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Semiclassical approaches to inhomogeneous superconductivity are explored within

three settings. The first is that of Andreev billiards, which are finite, arbitrarily-

shaped, normal-state regions, surrounded by superconductor. A theoretical frame-

work for the investigation of the short-wave quantal properties of quasiparticles in

Andreev billiards is developed. Among the central results are two semiclassical trace

formulas for the density of states. The first, a lower-resolution formula, corresponds

to the well-known quasiclassical approximation. The second, a higher-resolution for-

mula, allows the density of states to be expressed in terms of: (i) An explicit formula,

valid in the short-wave limit, for billiards of arbitrary shape and dimensionality; and

(ii) Higher-resolution corrections, expressed as a sum over periodic orbits that creep

around the billiard boundary. The second involves quasiparticle motion near an ex-

tended impurity in a d-wave superconductor. Via an extension of the quasiclassical

approximation, the idea that sign-variations in the superconducting pair-potential

lead to low-energy states is extended beyond its original setting of boundary scat-

tering to the broader context of scattering by general single-particle potentials. The

index-theoretic origin of these states is exhibited via a connection with Witten’s super-

symmetric quantum-mechanical model. The third concerns an extended impurity in a

cuprate superconductor in the pseudogap regime. It is shown that if the d-wave corre-

lations persist into the pseudogap regime, but with pair-potential phase-fluctuations

that destroy long-range ordering, then the low-energy states near extended impurities

in the superconducting state should persist as resonances in the pseudogap regime.

Thus, such states can serve as a probe of d-wave correlations in the pseudogap regime.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the quantal dynamics of elementary elec-

tron and hole quasiparticle excitations in inhomogeneous superconductors. We shall

be concerned both with situations in which the inhomogeneity lies in the supercon-

ducting pair-potential and when it lies in the single-particle potential. In the former

case, we shall explore the setting of Andreev billiards. In the latter case we shall

focus on the setting, relevant to high-temperature superconductivity, in which there

is an anisotropy in the pair-potential. To date, the main motivations for studying in-

homogeneous superconductivity have arisen to understand phenomena such as vortex

formation and motion, electromagnetic response, response to an impurity, and pair-

potential fluctuation effects near the superconducting transition temperature. Our

main interest is to study mesoscopic phenomena in inhomogeneous superconductivity,

in which the quantum interference effects on the the quasiparticle mechanics plays a

major role, depending on the lengthscale characterizing the inhomogeneity.

By mesoscopic phenomena, we mean phenomena that are quantal (rather than

classical) in origin and reveal themselves as the system size is reduced [1]. Typ-

ical theoretical methods conventionally employed to study mesoscopic phenomena

include replica and supersymmetry techniques invoked to study disordered conduc-

tors [2], and random matrix and short-wave asymptotic (i.e. semiclassical) methods
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from the field of Quantum Chaos [3]. From the point of view of Quantum Chaos,

which is predominantly concerned with the question of how classical chaos shows up

at the quantum level, mesoscopic systems are a natural experimental framework. Sys-

tems conventionally studied in quantum chaos include Schrödinger billiards (i.e. single

quantal particles confined to regions of arbitrary shapes), because they are minimal

systems showing the necessary complexity in their classical dynamics. It is typically

assumed that the billiard size is much larger than the wavelength of the contained

particle, and the central theme then is the connection between the density of energy

eigenstates and the classical dynamics of the billiard. The semiclassical density of

states of a Schrödinger billiard is separated into a smooth part (the Thomas-Fermi

or Weyl part), which depends on bulk properties of the billiard, such as volume, sur-

face area etc., and an oscillatory part, which depends on the closed classical periodic

orbits. The smooth part can be considered as the remnant of the macroscopic den-

sity of states, whereas the oscillatory part can be regarded as the leading mesoscopic

correction due to quantum interference effects.

The mesoscopic physics of inhomogeneous superconductivity is different from its

conventional counterpart(i.e. mesoscopics of non-superconducting systems) in that

there are two energy scales (viz. the Fermi energy k2
F and the superconducting pair-

potential ∆, quasiparticle excitation energy being assumed to be of order of ∆). The

strong separation of these energy scales (viz. ∆ ¿ k2
F) has long been appreciated, and

has justified the quasiclassical scheme first introduced by Andreev [4]. We shall, in

chapters 1-7, study a superconducting billiard system which we shall call an Andreev

billiard, and show that owing to the additional energy scale there are two layers of

density of states oscillations. The coarser one can be described by the quasiclassical

approximation. The finer one, however, is inaccessible via the quasiclassical approach

and its semiclassical description is one of the main results of this work.

This thesis is organized as follows. Following the introduction to Andreev billiards
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(Chapter 2), we define Andreev billiards and present the corresponding Bogoliubov–

De Gennes (BDG) eigenproblem (in Chapter 3). In this chapter we also introduce the

Green function for the BDG eigenproblem and provide its connection to the density

of states, and review the standard quasiclassical approach to the BDG eigenproblem

(due to Andreev). In Chapter 4 we formulate the computation of the Green func-

tion in terms of an expansion in which the basic processes are reflection from and

transmission through the interface separating the normal (N) and superconducting

(S) regions. We then make a physically-motivated reorganization of this expansion,

which will later allow us to integrate out states in the superconducting region, thus

obtaining a description solely in terms of states within the billiard. (Chapter 4 con-

stitutes the technical basis of the first part of this thesis; however, it may safely

be omitted by readers wishing to focus on results rather than methods.) After this

exact reformulation we proceed, in Chapter 5, to integrate out the states in the su-

perconducting region within an approximation scheme valid for short quasiparticle

wavelenghts. In this way, we obtain an effective Multiple Reflection (rather than Scat-

tering) Expansion. We continue, in Chapter 6, by following certain approximation

strategies that allow us to compute the DOS at various levels of energy-resolution,

in each case obtaining the corresponding trace formula. This section is the heart of

this work. In Chapter 7 we make some concluