical site at the chain. This free
radical migrates along the chain until it comes in close proximity with a similar radical from
another chain. The two then combine to form a covalent bond that crosslinks the two chains.
High-energy radiation, such as electrons, gamma photons, and ultraviolet light, can also be
used to form free radicals, and hence generate crosslinks.

All of the above techniques produce crosslinking at random locations along the polymer
chains. It is also possible to generate crosslinks at prescribed positions along the chains. The
simplest example of this is to have polymer chains with reactive groups at both ends put in
contact with small trivalent molecules, thus endlinking the polymers (i.e., linking them at

their ends).

1.2 Theoretical approaches

In this section, some previous theoretical approaches to the vulcanization transition are
discussed.

Before going into a discussion of specific theories, let us make here a general remark about
the study of macromolecular systems. Generally speaking, there are two kinds of approaches.
One centers on the detailed conformations and motions of individual monomers inside the
polymer chain, and their dependence on the chemical species involved. This local point of
view is extremely useful, e.g., when one wants to choose an optimal polymer for a given
practical application. The other, global, point of view, centers on the dependence of physical

properties on concentrations, crosslink densities, and a few basic interaction parameters. In



this point of view one tries to omit the details of chain structure as much as possible and to
extract simple, universal, features which will remain true for a large class of macromolecular

systems. This second, global, point of view is the one that will be adopted in this thesis.

1.2.1 Classical theory

The classical theory of gelation was pioneered by Flory and Stockmayer [6, 8, 9]. In the
classical picture, the gelation process is modeled as a branching process. In more modern
language, the classical picture can be thought of as percolation on a Cayley tree.

Let us discuss the ideas involved in the classical picture, in the simplest case of poly-
merization in a homogeneous system of f-functional monomers. In this case, one of the
f-functional units as chosen as the root of the tree, and it is assumed that there is a proba-
bility « (the reacted fraction) that each one of the f reactive groups will react with another
unit. All the monomers that react with it will form the first level of the tree. Each one
has f — 1 groups available to react. Some of those groups will react with free monomers
(reactions within the tree are neglected in the classical theory), thus generating the second
level of the tree, and so on. The expected number of members of the next level is (f — 1)«
times the number of members of a given level. This implies that there is a critical value
of the reacted fraction a. = 1/(f — 1) such that for a < a. the tree eventually dies down,
whereas for a > a. the tree grows indefinitely. This is interpreted by saying that for a < a.
the system is in the sol phase (all monomers belong to finite clusters), whereas for o > a.
the system is in the gel phase (a nonzero fraction of the monomers belong to a macroscopic
macromolecule).

The above picture can be extended immediately to the case of vulcanization. If all the
monomers in the polymer can potentially participate in crosslinks, the number of monomers
N, of the chain plays the role of the functionality, and the rest of the argument follows

through.
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With a little more elaboration, the classical picture provides results for other physical
quantities. The gel fraction g, (i.e., the fraction of the monomers that belong to the infinite
cluster), can be shown, with no further physical assumptions, to grow linearly with a—a. [10].
With the additional assumption that all polymer segments are ideal chains, the correlation
length, defined in this context as the r.m.s. average distance between monomers in the same
finite cluster, can be shown to diverge as (a. —a)~! as the system approaches the transition
from the sol side [11].

A great deal of discussion has taken place within the framework of the classical theory
with regards to the elastic properties of crosslinked polymer networks. We will briefly men-
tion some of the results here. Consider a sample of dimensions L;, L, L., and assume that
a macroscopic distortion L; — M\;L; (j = x,y,z) is imposed on it. It is assumed in the
classical theory that the change in free energy of the system is simply given by the absolute
temperature times the sum of the changes in the entropies for those polymer segments that
are considered “active”. A polymer segment is defined to be a segment of linear polymer
between two crosslinks. One way of defining an “active” segment is to say that it is a segment
such that the distance between its ends changes when the system is deformed.

In the affine network model [14], it is assumed that for each elastically active segment a
its end-to-end vector R, changes in the form R;, — A\jR;, (j = ,y,2). Therefore, the free
energy change for each elastically active segment a is

AL Ay Ae) = kT S (RADA)) — RA({1)) (16)

where kg is Boltzmann’s constant and 7' is the temperature, and the free energy change for
the entire system is then

NaksT

5 A2+ A2+ A2-3), (L.7)

Af(he; Ays A) EkBTE (Ri({A 1) - RE({1})) =

where N is the number of elastically active segments. There is a competing model within the

classical framework, called the phantom network model. In it, the end-to-end vector of each

11



segment is taken to be the sum of a mean value, which distorts affinely, and a fluctuation,
which is uncorrelated with the mean value. In this model, it is assumed that chains can pass
through one another (hence the name “phantom”), and the fluctuations of the end-to-end
vector are found to be spherically symmetric even when the system is deformed [2]. The
free energy change calculated in this model is qualitatively similar to, although not quite
identical with, the result for the affine network model.

In most discussions of either the affine or the phantom network models, it is usually as-
sumed that the system is in the well-crosslinked regime, and in fact the counting of elastically
active segments is usually made by starting from a “perfect network”, i.e., a network with
no chain ends, and later making simple corrections to take into account some of the features
of actual polymer networks. This procedure is not likely to produce accurate results close
to the vulcanization transition, as in this regime the network barely exists at all and most
chains are end chains.

However, it has been argued by Scanlan [16] and Case [17] that N scales as the third
power of the excess crosslink density from the transition point. This immediately implies
that the elastic free energy and, consequently, the shear modulus, also scale as the third
power of the excess crosslink density from the transition point. The argument goes as
follows [18]: an active junction point is defined as a point from which three “ties” (links
leading to infinite sub-trees) radiate. Any point from which fewer “ties” radiate can always
relax after deformation, and therefore does not contribute to the elastic free energy. An
elastically active segment is a segment that has active junction points at its two ends. As
the probability for a tree starting at a given point to be infinite defines the probability for a
monomer to belong to the gel fraction, it follows that the probability for a junction point to
be active goes like the third power of the gel fraction, and consequently as the third power
of the excess crosslink density from the transition point.

The classical picture of gelation has had many successes, not the least of which was its

12



being the first picture to predict the existence of macroscopic molecules at all.

However, the classical approach does have some shortcomings. First, it is not a statistical
mechanical theory. No prescriptions are given to compute the Boltzmann weights of config-
urations. There is also no attempt to analyze the interplay between the quenched disorder
produced by random crosslinking and the thermal fluctuations of the system. In most cases,
the architecture of the network is taken as an input. The classical picture does not provide
more than a very rough picture of the structure of the system, essentially in terms of the
behavior of the gel fraction. Finally, this is a mean field treatment, formulated in such a
way that it is not obvious how to systematically improve upon it, in order to get a more
accurate formulation. As it is well known, in most cases mean field theories break down
close to continuous transitions (although, as we shall discuss later, vulcanization might be,

an exception to this).

1.2.2 The Edwards formulation

Significant progress towards a statistical mechanical theory of polymer networks was made
by Edwards and collaborators [19, 20, 21, 22]. Edwards proposed the effective hamiltonian
of Eq. (2.6). Deam and Edwards wrote an explicit form for the partition function of a system
of randomly crosslinked macromolecules, and were the first to apply the replica method to
average thermodynamic quantities over the disorder in polymer physics. In their approach,
both thermal fluctuations and quenched disorder were taken into account. They concentrated
on the well-crosslinked regime, and resorted to a variational calculation to compute various
physical quantities, including the elastic free energy and the r.m.s. size of the fluctuations in
the positions of the crosslinks. In simple limits, they recovered the results of both the affine
network and phantom network approaches.

This line of research has later been continued by Panyukov and collaborators [23, 24],

who performed detailed computations of correlation functions accessible through scattering
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experiments, and focused much of their attention on the effect of external strain on those
correlation functions.

However, as already mentioned, the approaches of Edwards and collaborators and of
Panyukov and collaborators only concentrate on the well crosslinked limit. In particular,
they contain the assumption that all the polymers in the system can be combined together
and represented in the model by a single extremely long macromolecule. Therefore this is a
model for a network with no end chains. Close to the transition, most of the monomers in
the gel belong to end chains. Therefore this model is completely inadequate to address the

vulcanization transition.

The replica method

We will roughly sketch the replica method at this point, not only because it is a central part
of the approach by Edwards and collaborators, but because it is also crucial to the approach
followed in the present work.

In the study of systems with quenched disorder, it is generally desirable to compute
averages over disorder of thermodynamic quantities, such as the Helmholtz free energy F' or

its derivatives. Let us consider, e.g., the free energy:
[F)/ksT = [~1n 7], (1.8)

where the symbols [ - -] stand for average over the disorder distribution. The expression on
the r.h.s. of Eq. (1.8) is difficult to compute, due to the presence of the logarithm inside
the average sign. This difficulty can be overcame by the use of the replica method, which is

based on the use of the following expression:

[—InZ] = —lim[Zn]i_l.

n—0 n

(1.9)

The validity of this expression follows from the form of the Taylor expansion of z™ in powers
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of n:

' =14+nlnz+ O(nz). (1.10)

Eq.1.9 is an exact statement, involving continuous values for the variable n. The next step
in the replica approach is to compute [Z"] for integer values of n. In this case, Z" can
be interpreted as the partition function of a system containing n identical, noninteracting,
copies (called “replicas”, and labeled by the index a = 1,...,n) of the same realization
of the original random system. From the technical point of view, the disorder average of
a partition function is much easier to compute than the disorder average of its logarithm,
because the partition function is a sum of Boltzmann weights, each one of which can usually
be averaged over the disorder. Consequently it is possible in many cases to explicitly obtain
[Z™]. After disorder averaging, the randomness disappears from the problem, but there is a
price to be paid: the replicas now interact with each other. Once a result has been obtained
for [Z7] for integer values of n, the next stop in the approach is to take the explicit analytic
expression for [Z£"], and assume that n is really a continuous variable. At this point, the

limit in Eq. 1.9 is taken, thus obtaining the free energy.

1.2.3 Percolation

A third theoretical approach to the gelation transition was put forward independently by
De Gennes and by Stauffer. They proposed to identify [5, 25, 26, 27] gelation with perco-
lation [28] on a lattice. One way to perform this identification [5] is to map sites in the
lattice to monomer units, each one having a functionality equal to the number of nearest
neighbors of each lattice site. Two neighboring monomers can react, and this corresponds (in
the percolation analogy) to the presence of a formed bond between the corresponding sites.
Thus the probability p of a bond being formed is identified with the reacted fraction « of the
theory of gelation, and the gelation transition is identified with the percolation transition,

in which an infinite cluster appears.
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De Gennes further argued [25] that the elastic modulus E of a gel could be related to
the macroscopic conductance Y. of a random resistor network with a fraction p of conducting
links.

The proponents of the percolation point of view observed that the classical approach was
equivalent to a model of percolation in a Cayley tree. They argued that the predictions about
critical behavior (and, in particular, critical exponents) obtained in the classical approach
should be modified to take into account the difference between percolation in dimension
d = 3 and percolation in infinite dimensions (i.e., in the Cayley tree).

For the case of vulcanization in dimension d = 3 or larger, however, De Gennes pointed
out [5, 29] that the mean field results should be correct, except for a region around the critical
point of width going to zero in the long macromolecule limit (e.g., vanishing as Np_1/3 for
d = 3).

The percolation approach suffers from many of the same drawbacks as the classical ap-
proach. It entails only a single statistical ensemble, and hence cannot treat the equilibration
of thermal (i.e., annealed) freedoms in the presence of quenched freedoms (crosslinks, in the
present case). Also, in the percolation approach there is no prescription for computing the
Boltzmann weights of configurations. If the percolation ensemble is interpreted as describ-
ing the quenched freedoms then it can account for the appearance of an infinite network
at a critical crosslink density, but it cannot account for the thermal fluctuations, which de-
termine the physical properties of the liquid and amorphous solid states. If, on the other
hand, the percolation ensemble is interpreted as describing the thermal fluctuations of the
macromolecular freedoms then it may serve as a model for weak gelation, in which crosslinks

continuously form and break up, but it cannot account for permanent, quenched crosslinks.
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1.2.4 Microscopic theory of the vulcanization transition

Goldbart and Goldenfeld pointed out in a series of papers [30] that a true microscopic theory
of the vulcanization transition was still lacking, as the theories that had been proposed
this far either assumed the existence and architecture of the macromolecular network or
neglected the interplay of thermal fluctuations, strong interactions and quenched disorder.
They introduced and developed the point of view that the solid state of randomly crosslinked
macromolecular networks represents an unusual, equilibrium state of matter, the equilibrium
amorphous solid state.

In their work, they introduced a new order parameter, appropriate for detecting this
amorphous solid state. This order parameter was inspired by the Edwards-Anderson order
parameter of spin glasses [31, 32]. They also constructed a free energy functional starting
from a minimal microscopic model, and they managed to show that the liquid state should
be unstable for a sufficiently large density of crosslinks.

This whole approach drew much inspiration from both the Deam-Edwards theory of
a single crosslinked macromolecule [20], as well as the Edwards-Anderson theory of spin
glasses [31].

Further progress within this formulation was made by Zippelius, Goldbart and Golden-
feld [33]. They set up a self-consistent mean field theory in which the control parameter
determined the density of crosslinks. They allowed for a fraction of the monomers (the gel
fraction) to be localized, and the rest to be delocalized. They computed the gel fraction as
a function of the control parameter, and found a liquid—amorphous-solid transition. They
also studied nonlinear susceptibilities in the liquid phase, which turned out to diverge at the
transition. However, the formalism they used only allowed for localization lengths of the
order of the size of the system. This was believed by the authors to be due to the absence of
correlations in their model for the crosslink distribution: as any monomer was equally likely

to be crosslinked to any other monomer, the effective attractive potential produced by the
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crosslinks was spread all over the system, instead of being concentrated at the sites of actual
crosslinking.

This deficiency was resolved by Goldbart and Zippelius [34], who applied a prescription
that had been proposed by Deam and Edwards to incorporate correlations into the crosslink
distribution, and performed a variational calculation in which the localization length was
the optimization parameter. In their work, they made two simplitfying assumptions: that
all monomers were either delocalized or localized simultaneously, and that the localization
length was the same for all monomers. They obtained a localization length whose scale
was set by the radius of gyration of the individual macromolecules (instead of being set by
the size of the system), and which diverged at the transition (coming from the amorphous
solid side) with the classical exponent v = 1/2. They also computed the rigidity exponent
and found the value t = 2, (i.e., a value different from the classical one, but, as we shall
see in Chap. 4, consistent with a subset of the experiments). However, their calculation
predicted a liquid phase surviving well beyond its known region of stability, and therefore it
was clear that the variational solution they obtained for the solid was a crude one, rather
far (in order parameter space) from the true stationary point of the free energy functional.
More significantly, the theory was formulated in a way that implied that the gel fraction had
a discontinuity at the transition (all monomers were delocalized on one side, and localized
on the other), whereas the gel fraction was known from experiments to be continuous at the
transition.

The approach that we have been discussing in the present subsection is the one adopted
in the present work in order to formulate a statistical mechanical theory of the vulcanization
transition. Let us motivate this choice by reviewing some of the virtues of this approach.

First, both thermal freedoms (i.e.the macromolecular positions) and quenched freedoms
(i.e.the crosslink locations) are incorporated, and handled appropriately, in contrast with

percolative pictures. The replica technique provides the tool for accomplishing this. In fact,
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it will be shown in Chap. 2 that the percolative picture emerges from the present approach in
the form of statistical information concerning the presence of localized macromolecules. How-
ever, the present approach is considerably richer, additionally yielding statistical-mechanical
information about the (thermally fluctuating) macromolecular system. In particular, it will
allow a unified treatment of liquid and amorphous solid states. Second, the physical many-
macromolecule character of the system is maintained, in contrast with approaches that con-
sider instead the properties of a single linear macromolecule. Especially in the vicinity of the
solidification transition, where the number of physical crosslinks is of order one per macro-
molecule, this is particularly significant, and allows for a theory of the solidification transition
to be developed. Third, the present approach leads directly to an order parameter for the
amorphous solid state, which is related to that of spin glass physics. The order parameter
has a natural, physical interpretation, which facilitates the hypothesizing of an appropriate
form for it (as it will be done in Chap. 2). Fourth, the physical freedoms, viz., the macro-
molecular configurations, appear directly throughout the development, not being exchanged
for any problem-specific formal representation. (This is in contrast to other approaches,
e.g., Ref. [24], in which the polymer degrees of freedom are formally represented using the
n — 0 limit of the n-vector model.) The macromolecular character of the system is there-
fore retained, especially when approximations are made. Indeed, the entire approach is very
robust, so that, in addition to being of interest in the context of vulcanized macromolecular
systems, it can readily be extended to address a wide range of other physical systems, such
as crosslinked manifolds [35], endlinked systems of flexible, semi-flexible and rigid macro-
molecules [36], and continuous random network models of structural glasses [37, 38]. In
addition, it should prove possible to extend the present approach to address issues of dy-
namics, and some progress in that direction has already been made [39]. Moreover, looking
beyond the algebraic details, one sees a theoretical superstructure that is rather natural, di-

rect and perhaps even conventional, at least from the point of view of statistical field theory.
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Fifth, the use of the present approach has primarily been restricted to the mean-field level
of approximation. However, as will be discussed in Chap. 2, it is possible in this approach
to obtain an exact solution of the relevant stationary-point equations, as opposed to a vari-
ational approximation. This is a crucial point, as, e.g., the results for the elastic properties
change significantly between the variational approximation and the calculation based on the
exact stationary point. In addition, knowledge of the stationary point provides a promising
starting point for future developments, such as going beyond mean field level.

Let us now point out the main limitations of this approach. First, for technical rea-
sons, it is difficult to perform computations in the regime of high crosslinking (e.g., deep in
the amorphous solid state). Other formulations, such as the original one by Edwards and
collaborators, and also its continuation by Panyukov and collaborators, were designed with
that regime in mind, and seem more appropriate to treat it. The present formulation, by
contrast, is mainly intended to be used near the transition . Second, in its present form,
this approach does not respect the interlocking of closed loops of macromolecules (as will be
discussed further in Sec. 2.2.2) that crosslinking can induce. There is, in fact, no microscopic
formulation that manages to take those interlockings into account, except for some rough
approximate treatments [40]. Third, up to the present, the results from this formulation
are obtained only to mean field level. No estimate has been obtained within the theory of
the error that such approximation induces. However, considering De Gennes’ argument that
vulcanization should be well described by mean field theory, this is probably not a significant

drawback.

1.3 Outline of this thesis

The work reviewed in the previous section had established that the microscopic formulation

of Goldbart and collaborators does predict a liquid—amorphous-solid equilibrium phase tran-
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sition. However, essentially all other questions about the nature of this transition were still
not answered satisfactorily. For example, it was not yet clear whether a consistent theory
could be developed that would start from a statistical mechanical formulation and address
all of the following issues: (i) the existence of the transition, (ii) the continuous but singular
change of the gel fraction at the transition, (iii) obtaining a physically sensible prediction
for the localization lengths for the monomers in the amorphous solid, (iv) the form of the
order parameter, and its role in determining the microscopic structure of the amorphous
solid state, (v) the effect of external stresses on the structure of the state, and (vi) the ex-
istence and value of a a static shear modulus for the amorphous solid. In addition, in order
to have a physically sensible theory, it is necessary to (vii) show that the states obtained are
thermodynamically stable.

In this thesis an attempt is presented to address all of these issues within a consistent
theoretical framework.

The organization of the thesis is as follows: Chap. 2 addresses issues (i) to (iv), Chap. 3
addresses issue (vii), and Chap. 4 addresses issues (v) and (vi).

The work presented in Chaps. 2 and 4 was done in collaboration with Paul Goldbart
and Annette Zippelius. The work presented in Chap. 4 was done in collaboration with Paul

Goldbart.
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Chapter 2

The amorphous solid state of

randomly crosslinked macromolecules

2.1 Introduction

In this chapter a general theoretical description is presented of the physical properties of
systems of macromolecules that have been randomly and permanently crosslinked. The fo-
cus of this theoretical approach is on the equilibrium properties of such systems, especially
in the regime of the vulcanization transition. As anticipated in Chap. 1, the term vulcan-
ization transition refers to the sharp thermodynamic phase transition occurring when the
mean density of crosslinks exceeds a certain critical value. At this critical crosslink-density,
the equilibrium state of the system undergoes a continuous transition: for subcritical values
the equilibrium state is a liquid state, in which all the macromolecules are delocalized; for
supercritical values the equilibrium state is an amorphous solid state, in which a nonzero
fraction of macromolecules form a macroscopic network, and spontaneously become local-
ized about certain random locations. The focus of this chapter will be on the spontaneous

emergence of the equilibrium amorphous solid state at the vulcanization transition, and the
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structural properties of this unusual state of matter.

It should be pointed out that the theoretical description that is about to be presented
recognizes strong influences from both the Deam-Edwards theory of a single crosslinked
macromolecule [20], and the ideas and techniques developed in the field of spin glasses [32].

The basic ingredients of the present approach to the physical properties of randomly
crosslinked macromolecular networks are as follows. A semi-microscopic description of
the macromolecules is adopted, in which the detailed microscopic chemistry of the macro-
molecules and solvent (if any there be) feature only to the extent that they determine the
following effective parameters: the total arclength of each macromolecule, the persistence
length (i.e., the length of the statistically independent macromolecular segments, which are
called monomers), and the excluded-volume strength (i.e., the parameter that describes
the effective repulsion between monomers). Thus, the macromolecules are regarded as ex-
tended, featureless, flexible linear objects, each capable of exhibiting a large number of
configurations, and classical equilibrium statistical mechanics is used to address the prop-
erties of systems composed of a thermodynamically large number of such macromolecules.
The crosslinks are regarded as permanent elements that constrain certain randomly chosen
monomers to remain adjacent to one another. Thus the crosslinked macromolecular sys-
tem is a system with quenched disorder, in the sense that in addition to the macromolecular
freedoms—the so-called annealed variables, which undergo equilibrium statistical-mechanical
fluctuations—there are additional variables, those that specify the detailed realization of the
crosslinking, that do not undergo equilibrium statistical-mechanical fluctuations. Instead,
these variables—the so-called quenched random variables—vary only between realizations
of the physical system. These quenched random variables are treated statistically, too, but
their quenched nature is accounted for by invoking the replica technique.

What follows is an overview of the basic strategy used for determining the physical

properties of randomly crosslinked macromolecular networks.
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The plausible equilibrium states of the system—Iliquid, globule, crystalline solid, amor-
phous solid—are characterized in terms of an order parameter, designed to discriminate
between these states. This order parameter is a more intricate object than the order param-
eters that arise, say, in the study of ferromagnetism or even spin glasses, and one must explore
much larger spaces to find its equilibrium value. By investigating a simple caricature of the
amorphous solid state, however, it is possible to identify a physically well-motivated scheme
for parametrizing the amorphous solid state order parameter at a manageable level: via a
single number—the fraction of spatially localized monomers—and a normalized probability
distribution—the statistical distribution of localization lengths of the localized monomers.

The focus in this chapter is on the free energy and the order parameter for the system
of interacting macromolecular freedoms subject to the crosslinking constraints. Applica-
tion of the replica technique to these quantities allows for the elimination of the quenched
random variables; the price for this elimination is the introduction of an effective coupling
amongst the replicated macromolecular freedoms. The scheme used for parametrizing the
order parameter leaves intact the permutation symmetry amongst the replicas. Next, a cer-
tain stochastic field is introduced, via which the replicated macromolecular description is
transformed into a field-theoretic one. In this representation, the individual macromolecules
are coupled to one another only indirectly, via their coupling to the fluctuations of the
stochastic field, although the replicas of any given macromolecule remain directly coupled
to each other.

In order to elucidate the physical properties of the system a mean-field approach is
adopted, which amounts to approximating, via the stationary-point method, the averages
over the stochastic field in the field-theoretic expressions for the free energy and order pa-
rameter. The state of the physical system then follows from the form of the appropriate
stationary value of the stochastic field or, equivalently, from the form of the self-consistent

value of the order parameter. For mean crosslink densities smaller than a certain critical
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value, of order one crosslink per macromolecule, there is only one stationary value, which
is elementary, and the corresponding state is the liquid state. For supercritical crosslink
densities the appropriate stationary value corresponds to the amorphous solid state. At the
critical crosslink density the system undergoes a continuous vulcanization transition from
the liquid state to the amorphous solid state.

To determine the properties of the amorphous solid state itself, we hypothesize that the
self-consistent value of the order parameter lies within the family of order-parameter values
reachable via our (severely restrictive but nevertheless physically plausible) parametrization.
Quite remarkably, this is indeed the case: our parametrization does not merely yield a
variational approximation to the amorphous solid state. Instead, although one has no a prior:
reason to suppose that it should, it permits an erxact mean-field description of randomly
crosslinked macromolecular networks to be constructed. What emerges is an amorphous
solid state characterized by a nonzero fraction of localized monomers. The precise value of
this fraction depends on the crosslink density, and vanishes continuously at the transition
and in the liquid state. This fraction depends on the crosslink density in a manner identical
to that found in random graph theory and percolation. The state is further characterized
by a crosslink-density—dependent distribution of localization lengths, which quantifies the
manner in which the localized monomers have become localized around their random mean
positions. The typical localization length diverges continuously at the transition and in the
liquid state. In the vicinity of the transition, the distribution of localization lengths has a
scaling form governed by a universal function, which we compute. To date, we have been
unable to obtain conclusive results for the distribution of localization lengths far from the
amorphous solidification transition. The reason for this is purely technical: at a certain stage
in the development we employ a perturbative calculation, in which the small parameter is the
fraction of localized particles (or, equivalently, the characteristic inverse localization length,

measured in units of the radius of gyration of a single, noninteracting macromolecule), this
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parameter being zero in the liquid state, and small in the amorphous solid state only in the
vicinity of the transition.

The present chapter is organized as follows. In the present, introductory, section we
provide an overview of the chapter. In Sec. 2.2 we discuss the basic elements of the model of
macromolecular systems on which the present approach is based, including the level of de-
scription of macromolecular configurations, the Edwards measure for their statistical weights,
and the notion of crosslinks as quenched random variables. We also discuss the partition
function, free energy and issues of indistinguishability, along with the statistical character-
ization of the crosslinks, and the notion of disorder averages of certain physically relevant
quantities. In Sec. 2.3 we develop the general subject of order parameters appropriate for
the amorphous solid and other states, discussing the properties that such order parameters
should possess. We explore a simple scenario for the amorphous solid state, which provides
physical motivation for a certain specific hypothesis that we make for the form taken by the
amorphous solid order parameter in the amorphous solid state. At this stage we introduce
the concept of gel and sol fractions and the statistical distribution of localization lengths as-
sociated with localized monomers. We also analyze the symmetry properties of the ordered
state, and discuss some ways of experimentally probing the order parameter. In Sec. 2.4 we
address the statistical mechanics of randomly crosslinked macromolecular networks, invoking
the replica technique in order to eliminate the (quenched random) crosslink variables. In
Sec. 2.5 we reformulate the statistical mechanics of randomly crosslinked macromolecular
networks in field-theoretic terms by introducing a certain stochastic field, which is closely
related to the amorphous solid state order parameter. In Sec. 2.6 we explore the properties
of the resulting field theory within the context of a natural mean-field approximation. We
exhibit the instability of the liquid state, and we compute the free energy and self-consistent
order parameter in the vicinity of the transition. We also describe the characteristics of the

amorphous solid state that emerge from this approach. In Sec. 2.7 we present a compari-
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son of our results with the results later obtained by Barsky and Plischke in their molecular
dynamics simulations of randomly crosslinked polymers systems. These simulations give
strong support to the physical picture presented in this Chapter. In Sec. 2.8 we briefly
review some published works that extend this approach to related systems and develop a
Landau theory that captures the essential elements of the liquid-amorphous-solid transition
without resorting to a microscopic model. In Sec. 2.9 we make some concluding remarks.
We have organized this chapter so that the main text is, to a large degree, free of lengthy
mathematical details. Wherever possible such details have been relegated to appendices.
The research discussed in the present chapter has been reported on in Refs. REF:epl

and [42].

2.2 Model of the macromolecular system

2.2.1 Macromolecular system prior to crosslinking

We consider a system consisting of a large number N of long, flexible macromolecules,
initially identical, and contained in a large d-dimensional hypercube of volume V. The
macromolecules are characterized by their common arclength L and (weakly temperature-
dependent) persistence length {(< L), so that the number of effectively statistically inde-
pendent segments comprising each macromolecule is of order L/¢ > 1. Semi-microscopic
spatial configurations of the system are characterized by the collection of spatial configura-
tions of the macromolecules {R;(o)}Y,, in which R;(¢) is the d-dimensional position vector
of the monomer an arclength distance o from a specific end of macromolecule ¢, the (dis-
crete) macromolecule index ¢ ranging from 1 to N and the (continuous) arclength variable

o ranging from 0 to L.

It is convenient to exchange the dimensionful position vector R and arclength o for
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dimensionless versions ¢ and s via the transformation

JeL/d ci(s), (2.1)

Ls. (2.2)

RZ(O')

g

Thus, we shall be measuring spatial distances in units of (ﬁL/d)l/2 (i.e., the root mean
squared end-to-end distance of a free macromolecule divided by \/E), and arclength distances
in units of the total arclength L. We shall measure energies in units such that kg7' is unity.

At the level of the present semi-microscopic description, and prior to the incorporation
of the effects of either monomer-monomer interactions or crosslinks, we account for the
connectivity of the constituent macromolecules by adopting the Wiener measure [19, 22, 46],
in terms of which the statistical weight [47] of the configuration of the system {c;(s)}Y, is

proportional to exp ( — W), where

2

(2.3)

m=gg [ g

The subscript 1 on Wj anticipates the introduction of replicas of the system, which we shall

need to make below. We shall often need to consider normalized expectation values taken

with respect to the Wiener measure, which we shall denote by the angle-bracket pair (- - )}V,

defined by

W _ [ e exp (-wi) -+
/Dc exp (-W1)

where the dots represent an arbitrary function of the configuration of the system, and the

(2.4)

measure

Dec=]] [ dei(s) (2.5)

1=10<s<1

indicates functional integration over all spatial configurations of the system, i.e., over all
configurations of the N macromolecules. The subscript 1 on (---)}V also indicates that the
average is taken only over the configurations of a single copy of the system, also anticipating

the introduction of replicas.
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We account for monomer-monomer interactions in a phenomenological manner, by aug-
menting the Wiener measure with an additional factor that has the effect of suppressing
the statistical weight of configurations in which pairs of monomers occupy common regions
of space [19, 22, 46]. To this end, we replace the Wiener measure, Eq. (2.3), by the Ed-

N

wards measure, in terms of which the statistical weight of the configuration {c;(s)}iL, is

proportional to exp ( — Hi), where

1 &t d
H1:§;/0 ds‘£CZ(5)|

Here, §(¥(c) is the d-dimensional Dirac é-function, and the dimensionless (real, positive) pa-

2

A2 N 1 1
+°, E/ ds/ ds' §@D(c;(s) — cu(s")). (2.6)
ii1=1"0 0

rameter A? characterizes the strength of the suppression of statistical weight due to the (re-
pulsive) excluded-volume interaction between monomers [19, 22, 46]. The excluded-volume
interaction is suitably modified so as to exclude interactions between adjacent monomers
on a common macromolecule (i.e., monomers for which |s — s'| < ¢/L). The system can
be regarded as a melt of macromolecules, in which case the interaction parameter A? is in-
tended to account for the monomer-monomer interaction. Alternatively, it can be regarded
as a solution of macromolecules dissolved in a good solvent, in which case A\? is intended to
represent the effective monomer-monomer interaction (i.e., the bare interaction renormalized
by the monomer-solvent and solvent-solvent interactions, the solvent degrees of freedom hav-
ing been integrated out). In both cases, A? is weakly temperature-dependent. Even at the
level of mean-field theory, the excluded-volume interaction plays a crucial role: it partially
compensates the effective monomer-monomer attraction due to the crosslinks in just such
a fashion as to maintain the macroscopic homogeneity of the system while allowing for the
possibility of transition from the liquid to the amorphous solid state.

We shall need to consider normalized expectation values taken with respect to the Ed-

wards measure, which we shall denote by the angle-bracket pair {---)¥. defined by

E_/DCG_HJ“‘

<...>1:W7

(2.7)
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where the dots represent an arbitrary function of the configuration of the system, and once
again Dc indicates functional integration over all configurations of the system. Again, the
subscripts 1 on H; and (- - )} anticipate the introduction of replicas.

It should be noted that neither the Wiener measure nor the Edwards measure explicitly
breaks translational or rotational symmetry: the statistical weight of a configuration remains
unchanged if all the monomers are simultaneously translated through a common amount or

rotated through a common angle about a common axis.

2.2.2 Crosslinks as quenched random variables

Our aim is to address the statistical mechanics of thermodynamically large systems of macro-
molecules into which a large number of crosslinks have been permanently introduced at ran-
dom. Each crosslink has the effect of constraining two randomly selected monomers, the
locations of which were kinematically independent prior to the introduction of the crosslink,
to occupy a common spatial location. Thus the effect of the crosslinks is to eliminate from
the ensemble of configurations of the system all configurations that do not obey the entire
set of random constraints enforced by the crosslinks. Our task is therefore to address the
statistical mechanics of macromolecular systems in the presence of a large number of random
constraints.

A specific realization of the crosslinking is fully described by specifying which randomly
selected pairs of monomers are connected by each crosslink, i.e., that the crosslink labeled
by the index e serves to connect the monomer at arclength s, on macromolecule i, to the
monomer at arclength s’ on macromolecule ¢/, for e = 1,..., M, with M being the total

number of crosslinks. Thus, only those configurations that satisfy the constraints

ci,(se) = ci(sL), (with e=1,..., M) (2.8)

e

are retained in the ensemble. It should be noted that these constraints do not explicitly
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break translational symmetry.

In principle, of course, neither the crosslinks nor the integrity of the macromolecules
are truly permanent. However, in many physical realizations of crosslinked macromolecular
systems there is a very wide separation between the time-scale required for the crosslink-
constrained macromolecular system to relax to a state of thermodynamic equilibrium and
the much longer time-scale required for either the crosslinks or the macromolecules to break.
For such systems, and it is such systems that we have in mind, the crosslinks and the macro-
molecules should be regarded as permanent, so that the number and identity of the monomers
M

participating in crosslinks, v = {z., s;1., 8" }o,,

should be treated as nonequilibrating (i.e.,
quenched) random variables. The unconstrained macromolecular freedoms are regarded as
reaching equilibrium in the presence of fixed values of the quenched variables. Thus, it is a
meaningful task to address the equilibrium statistical mechanics of permanently crosslinked
macromolecular systems.

It should be remarked that the relative statistical weights of the configurations that do
satisfy the crosslinking constraints are hypothesized, at least a priori, to be unaffected by
the introduction of crosslinks. That is, the statistical weights are proportional to exp (—H;)
for configurations satistying the crosslinks and zero otherwise. However, as we shall see in
detail below, for a sufficiently large density of crosslinks the translational and rotational
symmetry of the equilibrium state of the system is spontaneously broken. That is, in a given
(pure) state the statistical weights of configurations that are translations and rotations of
one another are no longer identical, and thus localization can arise. Indeed, only one member
of a family of translated and rotated configurations has a nonzero weight in a given (pure)
state. The associated transition to an amorphous solid state is precisely the transition on
which we are focusing. We remark that in the present context of amorphous solidification,

translational and rotational symmetry are spontaneously broken in an unusual sense, in that

they remain fully intact at the macroscopic level.
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A second mechanism that leads to the violation of the hypothesis mentioned in the pre-
vious paragraph arises because sufficient crosslinking is liable to give a topological character
to the system of macromolecules, at least in three spatial dimensions, in the sense that for a
given set of crosslinks there will be families of configurations allowed by the crosslinks that
are mutually inaccessible. We mean by this that, because of the possibility of interlock-
ing closed loops formed by macromolecules, there will be families of configurations between
which the system cannot continuously evolve without the necessity either of the breaking
of at least one crosslink or the passage of one monomer through another. We distinguish
between constraints arising indirectly from crosslinking via the interlocking of closed loops
and constraints arising directly from the crosslinks themselves by referring to the former as
anholonomic constraints and the latter as holonomic constraints. In principle, a statistical-
mechanical approach should incorporate, at most, those configurations that are mutually
accessible, i.e., should respect both holonomic and anholonomic constraints. The theory pre-
sented here treats the holonomic constraints as quenched but the anholonomic constraints
as annealed, therefore not incorporating the latter. We know of no explicit semi-microscopic

strategy that is capable of handling the anholonomic constraints.

2.2.3 Partition function

We define the “naive” statistical-mechanical partition function Z({ie, seyit, st 1M ) that char-

acterizes one particular realization x = {., s¢;i", '}, of the crosslinked system via

M
Aficrseiily siMLy) = [De e [ o(eas0) — ey ls))) (2.9)
e=1

The product of Dirac é-functions serves to remove from the sum over configurations im-
plicit in the angle brackets (2.7) any configuration that fails to satisfy the constraints (2.8)

[49], the remaining configurations contributing with weights given by the Edwards mea-

sure (2.6).
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We also define a correlator Z({i., s.; 1., s.}M,

e’

E
Al st 11 <H bt = alsD)) (2.10)
1
that probes the contact points between macromolecules. This correlator is exactly identical
to the ratio between the naive partition function for the given crosslink realization, and
the naive partition function for the system with no crosslinks. This means that it can be
interpreted as a “normalized partition function” which only probes the changes in the system
due to the crosslinking.

At first sight, the quantity Z({i.,s.;4,s.}*,) in Eq. (2.9), which we are calling the naive
partition function, appears to be precisely the physical partition function of the crosslinked
system. However, for a straightforward reason associated with the notion of indistinguisha-
bility, a reason that we discuss in Secs. 2.2.4 and 2.2.6, Z({i,s.;i’,s.}M ) as defined in

Eq. (2.9) is not quite the correct definition of the physical partition function. However, as

we shall see, the naive partition function Z({.,s;4", s }*,) will turn out to be adequate

€

for our purposes, and we will simply call it “partition function” except when we want to

specifically distinguish it from the true partition function.

2.2.4 Indistinguishability

As first pointed out by Gibbs [50], the (configurational aspect of the) physical partition
function for systems involving one or more species of identical constituents is to be found by
summing over all configurations of the system while ignoring the issue of the distinguishabil-
ity of the constituents, and subsequently dividing by an appropriate combinatorial factor to
account for the indistinguishability of the constituents. This strategy compensates for the
over-counting of configurations that has arisen from the neglect of indistinguishability.
What are the implications of indistinguishability in the present context? For the case of

the system of N identical uncrosslinked macromolecules, the appropriate factor is N!, and
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thus the physical partition function is given by

%/Dc exp (—Hy). (2.11)

If, for the case of the crosslinked system, the appropriate factor were also N! (which it is

not) then its physical partition function would be given by
1 M
7 [ Pe exp (1) [T 6 ei(s0) = ealst). (2.12)

However, the process of crosslinking alters the system from one that comprises N copies of
a single species of identical elements. Instead, the crosslinked system will contain a variety of
species, such as macromolecules that do not participate in any crosslinks, as well as clusters
of macromolecules of many types. By clusters we mean assemblages of macromolecules that
are (directly or indirectly) connected by crosslinks or interlockings, and therefore cannot
be separated by arbitrary distances. Examples of clusters include pairs of macromolecules
that participate in a single crosslink, that crosslink being located between some specific
pair of arclength locations [say (s,s’) = (0.12,0.57)], single macromolecules crosslinked to
themselves at some specific pair of arclength locations, triplets of macromolecules connected
by two specifically located crosslinks, as well as more complicated species such as pairs of
self-crosslinked macromolecules interlocking one another.

Let us label the various possible cluster species by the index a = 1,2.3,..., and let a = 0
label the uncrosslinked macromolecule species. Then, for a specific realization of the disorder
(i.e., the crosslinks and the interlockings) let the number of uncrosslinked macromolecules
be vy, and the number of clusters of species a be v, [51]. Then the incorrect combinatorial
factor of N!should be replaced by the correct factor o(x) = 1, va.!, this factor varying across

disorder realizations. The physical partition function for a given realization of the system is

then given by

1 M

[ D exp (=) T] 69 (e (s0) — e (50)). (2.13)

Ha l/a! e=1

Z({ic, se;icy st }om) =

ele=1
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This correction of the combinatorial factor is mirrored by the absence, due to the constraints,
in the summation over system configurations of those configuration in which macromolecules
participating in a cluster are widely separated, which results in the loss of volume factors.
Together, the corrected combinatorial factor and the loss of volume factors conspire to yield
a thermodynamic free energy that is properly extensive.

In common with much work on the physics of disordered systems, we shall not focus on the
statistical mechanics of a system having a particular realization of the disorder. Instead we
shall take a probabilistic approach, focusing on the typical properties of randomly crosslinked
macromolecular systems. To do this, we shall need to consider the statistical distribution of
crosslink locations. In fact, we shall also allow the number of crosslinks to fluctuate across

realizations.

2.2.5 Deam-Edwards crosslink distribution

To compute physical quantities characterizing the system of randomly crosslinked macro-

M

8661

molecules for a specific realization of the large set of quenched random variables {i., s.; ¢’,

is, of course, neither possible nor particularly useful. Instead we shall focus on typical values
of physical quantities, constructed by suitably averaging them over the quenched random

variables. To perform this averaging we shall need to choose a probability distribution that

M

assigns a sensible statistical weight Pas({ze, se;2., s}, ) to each possible realization of the

number M and location {i., s.;%", .}, of the crosslinks. Following an elegant strategy due

e’

to Deam and Edwards [20], we assume that the normalized crosslink distribution is given by
( QV/QN) ({L&Sea ./57 Se éwl)
2V N E
!
M<exp 5N Z/ ds/ ds' 6 )—ci/(s)))>1

s'}M ) is given by Eq. (2.10), and can be regarded as probing the equilib-

({L&Se? le?‘se iwl) =

o (2.14)

where Z({ze, Seith,

rium correlations of the underlying uncrosslinked liquid [52]. Such correlations were omitted

from the crosslink distribution in certain previous works [30, 33], which led to difficulties in
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obtaining a quantitative description of the amorphous solid state. It is not, at present, clear
whether this omission is significant for the liquid state.

The Deam-Edwards distribution can be envisaged as arising from a realistic vulcaniza-
tion process, in which crosslinks are introduced simultaneously and instantaneously into
the liquid state in equilibrium [53]. Specifically, it incorporates the notion that all pairs of
monomers that happen (at some particular instant) to be nearby are, with a certain prob-
ability controlled by the crosslink density parameter u?, crosslinked. Thus, the correlations
of the crosslink distribution reflect the correlations of the uncrosslinked liquid, and it fol-
lows that realizations of crosslinks only acquire an appreciable statistical weight if they are
compatible with some reasonably probable configuration of the uncrosslinked liquid. This
good feature of the Deam-Edwards distribution is compatible with the random, space-filling,
frozen liquid, nature of the equilibrium amorphous state that is achieved upon sufficient
crosslinking.

We allow the number of crosslinks to fluctuate in a quasi-Poisson manner, controlled
by the parameter p?. All that we shall need to know about u? is that the mean number
of crosslinks per macromolecule, which we denote by [M]/N, is a smooth, monotonically-
increasing function of y? that can, in principle, be determined using the distribution P [54].
We remark that the control parameter p? appears in Eq. (2.14) divided by N/V. This factor
is simply the (dimensionless) density of macromolecules, which is an intensive quantity. As
we shall see, this choice leads to an equation of state that does not depend on the density of
macromolecules, at least at the level of mean-field theory. We also remark that no delicate
scaling of the control parameter is needed to achieve a good thermodynamic limit, in contrast
with the case of the Sherrington-Kirkpatrick spin-glass model [55].

As discussed in Sec. 2.2.2, at least in three dimensions crosslinking confers anholonomic
topological constraints on the network as well as holonomic ones. Thus, the statistical-

mechanical tool for constructing the crosslink distribution is not entirely correct. In principle,
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M

crosslink-realizations should be labeled not only by {i., s.;2., sL}2,,

i.e., by the number and
arclength locations of the crosslinks, but also by the precise topology of the realization, i.e.,
by the manner in which the macromolecules thread through the closed loops made by one
another. Then the statistical weight attributed to a crosslink-and-topology realization would
be better modeled as arising from those configurations of the underlying equilibrium liquid
that not only satisfy the holonomic constraints but also the anholonomic ones. As remarked
in Sec. 2.2.2, no mathematical tool yet exists for accomplishing this refinement analytically.
In other words, we are treating the random topology of the system as annealed rather than
quenched.

One should pause to notice the striking feature that at the heart of the Deam-Edwards
crosslink distribution is the normalized partition function Z({ie, st 5L 1M ) of the crosslinked
system, i.e., the crosslink distribution is itself proportional to the partition function, the log-
arithm of which it is to be used to average. This fact gives the development a structure
that is rather appealing, at least from the point of view of form. This will become especially
apparent in Sec. 2.4 in the context of the replica technique, in which this distribution is
generated via an additional (i.e., zeroth) replica, the permutation aspect of the symmetry
of the theory thereby being enlarged from the permutation group S, to S,y1, where n is
the number of replicas [56, 57]. There is, however, no physical basis for restricting attention
solely to crosslink distributions generated by the partition function identical to that of the
crosslinked system. For example, one might imagine crosslinking at a different temperature
or solvent quality, (or, as in Chap. 4, crosslinking and later deforming the system), which
would break the symmetry between the crosslink distribution and the partition function of

the crosslinked system; then, in the context of the replica technique, the permutation aspect

of the symmetry of the theory would remain §,,.
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2.2.6 Disorder averages and symmetry factors

How are we to use the Deam-FEdwards crosslink distribution? As is well known, it is gen-
erally inappropriate in disordered systems to average the partition function itself over the
quenched random variables, as this would amount to treating the quenched random vari-
ables as annealed variables (i.e., equilibrated variables having the same status as the variables
describing the configurations of the system that can be accessed during equilibrium fluctu-
ations). Rather, it is thermodynamically extensive or intensive quantities, such as the free
energy or the order parameter, that should be averaged over the quenched random variables
[32]. To illustrate this point, consider the free energy — In Z. (Recall that we are measuring
energies in units such that kg7 = 1.) Then the disordered-average of the free energy per

macromolecule per space dimension, which we denote by f, is given by
—dNf = [InZ({ic, s, s3] | (2.15)
where the square brackets indicate a disorder-average, viz.,
o 1 1
[OM({le,Se, il st iwl)] = PyOp + E / dsy - dsM/O dsy---ds)y,

N N N
Z Z Z Z PM {5673& ./e7 Sefe= 1)OM({l6756a ./6786 e= 1) (2 16)

i1:1 ile 21:1 =1

M

S

Lost1L,) is an arbitrary function of the realization of crosslinks. The

where On({ic, s¢;1
average over the locations of the crosslinks excludes realizations of the disorder in which two
positions on the same macromolecule located closer than a persistence length participate in
crosslinks. This can be accomplished by suitably cutting off the arclength integrations.

In practice, it is easier to compute disorder averages for the logarithm of the naive

partition function Z than for the logarithm of the physical partition function Z itself. The

relation between the two is given by

f:—i—FZWW:f+J4mdﬂ] (2.17)



where the naive free energy per macromolecule per space dimension is

f= %[log Z]. (2.18)

The difference between the two free energies,

Afzf—f:%lln (Hw)] (2.19)
is in general proportional to In N (for large N). The constant of proportionality is, in general,
difficult to compute. It will be, however, close to d~! for the case of lightly crosslinked
systems, in which o is close to N!, and it will approach zero for the high-crosslinking limit,
in which all macromolecules are connected to a single cluster. (For the uncrosslinked system
Af =1InN/d.) Thus, f (= f — Af) contains a term proportional to the logarithm of the
size of the system, i.e., is not intensive. Despite this unphysical feature of f, it is f that
we shall be computing, rather than f, because our inability to compute [In[], v,!] precludes
us from computing f. However, the physical properties of the system, such as the order
parameter, e.g., are determined by certain disorder-averaged quantities that we shall show

to be insensitive to the indistinguishability factor ], v,!, and which can thus be computed

in the present approach.

2.3 Order parameter for the amorphous solid state

2.3.1 General properties of the order parameter

We now discuss a certain order parameter constructed with the intention of distinguish-
ing between equilibrium states that are liquid (in which the monomers are all delocalized),
crystalline solid (in which a nonzero fraction are localized in a spatially periodic fashion),
globular (in which the monomers have condensed within a spatial subvolume of the sys-

tem), and amorphous solid (in which a nonzero fraction are localized in a spatially random

fashion) [30].
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Consider the real space density for one particular monomer to be at position r in the

sample,
pisx(r) = (8(r —ci(s)))x (2.20)

and its Fourier transform

(exp(ik - ei(s))), = /Vdr pisx (1) exp(ik - v), (2.21)

where k is any wave vector. The angle brackets (- - -), indicate an average over the equilibrium
state in question for a particular realization of the disorder, indicated by the subscript y.
Such equilibrium states may correspond to situations in which the translational symmetry
of the system is spontaneously broken, in which case they are not ergodic. However, we shall
not dwell here on the possibility of further ergodicity-breaking (e.g., of the type commonly
associated with the concept of replica-symmetry breaking; see Ref. [32]). This restriction
is consistent with the results presented below. For a discussion of the issue of ergodicity-
breaking in systems of crosslinked macromolecular networks, see Refs. [30, 56].

First, consider the case of a delocalized monomer, i.e., a monomer (¢, s) that can be found,
with equal probability, in the vicinity of any location in the container. Consequently, the
equilibrium expectation value of its real space density is the constant V=1, and the Fourier
transform vanishes (except for the trivial case of k = 0).

Next, consider the case of a monomer (z, s) that is localized in the vicinity of specific point
b;(s) in space, albeit exhibiting thermal fluctuations about this point. In this case, the real
space density p; s (r) will be more or less sharply peaked around b;(s) and, correspondingly,
(exp (tk-c;(s)))y will not vanish identically, instead varying with k so as to reflect the spatial

localization of the monomer (, s). For this case

(exp (tk - ¢;(s))), = exp (tk - bi(s)) p(i 5 (k) (2.22)

where @(; (k) is a (nonzero) form factor that describes the thermal fluctuations of the

monomer around its mean position.
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One could be tempted simply to propose the disorder average of the total density in
Fourier space (i.e., the sum of all individual monomer densities) as the order parameter.
In fact, this kind of order parameter allows one to distinguish between a liquid phase, in
which all elements of the system are delocalized, and a crystalline phase, in which the system
forms some kind of regular lattice in real space, or a globule phase, in which the density is
concentrated in one particular region in real space (see Table 2.1). However, an amorphous
solid phase, in which some of the monomers are localized, but in a random and homogeneous
manner, would give the same value of the order parameter as a liquid (except for corrections
of subleading order in the thermodynamic limit). Thus, we need an order parameter that
probes the structure of the system in a subtler way.

A similar problem appears in the the context of a class of amorphous magnetic systems
known as spin glasses, in which a system of N spins {S;}¥, are subject to random frustrated
interactions. The total magnetization M = (1/N)>;(S;) (i.e., the sum of the thermal
averages of all the spins in the system), is zero both in the paramagnetic phase, where each
term in the sum is zero, and in the spin glass phase, in which individual spins are frozen with
nonzero but random values, so that terms in the sum end up canceling each other because
of their random orientation. The solution to this difficulty in the spin glass case was found
by Edwards and Anderson [31, 32]: one simply needs to take a sum of scalar products of
the local mean values: (1/N)3>;(S;) - (S;), and the cancelation of terms no longer occurs. A
related approach also works in the context of vulcanization, where the order parameter is an
extension, mutatis mutandis, of the order parameter introduced by Edwards and Anderson
for spin glasses.

For a specific realization of the crosslinks (i.e., prior to disorder averaging), the appro-

priate order parameter is given by [30]

1 X , : . 5 o
T3 [ e (I -l exp (e fexp (o)) (229
for ¢ = 1,2,3,..., none of the d-dimensional wave vectors {k',... k?} being zero.
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The disorder-averaged order parameter is denoted by

st = |30 [ s e K (0D exp (I i) e (0 - ).
- (2.24)
For any particular positive integer ¢, this order parameter may be regarded as the ¢** moment
of the distribution of random static density fluctuations N ({px}) (see Ref. [33]), which is

defined by
N({{px}) = [%2/01 ds l_k[T& (Pk — (exp (k- Ci($))>x)] ; (2.25)

where HL denotes the product over all d-vectors k in the half-space given by the condition
k-n > 0 for a suitable unit d-vector n, and the Dirac é-function of complex argument é.(z)
is defined by 6.(z) = 6(Rez)6(Imz), where Re z and Im z respectively denote the real and

imaginary parts of the complex number z. Thus,

,
/H dRe px dIm pic N({px}) prpre -+ pres
k

- l% 3 [ ds foxp (k! ex(s))fexp (P s)) - fxp ik - ex(s)s |

(2.26)

To see why formula (2.23) is indeed an order parameter appropriate for distinguishing be-
tween liquid, crystalline, globular and amorphous solid states, let us examine its qualitative
properties.

First, suppose that the state is liquid. Then each monomer is delocalized, and conse-
quently the Fourier transformed density vanishes for all nonzero k. Thus, for a liquid state
the order parameter (2.23) vanishes, all terms in the summation over monomers vanishing
identically. This corresponds to a state having full translational and rotational symmetry.

Next, consider the case when a nonzero fraction of monomers are localized in the vicinity
of specific points in space, albeit exhibiting thermal fluctuations about these points. In this

case, for many monomers (¢,s) the Fourier transformed density will be nonvanishing and
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given by Eq. (2.22). In such a state, translational invariance is broken at the microscopic
level. However, the symmetry of the state of the system at the macroscopic level is not
settled without further information.

What possibilities present themselves in the situation in which a nonzero fraction of the
monomers are localized? If the mean locations {b,(s)} of the localized monomers are dis-
tributed randomly and homogeneously over the volume of the system then the state is said
to be macroscopically translationally invariant (MTT), the inclusion of rotational invariance
being understood. We mean by this that there is no periodicity, or any other macroscopic
feature capable of distinguishing one equilibrium state from any global translation or rotation
of it. We refer to such states as (equilibrium) amorphous solid states. On the other hand,
if the mean locations {b;(s)} of the localized monomers are distributed inhomogeneously
over the volume of the system then the state is said to break translational invariance macro-
scopically. Examples of such states are the globular state [58], in which the monomers have
condensed (in space) within a subvolume of the system, and the crystalline state, in which
the mean locations of the monomers are arranged in a periodic lattice (and the monomers
may be regarded as having condensed in wave vector space).

How are the various possible states diagnosed by the order parameter? As we showed
above, the order parameter is zero for all {k',... k?} in a state that is translationally
invariant at the microscopic level (i.e., a liquid). On the other hand, it will take at least some
nonzero values for any state in which translational invariance is broken at the microscopic

level. By using Eq. (2.22) we see that in such a state the order parameter (2.23) becomes

N
3 st () ) 00 () e (H 41 o410 ). (227
This order parameter also provides a way to distinguish between nonliquid states that are
MTT and those that are not. In the case of an MTI state the summation of complex phase
factors will totally destructively interfere unless the wave vectors happen to sum to zero,

the random locations of the mean monomer-positions otherwise leading to random phase
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cancelations. Hence, the order parameter will only fail to vanish for values of the wave vectors
{k',k? ... k?} that sum to zero. This property of being MTT is a fundamental characteristic
of the amorphous solid state. In the non-MTI case total destructive interference is avoided
not only if the wave vectors sum to zero but also under other circumstances. Hence, in
this case the order parameter will also fail to vanish for certain values of the wave vectors
{k'.k? ..., k?} that do not sum to zero. To establish this, consider how formula (2.27)

transforms under a global translation by an arbitrary vector a:

1 X .
N Z/o ds @(i,s)(kl)@(i,s)(kz) 0,5 (K7) exp (z(kl + K+ K bi(s))
=1
—>exp(i(k1+k2+---+k9)-a)

1 & ,
2 s 9 (g (k) - 9 () exp (k! + K2+ o+ 1) - bi(s)).
=1

(2.28)

In situations of MTI, this transformation must leave the order parameter unchanged for all
vectors a. This enforces the condition that for MTI situations the order parameter must

vanish unless k! +k? + ... + k9 = 0, and thus the order parameter becomes

1 X
50,k1—|—~~~+k9 ﬁ Z/o ds p(z’s)(kl) s @(i75)(kg), (229)
1=1

where 651 52 is a d-dimensional Kronecker é-factor, which is nonzero only if the d-vectors
p! and p? have all components equal, in which case it has the value unity. In this state, in
contrast with the crystalline state, there is no periodicity associated with the spatial pattern
of localized monomers, and thus there will not be a collection of reciprocal lattice vectors
for which the order parameter fails to vanish. In particular, the order parameter vanishes
for ¢ = 1. (One may equivalently regard the amorphous solid state as the special case of the
crystalline state in which the unit cell of the crystal is the entire sample, i.e., a realization of

Schrodinger’s “aperiodic solid” [59]) The equilibrium amorphous solid state is characterized
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by the presence of random (i.e., nonperiodic) static density fluctuations, which spontaneously
break translational symmetry at the microscopic (but not the macroscopic) level.

In the non-MTT case, either the transformation (2.28) must leave the order parameter
unchanged for a discrete lattice of vectors a, or it need not leave the order parameter un-
changed for any value of a. When there is invariance for a discrete lattice of vectors (i.e.,
in the crystalline state), the order parameter must vanish unless k! + k* +--- + k9% = G,
where G is any reciprocal lattice vector of the crystal (including the zero reciprocal lattice
vector). When there is no vector for which the invariance holds (i.e., in the globular state)
the order parameter need not vanish on symmetry grounds for any values of the wave vectors
{k',... k9}.

To summarize, the values of the order parameter for the various values of ¢ and the
wave vectors {k', k% ... k?} serve to distinguish between liquid, crystalline, globular and
amorphous solid states: for liquid states the order parameter vanishes for ¢ = 1,2,3,...; for
amorphous solid states it vanishes for all wave vectors that do not sum to zero (and thus
vanishes for ¢ = 1); for crystalline states it only vanishes for wave vectors that fail to sum
to a reciprocal lattice vector (and therefore is nonzero for some {k', k* ... k7}, even when
g = 1); and for globular states it need not vanish in symmetry grounds for any values of
{k',k? ... k?}. Table 2.1 summarizes this discussion.

There is a simple generalization of the order parameter, which emerges naturally from
the replica theory to be presented in Sec. 2.4. This generalized order parameter probes
correlations between the actual state of the system and the state of the system before
crosslinking. It differs from Eq. (2.24 by the inclusion of an additional Fourier density factor
(exp(ik®-c;(s)))x, defined as the thermal average over the configurations of the system before

crosslinking that satisfy the set y of constraints:
1 X 0 - .
Ot = |1 20 [ s (exp (K 4(6)) )l (0 e+ fexp (- i(5))
=1
(2.30)
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Table 2.1: Order parameter and states of the system.

State Density Order parameter Translational
for one monomer Qg1 ko symmetries
LIQUID (eik~r]> = 0k, (all) = 0ki1,0 X -+ X Oka 0 Macroscopic

and Microscopic

AMORPHOUS (e®T5) ~ K¢ (some) ~ Okl4...1k9.0 Macroscopic
SOLID (¢T3} = & o (others)
CRYSTAL (ekTi) ~ etkes ~ Oki 4 tke,G Macroscopic
G € reciprocal lattice only by

lattice vectors

GLOBULE (eik'rﬂ> ~ ¢’k (some) = S(k* 4+ -+ k9) None

(with density p(r)) (X)) = 6y o (others) (S(k) = [ dkel¥Tp(r))

This expression clearly reduces to the order parameter of Eq. (2.24) in the particular case
k? = 0. The distinction between the definitions of (---); and (---), is only relevant for situ-

ations in which alterations other than crosslinking are made to the system after crosslinking.

2.3.2 A simple idealization: generalized Einstein model

To illustrate the general properties of the order parameter, and to motivate the specific
hypothesis for the form of the order parameter described in Sec. 2.3.3 and applied in Sec. 2.6,
we examine a simple caricature of the amorphous solid state. We refer to this caricature
as a generalized Einstein model, by analogy with the Einstein model of a crystalline solid
adopted for the computation of the specific heat, in which it is assumed that every atom is
independently localized by an identical harmonic potential [60]. In the context of amorphous

solidification, the caricature is obtained by asserting that a fraction (1 — ¢) of the monomers
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(the so-called sol fraction) are delocalized, with each monomer (¢, s) of the remaining fraction
q (the so-called gel fraction) being localized near a random mean position b;(s), its location
exhibiting thermal fluctuations about that mean position. We emphasize that our usage of
the terms gel and sol in this chapter refers solely to the issue of whether or not a monomer is
localized. Ultimately, however, we shall see that the gel fraction defined in this way coincides
with the more common architectural definition, in the sense that localization will be seen
to occur only for crosslink densities for which the network spans the entire system. It is
further asserted that the probability distribution for the fluctuations in location of each
localized monomer (7, s) about its mean position is gaussian and isotropic, and characterized
by an inverse square localization length 7,(s) = 1/&(5)2. This assumption is physically
reasonable, for example, if one considers the thermal fluctuations of a monomer in the near
parabolic region around the bottom of a local minimum of the potential that the rest of
the system exerts on the particular monomer. Then, for the localized monomer (¢, s), the

Fourier-transformed density would be given by

(exp (ik - €;(s))), = exp (tk - by(s))exp ( — k*)27:(s)), (2.31)

so that the order parameter (prior to disorder-averaging) becomes

(1—¢q H 50 ke T Z/ ds eXp Lb Zka) exp ( — Zi: |k“|2/2'ri(s)), (2.32)

where it is understood that the summation in the second term only includes localized
monomers.

To obtain the disorder-average of the order parameter we make the natural assumption
that in the disorder ensemble the random variables b;(s) and 7;(s) are uncorrelated. Fur-
thermore, we assume that b;(s) is uniformly distributed over the volume V', and denote by
p(7) the probability distribution for the inverse square localization length. In this case the

order parameter becomes
g
H 50 ke )E /0 dr p(7)exp ( Z |k /27’) (2.33)
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The first term accounts for the delocalized monomers, and the second term accounts for
the localized monomers. If ¢ = 0 then the state described by this order parameter is the
liquid state. If ¢ # 0 then it describes an amorphous solid state. The Kronecker é factor
in front of the second term is a reflection of the MTI that characterizes the amorphous
solid state. This hypothesis is a refinement of the gaussian hypothesis used in a number of
contexts [61]. It is useful to observe that the gel fraction ¢ can be extracted from the order
parameter Eq. (2.23) by taking the limit of the order parameter as {k',... , k%} — {0,...,0}
through a sequence for which }>9__ k* = 0. Let us observe here that even if we did not assume
p(7) to be a probability distribution (and therefore a non-negative normalized function), the
normalization condition for p(7) would emerge simply from the condition that the order

parameter is unity at the origin.

2.3.3 Replica order-parameter hypothesis: gel fraction and dis-
tribution of localization lengths

Having discussed the physical order parameter capable of diagnosing equilibrium amorphous
solidification, we now anticipate the development of the replica approach by describing the
particular form that we shall hypothesize for the replica order parameter, i.e., the order
parameter that emerges from the application of the replica technique and represents, in the
replica approach, the physical order parameter discussed in the previous two subsections of
the present section. This form is motivated by the general characterization of amorphous
solidification in terms of the gel fraction ¢ and the distribution of inverse square localization
lengths p(7) given in Sec. 2.3.2. Below, in Sec. 2.6, we shall show that within the context
of a certain model of randomly crosslinked macromolecular networks the form that we now
hypothesize for the replica order parameter is sufficiently broad to allow us to provide an
exact and physically appealing mean-field—level description of the transition to and properties

of the equilibrium amorphous solid state of randomly crosslinked macromolecular networks.
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As we shall see in detail in Sec. 2.4, the replica representation of the physical order

parameter is given by

P

N n

% > /01 ds expli YK (). (2.34)
in the replica limit, n — 0. As we shall also see there, (-- ->5_|_1 denotes an expectation
value for a pure (i.e., quenched-disorder—free) system of n+ 1 coupled replicas of the original
macromolecular system. Note the inclusion of degrees of freedom associated with a replica
labeled by a = 0. Strictly speaking, only the special case of k” = 0 in Eq. (2.34) is necessary
to obtain the order parameter of Eq. (2.24). However, the keeping of nonzero values of
k? has two advantages: (i) it allows to probe correlations between the state of the system
before crosslinking and the present state of the system via the generalized order parameter
of Eq. (2.30), and (ii) the general form of Eq. (2.34) with k° not necessarily zero emerges
naturally from the replica theory.

For the sake of notational convenience we introduce hatted vectors (e.g., k or ¢), which
are (n+1)d-component vectors comprising (n+1)-fold replicated sets of d-component vectors
(e.g., the wave vectors {k% k',... . k"} or the position vectors {c? ¢c',... ,c"}). We define
the extended scalar product ke by o= o _o k¥ c®, having the special cases 2=k k
and ¢2 = ¢- ¢. In terms of this notation, the order parameter becomes

P

(33 [ ds explib- (o)), 0.3

By translating formula (2.33) into the replica language, through the use of Eq. (2.59),
we are led to the assumption that the replica order parameter takes on values expressible in

the following form:
(1—9q) 5%”) q51(;d2)/ dr p(7) exp(- ]%2/27')7 (2.36)
’ 5 0

where k = Y"_, k* is a permutation-invariant d-vector built by summing the elements of the

replicated vector ]AC, and 5](37;”) =11k, 5£,da)’qa. Thus, we parametrize the order parameter in
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terms of the gel fraction ¢ and the distribution of (inverse square) localization lengths p(7)
[62]. This parametrization is severely restrictive mathematically but physically plausible. In
order for p(7) to be interpreted as a probability distribution it must be non-negative. This
condition is not imposed a priori, but emerges from the stationarity condition. The ranging
of 7 only over positive values reflects the fact that inverse square localization lengths are
positive. Moreover, delocalized monomers are accounted for by the term proportional to
(I — ¢), so that p(7) must not contain a Dirac é-function-like piece at 7 = 0. The factor
51(52) incorporates the MTI property into the hypothesized form. It should be emphasized

that the hypothesized form is invariant under the permutation of the replicated vectors

k% k' ... .k"™}. which is a manifestation of its replica-symmetric character.
M) 9 7 7 p y

2.3.4 Symmetry properties of the order parameter hypothesis

We now state explicitly the symmetry properties of the order parameter hypothesis (2.36)
that we shall use throughout the remainder of this chapter. As we shall see in Sec. 2.5,
the free energy functional of the replica theory turns out to have the following symmetries:
(i) independent translations or rotation of the replicas, and (ii) permutations of the replicas.
In the liquid state the order parameter retains all these symmetries. In the amorphous solid
state the symmetry of the order parameter is reduced. By invoking our hypothesis for the
order parameter we are assuming that in the amorphous solid state the residual symmetries
become: (i) common translations and rotations of the replicas, and (ii) permutations of the
replicas. In other words, in the transition to the amorphous solid state the symmetry of inde-
pendent translations and rotations of the replicas is spontaneously broken. As a consequence
of the spontaneous breaking of certain symmetries there is a manifold of symmetry-related
values of the order parameter that describe the solid state.

In this chapter we have restricted our attention to order-parameter hypotheses that are

invariant under the permutations of all (n + 1) replicas (i.e., that are replica-symmetric).
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This mathematical restriction is equivalent to the physical condition that, upon amorphous
solidification, the (overwhelming fraction of the) system must exhibit one member of a unique
family of equilibrium states (i.e., statistical arrangements of the macromolecules), this unique
family of states being related by global translations and rotations. While the occurrence of
a unique family would not be an unreasonable consequence of crosslinking, especially in
view of our exclusion of the anholonomic constraints that crosslinking introduces into the
physical system, one might anticipate that crosslinking would cause the full physical system
to exhibit many families of states (i.e., there would be states that are not related by global
translations and rotations). Such an occurrence would be signaled by an order parameter
that is no longer invariant under permutations of the replicas (i.e., for which replica symmetry
is spontaneously broken). For discussions of these matters, see Ref. [56] as well as Refs. [30].

It must, however, be emphasized that, regardless of the issue of the intactness of permuta-
tion symmetry, the primary physical phenomenon at hand in the formation of the equilibrium
amorphous solid state is the spontaneous breaking of translation symmetry (viz., the spon-
taneous random localization of macromolecules). The issue of replica-symmetry—breaking
is not an alternative to translational-symmetry—breaking: it simply addresses whether or
not a system with given realization of crosslinking possesses one or many un—symmetry-
related ways for the macromolecules to be randomly localized. To allow for the possibility
that replica-symmetry—breaking accompanies translational-symmetry—breaking is to explore

a more general class of behaviors of the system.

2.3.5 Connection with scattering experiments

The order parameter that we have been addressing in the present section is, in principle,

accessible via neutron scattering experiments [64, 65], at least for the case ¢ = 2. In fact,
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the elastic part of the differential scattering cross-section (per atom) can be written as

1d’s $9(q) = lim <|bcoh|2< g: /ldsds’ex (—iq-ci(s;0)) exp (i ‘C"(Sl't))>
Ndao q)= m N N4y p q-Cis; pltq - €Sy

+ |bh};’h|2<;/ol dsexp (—iq-ci(s;0)) exp (1q - ci(s; t))>)v (2.37)

where b.,p 1s the average scattering length, biycon 1s the variance of the scattering length,
c;(s;1) is the position of monomer s on macromolecule 7 at time ¢, and (---) indicates a
time-dependent equilibrium expectation value. The second part on the right hand side is
the tncoherent contribution, and can be extracted in some cases. By using the fact that the

connected correlators vanish for ¢ — oo, we see that this second part reduces to

7'@11;;}1 : > [ ds(exp(~ia-ei(s)) (expGia-ei(s)) ), (2:38)

i.e., formula (2.23) evaluated for the special case of {k' k% ...k} = {—q,q,0,...,0}.
Thus, the order parameter for ¢ = 2 is proportional to the incoherent part of the elastic
neutron scattering cross-section.

Oeser et al. [66] have measured the time persistent part of the incoherent scattering
function in neutron-spin-echo experiments. They fit their data, which are taken in the high
crosslinking limit, to a gaussian in wave vector space characterized by a typical length scale
[, which turns out to be comparable to the radius of gyration. A potential critique of neutron
scattering experiments results from the available time scales, of order 10 ns, which make it
difficult to extrapolate to infinite time in order to extract the time-persistent part of the
autocorrelation. This may not be a severe problem in the high crosslinking limit, in which
one expects rather small time scales associated with small distances between crosslinks.
However, it may become prohibitive for weakly crosslinked systems, which barely sustain an
infinite cluster.

Pulsed field gradient NMR (see, e.g., Ref. [67]) is another experimental technique for

measuring the intermediate-time incoherent scattering function with a spatial and temporal
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resolution that is complementary to neutron scattering experiments. Typical time scales in
NMR experiments are of order milliseconds, and length scales are restricted to be greater
than 10nm. An example of such measurements are the detection of spatial fluctuations in
swollen networks in Ref. [68].

Another technique that may be useful to probe the order parameter is dynamic light
scattering (DLS). In this technique, light is scattered from the sample, and the scattered
intensities at different times and for a fixed scattering wave-vector q are correlated [69]. From
those correlations it is possible to obtain the normalized intermediate scattering function
f(q,t), where t is the time delay. [f(q,?) is proportional to the second term in the right hand
side of Eq. (2.37).] In one experiment with brownian particles trapped in a polyacrylamide
gel [70], intensity correlations for time intervals of microseconds to tens of seconds were
measured, for scattering wave-vectors between 0.01 and 0.03 nm™!. In this case, by analyzing
the long time limit of f(q,t), localized particles were detected and r.m.s. localization lengths
of between 6 and 35 nm were measured for them. The authors claim that the results of the
experiment are not compatible with the existence of a unique localization length, and that
a distribution of localization lengths is necessary to fit the data, although they are not able

to determine it.

2.4 Replica approach for disorder-averaged quantities

Having prepared the way by discussing the model and the construction of a suitable prob-
ability distribution for the disorder, and defining an order parameter capable of diagnosing
the possible states of the system, we now turn to the computation of disorder-averages of
important physical quantities, such as the free energy, order parameter and certain corre-
lators. A direct assault on this task, as it stands, seems prohibitively difficult, but it can

be rendered tractable by the use of the replica technique [32], pioneered in the context of
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macromolecular networks by Deam and Edwards [20]. In this approach, we do not consider
just the original degrees of freedom but, instead, a system comprising n+ 1 interacting copies
(i.e., replicas) of it that will be labeled by the superscript o = 0, 1,...,n. In this new system,
the quenched randomness disappears from the formulation, at the price of introducing an
inter-replica interaction.

Let us first consider, for example, the naive free energy f. Within the framework of the

replica technique, its disorder average is obtained from

F= log [Z7], (2.39)

—1
log 7 —1
ndN[ og Z] G 0 ndN

where Z" is interpreted as the partition function for a system comprised of n identical copies
(or replicas) of the original system [32].

For the Deam-Edwards distribution, the disorder average of Eq. (2.39) takes the form

71=¢% 01 () 700700, (2.40)

where M, is the number of crosslinks for the disorder realization x, and C is a normalization

constant:

o1 <exp{ v N /ds/dt5 s) — et ))}>E. (2.41)

2]1

As anticipated before, the presence of the Z factor makes it necessary to introduce an
additional replica, besides the n replicas associated with the n factors of Z. The additional
replica, labeled by a = 0, represents the degrees of freedom of the original system before
crosslinking, or, equivalently, describes the crosslink distribution. Consequently, any changes
in the system after the permanent constraints have been created will affect replicas a =

1,...,n, but not replica o = 0 [20].
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2.4.1 Computing [Z"] explicitly: particle density variables

A more explicit expression for [Z"] can be obtained by combining Eqgs. (2.9), (2.10) , (2.41)

and (2.40):

[ Do e T (*;ié’) [0 I1:23 6 (et (s.) — ci(s1)
fDC eXp{ H—I_ﬂQV 1,Jj= lfldsfoldté( ()_C] t))}

(
De expy —yh_HY+ ‘L2V ; s 1dt5 (¢i(s) —¢;(t
_ { oH1" + Ny Jods f (1)) } 2.42)

S De exp{ —H + 55 S0 Jods Jodt 6 (c ()—Cj(t))}

Here quantities with superscripts 0, «, and n are respectively associated with replicas 0, «,

77 =

and n; and [ D¢ is equivalent to [Dc®--- Dc™. At this point it is convenient to exploit the
translation invariance of the above expression by switching from coordinates representing
the polymer configurations c¢;(s) and ¢;(s) to variables representing Fourier transformed

monomer densities, defined by
_ 1 ld P-ci(s)
Ry = > Pt 2.43
P N i:l/o ° e 7 ( )

L g et 2.44
Qi = 2 [ds el (2.44)

We start by using the decompositions of the Dirac delta function in terms of plane waves,

given by
1 .
=7 > exp(ip-c) (2.45)
P
in d-dimensional space and by
R 1 o .
6(¢) = e Zexp (1G - ¢) (2.46)
g
in replicated space, which allow us to write
N
Z/ds/dté —ei(0) = 52 IQpf
2] 1 1Y
(2.47)
AR 1 N
— d/dtéy &) = =304
¥ 2 i [ -6 = 3310
(2.48)
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Throughout this calculation we employ periodic boundary conditions in real space, and
this determines the set r" of allowed d-dimensional wave vectors p that enter the sums in the
right hand sides of Egs. (2.45) and (2.47). The set R" of allowed replicated wave vectors ¢ in
the right hand sides of Eqs. (2.46) and (2.48) is obtained by simply taking all combinations
of (n+1) allowed d-dimensional wave vectors. Here the superscript u stands for “unstrained
system”. In Chap. 4, when we discuss deformations of the system, these deformations will
directly change the boundary conditions in real space, and consequently the set of allowed
wave vectors.

We now introduce a particularly convenient decomposition of the terms in a summation
over a replicated wave vector ¢, such as that appearing in Eq. (2.48). Consider a generic
replicated vector ¢ = {q% q',...,q"}. Of the n + 1 component d-vectors, establish the
number h that are nonzero d-vectors. Then we say that the replicated vector ¢ resides in the
h-replica sector. For example, if § = {0,0,q9%,0,q*,0,0,...,0} with g* and g* both nonzero
d-vectors then h = 2, and we say that ¢ resides in the 2-replica sector. The decomposition
that we are introducing amounts to separating from the summation over ¢ the term in the 0-
replica sector (i.e., the term corresponding to ¢ = 0= {o,0,..., 0}), and also separating the
terms in the l-replica sector (i.e., terms corresponding to those values of ¢ in which exactly
one d-vector is nonzero). Thus we shall decompose summations over ¢ into contributions
from: (i) the O-replica sector; (ii) the 1-replica sector; and (iii) the remainder, which we refer
to as the higher-replica sector, and which contains the h-replica sectors for 2 < h < n + 1.
Schematically, the decomposition can be expressed in the following way for a generic quantity
Qq

Y=+ Y0+ S (2.49)
q

a=0 P i

where E’p denotes a summation over all values of the d-vector p except that the p = 0 term
is omitted (i.e., it comprises terms in the l-replica sector), Q) denotes the value of Q; when

p is in the 1-replica sector (i.e., the a'® d-vector entry in p is p # 0, all other entries being
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zero), and y_; denotes a summation over replicated vectors e residing in the higher replica

sector. An alternative form for the decomposition reads

3Qi=Q0+ 30+ 3,0 (2.50)

q
where the symbol i:;a denotes a sum over replicated wave vectors in the one replica sec-
tor. With a view to subsequent decoupling transformations, it is useful to use the Fourier
representations of the Dirac é-functions and the replica-sector decomposition in order to
re-express the Dirac é-function interactions, i.e., the non-Wiener measure terms that cou-
ple the replicated degrees of freedom. Thus, the delta-function interaction terms that were
expressed as a function of densities in Eqs. (2.47) and (2.48) can be written as follows

!

N n N=
52 Q4l* = 7 5 Z > 1Qp1F + 52;;|Qé|2
q a=0 P
N NIt =t _
= 5t5 DDl + NY Q4 (2.51)
a=0 P ff
N Z N NZ
SRR = (D)o YR
2 a=0 P 2 2 a=0 P
N = 1 |2 ¢ ¢
= (n+1) 3+ > Qg (2.52)
a=0 P

For each of the left hand sides we have performed two steps. In the first step we performed
the replica-sector decomposition, according to Eq. (2.49). In the second step, we have
recognized that the summands in the summations over wave vectors of the second step are
even functions of the relevant wave vector. Furthermore, none of the summations includes a
zero wave vector. Thus, in each case the summation can be restricted to half of the relevant
wave vector space, provided a factor of two is included to compensate. To represent this,
we have introduce the notation ZL to denote Y} but with k restricted to the half space via
the additional condition k - n > 0 for a suitable unit d-vector n, and fz to denote y_; but
with k restricted to the half space via the additional condition f - fi > 0 for a suitable unit
(n + 1)d-vector n. The virtue of this procedure is that in our subsequent development it will

enable us to avoid the introduction of kinematically non-independent fields.
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Using the decompositions just introduced to rewrite in terms of Fourier transformed

monomer densities the delta-functions appearing in the expression of Eq. (2.42) for [Z"] we

obtain,
e pe exp{ — YN, flds |0 N/\iin Qs + NETHQI
[27] = R . . (2.53)
IDC eXp{ - %Eizl fods (;3—58 )‘(ZJ VvV ET |QP| }
Here we have introduced the effective excluded-volume parameter
2

N V
= L 2.54

i.e., the bare excluded-volume parameter A\? renormalized to a smaller value by a correction
term proportional to the crosslink density parameter y?. The theory to be presented here is

only valid in the regime in which this parameter is positive,
A2 >0 (2.55)

or, equivalently, in the regime

N
0<p®< A27. (2.56)

A negative value of S\i seems to be associated with an instability towards a collapse of
the system into a high density condensate in real space, although the simple model we are
studying is probably too crude to handle that regime. On the other hand, a positive value
of 5\% disfavors any configuration with nonzero values of Q)5, and therefore favors MTT.

The constant ¢ = 2V 2 4 “2—2 logV 4+ O(n) arises from terms in the 0-replica sector, and

plays no further role in the theory.

2.4.2 Computing the order parameter explicitly

Having obtained a more explicit expression for [Z"], it is instructive to do the same with
the order parameter. The order parameter is a sum of terms of the form [{(Og)y -+ (O,)4],

i.e., disorder averages of products of thermal averages of observables O;, : = 0,...,9. We
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assume here that the system has not been modified after crosslinking, and therefore drop the
distinction between (---)5 and (---),; the extension to the general case is straightforward.

Since (1), = 1 for any disorder realization y, it is clear that

[(Oo)x - (Oy)i] = hm [(Oo)x = (Og)xllgr)x -+ {Ln)xl

— lim [fpcoe HOAo( )Oo [ Dege” ™A (x)O,
fDCOe_H AO( ) fpcge_HgAg(X)

L I Dege g“A () chne‘H"An(X)]
J Degrie ™ Apa(x) [ Dene ™" An(x)

= hm [/DCOG_ Ao(X)OO e /che_HgAg(X)Og

_H9+1 —H"
/DCg+1€ g+1 /Dcn n X ):| .

n—0

(2.57)

Here we have denoted by A(x) a quantity that implements the constraints, i.e., that is
nonzero only for those configurations that satisfy the constraints given by .

We can perform the disorder average explicitly, thus obtaining an expression analogous
to Eq. (2.42) (when computing Qo ..xs in the replica approach, both here and later, we

choose [ so that 1 =k for a = 0,---,gand 1*=0fora =g+ 1, --,n [71]),
: 1 ik%.c,(s tk9-c;(s
Do, gor = lim = 3 [ ds [(H00) o (R00) (1 10) o (L),
i

= lim N Z 1d5 [H <ei1a'cﬂ(5)>xl

a=0

T /Dc’--- Den {% ;V 1 folds el 2 a0 la'cia(s)} ISODN
m E

=0 [De exp{ = H + 55 X0y Jods Jodt 6 (ei(s) = ¢j(t)) }

1 2V My n My
S CR N 191 (IR

a=0e=1

[P e = S B By o o R (60— 50 ),
"0 Do exp{ = H+ 5 T fads fodt 6 (eils) — es(1) } |

Clearly, the value of the above expression is unchanged by dividing by 1 = [{11) - -+ {15)y].
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This leads to

JDé Qp exp{ = Lliog H* + 43 Ny fods [3de 8 (éi(s) — &(1)) }

O xe = lim — - :
"0 [Dé exp{— ¥ OHQ+“ Nica Jods fodt 8 (é(s) — &5(1)) }
= lim Q) » (2.59)

where (---)F ., denotes an average for an effective pure (i.e. disorder-free) system of n + 1

coupled replicas of the original system, defined for a generic observable O by

I 0 exp{~ 10N, fds| S0 -

[ Dc exp{ — %vazl Olds déi(s

Aiiiz Qs> + NETHQs 12}

<O>5+1 = N
N)\QVZ |Qp|2 ‘I’anzk|Qp| }

. (2.60)

2.5 Field theory

All the above expressions contain interactions between macromolecules that complicate
any analytic treatment. We now decouple those interactions by performing a Hubbard-
Stratonovich transformation that eliminates the Fourier transformed density variables ); in
favor of stochastic fields §; [72]. This strategy has the following virtues. First, the task of
summing over the configurations of the system of N replicated macromolecules is reduced
to the task of summing over the configurations of a single replicated macromolecule. The
monomers that constitute this replicated macromolecule remain coupled to each other via
the Wiener measure, Eq. (2.3), and by the stochastic field to which they are coupled. Sec-
ond, the stochastic field itself has a natural physical interpretation: it is related in a direct
manner to the order parameter. Third, the expressions in terms of sums over the values
of the stochastic field are more readily computable than the formal expressions in terms of
sums over polymer configurations that we have been dealing with up to now.

We make use of the formulas:

exp (—a |w|2) = (a/ﬂ)/d(Re z) d(Imz) exp (—a |2|2) exp (2ta Re zw™), (2.61)

exp (—I—a |w|2) = (a/7) / d(Rez) d(Imz) exp (—a |Z|2) exp (2a Rezw™),  (2.62)

60



where w is an arbitrary complex number, a is a real and positive (but otherwise arbitrary)
number, and the integrals are taken over the entire complex z plane. The upper formula
can be applied to the terms that come from excluded volume repulsions, which provide
contributions with negative prefactors in the exponents in Eq. (2.53); whereas the lower
formula can be applied to the term originated in the disorder distribution, which comes with
a positive prefactor proportional to p?.

By combining Eq. (2.53) with Eqs. (2.61) and (2.62) in the way just outlined, we obtain:
(7" = /m exp{—ndNF,({Q: )}, (2.63)

where F,({;}) is a replicated free energy functional and N is a normalization constant.
The symbol D} denotes integration over all possible configurations for the fields {€);},
where the independent set of variables is the set of all the complex-valued ; for k in the
half-space determined by the condition that k- f be positive for a fixed unit vector n, and it

is always assumed that _; = Q7. The free energy functional Fn({Q;}) has the expression

ndF, ({0 }) = A2 — Z Q1% + VnZ )2
w
—1In <exp (L)\Z Z Re Q;p7 Py + —Z Re Qk/)k)> , (2.64)
n+1

where the one-macromolecule Fourier transformed density p; is
1
pp = / ds ehe) (2.65)
0

for a macromolecular configuration ¢(s), and the Wiener replicated average is defined by

( KHEIDCO exp{_lfo 52 } (2.66)

| Dé exp{—%folds d—

We see that indeed the set of Hubbard-Stratonovich transformations has led to the de-

coupling of the N (replicated) macromolecules from each other, and that in the end we have

obtained an expression involving only one macromolecule interacting with the stochastical

field €.
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We can compute the free energy functional F,,({{2;}) perturbatively, order by order, in
powers of {2;}. This perturbative construction of the Landau-Ginzburg-Wilson free energy
functional is equivalent to that arising in many other contexts in statistical physics.

The normalization constant A in Eq. (2.63) is given by the expression

N e—Nn¢
- 12 ~
[ De exp{— 15N, fyds | %] — NAZE L |Qp )
= e N C/Dc exp{ — H1}. (2.67)

Let us now discuss the symmetry properties of the free energy functional. Under in-
dependent translations of all the replicas, i.e., ¢ — ¢ + a®, the replica order parameter,
Eq. (2.34), transforms as

O — O = el lao k2% (2.68)

For later reference, let us calculate the change in the order parameter for the case of small

displacements:

80 =0 — Oy =i k-aQp + Oa?). (2.69)
Under independent rotations of the replicas, defined by Ro = {R°%V®,--- R"v"} and ¢ —
R%cy, the order parameter transforms as

Qp — O = Qpip (2.70)

By inserting the transformed order parameter for either of the above operations into the free

energy functional Eq. (2.123), we see that in both cases:
ndF,({9)) = ndF,({0:)). (2.71)

i.e., that the free energy functional is invariant under independent translations and rotations
of the replicas. Besides, since both the replicated Wiener average and the sums over repli-
cated wave vectors in Eq. (2.64) are intrinsically replica symmetric, the free energy functional

is invariant under permutations of the n + 1 replicas.
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We can now compute the order parameter in terms of sums over the stochastic field, and
show the direct relation between the two that was mentioned before. For the computation

of the order parameter, besides Eqs. (2.61) and (2.62), we make use of the formulas:
1w exp (—a |w|2) = (a/7) / d(Rez) d(Imz)z exp (—a |Z|2) exp (2ta Re zw™) , (2.72)
w exp (—I—a |w|2) = (a/7) / d(Rez) d(Imz)z exp (—a |Z|2) exp (2a Rezw™), (2.73)

where the symbols have the same meaning as before. A calculation similar to the one for

the partition function gives rise to the expressions [72]

(@i =~ (2.74)
Qe = ()7, (2.75)

Here, the expectation value (-- )7, is defined via

- /DQ - exp{—ndNF,({Q: 1)},
< N _ ‘ (2.76)
n+1 /DQ exp{—ndNF,({Q;})},

Thus, by using Eq. (2.59) we see that we can relate the order parameter to the expectation

value of the stochastic field €;:

N
2 e (e ), foxp (K s o fenp (1 )| = By (007,
(2.77)
where | = {k% k', ...,k?,0,...,0}. In the following section we make explicit use of this
development in order to compute the order parameter.

Let us notice here that the normalization constant A drops out of the computation
of any pure averages because of a cancelation between numerator and denominator. This
immediately implies that it plays no role in determining the order parameter. Even when
in Chap. 4 we look at the change in free energy due to a deformation of the system, N
will be unaffected, because it only depends on the state of the system before crosslinking.

Therefore, we will ignore N from now on.
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2.6 Stationary-point approximation

In the preceding sections we have developed an exact, formal, field-theoretic representa-
tion of the statistical mechanics of randomly crosslinked macromolecular networks. In the
present section we shall explore the properties of such systems, focusing our attention on
the regime of crosslink densities near to the equilibrium phase transition from the liquid
state to the amorphous solid state that sufficient crosslinking causes. We shall do this by
analyzing the field-theoretic representation at the level of mean-field theory, considering in
detail expressions for the free energy and the order parameter.

The mean-field level of approximation follows from computing the functional integral in
Eq. (2.63) by using the stationary-point method. This amounts to replacing the functional
integral by the value of its integrand that is stationary with respect to variations of {Q;},

so that, omitting unimportant constants, we obtain the following approximations for f,

<Qﬁ>f+1> and <Qk>f+1-

fo= limF ({0} (2.78)
i<ﬂﬁ>g+1 = <Qz§>f+1:Qﬁa (2-79)
Qidner = (Qhmr = Y (2.80)

where p is any replicated wave-vector in the one replica sector and k is any replicated wave-
vector in the higher replica sector. The particular values {Q;} for the stochastic field are

those that satisfy the stationarity conditions

OF,
502 {94}

= 0. (2.81)

By inserting the explicit expression of Eq. (2.64) for the free energy functional, the station-

arity conditions are shown to be

O = i{ps) it 0 = (pp)nis (2.82)
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for p in the one replica sector and k in the higher replica sector. Here we have defined the

average

(O)ih = Fatl (2.83)

<exp (iS\%%iﬁQﬁpg + %EQ@PZ»W

The stationary-point condition of Eq. (2.82) can thus be interpreted as a self-consistent
equation for the stochastic fields {€2;}. In the Weiss molecular field theory of magnetism one
postulates that the thermal average of the spin under the effect of an effective field produced
by the mean field magnetization has to be equal to the mean field magnetization. In the
present theory, the appropriate thermal averages of the Fourier transformed densities for a
macromolecule under the influence of an effective field produced by the stochastic variables
{Q;}, have to reproduce the same values of those stochastic variables {£;}.

Although the general physical interpretation of the set of stationarity conditions in
Eq. (2.82) seems clear, it is not at all obvious how to solve those equations. The avail-
able space that the fields {2} span is enormous. For example, in the replica theory of spin
glasses, even though the unknown @,z (an n x n matrix associated with the correlations of
spins in replicas o and () is a much simpler object than the set of {{;} that one needs to
determine in the present theory, much effort was necessary before a satisfactory solution to
the stationary-point equations was discovered by Parisi.

In our problem, it seems out of the question to search exhaustively for solutions. Instead,
we proceed by steps. First, in Sec. 2.6.1 we analyze the stationary point corresponding to the
liquid state, and find its region of thermodynamic stability. Later on, in Sec. 2.6.2, we take
a variational approach to the problem of the amorphous solid state, by restricting the order
parameter to the family described by the parametrization presented in Sec. 2.3.3. Finally,
in Sec. 2.6.3 we show that the optimal solution found within a restricted hypothesis is a true

stationary point.

65



2.6.1 Instability of the liquid state

In the context of the mean-field approximation, the liquid state corresponds to €; = 0, which
can readily be checked to solve Eq. (2.82). To address the stability of this state we expand

perturbatively Eq. (2.64) for F,({Q;1}) about Q; = 0 to second order in ;. This gives
~ _ n T ~ _ o
ndF({0)) = NNV (14 NV go(KP) kP
a=0
—1 .
2V (1= 2V mgo([RD) (47 + -+ (2.84)

The correlators necessary to calculate the terms in this expansion are computed in App. A,
and the function go(|k|?) resulting from the subsequent arclength integrations is defined in

App. B and has the value

go([k*) =

oK /2 _ (1—%k2) 1—k2/6, if k< 1;
- (2.85)

L(Lk)”

As we anticipated at the end of Sec. 2.4.1, the stability of the 1-replica sector is controlled

4/k* if k> 1.

by the coefficient of the |Qf§|2 term in this expansion. This coefficient, together with the
positive-definiteness of go(|k|?), show that provided the crosslink-renormalized excluded-
volume parameter S\i, Eq. (2.54), is positive, the 1-replica sector is locally stable. Thus, the
stationary-point value Qﬁ is zero. The positive-definiteness of 5\721 requires that

pv

s L
Z NV

(2.86)

i.e., that the repulsive character of the physical excluded-volume parameter A\? is sufficiently
strong to enable the system to withstand the effective tendency towards collapse afforded
by the crosslinking. Thus, we see that even at the level of mean-field theory it is only as a
consequence of the presence of the excluded-volume interaction that the system can, at the
same time, be stable with respect to collapse to the (inhomogeneous) globular state and yet
unstable with respect to the formation of the (macroscopically homogeneous) amorphous

solid state.
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The stability of the higher-replica sector is controlled by the coefficient of the |Qk|2 term

in the expansion, Eq. (2.84), i.e., by
L= iV gu(i?) (287

(considering, as we do, pu? > 0). The two contributions to this coefficient enter with com-
peting signs, owing to the attractive nature of the effective term arising from crosslinking,
and thus provide the opportunity for the loss of positivity of this coefficient. Indeed, the
coefficient indicates that the liquid state will be stable for x? < 1 and unstable for pu? > 1,
i.e., stable only for sufficiently small crosslink density, the factor of V=" in Eq. (2.87) being
eliminated by first taking the limit n — 0, and subsequently taking the thermodynamic limit
(V — o0, N — oo, N/V fixed, u? fixed) [73]. The least stable modes correspond to long
wavelengths, k2 — 0, for which go(|i€|2) — 1 from below [74].

The linear stability analysis of the present subsection indicates that the liquid state, as
characterized by the order parameter discussed in Sec. 2.3, is stable when the mean number of
crosslinks per macromolecule [M]/N is smaller than a certain critical value M./N, i.e., those
mean crosslink densities corresponding to pu? < 1. However, for larger crosslink densities,
([M]/N) > (M./N), i.e., u* > 1, the liquid state is unstable [75], being replaced by an
alternative state which, as we shall see in the following two subsections, is an amorphous
solid state, characterized by Q; # 0 for ki in the higher replica sector but {25 = 0. In fact,
the state that replaces the liquid state will turn out to have the property of macroscopic
translational invariance (see Sec. 2.3.1), so that even though it has Q; # 0 this is compatible
with and does not disturb the fact that the l-replica sector remains stable and that Qg

remains zero.
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2.6.2 Variational approach

We now set about exploring the nature of the amorphous solid state with respect to which
the liquid state is unstable for z? > 1. Initially, we do this by following the strategy outlined
before of making F,, stationary with respect to the fields {3 and €1;. However, we are unable
to parametrize the entire space of possible fields. Instead, we consider the class of fields for

which physical motivation was presented in Sec. 2.3.2 [see Eq. (2.36)],
O = 0, (1-replica sector), (2.88)

0= gq 51(52) /OOO dr p(7)exp (—]%2/27') , (higher-replica sector), (2.89)
evaluate F, for such fields, and make the resulting quantity stationary with respect to the
variational quantities, the gel fraction ¢ (a number) and the distribution of (inverse square)
localization lengths p(7) (a normalized function). This amounts to making a variational
mean-field approximation. However, as we shall see in the following subsection, the hypoth-
esis we make for the stationary point will actually turn out to contain an exact stationary
point of F,,.

By inspecting Eq. (2.64) and employing Eq. (2.88) we see that there are two contributions
to the free energy: a term quadratic in {);, and a term that can be identified as the logarithm
of the partition function of a single replicated macromolecule coupled to ;. The explicit

details of the evaluation of these terms when Q; is given by Eq. (2.89) are presented in

App. C. Then the variational mean-field approximation to the free energy is given by
f =~ lim min F,({Q;}) ~ min f**{q, p}, (2.90)
7’L—>0 Q(Z q7p(7')
where we have omitted constants independent of the variational parameters ¢ and p(7), and

the variational free energy f**{q, p} is given by

™{qp} = —.l(exp( —u'q) — (1 —pq) — %MZQQ) In (V*/4/2re)

2
l 2 2 [ = -1 —1y-1
+out | dnp(n) | drp(r)ln (77
0 0
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r

1 , & 2r 7 1
—{—56_“‘1;# !q /0 dsy---ds,
x / T dnip(ny) - drp(r) n (WO det VRO L (2.91)
0

(r)

oo is an (r X r)-matrix—valued

Here, det™ denotes the determinant of an r x r matrix, R

r

r_, and the r inverse square localization lengths

(r)

ep’

function of the r arclength coordinates {s,}
{r,},_,, and WU) is a single such function, R, and W) being respectively defined in
Egs. (E.1) and (E.3) of App. E.

As anticipated in Sec. 2.2.6, in addition to intensive terms we find a nonintensive term,
proportional to In V', owing to the omission of the disorder-average of the Gibbs symmetry
factor. The presence of the InV factor signals the fact that the configuration integral pro-
duces additional powers of V. These powers of V' can only be due to degrees of freedom that
are allowed to vary over the entire sample, i.e., to the fraction of macromolecules that are de-
localized. Thus this term depends on the gel fraction ¢, but it cannot (and does not) depend
on p(7), which only describes the localized degrees of freedom. In the following subsection
we shall analyze the self-consistency condition for the order parameter directly and, although
no quantity proportional to In V' will appear, we will re-obtain the exact same results as in
the present subsection. This approach will be seen to have the additional substantial virtue
of demonstrating that the hypothesized form of the order parameter, Eq. (2.36), used in the
present section as a variational hypothesis, in fact provides an exact stationary point of the
free energy, not merely a variational approximation.

As a first step towards minimizing f** we regard the term proportional to In V' as dom-
inant, and make it stationary with respect to the gel fraction g. This leads to the condition
(33, 76]

exp(—p'q)=1-gq, (2.92)
For all values of p? this equation has the root ¢ = 0, corresponding to the liquid state.

However, for 4? > 1 an additional root appears, emerging continuously from ¢ = 0 at u? = 1,
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Figure 2.1: Dependence of the gel fraction ¢ on the crosslink density control
parameter u?.

and describing the equilibrium amorphous solid state. In Fig. (2.1) we show the dependence
of the gel fraction on u?. For p? > 1, i.e., the highly crosslinked regime, ¢ approaches unity
asymptotically as ¢ ~ 1 —exp ( — p*). In the critical regime, 0 < p* — 1 < 1, it is convenient

to exchange p? for the new control parameter ¢, defined via
pr=1+¢/3, (2.93)
with 0 < e < 1. We may then solve perturbatively for ¢, obtaining
q=2¢/3+ O(). (2.94)
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Having determined the condition satisfied by ¢ we now turn our attention to the de-
pendence of f¥® on the distribution p(7) of inverse square localization lengths. As we are
primarily interested in crosslink densities in the vicinity of the vulcanization transition (i.e.,
0 < e < 1), we use the result that, to order ¢, we have ¢ = 2¢/3. This allows us to retain
in the summation over r in Eq. (2.91) only the terms r = 2,3 (the » = 1 term vanishing
identically by the construction of W()). Next, we assume that the inverse square localization
lengths having appreciable statistical weight in p(7) are also of order ¢, i.e., small compared
to unity, in units such that \/¢L/d = 1, so that localization is on length scales much larger
than the size of a free macromolecule. (We shall confirm the consistency of this assumption
a posteriori.) Thus, we may use the result from App. E to expand In (W(T) det(™ Rf);),) in
Eq. (2.91) for small {7,}7_,, retaining terms to order 7,. Then we integrate over the arclength
variables {s1,...,s,} by using the results of App. E. Omitting terms that are independent
of p(7) we find that, to O(€%),

P () s ) () m G )

(2.95)

where the curly brace carrying the subscript 7 indicates averaging over the localization
lengths, i.e., {¥(7,72,...)} = [5° drip(mi)drap(rz) - - U(1y, 72, .. .), as many lengths 71, 7, . ...
as feature as arguments of the arbitrary function W.

For future reference we note that if we suppose that the distribution of localization lengths
is sharp, i.e., has no fluctuations, so that p(7) = §(7 — £72), where ¢ is the sharp value of

the localization lengths, then the expression for f¥* simplifies, becoming

correct to O(€®). In this case, demanding that f¥** be stationary with respect to £2 yields,
to O(e),

1 0, if p? <1
(2.97)

2¢/3, if p? > 1.
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We now return to the general situation, in which the distribution of localization lengths
is not constrained to be sharp. Rather than demand that f¥* be explicitly stationary with
respect to p(7) itself, it is convenient to exchange its dependence on p(7) for dependence on

the Laplace transform p(7) given by

p(7) = /OOO drp(7)exp(—77). (2.98)

The details of this exchange are deferred to App. G; what results is the following expression

for fvar, correct to O(€?):
oo Y [ o)

- T8\3) S 7 TP AR

Jr1 (26)3/00

12\ 3 0

o (B [ artapyary (2.99)
12 3 o T p T) . .

T (07 +35(7) — 277

This expression has the virtue of being a local functional of p(7), so that the consequent sta-
tionarity condition will be a differential equation for p(7). Moreover, the (global) constraint
that p(7) be normalized to unity, [;° d7p(7) = 1, is exchanged for the (local) boundary
condition p(0) = 1.

We now demand that f¥a" be stationary with respect to p(%), i.e., that § f**/6p(7) = 0.
The details of computing the functional derivative of f*" with respect to p(7) are deferred

to App. G; what results is the following stationarity condition, correct to O(e?):
5]?var 2¢ 3 1 ¢ 3 1 5 Ve 2 1d2ﬁ
0= -3 L=p(7) + {5 L=p(3)) = (T) w7250 (2100
513(%) <3) 47A'( p(T))—|—<3) 47 ( p(T) ) <3) 6 dr2’ ( )

or, equivalently,

Ld*p \ L :
oy = eb(f) (1=5(#)), (2.101)

correct to O(e). Normalization of p(7) leads to the boundary condition p(0) = 1. As
p(7) does not contain a é-function contribution at 7 = 0 (see [78]), p obeys the additional

boundary condition p(oo) = 0.
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Before solving the stationarity condition we note that p(7) depends parametrically on
the crosslink density, so it would be more accurate to denote it by p(7;¢). We now introduce
the scaling function #(6) in terms of which p(7;¢€) is given by p(7;¢) = (2/¢)m(27/€). In
other words we transform the dependent and independent variables as follows:

ep(t;€)/2 = =(0), (2.102)
T = €b/2. (2.103)
In this way, up to an elementary factor, the dependence of p(7;¢€) on 7 and € is combined

into a dependence on a single scaling variable 6; see [79]. Then the Laplace transform of the

scaling function ﬁ'(é) is defined via

#(0) E/OOO dom(0) exp(—00), (2.104)

so that
p7) = #(0) (2.105)
er/2 = 0. (2.106)

In terms of ﬁ'(é), and neglecting O(¢) contributions, the stationarity condition then becomes
~d* 7

d6?

= 27(0) (1 - #(0)), (2.107)

subject to the boundary conditions #(0) = 1 and 7(c0) = 0.

We have been unable to solve this nonlinear ordinary differential equation for ﬁ'(é) analyt-
ically. One might consider solving this differential equation numerically, and then inverting
the solution numerically to obtain 7 () and hence p(7). While this is possible in principle,
the numerical inversion of Laplace transforms is notoriously unstable. Instead, we have found
it preferable to take the inverse-transform of the differential equation analytically, and thus

we obtain the following nonlinear integro-differential equation and constraint for 7(6):

‘?2_2‘;_2 ~ (1—9)7(9)—/jd@’ﬂ'(@’)ﬂ(@—@’), (2.108)
/OOOdOW(H) = 1, (2.109)
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the constraint resulting from normalization.

We shall obtain 7(6) [and hence p(7)] in Sec. 2.6.4, and discuss the consequences of the
physical values of ¢ and p(7). Before doing so, we shall adopt a different point of view, in
which we focus not on the variational extremization of the free energy but instead on the

self-consistent equation for the order parameter.

2.6.3 Self-consistency condition for the order parameter

In Sec. 2.6.2 we enforced the stationarity of the free energy functional only with respect
to the parameters ¢ and p(7) of our order parameter hypothesis, and not with respect to
arbitrary variations. As a consequence, we are not yet in a position to address whether or
not the resulting order parameter is a true stationary point of the free energy functional.
In the present subsection we establish that the solution that we have found is indeed a true
stationary point of the free energy functional by directly analyzing the stationarity conditions
(2.82) themselves. We emphasize that this approach allows us to circumvent the difficulties
discussed in Sec. 2.2.6 that arise in the computation of the contribution to the free energy
associated with changes in the indistinguishability factors introduced by the crosslinks.

We insert the hypothesis given in Eqgs. (2.88) and (2.89) into the stationarity conditions

(2.82) to obtain
(1= )80+ aba0 [ drp(r) exp(—i/27)
' d
1 1q - ¢(t
</0 exp (iq- &(t))

00 . 1 L W
X exp (,MQV—”(]Z%(SR’O/O dr p(T) eXp( _ k2/27’)/0 ds elk'c(s))>

n+1
e A 1 o W
(exp (1V "0 105 /0 drp(7)exp (— k*/27) /0 dselte)) "

(2.110)

Here, in both the numerator and the denominator we have relaxed the constraints on the

summations having coefficient p? by: (i) doubling the range of the summations to include

74



the entire higher-replica sector by making use of the property of the hypothesis ; = Q" ;;
(ii) including the l-replica sector terms (which vanish by the MTI of the order parameter
hypothesis); and (iii) inserting identical factors associated with the 0-replica sector. It should
be noted that Eq. (2.110) also follows from the direct application of the Weiss molecular-field
method.

As shown at the end of App. H, evaluation of the numerator and denominator of the

right-hand side yields

(=085 + qbao [ drp(r)e ™/

) ) 00 2y 0 MZTq'r 1
= e_”q55,6+6_“q5q70/0 dTe_q/TZT/O dsy---ds,1q
r=1 :

< [T dndrnp(r) - p(m) 6 = X0), @21
0
1 1 2 I r .
T = W + Srtr41 — W 2%( )Sw+1 - Zl Srt1p C/(J/) Sp s
p= pyp'=
(2.112)

where the limit n — 0 has been taken everywhere except in the dimension of ¢, and where
Sy, U, W) and CU) are, respectively, defined in Egs. (A.3), (E.2), (E.3) and (E.4), and
depend on {si,...,8,41} and {71,...,741}. It should be emphasized that Eq. (2.111) is not
solved by any sharp distribution of localization lengths p(7) = §(7—¢~?). Thus, a variational
hypothesis involving a sharp distribution gives at best a variational approximation, whereas
a variational hypothesis involving a non-sharp distribution has the potential to yield an
exact stationary point, and we shall find such an exact stationary point below, at least in
the vicinity of the vulcanization transition.

We now extract information about ¢ and p(7) from Eq. (2.111). First, we take the limit
¢* — 0, via a sequence for which ¢ = 0. In this limit, the left hand side becomes ¢, and on
the right side each integral gives a factor of unity, yielding the self-consistency condition for
the gel fraction ¢:

g=1-— e—Ha

: (2.113)
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i.e., precisely the self-consistency condition for ¢ found from the free energy approach is
Sec. 2.6.2 and discussed there.

Having decoupled the issue of the gel fraction ¢ from the issue of the distribution p(7)
we now return to p(7) itself. By considering Eq. (2.112) for a fixed nonzero value of ¢
and using Lerch’s uniqueness theorem for Laplace transforms [80] we find that indeed the
hypothesis solves the self-consistency condition for {€},€;} provided that the distribution

p(7) satisfies the condition

R 00 2r 1 1 o
qp(T) :e_lu‘ qzlur’q /0 dSl"‘dST_}_l/o dTl'..dT’l’p(Tl)."p(T’l’)é(T_T'I’)- (2114)
r=1 :

This equation for p(7) is, for all values of y?, identically satisfied if ¢ = 0.

We have not, thus far, made any approximations beyond that of mean field theory. In
order to render Eq. (2.114) tractable, we now restrict our attention to the vicinity of the
transition regime in the solid state, i.e., to values of €, as defined in Eq. (2.93), satisfying
0 < e < 1. This restriction allows us to assume that ¢ is small, and that only localization
lengths much larger than the free-macromolecule radius of gyration have an appreciable
probability, i.e., p(7) only gives appreciable weight for 0 < 7 < 1. Thus, we need retain in
Eq. (2.114) only terms for which r is 1 or 2, and may expand T®) to O(7?) and T?) to O(71).
As discussed in App. I, in terms of the scaling function # () introduced in Eq. (2.102), we
recover Eq. (2.108) subject to the normalization condition Eq. (2.109), i.e., precisely the
stationarity condition for p(7) found from the free energy approach.

Thus, the condition that the order parameter be self-consistent turns out to be identical
to the condition that the free energy functional be stationary with respect to variations
within the subspace spanned by the hypothesized form of the order parameter. The form
for the order parameter hypothesized in Eq. (2.36) is not merely a variational form but in
fact gives an exact stationary point of the free energy functional, Eq. (2.64).

We have obtained the equation for the gel fraction ¢, Eq. (2.92), and the equations for the

scaled distribution 7(6), Eqs. (2.108) and (2.109), from two different points of view. In the
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previous subsection we have discussed the consequences of Eq. (2.92) for ¢. In the following
subsection we shall discuss the solution of Eqs. (2.108) and (2.109) for (), and elaborate

on the physical consequences of our results for ¢ and p(7).

2.6.4 Characteristics of the amorphous solid state

For the sake of completeness we first restate the results concerning the gel fraction ¢ that
were found in Sec. 2.6.2 from the self-consistency condition on ¢, Eq. (2.92). For all values
of u? we find the solution ¢ = 0, corresponding to the liquid state. For u* > 1 an additional
solution appears, emerging continuously from ¢ = 0 at u* = 1, and describing the equilibrium
amorphous solid state, as shown in Fig. (2.1). For g >> 1, i.e., the highly crosslinked regime,
q approaches unity asymptotically as ¢ ~ 1 —exp ( — p?). In terms of the deviation of the
crosslink density from criticality, i.e., € defined in Eq. (2.93), the critical regime is 0 < e < 1.
In this regime we may solve perturbatively for ¢, obtaining ¢ = 2¢/3 + O(¢€?), Eq. (2.94).

It should be noted that the stationarity condition on ¢, Eq. (2.92), is precisely the con-
dition obtained by Erdés and Rényi in the context of random graph theory [76], which can
also be interpreted as a mean-field treatment of percolation. In particular, Erdés and Rényi
showed that that for a random graph of N points and p*N/2 edges the probability for the
fraction of points in the largest component to differ from the solution ¢ of Eq. (2.92) vanishes
in the N — oo limit. A related approach to the theory of macromolecular networks [33] has
also led to Eq. (2.92). This is physically quite reasonable: one would anticipate that the
transition from liquid to solid would occur when the density of crosslinks is sufficient to
create a macroscopically extended network of crosslinked macromolecules.

We now address the distribution of localization lengths via the scaling form = (). We
have solved both the integro-differential equation (2.108) and the differential equation (2.107)

numerically [81, 82], and the solution of Eq. (2.108) is shown in Fig. (2.2). As we see in

this figure, the scaling function #(#) has a single maximum near § = 1, away from which
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6.0

Figure 2.2: Scaling function #(8) for the probability distribution of localization
lengths. Exact scaling function (full line); asymptotic form for § — 0 (dotted
line); asymptotic form for § — oo (broken line).

it decays rapidly. In fact, states for which () takes negative values are not ruled out
by the hypothesis Eq. (2.36), but are not found as solutions of the stationarity condition
Eqgs. (2.108) and (2.109).

We are able to obtain asymptotic properties of #() analytically. The asymptotic form
7(0) ~ al~*exp( —2/0) (for § < 1) is obtained from Eq. (2.108) by neglecting the second
term on the right hand side. Notice the essential singularity at the origin: 7(6) vanishes very
rapidly indeed as # — 0. The coefficient a ~ 4.554 cannot be obtained from local asymptotic

analysis. Instead we have obtained it separately by the numerical solution of Eq. (2.107), as
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Figure 2.3: Scaling function w(k) for the order parameter. Exact scaling

function (full line); asymptotic form for & — 0 (dotted line); asymptotic form

for k — oo (broken line).

discussed in footnote [82]. The asymptotic form 7(6) ~ 3(66 —3/5) exp (— b0) (for § > 1) is
obtained by computing the inverse Laplace transform of the approximate analytical solution
of Eq. (2.107) near the point 0 = —b, at which ﬁ(é) diverges. The coefficient b &~ 1.678 was
obtained separately by determining the (negative) value of 0 at which the numerical solution
of Eq. (2.107) diverges. Notice the exponential decay of x(6) for large 8: ©(6) goes to zero
quickly as § — oo. For the sake of comparison with the numerical results, the small- and
large-6 asymptotic forms for 7 () are also shown in Fig. (2.2). A distribution of localization

lengths also features in Panyukov’s approach to the well-crosslinked regime; see [84].
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In addition to providing the distribution of localization lengths, knowledge of 7(6) allows
us to construct the order parameter, ;. By using Eqs. (2.102) and (2.103) in Eq. (2.36) we

obtain

Q= (1—2¢/3) 6,5+ (2¢/3) g gw(\/2k2/e), (2.115)

w(k) /000 do 7 (0) 1%, (2.116)

Although we do not have an exact analytical expression for (), we can compute w(k)
numerically. We do this by inserting the the numerical values of 7(8) into Eq. (2.116), and
show the result for w(k) in Fig. (2.3). We are able to obtain analytical asymptotic expressions
for w(k). For k < 1 the result simply follows from expanding the exponential function in

Eq. (2.116) in powers of k, thus obtaining

2 fore) 4 o]
wik) ~ 1— %/ do 0~17(0) + %/ 0027 (0) + - - - (2.117)
0 0

= 1—0.4409k* + 0.1316 k* + - - -, for k< 1. (2.118)

We see that w(k) departs quadratically from its absolute maximum of unity at the origin.

For k > 1 one can replace #(8) by its large-6 asymptotic form in Eq. (2.116) to obtain

9k \ 27
k) ~ —V2bk? (1+7+---), for k> 1. 2.119
(k) (\/85) © 10v/2bk? o (2.119)

We see that w(k) decays exponentially to zero for large k. For the sake of comparison with

the numerical results, the small- and large-k asymptotic forms for w(k) are also shown in
Fig. (2.3).

To summarize, as shown in Sec. 2.6.1 the liquid state of a system of randomly crosslinked
macromolecules becomes unstable when the mean number of crosslinks per macromolecule
[M]/N is increased beyond a certain critical value M./N, corresponding to u* = 1. At this
critical point the system exhibits a continuous phase transition from the liquid state to the
amorphous solid state. As shown in Secs. 2.6.2 and 2.6.3, this solid state is characterized

by a gel fraction g, which grows from a value of zero at the critical point with the classical
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exponent 3 = 1 (see Ref. [85]): ¢ ~ ¢ ~ p*—1 ~ ([M]—M.)/N. The amorphous solid state is
further characterized by the statistical distribution of localization lengths 2£~3p(£~2). In the
vicinity of the transition the dependence of this distribution on the control parameter ¢ and
the (inverse square) localization length 7 is determined by a universal scaling function (of a
single variable) x(0), i.e., p(7) = (2/€)x(27/€). This universality guarantees that 7(6) need
only be computed once for all near-critical crosslink densities. As already mentioned in the
present subsection, 7(#) has a single maximum, away from which it decays rapidly. Hence,
the fraction of localized monomers that are localized on length scales much larger than ¢='/2
is exceedingly small. Our result for p(7) also predicts that the fraction of localized monomers

with localization lengths much smaller than e~1/?

is also exceedingly small. This provides
an a posteriort confirmation of the internal consistency of the perturbation expansion in
powers of {72 upon which our results rely. However, the detailed form of the distribution for
localization lengths much smaller than ¢=/? (e.g., for localization lengths of the order of the
radius of gyration of a free macromolecule) is unreliable because such localization lengths
are not within the range of validity of the perturbation expansion. The rapid decay of p(7)
away from its maximum guarantees that its moments are finite. This character, together
with the scaling form of p(7) ensures that the moments scale in the following manner:
(€72 ~ (([M] — M.)/N)™". Furthermore, as the distribution has single maximum it
is sensible to define a typical localization length &y, associated with the most probable
localization length. This length &, obeys the scaling relation &y, ~ (#? — 1)7%/2. Thus, a
simple, reasonable approximation to the true distribution p(7) would be a sharp distribution,
e.g., 6(1 —€/2).

We have seen in Sec. 2.6.3 that the order parameter hypothesized in Sec. 2.3.3 and
determined in Secs. 2.6.2 and 2.6.3 is a solution of the stationarity condition for the free

energy Eq. (2.82). This is in contrast with the hypothesis analyzed in Ref. [34], in which it

was assumed that ¢ = 1 and p(é72) = §(672 — £72) (i.e., that all monomers share a common
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localization length). The hypothesis of Ref. [34] does not satisfy the stationarity condition,
and therefore only provides a variational bound on the free energy. That our result for the
order parameter is a stationary point of the free energy, rather than merely a variational
bound, is a feature of considerable significance. The consequent exact vanishing of the linear
term in the expansion of the free energy functional Eq. (2.64) in powers of the departure from
the known stationary value streamlines further analysis of, e.g., linear stability, fluctuations,

correlations, and response to perturbations.

2.7 Comparison with numerical simulations

The purpose of the present section is to compare the results just presented with the results
of extensive molecular dynamics simulations, performed by Barsky and Plischke [86, 87].
These simulations address the amorphous solidification transition in the context of ran-
domly crosslinked macromolecular systems, by using an off-lattice model of macromolecules
interacting via a Lennard-Jones potential. It should be emphasized that there are substantial
differences between ingredients and calculational schemes used in the analytical and simula-
tional approaches. In particular, the analytical approach: (i) invokes the replica technique;
(ii) retains inter-particle interactions only to the extent that macroscopically inhomogeneous
states are disfavored (i.e., the one-replica sector remains stable at the transition); (iii) ne-
glects order-parameter fluctuations, its conclusions therefore being independent of the space-
dimension; and (iv) is solved via an Ansatz, which is not guaranteed to capture the optimal
solution. Nevertheless, and rather strikingly, the simulations yield an essentially identical
picture for the transition to and properties of the amorphous solid state, inasmuch as they
indicate that (i) there exists a (crosslink—density controlled) continuous phase transition from
a liquid state to an amorphous solid state; (ii) the critical crosslink density is very close to

one crosslink per macromolecule; (iii) ¢ varies linearly with the density of crosslinks, at least
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Figure 2.4: Molecular dynamics results for the gel fraction as a function of
the crosslink density. Localized fraction ¢ as a function of the number of
crosslinks per macromolecule n, as computed in molecular dynamics sim-
ulations by Barsky and Plischke (1997, unpublished). L is the number of
monomers in each macromolecule; N is the number of macromolecules in the
system. The straight line is a linear fit to the N = 200 data. Note the ap-
parent existence of a continuous phase transition near n = 1, as well as the
apparent linear variation of ¢ with n, both features being consistent with the
mean-field description.

in the vicinity of this transition (see Fig. 2.4); (iv) when scaled appropriately (i.e., by the
mean localization length), the simulation data for the distribution of localization lengths ex-
hibit very good collapse on to a universal scaling curve for the several (near-critical) crosslink
densities and macromolecule lengths considered (see Figs. 2.5 and 2.6); and (v) the form of
this universal scaling curve appears to be in remarkably good agreement with the precise
form of the analytical prediction for this distribution.

Let us now look more critically at the comparison between the results of the simulation
and the mean-field theory. With respect to the localized fraction, the theory, as it stands at

present, is only capable of showing the linearity of the dependence, near the transition, on
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Figure 2.5: Molecular dynamics results for the probability distribution of lo-
calization lengths. Unscaled probability distribution P, of localization lengths
¢ (in units of the linear system size), as computed in molecular dynamics
simulations by Barsky and Plischke (1997, unpublished). In the simulations
the number of segments per macromolecule is 10; and the number of macro-
molecules is 200.

the excess crosslink density, leaving undetermined the proportionality factor. The simulation
results are consistent with this linear dependence, giving, in addition, the amplitude. There
are two facets to the universality of the distribution of localization lengths. First, that the
distributions can, for different systems and different crosslink densities, be collapsed on to
a universal scaling curve, is verified by the simulations, as pointed out above. Second, the
question of how the scaling parameter depends on the excess crosslink density is difficult to
address in current simulations, because the dynamic range for the mean localization length
accessible in them is limited, so that its predicted divergence at the transition is difficult to

verify.

84



Figure 2.6: Molecular dynamics results for the scaled probability distribution
of localization lengths. Probability distribution P, of localization lengths ¢,
scaled with the sample-average of the localization lengths &,,, as computed in
molecular dynamics simulations by Barsky and Plischke (1997, unpublished).
Note the apparent collapse of the data on to a single universal scaling distribu-
tion, as well as the good quantitative agreement with the mean-field prediction
for this distribution (solid line). In the simulation the number of segments per
macromolecule is 10; and the number of macromolecules is 200. The mean-
field prediction for Ps.(¢/ay) is obtained from the universal scaling function
7(0) by Pu(y) = (25/y*) 7(s/y?), where the constant s ~ 1.224 is fixed by
demanding that [~ dy y Ps(y) = 1.

2.8 Universality and Landau theory

In this section a brief review is presented of some theoretical developments that have emerged
essentially as extensions of the theory presented in this chapter. This includes both semi-
microscopic models of other systems and also a Landau theory approach. This Landau theory
applies both to randomly crosslinked macromolecules and to other systems that undergo
similar amorphous solidification transitions. As the Landau theory is technically simpler

than any of the semi-microscopic theories for specific systems, it will be used in the next
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section to help construct a proof of the thermodynamic stability of the amorphous solid
state.

The theory of the vulcanization transition for randomly crosslinked macromolecular sys-
tems has been extended to study randomly end-linked macromolecular systems [36], and
also randomly crosslinked manifolds (i.e., higher dimensional objects) [35]. In the original
case of randomly crosslinked macromolecular systems, the macromolecules were modeled as
flexible, with a short-ranged excluded-volume interaction, and the crosslinks were imposed
at random arc-length locations. By contrast, in the case of end-linked systems, although
the excluded-volume interaction remained the same, the macromolecules were now modeled
as either flexible or stiff, and the random linking was restricted to the ends of the macro-
molecules. Despite the differences between the unlinked systems and the styles of linking,
in all cases identical critical behavior has been obtained in mean-field theory, right down to
the precise form of the statistical distribution of scaled localization lengths.

Perhaps even more strikingly, in the numerical simulations of randomly crosslinked macro-
molecular systems discussed in the previous section, Barsky and Plischke [86, 87] have em-
ployed an off-lattice model of macromolecules interacting via a Lennard-Jones potential.
Yet again, an essentially identical picture has emerged for the transition to and properties of
the amorphous solid state, despite the substantial differences between physical ingredients
incorporated in the simulation and in the analytical theory.

In the light of these observations, it was proposed by Peng, Castillo, Goldbart and Zip-
pelius [88] that a common theoretical formulation of the amorphous solidification transition
(of which the vulcanization transition is a prime example) should exist that exhibits the
emergent collective properties of all these systems that are model-independent, and there-
fore provide useful predictions for a broad class of experimentally realizable systems. In
Ref. [88], they presented two different (but related) formulations: one of them is a Landau

theory written in terms of a replica order parameter and derived from symmetry considera-
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tions and physical assumptions, but without resorting to microscopic models; the other one
is also a Landau theory, but it is written in terms of the distribution of random static density
fluctuations of Eq. (2.26, and is derived from the previous one. These two formulations give

rise to identical physical results, but only the first one will be discussed here.

2.8.1 Replica Landau theory: Order parameter, symmetries,

and free energy

Here we briefly review the physical arguments that were used in the construction of the
replica Landau theory for a system that undergoes a liquid—amorphous-solid transition that
is controlled by the density of random constraints imposed on it.

In a system characterized by static random density fluctuations, the appropriate order
parameter is a generalization of the one used for randomly crosslinked macromolecules:

1 N

_ kl.c; k2 .c; 1k9-c; ¢ ¢
Qi g ko = NZ<€ e ) (e e INE (2.120)
=1
where now N is the total number of particles, ¢; (with ¢ = 1,..., N) is the position of
particle ¢, the wave-vectors k', k? --- k? are arbitrary, (---), denotes a thermal average for

a particular realization x of the disorder, and [- - -] represents averaging over the disorder. The
particles considered correspond to the thermodynamically independent units of the system.
For example, they can be all the monomers, or at least all portions of length ¢ of polymer
chain (in the case of flexible macromolecules); or only the ends of the polymers (in the case
of rigid macromolecules that can be only end-linked).

Under the Deam-Edwards assumption [20] that the statistics of the disorder is determined
by the instantaneous correlations of the unconstrained system, obtaining disorder averages
with the replica technique involves working with the n — 0 limit of systems of n + 1, as
opposed to n, replicas. The additional replica, labeled by o = 0, represents the degrees of

freedom of the original system before adding the constraints, or, equivalently, describes the
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constraint distribution.

In the replica formalism, the order parameter is represented by the analog of Eq. (2.34):

N

0, = (% > exp (ik-e) (2.121)

In the Landau theory, the order parameter in the one-replica sector represents spatial

variations in the disorder-averaged mean particle-density, and is always taken to be strictly
Zero.

In the stationary-point approximation, the disorder-averaged free energy f (per particle

and space dimension) is given by [32, 89, 72]:
f= ygg)gil}}fn({ﬂg}), (2.122)

The Landau free energy functional is constructed from the following assumptions, which
generalize properties of the vulcanization transition: (i) there is no external potential, and
therefore no term linear in the order parameter in the Landau free energy, (ii) the amor-
phous solidification transition is continuous, and therefore it is sufficient to keep only terms
quadratic and cubic in the order parameter to construct the Landau free energy, (iii) any
localization near the transition should occur only on long length scales, and therefore it is
permissible to Taylor expand the coefficients in the free energy functional to low orders in the
wavevectors, (iv) by analyticity and rotational invariance, only functions of {|k°[%, ..., |k"|*}
can appear in the coefficients, and (v) by the permutation symmetry among the replicas, the
wavevectors can only enter the expressions for the coefficients in the form 2,

These considerations lead to the following form for the Landau free energy functional:

ndF, ({0 =Y (- e+ 7) 0 = 3k 1 2 U, Qi S0 (2.123)

Here € is the control parameter, which is proportional to the amount by which the constraint
density exceeds its value at the transition. As before, the symbol 3 denotes a sum over

replicated wave vectors k in the higher-replica sector.
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2.8.2 Stationary-point approximation

Demanding that variations of F,,({{2;}) with respect to the order parameter should be zero
results in the stationary point equations equations:
‘ Lso a 3 9 ¢
0= 2( — e+ §|]€| )ch — 3;; ];zéRqucl chg (5];1+];27fc. (2.124)
1/2

The stationary-point equations Eq. (2.124) are satisfied (in the limit n — 0) by the

hypothesis Eqgs. (2.36), provided that

0= 51;70 {2 (Sq2 —eq+ ql%Q/E) /0 dr p(7) ek /2

— 3cf/0 dry p(ﬁ)/o deP(Tz)e_W/Q(Tﬁ”)}. (2.125)

By taking the limit k2 — 0, the above equation reduces to a condition for the gel fraction:
0 = —2ge + 34> (2.126)

For negative or zero €, corresponding to crosslink densities less than or equal to the critical
value, the only physical solution is ¢ = 0, corresponding to the liquid state. For positive e,
corresponding to crosslink densities in excess of the critical value, there are two solutions.
One, unstable, is the continuation of the liquid state ¢ = 0; the other, stable, corresponds to

a nonzero gel fraction, i.e., to the amorphous solid state,

q¢= 3¢ (2.127)

As mentioned above, the gel fraction, and consequently the order parameter, change contin-
uously at the transition, which means that at e = 0 there is a continuous phase transition
between the liquid and the amorphous solid state (thus justifying a posterior: the hypothesis
that was made when the Landau theory was proposed).

In the the amorphous solid state, by assuming that Eq. (2.126) is satisfied, Eq. (2.125)

reduces to an equation involving only the distribution of (inverse square) localization lengths
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p(7):
T8 (E—)plr) = & [am plr)pl =) (2.128)
5 g = 7)p(7) = 5 | drip(n) p(7 — 7). .
The form of this equation immediately suggests that, to this level of approximation, all e

dependence can be eliminated by the scaling [90]:

p(7) = (2/¢)n(0); T = (€/2)9. (2.129)

Thus, the universal scaling function #(6) satisfies

%QZ_Z =(1—0)7(0) — /09 do'x(6")x(6 — 0'), (2.130)

together with the normalization condition
| = /OO do 7 (0). (2.131)
0

This normalization condition directly follows from the fact that the order parameter of
Eq. (2.24) has to be unity at the origin.

Eqgs. (2.130) and (2.131) are respectively identical to Eqs. (2.108) and (2.109). This
implies that the order parameter obtained in the Landau theory for the amorphous solid
state is the same as the one obtained in the semi-microscopic theory for randomly crosslinked

macromolecules, i.e., the one described by Eqgs. (2.115) and (2.116).

2.9 Concluding remarks

In the present chapter we have presented a theoretical description of the physical properties
of systems of macromolecules that have been randomly crosslinked. Our focus has been
on the equilibrium properties of such systems, especially in the regime of the vulcanization
transition. Up to now, the results we have obtained refer mainly to the structure of the

amorphous solid state.
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To construct our picture of their physical properties, we have developed a field-theoretic
representation of the statistical mechanics of randomly crosslinked macromolecular systems.
The order parameter capable of distinguishing between the various candidate states (liquid,
amorphous, crystalline solid and globular) easily fits into this representation. The presence
of quenched as well as annealed variables has been addressed by invoking the replica tech-
nique. We have derived the stationary-point equation from the free energy functional of this
field-theoretic representation, this equation being equivalent to the self-consistent mean-field
equation satisfied by the order parameter. While it is not apparent how one might obtain
the most general solution for the order parameter, we have proposed a physically motivated
form for it, which allows for the possibilities of a liquid state and an amorphous solid state.
This form is parametrized by the fraction of localized monomers, together with the sta-
tistical distribution of localization lengths. In fact, this form turns out to yield an exact
solution of the stationary-point equation. It should be noted that we are only able to pro-
ceed with the calculation in the vicinity of the amorphous solidification transition, where the
typical localization length is substantially larger than the radius of gyration of an isolated
non-self-interacting macromolecule.

The quantitative picture of randomly crosslinked macromolecular systems that emerges
from our field-theoretic representation has the following primary elements. At the mean-field
level of approximation there is, for any crosslink density, a stationary point of the free energy
functional that corresponds to the liquid state. However, for crosslink densities greater than
a certain critical value, this liquid state is unstable. At this critical crosslink density a new
stationary point of the free energy functional bifurcates continuously from the liquid-state
stationary point. This new stationary point, which is characterized by a nonzero gel-fraction
and a specific distribution of localization lengths, corresponds to the amorphous solid state.
The transition between the liquid and amorphous solid states is therefore continuous: in

particular, the gel fraction and the inverse-square of the typical localization length both
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increase from zero linearly with the excess of the crosslink density from its critical value.
Moreover, the entire distribution of (inverse-square) localization lengths has a scaling form
determined by a universal function of a single variable (which only need be computed once for
all near-critical crosslink densities). Detailed results for the gel fraction and the distribution
of localization lengths have been given.

There are several other contexts in which one can make use of the circle of ideas that we
have been using to explore the physical properties of randomly crosslinked macromolecular
systems.

First, as we mentioned in Sec. 2.8, one can apply them to a wide class of random-network—
forming systems. Indeed, a straightforward extension [35] of the present work yields a theory
of randomly crosslinked manifolds (i.e., higher-dimensional analogs of linear macromolecules
[91, 92]). Similarly, one can address macromolecular networks formed via a random endlink-
ing (rather than crosslinking) process, in which one end from each of several randomly
selected macromolecules is linked to one other [36]. One can also consider networks formed
via the (freely-jointed) endlinking of rigid or semi-flexible rods [36], subjects that are of
particular relevance to certain biological structures. All these examples, together with the
case of randomly crosslinked flexible macromolecules, are described by a Landau theory [88]
reviewed in Sec. 2.8.

This circle of ideas has also been used to develop a statistical-mechanical theory of contin-
uous random (atomic or molecular) networks, and thus to develop a view of the structural
glass transition [37]. In this case, what emerges is a picture of glass-formation in which
atomic or molecular units are (permanently chemically) bonded together at random, so as
to develop an infinite network. Not only do the translational freedoms of the units become

localized but also do the orientational freedoms.
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Chapter 3

Stability of the amorphous solid state
near the amorphous solidification

transition

3.1 Introduction

In Chap. 2 a physically plausible candidate for the amorphous solid state was obtained, and
its structural properties were discussed in detail. This amorphous solid state was first pro-
posed as a variational hypothesis and later shown to be an exact solution to the stationary-
point equations for the free energy functional. However, such stationary points may be
unstable, in which case they do not provide an acceptable description of an equilibrium ther-
modynamic state. The aim of the present Chapter is to show that the proposed amorphous
solid state stationary point indeed is locally stable, at least near the amorphous solidification
transition.

The amorphous solid state is highly symmetric: although it breaks translational in-

variance and rotational invariance at the microscopic level (as a fraction of the molecules
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are localized), the disorder averaged density remains spatially uniform, and the state re-
mains macroscopically translationally (and rotationally) invariant (MTI), and also replica-
symmetric.

This situation bears some resemblance to what happens in another system under the
effects of quenched randomness, namely the Sherrington-Kirkpatrick (SK) model for spin
glasses [55]. In the SK model with no external magnetic field and symmetric spin-spin
couplings, the spin glass state found by Sherrington and Kirkpatrick is characterized by the
presence of nonzero frozen-in magnetization at the level of individual spins, but the disorder
averaged total magnetization remains zero in the spin glass phase, and the solution is replica
symmetric.

It was shown by de Almeida and Thouless [93] that this highly symmetric SK stationary
point is locally unstable for all temperatures below the spin glass transition. In fact, the SK
stationary point is certain to be incorrect at very low temperatures, as it gives rise to a nega-
tive entropy in the limit of zero temperature. This difficulty was resolved by Parisi [94], who
found a replica-symmetry-breaking solution to the stationary-point equations. This solution
has a positive entropy at all positive temperatures and is locally marginally stable [95].

By analogy to the spin glass case, it would not be entirely surprising if in systems under-
going a liquid—amorphous-solid transition because of the effect of random constraints, the
stationary point of the free energy proposed above, corresponding to the amorphous solid
state turned out to be locally unstable, and in need of being superseded by a less symmet-
ric solution of the stationary point equations. However, it is shown in this Chapter that
the amorphous solid state proposed above is locally stable near the liquid-amorphous solid
transition. More specifically, the Hessian matrix that describes changes of the free energy
functional for fluctuations around the stationary point corresponding to the amorphous solid
state is computed, and it is shown that, to linear order in the excess constraint density, all

eigenvalues of the Hessian matrix are positive, except for a unique (and expected) zero (or
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Goldstone) mode associated with the spontaneously broken continuous translational sym-
metry of the system. In order to show this, a description is constructed for the space of
fluctuations around the stationary point that allows the eigenvalue problem in replicated
space to be reduced, in essence, to an integral eigenvalue equation in one dimension.

Only the region near the transition is addressed here. In this region, the free energy func-
tionals for the Landau theory and for the semi-microscopic theory of randomly crosslinked
macromolecules differ only in terms that do not play any role in the mean field theory. In
the study of fluctuations, these additional terms do make the algebra slightly simpler for the
Landau theory, without altering the physical picture. For this reason, the Landau theory is
addressed first, and the semi-microscopic theory subsequently. The slight difference between
the Landau theory and the semi-microscopically derived theory is due to the fact that, while
in the former only states with a spatially homogeneous disorder averaged particle density
are admitted in the theory, in the latter states having spatial variations are (in principle)
allowed but ultimately are suppressed by the repulsive inter-particle interactions.

The rest of this chapter is organized as follows. In Sec. 3.2 the Hessian matrix for
the amorphous solid state is computed in the context of the Landau theory described in
Sec. 2.8, and the continuous symmetry of the problem is exploited to choose a basis set
that significantly simplifies the eigenvalue equation for the Hessian matrix. In Sec. 3.3
positive lower bounds are found for all the eigenvalues of the Hessian matrix, except for
one zero eigenvalue that is present due to the spontaneously broken continuous symmetry.
In Sec. 3.4 these results are extended to the case of the semi-microscopically derived free
energy functional for randomly crosslinked macromolecules, and in Sec. 3.5 some concluding
remarks are presented.

An article on the research discussed in the present chapter is in preparation [43].
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3.2 Landau theory: Hessian matrix

In this section the stability matrix for the Landau theory is computed, and the symmetries
of the system are exploited to simplify its diagonalization. In essence, the simplification goes
along the same lines as the separation of radial and angular variables in the Schroedinger
equation for a particle in central potential in quantum mechanics. There are technical
differences, of course, since the space in the present case has a dimensionality that depends

on the number of replicas.

3.2.1 Hesslan matrix elements

Consider any variation of the {{2;} around a stationary point. To first order, the variation

of the free energy functional has to be zero. We see from Eq. (2.123) that the lowest order

variation 6[F,({€2;})] is given by

SndF ({0 =, (—e - @) 80 =337, 4 ¢ Shrheo U 0%, 6%, + O((62)%).
(3.1)

Now consider expanding around the liquid state for any value of €. In this case, the variation

reduces, to quadratic order, to

< [k [? .
5(2)[ndfn({ﬂg})] = Zk (—e + B |5Q]}|27 (3.2)
which evidently indicates that the liquid state is stable for ¢ < 0 and unstable for € > 0. For
€ > 0 the only candidate for a stable thermodynamic state is the amorphous solid discussed
in Chap. 2. From now on we focus only on this state.
By inserting the value of the order parameter, Eqgs. (2.115) and (2.116), into the three-
wavevector sum in Eq. (3.1), we obtain:
= 2e ~
D i Ot Ok, 0 §w<v 276?/6) 68, 6%Y;,
= 2e 2 /s A N2 2e=
=Y i S0 gw( = (ka + ks) ) 80, 69 — gZ,ﬁmzﬂZ + O((69)%)(3.3)

€
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Thus we can rewrite the quadratic part of the variation in terms of the Hessian matrix Hj 5

8P [ndF, ({0 ))] = D Hy 0 604 604 (3.4)
4,4’
where H is defined by
1 62 [ndF,]
H,=—-——"+—. (3.5)
kil 2! (5ch (59_1*

(For later convenience, we have chosen a definition that differs from the standard one by a

factor of 1/2.) More explicitly, we have

]%2 o0 i N2
H}}j = 61%,? (6 + 7) — (51;7126/0 do F(@)e_(k_l) /€ + 0(62). (36)

As we are interested only in the matrix elements to leading (i.e., first) order in €, we neglect

higher orders from now on.

3.2.2 Exploiting the symmetries: change of basis

We now exploit the symmetries of the problem in order to simplify the diagonalization the
Hessian matrix. As a direct consequence of the invariance of the free energy functional under
translations, as well as the MTI property of the amorphous solid state, the matrix element
Hj, ; only connects wavevectors such that k = 1. This already reduces the complexity of the
problem by making the Hessian block diagonal.

As H; ; depends on ]%2, iQ, and k - Z, one could expect to find a symmetry under rotations
in (n 4 1)d dimensions that would simplify the diagonalization of H still further. However,
the factor 51;71 is not invariant under those rotations. Instead, H only displays a rotational
symmetry in nd dimensions, but this will enable us to simplify the problem in much the
same way as is commonly done for central potentials in quantum mechanics.

In order to make this symmetry explicit, we choose a fized matrix 7' € SO((1 + n)d)

such that, for any vector © in replicated space, we explicitly isolate v from the other nd
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independent coordinates, which we call v:

v

Td vitno, (3.7)

[w{d

Due to T' being orthogonal, scalar products are simple to write in the new coordinates

b= L 4. (3.8)
b= 7 g 0 - W .
In the new coordinates, we have
L vy S 5 [~ —(k=1)2 /et .
Hiryr = Oxilopile+ 5B+ )l —2¢ | dfm(f)e }. (3.9)

The above expression, taken naively, would immediately tell us that the Hessian is invariant

under rotations in nd dimensions:
VR € SO(nd) : HIERZ:,iRlv = Hf(fc,ilv' (310)

However, there is an important caveat. Our Hessian is only defined for wavevectors in the
higher replica sector, but the proposed rotations can take a vector in the higher replica
sector and transform it into a vector in the one replica sector. For the moment we are going
to ignore this difficulty, and simply diagonalize the matrix obtained by using Eq. (3.6) as
its definition, with fe and | taking any nonzero values, both in the higher and in the lower
replica sector. After doing that, we will return to the issue of the one replica sector. Let us
just anticipate part of the results by mentioning that in the replica limit n — 0, the only
effect of this extension of the Hessian on its spectrum of eigenvalues is the addition of one
spurious eigenvalue corresponding to a fluctuation in the one replica sector. We will use the
self explanatory names “original Hessian” and “extended Hessian” whenever it is necessary
to make such distinctions.

For this modified problem, the SO(nd) symmetry holds, and Eq. (3.10) is correct without

caveats.
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In what follows, we will use the same strategies as in the diagonalization of the quantum
mechanical hamiltonian for a particle in a central potential. The role of the hamiltonian
will be played by Hj ;. We will also exploit the symmetries of the problem: the rotational
symmetry in nd dimensional space will allow us to write each eigenfunction as a product of
a radial part, that will be obtained by solving a one dimensional eigenvalue equation, and
an angular part that will be simply a surface harmonic in nd dimensions. The quantity l::,
which is exactly conserved by Hj;, will play the role of an additional conserved quantum
number. We will obtain different eigenfunctions for each fixed value of k.

We are going to work in the Hilbert space of complex functions of the variable f:. The
scalar product in this space is defined as follows:

(flg) = Zf (3.11)

k0

and simplifies in the thermodynamic limit to:

(flg) =~ V/ (@m0 £ (k)g(k)

dkdk PV o
= V/ (1 + n)#/2(27)(0+m)d 27k k)g(k, k). (3.12)

We define a basis set for this Hilbert space by

ok, k) = (14n)4(2m) 286 ( 1Kl —p)p 2 S, (65, (3.13)

Here S,(¢) is a normalized surface harmonic defined on the unit sphere in nd-dimensional
space [96] (surface harmonics are generalizations of spherical harmonics to space dimensions
other than d = 3). The notation ¢y = k:/|k| denotes the unit nd-dimensional vector along
the direction of k. The elements of the basis set {#ppo} are orthogonal and normalized under

the scalar product of Eq. (3.11):

(ewproleppo) = (0" — P)oprpors. (3.14)
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As suggested above, we propose to write each eigenfunction for the problem in the form:

v —

~ U 1—nd
rpo(k, k) = (14n) 4 (2r) 26 (K]

R, (1K])So (),

= /0 dpRr(p) S‘Qp,ﬁ,a(lza ]2)7 (315)

where the discrete ¢ function ensures that the eigenfunction is concentrated on points with
a fixed value of l:;, the surface harmonic S, gives the angular dependence on k: and the radial
function R, gives the radial dependence on k. Using the normalization condition for the

basis set, we obtain the normalization condition for the radial part:

/Ooodk IR, (k)2 = 1 (3.16)

We now compute the matrix elements of the Hessian between the elements of the basis set
{S‘op7f)7o-}'

Consider first the part H? of the Hessian that is diagonal in ]UC, i.e., the first term in the
rhs of Eq. (3.9). This part is also diagonal in the basis {¢, 5.}, with the matrix elements:

~ 2

14+ n

1
<99p’f)’a’|HD|9‘9pf)a> = 5(}7, - p)5[~)’f)5cr',<r[6 + 5([)2 +

)] (3.17)
The non-diagonal part H° of the Hessian, given by the second term in the rhs of Eq. (3.9),

has in the new basis matrix elements that only connect different values of the radial coordi-

nate p, but are still diagonal in p and o. It is shown in App. J that the matrix elements of

H€ have the form

(oo HOpp0) = 831.5001.0(=26)/2C, ") (0! [v/€.p/ V), (3.18)

with
Cp = (e/4m)" (1 4 )~/ (3.19)

and
(@, z) = Zm/me :d/z S fl—1+nd/2(2:g$)a (3.20)

100



where [,(z) is the modified Bessel function of order v. The label I(= |o|) is the degree of the
surface harmonic S, (each surface harmonic is a homogeneous trigonometric polynomial).

The constant C,, satisfies the condition
lin% C,=1, (3.21)

which makes it disappear from the eigenvalue equation in the replica limit. The kernel

function r]l(n)(;v’, x) is real and symmetric, and controls the non-diagonal nature of the matrix

elements. Due to the positivity of I,(y) for v > —1 and y > 0, r]l(n)(x’,:zz) is positive for

za' > 0. For zz’ = 0, T]l(n)(:E,,.fE) vanishes, except if [ = 0 and nd > 0, in which case it is
divergent.

Since both H” and H® are diagonal on the p and o labels, the eigenvalue equation for
the Hessian:

H[y) = k) (3.22)

can now be simplified to a radial equation:

KE(p) = [ b (ol Hliypo) RP),
52

= Lo+ 50+ 2R — 20, [ Do/ V) R, (323

This radial equation can be simplified further by the rescaling:
1 p?
¢ = “lv—(e+t m)L

e = plVe  ule)= MR Va), (3.20)

which removes the e dependence from the eigenvalue equation, thus making both the eigen-

value ¢ and the eigenfunction u(z) e-independent:
2 00
Cule) = Zulz) - 2C, /0 da! ") (2, 2') u(a’). (3.25)
In the replica limit n — 0 the radial equation reduces to:

"62

Cu(z) = 711(”6) — Q/OOdelm(fR(Jc,m’) u(z'). (3.26)
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(n)

o (z,2") smoothly converges to 77(0)(3:, z').

In most cases, this limit is straightforward, because n o]

The only exception is the case of |o| = 0 near the origin, in which the limit n — 0 for
77|(:|)($,$’) is singular. In Sec. 3.3.3 we show, however, that the only difference between the
limit for n — 0 of the eigenvalue spectrum of Eq. (3.25) and the eigenvalue spectrum of
Eq. (3.26) is that in the later the spurious eigenvalue corresponding to the Irs is removed.
For the moment, then, we only consider Eq. (3.26).

Both of the above equations are eigenvalue equations for Hermitian operators. This
guarantees the existence of a basis of eigenfunctions, all of them with real eigenvalues. Notice
also the nontrivial fact that the radial equation is well defined in the replica limit n — 0.

The form of the radial eigenvalue equations tell us that the eigenfunctions and eigenvalues
have to depend on the degree | = |o| of the respective surface harmonics (which plays a
role analogous to the quantum number [ in the central potential problem for a quantum
mechanical particle), and on an additional label r, playing a role analogous to the radial
quantum number in quantum mechanics. Therefore, the eigenvalues of the extended Hessian
are given by the relation:

ki (k) = (14 Gr)e + k; (3.27)

Let us observe here that, since [_1(z) = [1(z) for all values of the variable z, we have the

equality

)z, 2') = i (, "), (3.28)

which means that the radial equations for |o| = 0 and |o| = 2 are identical.

3.3 Landau theory: eigenvalues of the Hessian matrix

In this section we find positive lower bounds for all the eigenvalues of the Hessian in the
Landau theory, except for the zero mode associated with translational symmetry. Since it is

easier to work with scaled variables, let us first translate the condition x > 0 in terms of (.
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The relation between the two can be written in the form:

-2

K
—=(+1+—. (3.29)
€ 2e
Taking the worst possible case, corresponding to k =0, we get:
k>0 < (+1>0. (3.30)

The right hand side of the equivalence sign is the condition that we are going to establish in

what follows.

3.3.1 Obtaining the zero mode

We will first consider the eigenfluctuation associated with the translational symmetry, and
show that it is a zero mode. From Eq. (2.69), the fluctuation can be written as
5, = il%-&(Ze/?))(Sf{O/ d0 7(0) e ¥ 1
“Jo
= ik -6(26/3)5E0/ do 7 (0) e F1<0 (3.31)
“Jo
The only angular dependence of 6€); is given by the prefactor /vﬁ-cvz, which is a first degree

polynomial in k. This means that |o| = 1. By taking the scalar product with the appropriate

element [98] in the {¢, 5.} basis we obtain the radial function associated with 6€;:

R(k) = <S‘9p,f)=0,cr:(1,0)|6ﬂ>7

— Ak /Ood97r(9)e_k2/6€, (3.32)
0

where A, is a numerical prefactor, which we can ignore in what follows. Taking now the

replica limit, and translating into scaled variables, we obtain:
u(z) = \/E/de 7(6) S (3.33)
0

We now show that this scaled radial function is a solution of the scaled radial eigenfunc-

tion equation Eq. (3.26) with ( = —1.
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Let us first consider the diagonal term. By inserting the explicit form for u(z) and later

performing an integration by parts we obtain

fﬁ_Qu(:,;) _ ?/Ooodaw(a)az’%(e‘w)

a 0 2 d
= YT [T o),

2007 d
- _ /9
\F/ e 52

?

7(0) + 0n(0)]. (3.34)
Now the nondiagonal term gives us

2 [“asf e, 2) ula)
- —2/ dz' d9dY' 2Nz’ () f”"“)/f’f(zzx Warn()e =17 (3.35)

By making use of the identity [99]

2
eb /4a

Z/Oodxxe_ag:Q]o(b;v) = , (3.36)
0

a

we perform the integration over 2’ in Eq. (3.35), thus obtaining

0 o (O (0) 2y
~2 / do'n\(z,2') u(z') = -2z / d0ap OO —ozjoren
0 0 046

_ _\/g/oooda e /° /09 o'z (0)x(9). (3.37)

Finally, we combine Eqs. (3.34) and (3.37) to obtain

x? 0
u(z) + 7u(;17) — 2/0 dw’r]fc?l)(w, z') u(z’)

6% d

_ o —z2/6 = _ I
_\/E/Odae [~ 257 (0) + (1= O)r /d@

= 0. (3.38)

The justification of the last equality comes from the factor in square brackets being zero by
the stationary point condition, Eq. (2.108).

We have thus shown that Eq. (3.26) is satisfied by u(x) with the eigenvalue ( = —1. By

Eq. (3.29), this proves that the corresponding 6); given by Eq. (3.31) is an eigenvector of

the Hessian with zero eigenvalue.
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3.3.2 Positive lower bounds for the eigenvalues

Having obtained the zero mode for a specific kind of fluctuation, we now discuss general
fluctuations in the order parameter field, and show that for all |o| # 1, the eigenvalues are
positive definite.

Consider one particular scaled radial eigenfunction u(x). To simplify the argument we

will temporarily switch to the normalization

/Oodx lu(e)] = 1, (3.39)
0
and we define the quantity

s(x) = sgn(u(x)). (3.40)

By combining Eqgs. (3.26), (3.39), and (3.40), we write the eigenvalue in a slightly complicated

but very useful form
¢ = ¢ [ dalu(e)] = [des(@)Cuo)
= /Oood;v s(x) [?u(x) - Q/OOOd:E’ T]|(£|)(SE, z') u(.r’)]
- /Omdx 5 Ju(e)l - Q/OOdedx’m(c?R(x’, o) Ju(z)] s(z) s('). (3.41)

(In the last line we interchanged the dummy variables z and ’.) From the above, it follows

immediately that:

¢ 2 [ deoi(@) ule)] 2 7, (342)

with the definitions:
) = 22 [Ca ), (3.43)
W= infye). (3.44)

Here the symbol inf indicates the greatest lower bound [100] for a set of real numbers.
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It is convenient to write y;(x) in terms of another function §;(v) as follows

y(z) = /0 "0 7(8) By(z /) (3.45)

v? oo 2, 2
Bi(v) = W — 4/0 du \/uve (1Y )];_1(2uv). (3.46)

Here we have used the definition of average with respect to the scaled distribution #(theta)

that characterizes the order parameter

(10D = [ a0 7(0) £(6). (3.47)
and we need in particular the numerical value
(071), = 0.881768 (3.48)
Since 7(f) is normalized to unity, Eq. (3.45) implies that

C > :Y|0| > B|U|7 (349)

where

The bounds for different indices [ are not independent. In fact, because [(z) < [;_1(x)
for x > 0 and [ > 1, we have the inequality 771(_?_) (z,2") < T]l(o)(x,:c') for zz’ > 0 and [ > 1,
and from this inequality it follows that all the bounds defined up to now: v (z), 31, Bi(v),
and (3, are increasing functions of [ for I > 1. Thus, if we obtain a positive lower bound for
one value of [ > 1, the same bound applies for all larger values of (.

In order to obtain more concrete results, we need an explicit expression for f;(v). In

App. (K) we obtain the exact expression

.Ul—1/2M(£ 1 i
2 477

+4)

_vQ)’
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along with the asymptotic forms 3>)(v) and B<)(v), given by

b2

Bi(v) ~ BP(v) = I for v > 1, (3.52)
Bi(v) ~ BO()= 2@”_2% - zr(é&“ﬁ)vl—m for v < 1, (3.53)
as well as the lower bounds
Bi(v) > BP)(v) for I > 1, (3.54)
Bi(v) > B (v) vi. (3.55)

Here I'(2) is the Gamma function, and M(a, b, z) is a confluent hypergeometric function [101].
As mentioned above, we need to show that 1+ ( is positive. Thus the quantity of interest
is really 1 + 3(v), as opposed to Bi(v). In Fig. (3.1) we plot 1 + 3; for 0 < [ < 4, together

with its asymptotic form 1 4+ 3)(v) for large values of the argument v.

Having looked at the general behavior of the functions 1 + 3;(v), let us now obtain the
lower bounds 1 + 3; for 1 + ¢, and show that they are positive for [ # 1. For [ = 4, (and, as
Bi(v) grows with [, for all [ > 4), 3i(v) is positive for all nonzero v, and thus 3 = 3;(0) = 0.
For 1 <1< 3, 3 is obtained by numerically minimizing Eq. (3.51). In table (3.1), we give
the numerical values for those bounds.

The results in table (3.1) prove that all eigenvalues of the Hessian are positive for [ # 1.

Let us focus now on the case [ = 1. Since for this case our lower bound is negative, we can
not draw any conclusion from it. We have shown that there is a zero mode, but there could
still be a negative eigenvalue. A numerical diagonalization of the radial equation (3.26) for

this case yields, within numerical error, the following two lowest eigenvalues:

1 4 (10 = 0.000 = 0.001 1+ (11 = 0.984 +0.001 (3.56)
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Figure 3.1: Plot of lower bound functions for the stability matrix eigenvalue
problem. Lower bound functions 1 + B(v) (for 0 <1 < 4) and 1 + 3>)(v) as
functions of v.

Clearly, (40 corresponds to the expected zero mode, and we can conclude that there are no
further zero modes and that all other eigenvalues are positive definite.

Let us summarize the results obtained up to now. The eigenvalues for the extended
Hessian have the general form

. k2
/ilr(k) = (1 —|— Clr)é —|— 7, (357)
with
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Table 3.1: Lower bounds for eigenvalues of the Hessian matrix.

[ 1+ 3
1 —0.55571
0,2 0.27326
3 0.94274
>4 1
and
1+¢- >0 for Ir # 10. (3.59)

Therefore there is a zero mode corresponding to {r = 10 and k = 0, which is continued by a
branch of soft modes with eigenvalues

» 2

k1o(k) = k7 (> 0 for k # 0). (3.60)

All other eigenvalues are positive, with one continuous branch of modes labeled by k for

each value of [r. The minimum eigenvalue for each branch is given by
kir(0) = (1 + (r)e > 0, (3.61)

which goes to zero as the transition is approached (i.e. when e — 0).

3.3.3 The one-replica sector

We now need to return to the issue that we postponed earlier, namely that we have extended
the Hessian matrix defined by Eq. (3.6) to be defined also in the one replica sector.

Since the original Hessian matrix exactly decouples fluctuations with different values
of k, it is consistent to consider separately MTI fluctuations (with k = 0) and non-MTI

fluctuations (with k # 0).
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For the case of MTT fluctuations, their components in the one replica sector are exactly
zero, because the conditions J; € 1rs and k = 0 are incompatible. This implies that for
this case the extended Hessian that was diagonalized coincides with the original Hessian.
Consequently our results are rigorously valid in this case.

For the case of non-MTT fluctuations, we will show that in the limit n — 0, the hrs and 1rs
are not coupled by the extended Hessian matrix. Furthermore, each one of its eigenvectors
belong to one of the sectors and has a vanishing overlap with vectors in the other.

To understand this question, we need to look at the form that the 1rs and hrs take in
the replica limit.

For a wave-vector

p=(0,...,0,p,0,...,0) (3.62)

in the one replica sector, we have

p=p p =p, (3.63)

3 . P’ p’ n .
— 2 _ — 2 _ = . 364
1] \/p o \/p T = VTPl (3.64)
This means that the radial coordinate |p| goes to zero like n'/? in the replica limit n — 0.

Besides, for a each fixed value of p = p, the n + 1 wavevectors defined by

éu(p) = (e e, . e"),
e’ =0 for § # a,
e® = p, (3.65)
with o = 0,...,n are the only ones in the one replica sector that satisfy the condition that

the sum of their (n + 1) component d-dimensional wavevectors is equal to p.
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These two results tell us that the 1rs corresponds, in the parametrization we are using,
to a set of n + 1 points that, in the replica limit, converge to the origin of p space. In the
case n = 0 the origin is the only point in the Irs.

Consequently, to see whether or not a given eigenvector has any overlap with the lrs, one
needs to look at the properties of the corresponding radial eigenfunction near the origin.

Let us then consider the scaled radial equation (3.25) for the region very close to the

origin, and let us keep n > 0 for the moment. Using the small argument behavior of the

Bessel function (for v # —1,-2,...)

(2/2)"

1,(z) = XOFSE (3.66)
we obtain the asymptotic form of the kernel for x < 1 and z’ S
() , _ gl (nd=1)/2 . .
n (x,x') &2 m m(z'), (3.67)
with
mily) = /O Td0 7 (0) g~ 10 a2, (3.68)
By inserting this into Eq. (3.25), we obtain
(€= Dute) = T (3.69)
with
Ui= [ dy muly)uly). (3.70)

For n positive and small, Eq. (3.69) can only be satisfied for ¢ # 0 [102]. The term propor-

tional to x? is thus negligible, and we obtain, for z < 1,

AU, gD
S Ty

(3.71)

The leading behavior of this radial eigenfunction for nd small and positive depends on the

degree [ = |o| of the surface harmonic. For [ = 0 there is one eigenfunction that diverges at
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(nd—1)

the origin like z /2. Its eigenvalue (_ is given by the expression

4 fooody fooodg 71'((9) e_yQ/e ynd—l

(.~ (3.72)

which, in the replica limit, reduces to

lim (- = —2. (3.73)

n—0

The presence of this eigenfunction as a solution of Eq. (3.25) depends crucially on the
singularity of n(()n)(x, z') at the origin for n small but positive. It is not a solution of Eq. (3.26),
which is always regular at the origin. We will show below that this eigenfunction corresponds

in the replica limit to an unphysical fluctuation in the one replica sector. In fact, from

Eqs. (3.29) and (3.72), we see that its eigenvalue _(k) is negative for small k:

/-c_(f() = —€+ (3.74)

DO | R

Still for [ = 0, all other radial eigenfunctions will be orthogonal to the one just found,
and thus will cancel the integral U;. Their behavior is controlled by the next power in the
expansion of n(()n)(m, '), and consequently they vanish for @ — 0 at least as fast as z("+3)/2,

For [ > 0, by Eq. (3.71) all the radial eigenfunctions vanish for  — 0 as z!+(*4=1)/2 op
faster.

These results can be condensed as follows: all the radial eigenfunctions except one are
regular at the origin. The singular eigenfunction corresponds to [ = 0 and scales like z("4-1)/2
for « < 1. The regular eigenfunctions can have any value of [ and vanish for  — 0 as

l=11+1/2) o1 faster.

z
In all the cases where the eigenfunction is regular at the origin, it is permissible to take
the limit n — 0 in Eq. (3.25). This is because these eigenfunctions vanish at the origin fast

enough that they do not pick up any extra contribution from the singularity of T]l(n)(:E, z')

[which, by Eqgs. (3.67) and (3.68), is at most of order nd(zz')(*¥=1/2]. Thus the spectrum of
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eigenvalues of Eq. (3.26) is the same as the limit of the spectrum of Eq. (3.25) when n — 0,
except that the spurious eigenvalue (_ is absent.

We now show that the one replica sector fluctuations decouple from the higher replica
sector fluctuations in the replica limit.

Consider the following orthonormal basis set for the fluctuations in the one replica sector

with fixed p = p:

w;(k) = E'wj,afsfc,éa(p)
a=0
n/2 o
Wiy = Vv equr]oz/(n-I—l) (375)

Vit 1 ’
where j =0,...,n

Let us compute the scalar product of one of these basis functions in the one replica sector
with one of the eigenfunctions of the extended Hessian, which have the general form given
in Eq. (3.15):

1

T 2o w5 (R ()

<wj |1/}7“,f),0> =

Be(\ [Tl (376)

Z ]a[ 1+n d/4(27r nd/QS ¢k

Here we have made use of the relation Eq.(3.64). There are two possible cases, depending

on whether or not R, is singular at the origin. If it is singular, we have [ = 0 and, for small

k

?

R(k) = e Yhu(k//€) =~ N /4 nd=1/2, (3.77)

where NV is a normalization constant, determined by Eq. (3.16). Its value is given by
N = vVnd(1 4+ O(nd)). (3.78)
The angular part of v, 5 ,—q is isotropic, and is given by

\/7 V z:i//i “12(1 4+ O(nd)), (3.79)
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where 7,4 = 27"%2 /T'(nd/2) is the surface of the unit sphere in nd-dimensions. By combining

Eqgs. (3.76), (3.77), (3.78), and (3.79), we obtain

n

(Wilrpo) = Do wj.(l+0(n)) = (wjlwo)(l + O(n))

a=0
= 0;0(1l +0O(n)) (3.80)
Now let us consider the case when R, is non-singular at the origin. In this case the radial

eigenfunction has the form, for small £,
R(k) = e Vu(k//e) S Ne =D/ 2 (=1141/2) (3.81)

where the normalization constant A does not vanish in the replica limit.
As, in this regular case, [ need not be zero, we have to obtain an estimate for the
normalization constant of the surface harmonic for all values of [. Consider a monomial

M, (¢) defined on the D-dimensional unit sphere

m1 mp ZE’,lnl e ng ¢ ¢
M, () = ¢ - ¢pP = T E—— (3.82)
Here (z,...,2p) are the Cartesian coordinates of a point z, r = (22 4+ --- + 22)"/% is the
radial coordinate for the same point, and ¢ = (¢1,...,¢p) = x/r is the unit vector pointing
in the direction of x. The integral of the monomial over the unit sphere is
dDL S S mp _($§+...+Z2D)
[ oM (g) = O T T T
Jo dr rP=1 pratetmp g=r
2TT2 r(E™s )
% if m; even Vy,
o=
= (3.83)
0 otherwise.

In the case of interest to us D = nd, and E?zl mj = 2|o|. From this result we conclude that

the normalization factor N, for a surface harmonic S, has the asymptotic form

d n='% for |o| =0,
wam%+mw (3.84)
0 for |o| # 0.

n
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Here, we have ignored factors that have finite limits when n — 0. This result can be

summarized as follows

Sy(¢) ~ nv(@)
—1/2 for |o| =0, .
v(o) = (3.85)
0 for |o| # 0.

By inserting Eqgs. (3.81) and (3.85) into Eq.(3.76), we obtain the following scaling with

n for the scalar product:

N

(V] /2l /),

n'/? for [ =0,

[(w; |¢r 5,0

N

(3.86)
n(=1H1/2 for 1 £ 0.

For completeness, we compute explicitly the matrix elements of the extended Hessian

between members of the basis set {w;}7_, for the one replica sector fluctuations,

1 . i
Tz 2 Wn(k) H e ()
il

Hlw;) =

(W

71 ; p2 * ¢ = < —[e —é 2/l x
= Va1 ) [E (6 + j)w aWia — 26/0 don(0) > e [a(P)—Es(P)]*/ ewm@wjﬁ]

a=0 o,B=0

= 6y — e+ %2) + O(n). (3.87)

Thus we see that, as expected, the eigenvalue obtained here is same as the one obtained in
Eq. (3.74) for the singular eigenfunction of the extended Hessian.

In summary, in the replica limit all regular eigenfunctions of the extended Hessian are
orthogonal to all of the Irs vectors, and the singular eigenfunction of the extended Hessian
coincides with the isotropic fluctuation in the 1rs. Consequently, in the replica limit, the
higher replica sector is an invariant subspace for the extended Hessian, and therefore the
regular eigenfunctions of the extended Hessian are the eigenfunctions of the original Hes-

sian. More significantly, the eigenvalues of the original Hessian are the eigenvalues of the
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extended Hessian for its regular eigenfunctions. Thus, all the conclusions obtained about

the eigenvalues of the extended Hessian apply well equally to the original Hessian.

3.4 Randomly crosslinked macromolecules

We now consider the semi-microscopic theory of the amorphous solidification transition for
randomly crosslinked linear macromolecules.

Let us notice here that the amorphous solid stationary point in this theory is the same
as in the Landau theory discussed before, i.e., it is also described by Egs. (2.115), (2.116),
(2.108), and (2.131).

We now expand the free energy functional to quadratic order around a stationary point,
and obtain its second derivatives with respect to the fields {£2;}. In this section we use the
notations H and H to refer to the exact Hessian for the microscopic theory and the extended
Hessian for the Landau theory respectively.

For k and &’ both in the higher replica sector,

52[ndf ] hh
082,69 Hk k!

_k/

? M2 w0
= W (5];:,}';’ - Vn <p kpk’>n—|—1 c)

=

2

- % (6. (e+§) — b2 /0 a0 (0)eFPI) 4 o)

_Lam

3 M+ 0(€). (3.88)

For k in the higher replica sector and p in the one replica sector,
52[ndfn] _ Hﬁl
0820005 kop
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Finally, for both p and p’ in the one replica sector,

8%[ndF,) _ g
§Q00_y B
AN 2N ;
= (@a ot 7<P—ﬁpﬁ'>nw+’?,c)
A2 N AN .
= bppr {1 + [1 + O(e) + O(pZ)]}. (3.90)

In these formulas we made use of the definition Eq. (2.83).

The notations H", H" and H' respectively refer to the higher replica, cross-sector,
and one replica parts of the Hessian matrix.

As MTI (i.e., k = 0) fluctuations do not have any component in the Irs, the relevant
Hessian in that case is just H" = (1/3)H". Consequently the results obtained for the
Landau theory tell us that there is a zero eigenvalue for the zero mode, and that the rest of
the eigenvalues are positive.

Let us now consider general fluctuations. We will show that, in the replica limit, the
eigenvectors of the Hessian H for the semi-microscopic theory are the same as the eigenvectors
of the extended Hessian H for the Landau theory, and the one replica and higher replica
sectors are again invariant subspaces for this Hessian.

Let us consider a regular eigenvector [, 5 ,) of H and one of the elements of the basis

set {|w;)}7_, of the one replica sector fluctuations. By Eq. (3.90),

H''wi) = wqpglw;),
XZN N2 .9 ) .
Flrs {1+ S+ O + O(p) + O(mp?)]} (3.91)
and therefore
< 9 ar
[(wil H [, p.0) | = |81 1s(w; [t p.0) | ~ O(Vn). (3.92)
Analogously, by Eq. (3.87),
- p?
H" ;) = (= e+ ) |wj) + O(n). (3.93)
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and

s E )] = [ (= e+ B s )] S O (3.9)

By combining Eqgs. (3.89), (3.92), and (3.94), we can now estimate the matrix element

[(wil HIthrp,0)| = [(w; | H' + H"[1h, 5,0)]

= [(wi| H"™ ¢, 5.0) + O(Vn))|
0 L)\ N _.
= |<w]| 3V H |, 7,D,0 >+O(\/_)|
L)\QN _ _
= |G (B + H [, 5,0) + O(v/n)|

- |2 iy (s 1l ) + O(VR)

S O(/n). (3.95)

This means that in the replica limit H v, 5 ,) has no projection in the one replica sector, and
also that H|w;) has no projection in the higher replica sector. Therefore, also in this problem
the one replica sector and the higher replica sector are decoupled invariant subspaces of the
Hessian. In the one replica sector, the eigenvalue is k1,4 > 0. In the higher replica sector,
since H" = (1/3)H"", the eigenvectors are the same as for the Landau theory, and the
eigenvalues are obtained from the ones in the Landau theory by multiplying by 1/3. All
of these eigenvalues are positive, except for the zero eigenvalue corresponding to the zero
mode. Thus, also for the semi-microscopic theory of randomly crosslinked macromolecules,

the amorphous solid state is stable near the transition.

3.5 Concluding remarks

In this chapter we have shown that in a system with random constraints near the liquid—
amorphous-solid transition, the amorphous solid state is a stable thermodynamic state. In
order to do this, we have examined the spectra of the stability matrices, in the context of both

the Landau theory for the transition and the semi-microscopic model of randomly crosslinked
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macromolecular systems. In both cases the spectrum turned out to be non-negative, with
only a single zero eigenvalue, and all the others positive.

Let us remark that even though we do find a zero eigenvalue for the stability matrix, we
still declare that the stationary point is locally stable, as opposed to locally marginally stable.
This is because in this system translational and rotational invariance are spontaneously
broken, and therefore there is a manifold of equivalent states that have exactly the same
free energy and are connected to each other by the continuous symmetries of the system.
The zero eigenvalue (a.k.a. Goldstone mode) simply indicates that the free energy does not
change if one applies an infinitesimal translation or rotation to the thermodynamic state.

In close analogy to the phonon spectra of ordinary solids, the fluctuation eigenvalues
can be classified into two types: a soft branch of modes associated with “almost rigid”
displacements of the whole system (analogous to the acoustic branch), with eigenvalues
mo(f() = RQ/Z, and a set of “massive” modes in which the structure of the system is altered
more strongly (analogous to the set of optical branches), with eigenvalues mT(f() =e(1+¢ )+
l~<2/2. In addition, there is in our case a “softening” of the system, because the eigenvalues
of the “massive” modes go to zero at the transition.

It is an intriguing problem, which is left open for further study, to investigate whether

there is any manifestation of a similar structure in the dynamics of the system and, in

particular, to establish how the softening of the system manifests itself in the dynamics.
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Chapter 4

Elastic properties of the amorphous

solid state

4.1 Introduction

The amorphous solidification transition that we have been discussing has two main equilib-
rium signatures: (i) a nonzero fraction of the monomers become localized around random
mean positions and with random localization lengths (structure); and (ii) the system, as
a whole, acquires a nonzero static shear modulus (response). In the previous chapters, we
have focused our discussion on the former signature; the purpose of the present chapter is
to address the latter signature. Specifically, our aim is to develop a statistical-mechanical
theory of the elastic properties of the amorphous solid state in the vicinity of the vulcan-
ization transition. This theory incorporates both annealed (i.e. thermally equilibrating) and
quenched random (i.e. crosslink specifying) variables. Its primary conclusions are: (a) that
the amorphous solid [in the sense of signature (i)] state emerging at the vulcanization tran-
sition is indeed a solid [in the sense of signature (ii)]; (b) that the shear modulus vanishes

continuously as the transition is approached, and does so with the third power of the excess
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crosslink density (i.e. the amount by which the crosslink density exceeds its critical value);
and (c) that the shearing of the container associated with elastic deformations does not lead
to a shearing of the probability clouds associated with the thermal fluctuations of localized
particles about their mean positions.

The elastic properties of vulcanized matter and related chemically-bonded systems, espe-
cially those near the amorphous solidification transition, have received considerable attention,
to date. Notable approaches include the classical ones [16, 17, 18], in which it was argued
that near the transition the elastic entropy in the solid phase (and consequently the static
shear modulus F) grow as the third power of the excess crosslink density ¢, i.e., F ~ ¢
with t = 3. Subsequently, it was proposed that the amorphous solidification transition of
polymer systems be identified with a percolation process [5, 25, 26]. Thus, the exponent ¢
was identified with the critical exponent p for percolation of conductivity (with g ~ 2.0 in
3 spatial dimensions). Later, it was observed that the elasticity percolation exponent for a
random network is substantially higher than g when the forces are central [103].

More microscopically oriented approaches to the elastic properties of vulcanized matter
have also been made, in which macromolecular degrees of freedom feature explicitly. Among
these are the “phantom network” [104] and “affine network” [6] approaches, as well as the
comprehensive discussion of rubber elasticity by Deam and Edwards [20], and others [23].
These approaches focus on the well-crosslinked regime rather than the lightly-crosslinked
regime near the vulcanization transition [2].

Experimentally, the exponent ¢ has been addressed for several systems (although mostly
for gelation rather than vulcanization): the results vary from ¢ ~ 2 [105] to 123 [106]. This
wide discrepancy is not understood.

Stimulating though they certainly are, it must be recognized that neither the classical [8,
9, 16, 17, 18] nor the percolation [5, 25, 26] approaches to the physics of vulcanized matter

explicitly include both crucial ingredients: thermal fluctuations and quenched disorder. In
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the previous chapters, an approach to the vulcanization transition was followed that takes
into account both of these ingredients in the context of a semi-microscopic model for flexible,
randomly crosslinked macromolecules. Up to this point, the results obtained refer to the
structure of the amorphous solid state near the vulcanization transition. In this chapter, we
use the same approach, but now to study the response of the amorphous solid state to shear
deformations.

The outline of the rest of this chapter is as follows. In Sec. 4.2 the changes that have
to be introduced in the theory in order to describe deformed systems are discussed. In
Sec. 4.3 an order parameter hypothesis is proposed to describe the amorphous solid state in
the deformed system. In Sec. 4.4 it is shown that the proposed order parameter does satisfy
the stationary-point equations for the deformed system, and it is found that despite the
externally imposed stress, the fluctuation regions for individual particles remain spherical.
In Sec. 4.5, the free energy change due to the deformation is computed, and it is shown

3

that the shear modulus scales as €, in agreement with the results of the classical theory. In

Sec. 4.6, some brief concluding remarks are presented.
The research discussed in the present chapter has been reported on in a short format in

Ref. [44], and a full version is in preparation [45].

4.2 Changes in the model due to the deformation

In this section we discuss the ways in which the theoretical description of the system is

affected by the deformation.

4.2.1 Description of the deformation

We characterize the deformation by the (d x d) matrix S, which describes the change in

position of any point b at the boundary of the system as follows: b — S - b. For example,
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for d = 3 and for a deformation in which the z, y and z Cartesian components of the position
vector are, respectively, elongated by the factors A;, A, and X,, the matrix S has the form
diag(Az, Ay, A;). As we are concerned with the effects of pure shear strains, we shall consider

only deformations that leave the volume V' of the system unchanged, i.e.,
detS = 1. (4.1)
For considering infinitesimal strains, it is convenient to define the (symmetric) strain tensor

J=_(S+ST) -1 (4.2)

¢

DO | =

Here ST is the transpose of S, and I is the identity matrix. For small shear deformations,

we have

l=detS=1+tr(S—1I)+O((S -1)%), (4.3)

and consequently

trJ =0, (4.4)

to first order in the deformation.

4.2.2 Deformation and replicas

Before taking the thermodynamic limit, the system is finite in extent, and thus the Fourier
representation of any function of position consists of a superposition of plane waves with
wave-vectors belonging to a discrete set. This set of wave vectors is determined by the
periodic boundary conditions. In particular, the order parameter is represented by a function
); on replicated Fourier space that is only defined at a discrete set of points. Now, under
strain the boundaries in position space are displaced and, as a consequence, the discretization
in replicated Fourier space changes. As the replica a = 0 represents the degrees of freedom of
the original system before crosslinking, and replicas a« = 1,...,n represent the actual system

being studied, any external strain applied to the system after the permanent constraints
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have been created will affect replicas a = 1,...,n, but not replica a = 0 [20] Therefore, the
change in the discretization of the wave vectors occurs only for « = 1,...,n, but not a = 0.
For replicas @ = 1,...,n, the set of allowed d-dimensional wave vectors r* corresponding
to the unstrained system is replaced by a new set r® corresponding to the strained system.
Consequently, the set R" of allowed replicated wave-vectors in the unstrained system [defined
just after Eq. (2.48)] is replaced by a set R® of allowed replicated wave-vectors in the strained
system. The set R® is composed of all replicated wave vectors e = {k°% k', .- k"™} such that

kY € r* and k® € r® for replicas a = 1,...,n.

4.2.3 Free energy functional for the deformed system

Conceptually, there are two sources for the change in free energy, Eq. (2.78), under deforma-
tion: the change in the expression for the free energy functional itself, and the consequent
change in the value of the order parameter that solves the stationary-point equation. The
free-energy functional for the strained system F3({{);}) is obtained by repeating, step-by-
step, the procedure followed in Secs. 2.4 and 2.5 to construct the free-energy functional for
the unstrained system F,({€;}). The only change resides in the fact that integrals over the
positions of the monomers now range over the region occupied by the strained sample in-
stead of the region occupied by the unstrained sample, and consequently the periodic delta
function of Eq. (2.46) now involves a summation over the new set R® of wave vectors in

replicated space:

1

6(¢) = e Z exp (1p- ¢). (4.5)
peER®
Consequently, Eq. (2.48) is replaced by
2 N 2
7% /1 /1 . . w N 5
ds | dté(c;(s) —¢;(t)) = 5%, 4.
S X [ [t —e0) = 573 S 0 (1.6)
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and the expression for [Z"] in terms of monomer densities given in Eq. (2.53) is replaced by
_Nn¢’/’Dc exp{ — —Z/ds
D - / d

/ c exp{ 5 ; | ds

2

ch N &

N)\2 Z peR: |Qs]* + VHZkER QI }

- NS 12l

(27 =

dCi(S)

(4.7)
Two features should be noted here. One is that the denominator in the last formula is unaf-
fected by the deformation, because it is the normalization factor for the disorder distribution,

which has not changed. Thus the normalization constant N in Eq. (2.63), which reads

_ eXp(—Nn¢>)2 (4.8)
/Dc exp{ — ._z_:/ds dC;iS) N)\2 |Qp| }

is unchanged by the deformation, as anticipated in Sec. 2.5. The second feature is that no
changes have appeared in any of the prefactors in front of the terms in Eq. (2.53) that are
affected by the deformation.

From Eq. (4.7), one immediately obtains, with the Hubbard Stratonovich transformation

of Sec. 2.5, the free energy functional

s PR 24 1=t 2
W ((0)) = VSl STy
w
2N & 2
—1In{exp [iN2=— Z SReQﬁpp—l—LEk pReQip : (4.9)
V Pe V € n+1

Having this expression for the free energy functional would allow us to compute the free
energy for the deformed system in the stationary-point approximation by using Eq. (2.78).
However, we are going to take one further step, and restrict ourselves for the moment to the
regime near the amorphous solidification transition.

In the regime close to the transition, we can expand the free energy functional in powers
of the order parameter and the wave vectors, and obtain the analog of Eq. (2.123) for the

deformed system:

s b L. N
ndfn({ﬂff}) - ZIACERS( —et §|k|2)|ﬂk|2 N ZhiﬁfﬂgERSQiﬂl Qi@ Q]ACS 5];1+f€2+f€376 ' (410)
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As a result, the stationary-point equation for the strained system becomes

1 . _
0:2(—6—|— §|k|2)QI}_3A > leﬂ%ékl_}_%’]}. (4.11)

k1 ]:72 eRs

4.3 Proposing a hypothesis for the order parameter

We shall obtain the order parameter by finding a solution for Eq. (4.11). We use physical
arguments similar to the ones used in the unstrained case to motivate our guess for a possible
solution. As our guess will turn out to solve Eq. (4.11) exactly, this justifies a posteriori our
physical assumptions. As the shear modulus is determined by an expansion of the free energy
to quadratic order in the deformation, for the moment we will only consider infinitesimal
deformations.

For each localized monomer in the unstrained system we envisage that its old mean
position b;(s) is displaced to a new mean position bf(s) = S-b;(s) +t;(s). Up to this point
the only assumption is the physically intuitive one that the same monomers will be localized
in the undeformed and the deformed system. The vector S - b;(s) is the affine displacement
of the old position [6]. We now make the assumption that t;(s) is a random additional
displacement, uncorrelated with b;(s).

For each localized monomer, we also need some conjecture about the size and shape of
the region within which it thermally fluctuates. We assume that this localization region need
not be spherical (as it was in the unstrained system), but that it might now be deformed

due to the external strain. We will consider the position fluctuations for the monomers:
6c" = c¢;(s) — bi(s) (4.12)
for the unstrained system, and

8¢t = ci(s) — (S - bi(s) + ti(s)) (4.13)
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for the strained system, and also the individual monomer densities for the unstrained and
strained system, pi', (r) and p?, (r), as defined by Eq. (2.20).

One possible assumption is that the fluctuation region deforms affinely, i.e., that
6c" — 6c® =8 - bc. (4.14)
This gives rise to the individual monomer density
() = 0, (71 (r = b2(s)) + bi(s)) (1.15)
in real space, and
(e i()s = exp (ik-{S-bi(s) + ti(s)} ) exp (— &X(s) k-{S" - 8} k/2) (4.16)

for the Fourier-transformed version. In what follows, we will replace the matrix ST -8 by its

expansion to first order in the deformation:
ST.S~TI+2J+0O(F%. (4.17)

Thus, for an infinitesimal strain, the assumption of affine distortion of the fluctuation region

gives the density
()2~ exp (ke {S-bils) + (o)} Jexp (— E(s) k- {1+ 20} k/2). (1.18)

An alternative assumption is that the fluctuation region remains spherical as in the

unstrained system, i.e., that

oct — 6c¢® = oct. (4.19)
This, in turn, gives rise to the individual monomer density
Prsx(r) = i (v = bi(s) + bi(s)) (4.20)
in real space, and

(i), = exp (ik-{S-bils) + i(s)} ) exp ( — E(s)k?/2) (4.21)

x =
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in wave vector space.
Motivated by the above special cases, we propose the following parametrization for

<eik'ci(s)>§<, that contains Eqgs. (4.18) and (4.21) as particular limits:
(RN = exp (i (S buls) 4 t(s)) exp (— E2(s) ke (L4 m(s) 3} k/2). (122)

The rationale for this generalization goes as follows. In the undeformed system, we know that
the probability cloud is asymptotically isotropic. For an infinitesimal deformation, one could
expect the localization region to be slightly distorted. To lowest order in the deformation,
the matrix characterizing it is J. (As we are attempting to specify a quadratic form, only
the symmetric part of the matrix defining it is relevant.) The other ingredient that can
influence the shape of the localization region is the disorder: we thus include a random
factor n;(s) that weights the departure of the localization region from spherical symmetry.
For example, if n;(s) = 2, Eq. (4.22) reduces to Eq. (4.18), meaning that the probability
cloud is affinely distorted. On the other hand, if 7;(s) = 0 Eq. (4.22) reduces to Eq. (4.21),
i.e., the probability cloud remains spherical, as it is in the undeformed system. In the same
spirit as in the undeformed case, we assume that the parameters n and ¢ describing the extent
(and shape) of the fluctuation region are uncorrelated with the original mean position b.
By considering ¢ real copies of the system, and adding the contributions from all the

monomers, we can explicitly construct the order parameter of Eq. (2.24):

db .
Qk17...’kg = (1 — q) 5k1,0 C 5k9,0 + q/vez(k1+...+kg).s.b
X /dt /Oodr /Oodr] »(t,7,1m) pilkt +otk?) b —e2 (k' {I+y I}t 4o+ k9 {I4+7 T}-k9) /2
0 —00
(4.23)
Here, ¢ (t,7,n) is the statistical distribution for the parameters t, 7 and 5. In order for

the above equation to reduce to the order parameter of Eq. (2.36) in the limit of zero strain,

we impose the condition:

lim (t, 7, 1) = 5(t)p(r)5(n). (1.20)
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The integral over b in Eq. (4.23) factorizes for the same reason as in the undeformed system,
namely because b is uncorrelated with all the other parameters.

In order to solve the stationary-point equations, we need an expression for {};, where kis a
generic replicated wave vector in £°. Obtaining this expression is slightly less straightforward
than in the undeformed case. We have to take into account the fact that replica a = 0 is
different from all the others because it is not affected by the deformation. This suggests that
for localized monomers we parametrize the Fourier-transformed individual particle density
by using Eq. (2.31) for & = 0 but Eq. (4.22) for « = 1,...,n, thus obtaining the following

form for Q;:

db 0 a
0 = (-0 [ o [Roenstoss
/dt/ dr/ dn (b, 7, ) (s K b (P kL T /27y o)

= (1 — q> 51;,6 + q 5k0+ST'ZZ:1 k>0 WS(]AC) (426)

In the second line we have recognized that the product of wave-vector delta functions corre-
sponds to a delta function for replicated wave vectors, we have identified the integral over b
as a representation of a Kronecker delta function in wave vector space, and we have labeled
the integral over t, 7 and 7 as WS(]%), the continuous part of the order parameter in the
strained system.

Although it is not trivial to propose a general form for the probability distribution
Y (t,7,7n), under fairly mild conditions it is possible to expand its Fourier transform with
respect to the random displacement t to first order in the strain and to lowest nontrivial

order in wavevectors:

Jate®t (s, m.n) = p(r) 6(n) + m(r,n) p-3-p + O(J2), (4.27)

with m(7,n) an unknown function. The value of the right hand side in the limit of zero

strain is dictated by the assumption of Eq. (4.24). The correction to first order in the strain
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is determined by assuming that it has to be invariant under a rotation of the coordinate
system (which is equivalent to a simultaneous rotation of p and J). This condition only
allows for the following terms: (i) a linear function of p -J - p times any function of p?
and (ii) a product of an invariant linear function of J times any function of p*. The only
quantity linear in J and invariant under rotations is tr J, which is zero for infinitesimal shear
strains, as mentioned above. Thus we only have term (i), which, to lowest nontrivial order
in wave vectors, reduces to the contribution appearing in Eq. (4.27). The integral over t

that appears in Eq. (4.25) is the same one of Eq. (4.27), with p replaced by

Eka — _(ST)—I .kO
a=1

—k° (4.28)

%

The approximation in the second line is consistent with keeping only terms linear in the
deformation in Eq. (4.27).

We are now in a condition to simplify the form of Eq. (4.25) substantially, by taking
the following steps: (i) by using Eqgs. (4.27) and (4.28) to perform the integration over the
random displacement t, (ii) by expanding all terms consistently to linear order in J, and
(iii) by defining scaling variables in a way analogous to the one shown in Eq. (2.129). The
result of these manipulations is the following hypothesis for the continuous part of the order

parameter:

~ 0 7.2 0 0 n
Ws(k):q/ df e/ (x(0) — )0 g0 =) > kT k). (4.29)
0 € c =
Here, ((0) and w(f) are new scaling functions, which describe the change in the continuous
part of the order parameter due to the deformation. They are unknown at this point, but
they will be determined later by demanding that the hypothesis of Eq. (4.29) satisfy the

stationary-point equations for the deformed system.

There is an alternative way of motivating the above hypothesis for the order parameter,

by using symmetry arguments. Let us assume that for small strains WS(]%) is unchanged
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by a rotation of the coordinate system (or, equivalently, by simultaneous rotations of S and
]%) This is evidently true for W“(]Aﬁ) (which is a function of ]%2) Therefore the difference
between the two quantities WS(]AC) and W“(]Aﬁ) has the same property. If we further assume
the presence of permutation symmetry among replicas « = 1,...,n, this difference can
only contain, up to lowest nontrivial order in the deformation and in the wave vectors, the
following terms: (i) a product of an invariant linear function of J with a linear combination
of a constant, (k°)*, and 37 _,(k*)?; (ii) a linear function of k°-J - kY (iii) a linear function
of >h_1 k% J-k% and (iv) a linear function of (3°}_; k*)-J- (35, k?). The only quantity
linear in J and invariant under rotations is trJ, which is zero for infinitesimal shear strains,
as mentioned above. In addition, using Eq. (4.28), any term of type (iv) is reduced to a term

of type (ii). Thus only terms of type (ii) and (iii) are left, and we recover Eq. (4.29).

4.4 Solving the stationary-point equations

We now show that the hypothesis just proposed does satisfy the stationary point equations
in the deformed system, provided that the gel fraction ¢ and the scaling functions = (6), ((8),
and w(f) satisfy appropriate conditions.

In order to perform the summation over wave vectors in the stationary point equation,
Eq. (4.11), one has to take into account the fact that the sum excludes vectors in the one
and zero replica sectors. For any expression f; that is zero in the one replica sector, the

following identity is valid in the large volume limit:
Sifi=V [ fi=lim fi. (4.30)
k k—0
To simplify our notation, we make use of the shorthand:
. dk .
the factor V™ in front of the integral will be irrelevant in the replica limit n — 0, and we

will ignore it from now on. The stationary-point equation for the deformed system can be
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rewritten as follows:
1 -
o:2(3q—e+§|k|2)ﬂ,;—3v/ﬁﬂﬁﬂ,;_ﬁ. (4.32)
Two observations are in order here. One is technical, namely that the volume prefactor in
the second term, although it might appear dangerous, is in fact compensated by a 1/V factor
coming from the integrand. The second is more profound, and will be discussed in detail
later: at this point in the argument, the only dependence that the stationary-point equation
still has on the deformation is that the “external” wave vector  has to belong to the discrete
set R®; the other source of dependence on the deformation, namely the fact that the sum
over wave vectors in the second term was taken for wave vectors restricted to the discrete
set °, has now been eliminated.
By inserting the hypothesis for the order parameter, given by Eqgs. (4.26) and (4.29), into
the stationary point condition, Eq. (4.32), and expanding to first order in the strain, we

obtain

0= %0 {2 (3¢*— eq + gk*/2) /Ooodew(a) e R/
3¢’ / [0y w(01) [0, w(0,) 5 e g e
-2 (3¢’ —661+qk2/2 / do 9)
+64 // d01 p’-J-p /daﬂ (0y) e7"/c0n g=(h=h)?/cts /dme
2 (3¢°= eq + gi?2) / a0 =) Zk‘”‘ Joke e

" 9 52 b—5)2 s
-|—6q2/A/0 db, @ ( 6 1) Z pa.J.pOA/O b, 7(0;) P [eb1 o= (k—p)* /b2 /dm Sm D }
P a=1

(4.33)

20, 3. KO0 e Kb

Here we have made use of the notation

k" =K' +S" 3k, (4.34)

a=1
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and the integral representation for the Kronecker delta
1 im-k ‘
(5k70 = V /dme . (435)

After performing the integrations, first over p, then over m, Eq. (4.33) reduces to:
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0 — {2 (34— cq + qk*/2) /Oode r(0) e R/ _ 3q2/°od91/0°od92 7(0,)7(03) e—’?2/6<91+92>}

__{ko J: ko}{ (3¢°— eq + qk*/2) / do ¢(0) e R/

a2 [ - 1 — k2 /e(614+62)
o4 /0 ‘wl/o 402 (91+92) (Bu)m(fa)e }

{Zk“Jk“}{ (3¢%— eq + ¢k*/2) / 0 () e F*/<0

00 00 01
—62/ d@/d@
g 0 10 2(91—{—92

By taking the limit J:2 — 0 we recover the condition for the gel fraction

) =(0,)7(0,) e—’%z/f(@l%)} . (4.36)

0= —2qc+ 3¢°, (4.37)

which implies that ¢ = 2¢/3 for ¢ > 0. It is not surprising that we obtain the same gel
fraction for the amorphous solid state as in the unstrained system, as in our motivation for
the order parameter hypothesis we assumed that the monomers that were localized in the
strained system would also be those that were localized in the unstrained system.
Demanding that Eq. (4.36) be valid for all ke R is equivalent to the above equation

for the gel fraction plus the following integro-differential equations for the scaling functions

7(0), ((0), and w(h):

ofz_zz_g - (1-0)x /de' (0 —0), (4.38)
‘?2_2% ~ (1-0)¢ /d9’0’2 (6 — 0, (4.39)
‘?2_2‘2_3 — (1-0) _—/d0’0’2 0)x(0—0").

(4.40)

The boundary conditions for the scaling functions #(8), ((6) and w(f) are obtained by
studying the values of the order parameter in different regions of i space.

As noticed in Sec. 2.3.2 for the case of p(7), the fact that the order parameter is unity
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at the origin determines that the following normalization condition for 7(8) be satisfied:

9
/da w(0) = 1. (4.41)
0
To derive boundary conditions for ((6) and w(f), we observe that, from Eq. (2.24),

I Ot oges = 0 4.42
dyes ok (4.42)

and, consequently, that

lim €, =0. (4.43)

k2 =0

In order to benefit from this information, we perform the change of variables
y=k?/eb (4.44)
in Eq. (4.29), thus obtaining
We(h) = g [ dye {5 (1 ey) — () 5310 - (1) z x*-J-x7}. (4.45)
Here, we have defined the functions 7 (6), (6), and &(6) by
7(0)=0'x(0);  C(0)=0°C(0);  ®(0) =0 w(0); (4.46)
and the unit vector & = {x%,...,x"} by

kae
Xx* = —, (a=0,...,n). (4.47)
Vi

From the expression (4.45) for the order parameter hypothesis, it follows immediately that

lim € = — lim ({(0)x"-3-x° + &(0) an x*J-x). (4.48)

k2 oo f— o0
However, this limit must be zero regardless of the direction of Z, and consequently we obtain

the following boundary conditions for ((#) and w(#):

0 = lim 6°C(0), (4.49)
0 = lim 0> (0). (4.50)
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To obtain boundary conditions at the origin, one only needs to examine the integro-
differential equations themselves. Near the origin, the integral terms can be neglected, and

all three equations reduce to the form:

0 df
535 = (L=0) 7). (4.51)

where f stands for 7, (, or @. This is a first order linear differential equation that has the

solution
o—2/0

62’

f0)=A4 (4.52)

with A an arbitrary constant. Consequently, all three of the scaling functions vanish rapidly
at the origin.

As the reader has probably already noticed, the integro-differential equation and the
boundary condition that apply to both ((#) and w(#) are linear and homogeneous. This
implies that one of two possibilities must hold for each one of these functions: either it is
identically zero, or it is only determined up to an arbitrary multiplicative constant. The latter
possibility does not seem to be easy to justify on physical grounds, as it would imply that the
stationary point equations leave the order parameter undetermined. In fact, if this were the
case, there would be a continuous family of order parameters such that the continuous parts
WS(]%) for different members of the family differ in different degrees from the continuous
part of the order parameter corresponding to the amorphous solid state of the unstrained
system. One could, however, imagine that we are missing another physical constraint that
fixes the scale of these two functions, and therefore the above argument is suggestive but
not conclusive. In what follows we are going to show that both functions are zero, doing so
by the analytic manipulation of the integro-differential equations and boundary conditions.
[By contrast, in the case of 7(8), the integro-differential equation (4.38) is nonlinear, and
the condition of Eq. (4.41) is linear but inhomogeneous.]

As the equations and boundary conditions are identical for ((#) and w(#), it is enough
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to show that ((#) = 0 for all §. This is done in Appendix L.

The fact that both ((#) and w(f) are identically null implies the a priori most surprising
result of this chapter: the continuous part of the order parameter does not change to first
order in the strain, i.e., WS(]%) = W“(/Aﬁ) This conclusion is consistent with the phantom
network picture [2, 104]. It also suggests that WS(]AC) = W“(iﬁ) for finite (and not merely
infinitesimal) deformations. Indeed, our order-parameter hypothesis turns out to satisfy the
stationary-point equation for arbitrarily strained systems. To see this, let us go back to the
stationary-point equation, Eq. (4.32). As was mentioned earlier, Eq. (4.32) applies both for
the unstrained and for the strained systems, the only difference between the two cases being
that in the unstrained case, the “external” replicated wave vector ki belongs to the discrete
set R", while in the strained case, 3 belongs to the set R°. By inserting the form for the
order parameter given by Eq. (4.26), but now with WS(]%) = W“(iﬂ), i.e., given by Eq. (4.29)
with ((0) = w(f) = 0, we find that the stationary-point equation is satisfied provided ()
satisfies Eq. (2.108).

One could be tempted at this point to assume that the order parameter is completely
unchanged when the system is deformed. However, this is not quite correct. In addition to
the stationary-point equation, the order parameter has to satisfy the boundary conditions in
real space for the deformed system. This means that the hypothesis of Eq. (4.26) for Q; is
physically meaningful only for Je belonging to the set of allowed replicated wave vectors R®.
If the order parameter corresponding to the unstrained system were maintained, there would
be a factor 51;70 in the term corresponding to the localized monomers that would be zero for
generic values of the deformation matrix S unless both k® = 0 and >-"_, k* = 0. As in the
undeformed system this same factor is nonzero for 3-"_, k® = —k = 0, this would give rise
to an unphysical discontinuity in the order parameter as a function of the deformation. On
the other hand, the modified delta factor 51;570 that appears in Eq. (4.26) takes into account

the shift in the reciprocal lattice due to the deformation, and displays no such discontinuity.
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4.5 Change in free energy with the deformation; shear

modulus

We now have all the ingredients necessary to calculate the change in the free energy Af, to

leading order in €, due to the deformation of the system:
Af = dlim [F({0 ) - F(2D)] (4.53)

Here 7 and )} are, respectively, the stationary-point values of the order parameter for
the strained and unstrained systems. We need to compute F3({{23}) as a function of the
deformation matrix S.

From Eq. (4.10) we see that F({€23}) contains both a quadratic and a cubic term in €23.
We first study the quadratic term. We make use of Eq. (4.30) to write, in the large volume
limit,

Yien(— et %W)mu? = clim |0 + v/fg(— e+ §|f%|2)|ﬂ,;|2- (4.54)
The term associated to the limit & — 0 has the value ¢q?, independent of S, and is thus

irrelevant for our purposes. We concentrate on computing the integral
1=V [(—e+ L) g2 (4.55)
2 2
To make the algebra more digestible, we define the notations

[z [0 n() and a—g(%—l-gl—?)- (4.56)

The first step is to insert the form of the order parameter for the solid phase, Egs. (4.25)

and (4.29), and use the fact that ((§) = w(f§) = 0. We then have
P iy 2
I:V/ _6+_|k|)<q5”s /e ) (4.57)
0
/ / / —et —Ikl e /2/dm m (k48T 377, k)
6,76,
e /2a —( m)?/2a "
6102 ( da m 27]'0, d/2 (Zﬂ'a)d/Q )
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a

= v [ [ (= e a) {erar e+ sy}

= @1 +nlnV)(—c+0m)(1 - gtr (ST-8)) +O(n?), (4.58)

where we have only kept low powers of the number n of replicas in the result. The change

in this term due to the deformation is
Al = geqztr (STS — I) + O(n?). (4.59)

Now, for the cubic term, by using Eq. (4.30) repeatedly we obtain

=D iiher M Yy U, Ot irha = —VQ[ O, Qg g, +3VQ/]; 19;°—2¢°. (4.60)

for S
then, inserting the form of the order parameter, the first term on the r.h.s yields

JE—q3///// e—];'%/ﬁel—];75/692—(1;14—];'2)2/56’3
010503 k1S ko

x /dm1 e (k8730 kg) /dm2 i (ST Y7 ke)

ex _%(mlmz)-A- 21
:—qSVQ”/Hl/éb/eS/dml/dmz p{ ( < 2)}

472 det A)4/?
S- "
exp{—%(s-mls-mg)A (S 21)}
- my

% (472 det A)4/2 ’

(4.61)

where the 2 x 2 matrix A is the inverse of the matrix
— ¢ . (4.62)

1,1

no ntE
By performing the gaussian integration over m; and my, and expanding in powers of n, we

obtain

J = —qSVM/e/e/e(47r2detA)_nd/2{det(I—|-nSTS)}_l
= —¢*(1+2nInV)(1 — ntr (ST - 8))(1 + O(n)) + O(n?).
(4.63)
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For this term, the change due to the deformation is
AJ = ng’tr (ST -S-1I)+ (’)(nZ). (4.64)
Similarly, the second term on the r.h.s. of Eq. (4.60) evaluates to

K = 3Vq[|ﬂ,;|2
k

= 31 +nlnV)(l — gtr (ST-8))(1+ O(n)) + O(n?), (1.65)
and its change under deformation is
- —3n 4 T _ 2
AK = — 4 tr (S-S —1I)+ O(n”). (4.66)

By combining the contributions shown in Egs. (4.59), (4.64) and (4.66), dividing by the
number n of replicas, and taking into account the fact that ¢ = %e, we obtain the free-energy

change due to the deformation:

Af = dlim{F({N%)-F{%D]

2¢3 T
= ﬁtr (S-S* —1). (4.67)

Thus we can extract the value of the static shear modulus for the amorphous solid state near

the solidification transition (with physical units restored):
E =kgTNCé, (4.68)

where kg is Boltzmann’s constant, 7' is the temperature, and C' is a model-dependent positive
constant. Hence, we see that the static shear modulus near the vulcanization transition is
characterized by the exponent ¢t = 3, in agreement with the classical result [5, 16, 17, 18].
A simple scaling argument, viz., that the modulus should scale as two powers of the order
parameter (¢*) and two powers of the gradient (£;3), leads to the same value for the exponent

t.
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4.6 Concluding remarks

In this chapter we have presented a microscopic derivation of the static elastic response of a
system of randomly crosslinked macromolecules near the amorphous solidification transition.

From the technical point of view, we modeled the deformation of the system by changing
the boundary conditions in real space, and reformulating the theory presented in Chap. 2
under these new conditions. A point that required special care was how to include in our
formulation the physical information that the system had been crosslinked before it was
deformed. This results in an asymmetry in the replica formulation of the problem: in the
case we are studying, replica a = 0 describes the system before the deformation is applied,
and replicas a = 1,...,n describe the system in its actual state of deformation.

The physical picture that emerges from the results of this chapter has the following
features: (i) the amorphous solid state, which was shown in Chap. 2 to be characterized
structurally by the localization of a nonzero fraction of particles, is also characterized by
having a nonzero static shear modulus; (ii) the static shear modulus scales as the third
power of the excess crosslink density (beyond its value at the transition) [107]; and (iii) the
form of localization exhibited by the particles is left unchanged by the strain.

A possible explanation for the spherical localization regions that the particles exhibit
even under externally applied stress might be that in the regime near the transition most
monomers in the infinite cluster are very loosely connected, and thus their behavior is dom-
inated by the maximization of entropy, which is obtained by allowing them to fluctuate in
all directions. It is not implausible that strain-induced changes in the pattern of localization
would emerge from a more detailed analysis of the effects of the excluded-volume interac-
tion, at least at higher crosslink densities. This is because at higher crosslinks densities, the
macromolecular network is more tightly bound, and the topological barriers generated by

interlocking of polymer loops are more significant.
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Finally, let us point out that since the treatment presented here only depends on the form
of the free-energy functional [88] near the transition, and not any specific semi-microscopic
model, the approach to elasticity described here should be generally applicable not only
to systems of randomly crosslinked flexible macromolecules, but also to other equilibrium

amorphous solid forming systems.
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Appendix A

Wiener correlator

In this appendix we derive the basic correlators associated with the Wiener measure:

<eXp ( — LX:I k, C(sp))>1 = 5((;771)211 K, €XP ( — % ET S, k, kp/)7 (A.1)
p= = p.p'=1
and
{exp ( —iijl b i(s,))),, = 0050 exp (- % S Sk hs), (A2)
= o= pp'=1

where S,/ 1s a function of the pair of arclength coordinates s, and s, defined via
S, = min(s,, sy) . (A.3)
In terms of the Wiener measure, the correlator is given, up to normalization, by
<6Xp ( —1 27”: k, - c(sp))>w s /Dc exp (—l /1 d5|é(s)|2) exp (—'i ZT: k, - c(sp)), (A4)
p=1 ! 2 0 p=1
where the overdot denotes a derivative with respect to s. We express the configuration of
the macromolecule in terms of the position of the end at s = 0, together with the tangent
vector ¢(s) via: ¢(s) = c(0) + [, ds'¢(s')0(s — s'), where 0(s) is the Heaviside f-function.

Then the measure Dc is given by D¢ de(0), and the correlator becomes proportional to

/dc(()) exp (—ic(so) z: kp) /Dé exp (—% /d5|é(s)|2) exp (—i/ds c(s) z: k,0(s, — s))
’ ’ - (A.5)
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By performing the integral over ¢(0) we obtain the Kronecker é-function factor: 5(()d)zr .-
il p—l £

By performing the integrals over the tangent vectors ¢(s) we obtain the gaussian factor:
[ 1
exp ( ~5 > k- kp;/ dsf(s, — s)0(s, — 5)) (A.6)
p,p'=1 0
By performing the arclength integral, and by setting to zero the wave vectors {k,}’_; in
order to establish the correct normalization factor, we obtain the Wiener measure correlator
Eq. (A.1). It should be noted that because min (s,,s,) = (s, + s,) — 3|5, — 5|, and
because of the Kronecker é-function factor, the exponent of the Wiener measure correlator

can also be expressed as >

;”0/:1 k, kyls, —s,]/4.
In the case of the replicated Wiener measure, since there is no coupling between the

replicas, the analogous correlator is just the product over replicas of the corresponding one-

replica correlators, which is exactly Eq. (A.2).
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Appendix B

Debye function and related functions

In this appendix we derive the basic Debye function go(|k|?). The Debye function go(|k|?)
is defined as the integral over arclength variables of the Wiener correlator Eq. (A.1) for the

case r = 2 and —k; =k, = k:

1 . 1 2
go(|k|2) = / dsyds, <ezk.(c(sl)—c(s2))>w _ / dsyds, ek [s1—s2|/2
0 1 0

oK /2 _ (1_%k2) {1—k2/6, if k2 < 1;

: (B.1)
5 (34

4/k* if k2> 1.
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Appendix C

Free energy functional evaluated for

the order parameter hypothesis

C.1 Quadratic contribution

We now compute the contribution in the n — 0 limit to the free energy functional, Eq. (2.64),
that is quadratic in Q;, for the specific form of Q; given in Eq. (2.36). No approximations

will be made. To this end we focus on the quantity

hm——z 10, (C.1)

n—0n V1

Inserting ; from Eq. (2.36), we obtain
2 ot | —
Wz]}: |Qk|2 = _HZ|QI§|2
— Zq / dTlp Tl / dep 7'2 ) eXp ( k2( _I_ 7-2 )/2)
= q2/d7'/0 dry P(ﬁ)/o dT2P(7'2)5(T _ (7.1—1 + 7_2_1)_1)
0

xiiégz exp (—]%2/27') . (C2)
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We now add and subtract the terms in the 0- and 1-replica sectors in order to relax the

constraint on the summation over & indicated by the overbar on the summation symbol. In

(d)

fact, owing to the factor of 5120’ the summand vanishes for & in the 1-replica sector, so that

we obtain
2 ot 2 ¢ 2 T o o0 1 _1y—1
Wzk: 1Q;:]° = —W—I—q O/dT/O dTlp(Tl)/O dTg])(Tg)(S(T— (ry " +715) )
1 d 2o e .
XWZ(SI(E}) exp (—kz/ZT) . (C.3)
k

We now focus on the remaining, unconstrained summation on the right hand side of Eq. (C.3),

which we compute via the following steps. First, we introduce an integral representation of

5(d)

50’ viz.

?

1 . nL e
51(52] =v dcexp (zc : Za:O k ), (C.4)

where the integral is taken over the volume V. Then we convert the summation over i into

an integral by using

1 .
vn+1Z”'*/dk"" (C.5)
k

where dk = [T"_,dk® and dk = (27)~%dk, and the integral is taken over the entire k: space.

Thus we obtain
% Zél({fz) exp ( - ]%2/27') = /cﬁsexp ( - /;2/27) /V decexp (ic : ZZ:O ka)
k

n+1
- d{/dk “kk/2 ik - }
/V c exp( / 7') exp (l c)
= (T/Q?T)(n+1)d/2/ dc exp ( —(n+1)rc- c/2)
‘f
= (r/2r)"/*(1 4 n)~2, (C.6)
where we have used the gaussian integral and, in the last step, have assumed that 7712 <«

V14 for inverse square localization lengths that are given significant weight by the distribu-

tion p(7), Eq. (2.36). Thus we find

147



2 —t 2 oo oo oo B
Wzk: Q7 = —%—I—qQ/O dT/O dTlp(Tl)/O dTgp(Tg)(S(T—(Tl_l +751) 1)

(/27 )" (1 4 )=, (C.7)

As we shall need this quadratic term only in the vicinity of n = 0, we expand for small n,
and by taking the n — 0 limit we obtain

ol 2= o d oy > o
lim = =57 9 = 5¢? [ drp(r) [ dmp(m)In
k

n—0n V"

(7t + 72—1)‘1) . (C.8)

2re

C.2 Logarithmic contribution

We now compute the contribution in the n — 0 limit to the free energy functional, Eq. (2.64),
that can be identified and the partition function of a single macromolecule coupled to €2
for the specific form of §; given in Eq. (2.36). The calculation will be undertaken as a
perturbation expansion in the typical inverse square localization length, to first order in this

quantity. Thus, we focus on the quantity

—t 1w
9,.2Y/—n * 1k-¢(s)
<exp (2,u VT %Reﬂk/o dse )>n+1. (C.9)
First, we observe that only for J: -7 > 0 are the variables {};, independent, and that 2y = Q7

for k- f < 0, as follows from the discussion after Eq. (2.63). This allows us to eliminate the

Re operation and to extend the range of the summation in Eq. (C.9), which becomes

w

<eXP (/LQV_”EI;Q]; /01 ds e_ifc'é(s)) >n+1. (C.10)

Next, we insert §); from Eq. (2.36), which gives

w

<eXp (,quV_”ikégi) OOO dr p(T)e_f“Q/QT /01 ds e_ik'é(s))> (C.11)

n—}—l'

We now add and subtract the terms in the 0- and 1-replica sectors to the summation over i

in order to relax the constraint indicated by the overbar on the summation symbol. In fact,
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(d)

owing to the factor of 5120’ the summand vanishes for £ in the 1-replica sector, so that we

obtain

exp < — /LQqV_”) < exp <,u2qV_” Ek 51(52)/ dr p(1) _k2/27/ ds e~ C(S))>:\;1. (C.12)

The next step is to make the power series expansion of the exponential in the expectation

value, and make r-fold use of the integral representation of the Kronecker é-function,

1
6 = V/Vdcexp (ic- k), (C.13)

in which the c-integral is taken over the volume V| to obtain

exp (/LQqV_”) < exp (ZMQV Z Re / ds e’ S))>

n+1
B 1 & ©? dey dcT N
_vavﬂw!k% /VV' (ZC” Zk)
X / " drp(r)- - drop(7) Jexp (- : Z Zlk“ Y
0 p 1 7P a=0
/ dsy- - ds exp(—zzzka “ )>:\:_1 (C.14)
p=1a=0

The remaining expectation value in Eq. (C.14), (exp( =13, > ok} co‘(sp))>nw+1, fac-

torizes on the replica index, giving [T} (exp ( — i3>/ k§ - c(sp))>¥v. Each factor in this

product is of the form of the expectation value computed in App. A, in terms of which we
express the remaining expectation value in Eq. (C.14). The result contains an (n + 1)-fold

product of Kronecker é6-functions, which we replace with the integral representation

n d 1 . . n N r N
ar:[oég)E;: ks = gy, 4’ dm”exp (—i ) m -p;kp), (C.15)

1P a=0
in which each of the (n + 1) m-integrals is taken over the volume V. Next, we convert the
summations over {]Aﬁ, s ]%T} to integrations by using Eq. (C.5) r times, after which the

summation on the right hand side of Eq. (C.14) becomes

1 00 2r 7 1 o dc dCT
W; Mr!q /0 d51-.-d37«/0 dT1P(T1 dTTp(TT)V /71 . v /Vdmo---dm
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< [k dhyexp (i 33K (e, —m)) eXp(—— 3 RY) Zk“ k)

a=0 p=1 p,p'=1
1 & u?qg” o0 1 dc dc,
—nzﬂ 'q / dsl---dsr/o drip(m)-- dTTp(TT)V/VVl--- %
L o~ 20 e
(/dm/d‘kl dk, eXp(Zk (e —m))exp (=5 3 Rk, k) .
pp'=1

(C.16)

Here, R( ), is an (r x r)-matrix—valued function of the r arclength coordinates {s,}/_; and
the r inverse square localization lengths {7,}/_,, defined in Eq. (E.1). We now focus on the
quantity in this expression that is raised to the (n + 1) power.

By performing the gaussian integrations, first over {ky,...,k,} and then over m, we

obtain

r

/dm/d‘kl---d‘krexp (i k, - (c, —m)) exp(—% 3 ROk, k)
J

p=1 pyp'=1

= (27) 02 (W) et R(r))‘d”

exp ( Z Cpp’ Co- C”)

pp' 1

(C.17)

where we have introduced the (r x r)-matrix-valued function C'") of the r arclength coor-
dinates {s,}’_; and the r inverse square localization lengths {7,}’_,, which is built from
RU), Eq. (E.1), in a manner described in App. E. The gaussian integrals in Eq. (C.17) are
convergent, owing to the positive-definiteness of the eigenvalue spectrum of R") and of W)

for finite 7. By inserting the result (C.17) into expression (C.16) we obtain

1 &= L?’/’ T 1 oo dc dcr
W; / r!q /0 dsy-- -d,sr/o drip(m)-- dTrP(Tr)V Vl §

(27)—(7"—1)(n+1)d/2 (W(r) det® R(T))—(n-l—l)d/Q

p Cpl) .

(C.18)

exp (

p,0'=1

The quantity W) is built from R("), Eq. (E.1), in a manner described in App. E.
Next we perform the integration over {cy,...,c,}. This integration is not quite gaussian,

instead being quasi-gaussian, owing to the presence of a single zero-mode, the eigenvalue
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spectrum of C(") containing a single zero eigenvalue, the remaining r — 1 eigenvalues being
positive-definite. The presence of this zero-mode can readily be ascertained by observing that
from the definition of C\"), Eq. (E.4), we identically have 2=t C/()Q = 0, i.e., the normalized

r-vector (1,1,...,1)/y/r is an eigenvector of C,g;) with zero eigenvalue. The necessary quasi-

gaussian integral is computed in App. D. By using it, Eq. (C.18) becomes

1 & g 1 o ~(r—1)nd/2
Ve E ’ /0 dsq- - -dsr/o drip(my) - drp(r,)(27)
r=1 :

-
—nd ~ (r —d/2
< (WO det RO) T (1 4. 1)~(r-04r2 (r_IW(T) det™) RO) det! )c“))

(C.19)

where dNet(T) C") indicates the quasi-determinant of CU"), i.e., the product of all the nonzero
eigenvalues of C("); see [108]. We now make use of the result, established in App. F, that
the factor r~! W) det™ R(") dét(”c“) is identically unity. Thus, Eq. (C.19) is simplified,

becoming

1 &= 2r 1 1 oo
W;MH‘] /0 dsl..-dsr/o drip(y) -+ - drp(7,)

—nd/?2

x(2m) =070 (WO det ™ RO ) T (n 4 1)UV (C.20)

We take this expression and insert it into Eq. (C.14) to obtain an expression for

(exp <2/¢2V_”§;Re O /0 " ds ei’;'@<s>)>zv+1 (C.21)

that is valid for n > —1. By expanding this result for small n, we finally obtain the desired
quantity:

lim id In < exp (2/¢2V_”§;Re Q3 /01 ds ei’;'é(S)) >W

n—0n n+1

00 2r 7
— (e "0 _ (1 — 4201 2/d /9 _ M F 4
(e (1 —p q)) n(V / We) e ; .
1 00
X / dsy- - -dsr/ drip(r1) - drp(7,) In (W(T) det) R(T)).
0 0

(C.22)
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Appendix D

Quasi-gaussian integration

Consider the following integral,

% Vdcl -+ dec, exp ( - %p;;c/ﬁ’} c, cp:) exp ( - i;c,} : Jp), (D.1)
taken over r copies of the volume V, in which C{") has as its sole non-positive definite
eigenvalue the zero eigenvalue corresponding to the r-eigenvector (1,1,...,1)/y/r. We shall
need both the general case, in which the sources {J,}7_; are arbitrary, and also the special
case, in which the sources {J,}7_; all vanish. By working in a basis in which C") is diagonal

and assuming that V is sufficiently large (or, equivalently that no nonzero eigenvalue of C")

is arbitrarily small) one finds that this quasi-gaussian integral is given by

3 (D.2)

3,0

1

412 ()02 (gt o) T eXp(—% > e, 3,) 6%

pop'=1
where C1") is the quasi-inverse of C") | i.e., the eigenvector expansion of the inverse of C(") from
which the term corresponding to the zero eigenvalue has been omitted; see [108]. Similarly,
as mentioned in Sec. C.2, dét(r)c(’") indicates the quasi-determinant of C1"); see [108]. The

4/2 i subtle, but is familiar from the context of so-called collective coordinates. It

factor of r
arises from the fact that owing to the presence of the zero eigenvalue there are d integration

directions for which convergence is not controlled by a gaussian integrand. Not only do the
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corresponding integrations yield a volume factor; they also each yield a factor of r'/? by
virtue of the limits on them determined by the form of the corresponding eigenvector. For

the special case in which the sources {J,}7_, all vanish we have:

1 | r ‘ r— ~ () A —d/2 ’
V/VdCl -+ -dc, exp ( -5 Z Cé/j c,- cp,) — pi/2 (27r)( 1)d/2(det ! )) . (D.3)

p,p'=1
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Appendix E

Perturbation expansion at long

localization lengths: free energy

Consider the quantity R"), an (r x r)-matrix—valued function of the r arclength coordinates

{s,}7_, and the r inverse square localization lengths {7,}’_,, given by

R =778, + 8,0, (E.1)

op

where S is given by Eq. (A.3). We have found it useful to construct from R() several

auxiliary quantities:

U = Z%(R(T)) i (E.2)
s
wr = S ul, (E.3)
p=1
r M) L T r r
¢t = (RO)| —uDul? jwo, (E.A)

We shall need to develop perturbative expansions in {7,}/_; of In (W(T) det ™) R(T)) to
linear order and of C") to quadratic order. To this end, we introduce the (r x r) identity

matrix Z) = §,,/, and make the definition

Ry

pp

= 7'/)_1 Opp's (E.5)

!
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o) ot = Tp 0, . First, we consider In det") R().

Indet™” R = Indet!” (RE{") + S)
= Indet” RS - (700 + (RY)) - )
= Indet? RY) +Indet® (10 4 (RY) - 8)
= Indet® R + 0 In (70 4+ (RY) - 5)
= (I )+ (R s

- = szl hl TP —I_ Z;:l TP SPP —I_ 0(7—2)7 (EG)

where tr{”) denotes the trace of an r xr matrix. Second, we consider (R(T))_l. From Eq. (E.1)

we have R = Rér) + S, from which follows the Dyson-type equation
o (ROYT ()~ )~
(RO) " = (RY) = (RY) -8 (RD) . (E.7)
[terating the Dyson-type equation once and then truncating gives

= T,8pp — TpSpp Ty + O(T%). (E.8)

/

(R)7]

op

By using this result in Eqgs. (E.2) and (E.3) we obtain

Z/[/ET) = Tp—Tp ZSPPITPI7 (Eg)
p'=1

wr = ZTP Z 7,8,y + O(72). (E.10)
p,0'=1

Third, we use Eqgs. (E.6) and (E.10) to obtain

E ET 11 T S 1 Tpt
In (W) det™ RM) = 1n (M) T pe =l PP P 4 O(r%).  (E.11
( ) =i (G )+ (S - = (). (1)

Finally, by using Eqgs. (E.8), (E.9) and (E.10) in Eq. (E.4) we obtain

r ToTy!
C/()/) = (Tpépp' — TP L )

Eo‘:l TO
ET:I TV(SUPI —|—Spy) ZZV’:I Ty Tyt Suy‘) 3
+ | =7, S, Ty + T, Ty = . — T Ty + O(77).
( pOpp' Tp pTp s TS ) (77)

(E.12)
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In reducing the free energy (2.91) to the form (2.95) we have used, inter alia, the pertur-
bation expansion (E.11). In this way, the free energy reduces to an assembly of terms each
being a functional of p(7). Each term has a coefficient determined by integration over the ar-
clength variables {s1,...,s,} of integrands arising from factors of S,,, defined in Eq. (A.3),
which depend on the arclength variables. The necessary integrals are readily expressed in

terms of the following ones:

1 1 1
/ dSl 811 = / dSl min (51,51) = / dSl S1 = 1/2, (E13)
0 0 0

1 1 1 1 1 51
/ dsl/ d52 812 = / dsl/ d32 min (81, 52) = 2/ dsl/ d52 Sg = 1/3 (E14)
0 0 0 0 0 0
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Appendix F

A useful identity

We make repeated use of the identity

(r)

r W) det™) RO det” ¢ = 1, (F.1)

where R, W) and CU) are, respectively, defined in Eqgs. (E.1), (E.3) and (E.4) of App. E.
To derive this identity, we evaluate the following quantity [which arises, e.g., in Eq. (C.16)]

in two ways:

. .7" L& o _
I /dm /dkl -+ -dk, exp (z >k, (c,— m)) exp ( ~5 > Rf)p),kp : kp/). (F.2)
v p=1 pp'=1
First, by integrating over {c,}’_,, then over {k,}’_,, and then over m we obtain the result:

unity. Second, by integrating over {k,}7_,,then over m, and then, by using the quasi-

gaussian integral Eq. (D.3), over {c,}]_,, we obtain the result:
(F WO det®) RO det™ ¢)) ™%, (F.3)

hence the identity Eq. (F.1).
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Appendix G

Laplace representation of free energy

In this appendix we describe in detail how to exchange the dependence of the three contri-

butions to f*, Eq. (2.95), from p(7) to its Laplace transform p(7). We begin by noting two

integrals:
% d7 . .
1 _ / -7 T 1
nr L (e e ), (G.1)
L. /OO die ", (G.2)
T 0

The latter integral is elementary; the former is an example of a Frullanian integral; see

Ref. [109]. We use Eq. (G.1) to express the first contribution to f*® as

{ln <7‘1 + 7—2)}7 = {In(n+7)—1In(n)—In(r)},

T1T2
o0 [oe) OOdA N R . .
= / dﬁp(ﬁ)/ dryp(T2) AT<—e_T—€_T(Tl+T2)+€_TTl —|—e_”2)
0 0 o T
% d7 5 .
= — (—p(7 2p(7) —e” G.3
| (=0 +20) =), (G.3)

where the curly braces {---} were defined immediately following Eq. (2.95). By following

the identical strategy, we use Eq. (G.1) to express the second contribution to f¥" as

{m <m>} = {In(r +m+7s)—In(n) —In(r) —ln(m)},

T1T2T3
- [ U (h( +30(7) —277) (G.4)
0

7
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To express the third contribution to f** in terms of p(#) we make use of Eq. (G.2). This

yields

T1T2 &0 &0 T1T2
Y / dry
{7'1+7'2}T /0 mip(n) 0 TQP(T2)7'1+72

= / dryp(m1)71 /oo drap(T2)T2 /oo dre”7(nt7m) — /oo df’(dﬁ/df')z. (G.5)
0 0 0 0

We now take the functional derivative with respect to p(7) of these three contributions

to f¥a*. Being local, the first two are straightforward to compute, respectively yielding

613((5%) {m (Tlrj:)h - 2(1—13(*))7 (G.6)
s U (o)) = F0567) @n

To evaluate the functional derivative with respect to p(7) of the third contribution to f¥a
requires an integration by parts. The integrated piece vanishes because p(7) is to be varied
at neither 7 = 0 nor 7 = oo, due to the boundary conditions. Thus we obtain for the third

contribution to f¥2':

A

1) LTy } d*p
= -2 . G.8
5]3(%) {7’1 + T2 ) - d7A'2 ( )
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Appendix H

Order-parameter weighted averages

In this appendix we focus on the computation of the following quantity, defined for arbitrary

[ and I":

</1 dt =it /1 di o=l et
0 0 (H.1)

1 o o0 2 w
X exp (/qu_” Z/o ds e ) 51(52) A drp(r)exp ( — kQ/ZT)) >n+1 '
k

In addition, we make two applications of it. We proceed by expanding the exponential,

which yields

/ dte_”c / dt/ —al. n+1 ZV?WTI/ dSl dST_|_2/ dTlp(Tl)"‘dTrp(TT)
i W
< 3 TL6 exp (=5 30 i) (e men ) T D

ki ,ookoy P=1 p=1Tp
(H.2)
Next, we observe the factorization of the Wiener measure correlators on the replica index,
use the explicit result for this correlator given in App. A, use integral representations for
the Kronecker é-functions [Egs. (C.15) and (C.13)], and convert summations to integrals by

using Eq. (C.5), thus obtaining
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1 1 ,
5}”;&” / dt / dt' e~ 1t=t'1E
+ 70 0 0

0 2r 7 1 oo
‘|‘%; Mr!q /0 dSl--'dST_i_Q/O dTlp(Tl)“'dTrp(Tr)%/Vd(H-..dCT dmodmn

‘/

></d7A€1 . .d‘i@ exp (i XT: cp-zn: kj) exp (— 7 zn: m®- (1% + 1% + ik?)) exp (—ZT: ]%2/27_/))
p=1  a=0 a=0 p=1 p=1

12 T n T n T
X exp <— 5 Z Z k> -k Spp;) exp (— SN ko SH_L,)) exp (— S re. ko S»,»_|_27p)
a=0p,p'=1 a=0 p=1 a=0 p=1
s 1, A
X exp ( — El ST_|_17T_|_1) exp ( — 51’2 ST_|_27T_|_2) exp ( — - ST_|_17T_|_2). (H.3)
We now recognize that the integrals over {m®}7_, and {k{,... ,k¥}7_, factorize on the

replica index, giving

li;lﬁd)/ dt / dt' e~ lt=1 |f2 V” Z " q / dsqy- - dsr+2/ dryp(m)---dr.p(7,)
1A
X exp ( — 512 Srtir+1 — _—1'2 Sriar42 — [ Sr+1,r+2 % /V dey - - de,

([ (e k415 £
xexp (= ZkQ/ZTp)eXp(—E Z k, Ky S,
(-

p,0'=1

Zl“ K, Sr41,) exp (- Zl’a-kpsm,p)). (H.4)

p=1

X exp

At this stage we focus on the factorized integrals over {k$}7 and m® occurring under the
product. As they are gaussian integrals they can straightforwardly be performed (we prefer

to integrate over {k}7_, first and m® second), yielding

(QW)_(T_I)d/:)(W(T) det R(T))_d/Q exp ( — 1"+ l’a|2/2W(T))

1 < , a e o e

X exp ( ~3 Z Cﬁpg(cp +il* S0, + ' Spqa,) (e + i1 Spqq p + 2l ST_|_27P/))
pyp'=1

7

W)

X exp ( _ ]/a Zu Cp —|— ila ST-H”U ‘|’ 'él/a Sr-|—2,p))7 (H5)

where U, W) and CU) are respectively defined in Eqs. (E.2), (E.3) and (E.4). Next,

we insert the result of integrating over {k%}7_; and m® into Eq. (H.4) and focus on the
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remaining integrals over {c,}’_,. Just as we encountered in App. C, this integration is
not quite gaussian, instead being quasi-gaussian, owing to the presence a single zero in the
eigenvalue spectrum of C(”). The necessary quasi-gaussian integral is computed in App. D.

By using it, Eq. (H.4) becomes

5}1;@ / "t / L el
Z v q d cdspys [ d cd
1+11 0 Vn 81 ST+2 7'1])(7-1) T’fp(T"’)

x(27)” (r— l)nd/Q(W(T) det(r) R(r))—nd/Q(n 4 1)—(r—1)d/2

< (Fr W) det™ RO det” ¢y ~4/*

X exp ((W(T))_l >oul” (12 Seitp + 17 Srpap + 11 (S, + 5r+2,p)))
p=1

X exp ( - (22 ST+1 r+1 + 2/2 ST+2 r4+2 + QZA . ZA/ S’/’-l—l 7“—}—2)/2)
1,
X exp (E Z Cpp r+1,p $T+1 o’ + _Z/2 Z Cpp r+2,p ST-|—2 o’ + Z l/ Z C 7’—|—1,p S’r—}—?,p’)
p,0'=1 p,0'=1 p,p'=1
xexp (= (24174210 1)/200)
xexp (= (n+1)" Z CNASms1 +1Srp2) - (1S,s1 +1 Sr42)/2). (H.6)
p,p'=1

We have simplified this result by making use of the identity given in Eq. (F.1) of App. F.

We have further simplified it by observing that as C") is the quasi-inverse [108] of C) (see

App. E and footnote [108]), the relevant zero-mode being (1, ,1)/+/r, we have
60O = S, (I.7)
o) G ot _ o) (H.8)

In addition, we have used the fact that there is a single zero-mode to ascertain that

(r)

det” ((n + 1)) = (n+ 1) et 0, (H.9)

As our first application of Eq. (H.6), we set [=1= 0, thus obtaining a normalization

factor that we shall use subsequently:

1—|——ZM i / dsy- - dsr+2/ drip(m)---drp(7,)
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X(Zﬂ_)—(r—l)nd/Q(W(r) det('r) R(T))—ﬂd/?(n + 1)—(7"—1)d/2‘ (HlO)

As our second application of Eq. (H.6) we compute the right hand side of Eq. (2.110) by
forming the quotient of Eq. (H.6) with I'=0 and Eq. (H.10). By making use of the identity

Eq. (F.1) and taking the limit n — 0 we obtain Eqgs. (2.111) and (2.112).
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Appendix I

Perturbation expansion at long

localization lengths: order parameter

In this appendix we compute the perturbative expansions of T and T(? needed to compute
the right hand side of Eq. (2.114). By using the definitions (A.3), (E.2), (E.3) and (E.4), we

find

~1
T — (71_1 + |s1 — 82|) =T — |51 — 32|712 + 0(7—3)7 (L.1)

T@ = -+t (’)(72). (1.2)
By inserting these results into Eq. (2.114), and using Eq. (2.113), we obtain

1 o]
qp(t) = (1 — q);ﬁq/o d31d32/0 drip(m) 6(7 — 7 + 7i]s1 — s3|)

l 1 o]
—|—§M4q2/0 d51d52d33/0 drip(m) drap(m2) §(7 — 71 — 1) + O(€%). (L.3)

Next, we expand the Dirac §-function, §(7—74+7|s1 — sa2|) &~ 8(7—71)+ 78|51 — 2|6 (7 —71),
and perform the 7 and s integrals. (Equivalently, we take the Laplace transform of Eq. (1.3),
expand the resulting exponential function, perform the 7 and s integrals, and back-transform

the resulting nonlinear ordinary differential equation.) Finally, we transform to the scaling

form 7 () defined in Eq. (2.102), and observe that it satisfies Eq. (2.108).
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Appendix J

Computation of the non-diagonal
matrix elements for the Hessian

matrix

In this appendix we collect some useful information concerning surface harmonics, and later
use it to compute the matrix elements of the non-diagonal part HC of the Hessian in the
basis {¢, 5.0 -

The Gegenbauer (also called hyperspherical) polynomials play a role in D dimensions
and with regard to the surface harmonics S, analogous to that played by the Legendre
polynomials in 3 dimensions and with regard to the spherical harmonics V;,,,. The Gegenbauer

polynomial C}(z) of degree r is defined by the generating function (see, e.g., [97], Sec. 11.1.2)
(1 —2at+)™=> C/(a)th (J.1)
=0

There is a generalization to dimension D = p + 2 of the addition theorem for spherical

harmonics, which relates the Gegenbauer polynomial to a sum of surface harmonics (see,
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e.g., [97], Sec. 11.4):

Cp/2 TD

h( D) |<§:15*

4itr/2

Cr(¢'¢)

= @t 22, ) (12)

Here ¢' and ¢ are any unit D-dimensional vectors, h([, p) is the number of linearly indepen-
dent surface harmonics of degree [ in dimension p+2, and 7p = 277/2/T(D/2) is the area of
the D-dimensional unit sphere. As 011/2(1:) is equal to the Legendre polynomial Pj(z), the

above formula reduces, in the case D = 3, to the usual addition theorem.

We will also make use of the identity (see, e.g., [97], Vol. 11, Sec. 7.15)

z"e™ =2"T'(v) Z(n +v)Cl(2) 140 (2) (J.3)
n=0
In the case of dimension D = nd, by combining Eqgs. (J.2) and (J.3), the following identity
is obtained
exp(z¢’-¢) = 27Tnd/2(”c/2 1= ”d/ZZ]l 1nd/2 (T Z S(é (J.4)
=0 o,lo|=!l
Here x is any real number, ¢’ and ¢ are unit nd-dimensional vectors, I, () is the modified
Bessel function of order v, and |o| is the degree of S, as a homogeneous trigonometric
polynomial.

Let us now compute the matrix elements of the non-diagonal part H? of the Hessian in

the basis {¢, 5. }. By using Eqgs. (3.13) and (3.9) we obtain

dk dl dk di
<9‘9p’f)’0’|H0|99pf>0> = 2/(

1-nd . §

1—|—n)d(27r)(1+n)2d( n) "2 (2m) ' O O[] — ') 55:(8x)
1—nd v Voo

< F 801 = S0y (=26) [ dom()eEDNE - (2.5)

_ —2e (2m)™™ y 1T rd—1 91§
= T Sttt /06<|k|—p>|k| dlF

></ s(J1 = p) |[™d)l] / d0 7(0) =+ ) /<0
< [ doy [ dér S;(0r) exp(pp'oy - érfeb) S, (6) (J.6)
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In the second step we have separated the k and zintegrals into radial and angular parts.
The angular integrals can be performed (with the help of the identity Eq. (J.4), and using

the orthogonality of the surface harmonics) to obtain

(—26)lnd=1)/2
(epiror | H [npa) = 6 00, © ondgnd/2(1 4 1)/

odf 7 ( o2 4p2) e 2p'p
xX2\/pp' /6/ 01— nd/2) r )/91|0|—1+nd/2(?)7 (J.7)

which is equivalent to Egs. (3.18), (3.19) and (3.20).
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Appendix K

Computation of lower bounds for the

eigenvalues of the Hessian matrix

In this appendix we study in detail the bound function 5;(v). We decompose f;(v) as follows:

2

v

Bi(v) 0T, Ji1(v)

alv) = Z/Oodu Vuv e_(“2+”2)]l_1(2uv) (K.1)
0

We now analytically compute the integral defining j;(v)

i) = e [Cayy e (207)

I'il/2+1/4 2 ) 1
(/ + / ),01—1/26—11 1\4(§+—,l,'02).

r'd) 4
Li/241/4) 4, [ 1 2 ‘
%v / M(E — Z’Z’ —v ) (K.2)

By inserting this expression into Eq. (K.1), we obtain Eq. (3.51).
We can obtain more information by using the following integral formula for the confluent

hypergeometric function [101], valid for Rea > 0 and Re b > 0:

WM(CL, b,z) = /1 (1 — 1)’ . (K.3)

0

168



In our case, we have

(v?)o s

(-3

By considering the fact that the exponential in the integrand is always smaller than or

1 2 1 1
ji(v) = [ et — e a, (K.4)
0

equal to 1, this formula can immediately be bounded above, as follows:

L1
jl(‘U) < ('02)2 4 /1 t(1/2_1/4)_1(1 —t)(l/2+1/4)_1dt,
0
i1
_ v?)2 4B(£—l £+l):%vl—l/2‘
[

2 4’2 4
By combining this with Eq. (K.1) we obtain the bound stated in Eq. (3.55). In addition, in

(K.5)

the limit of v < 1, it is legitimate to replace the exponential by 1 inside the integral, and
thus the same expression gives the asymptotic form in that limit, as quoted in Eq. (3.53).
An additional bound can be obtained for the case [ > 1 by taking into account that the

factor (1 —¢)(/2#Y/9=1 in the integrand is smaller than or equal to one

/me4*ﬂ”*”””dt:1. (K.6)
0

This gives the lower bound of Eq. (3.54). The same expression provides the asymptotic form
for all values of [ when v > 1, Eq. (3.52), as in that limit the integral is dominated by the

region near the origin, and the factor (1 — )(/2¥1/4=1 is close to unity in that region.
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Appendix L

Correction to the order parameter

under stress

In this appendix we show that the only solution to Eq. (4.39) that satisfies the boundary
condition Eq. (4.49) is the null function ((f) = 0 for all §. Our approach is to assume that
a nonzero solution exists, and then to arrive at a contradiction.

It is convenient to work with 5(9) instead of ((#). In terms of 5(9), the integro-differential

equation reads:
0% d¢

S5 =0 =2 [al@)m0-0). (L.1)

The boundary condition is simply

lim ((#) = 0. (L.2)

f— o0
It turns out that it is possible to derive a simple differential equation for the Laplace trans-
form 9(s) of the function

o(0) = %. (L.3)

Starting from Eq. (L.1), and using properties of the Laplace transform, one obtains (after

some algebra) the equation

22 = Z4() (1 #(s), (L4)



and the boundary condition

ﬂ@:é%%%:hm&@—&@:& (L.5)

#— oo

The function #(s) appearing in Eq. (L.4) is the Laplace transform [defined in Eq. (2.104)]
of the scaled probability distribution 7(8) for the unstrained system. By using its expansion

for small s,

i(s) =1 — s(8), + O(s2), (L.6)

one can immediately show that Eq. (L.4) has a regular singular point at the origin, and
thence use the Frobenius method [110] to obtain the asymptotic forms near the origin of two

linearly independent solutions:

01(s) = s— s? 4 (’)(33), (L.7)

02(s) = % —slns+ O(s). (L.8)

Any solution of Eq. (L.4) can be written as a linear combination of these two. Due to the
boundary condition (L.5), the coefficient of g5(s) must be zero. Therefore g(s) is some real
multiple of 9;(s).

We haven’t been able to integrate Eq. (L.4) analytically. However, it is easy to integrate
it numerically, using the behavior given by Eq. (L.7) as the initial condition. The numerical
solution thus obtained diverges at infinity; but as 6(s) is the Laplace transform of a function,
it has to go to zero at infinity. Therefore, by assuming that a nonzero solution can be found

satisfying both Eq. (4.39) and Eq. (4.49), we have arrived at a contradiction.
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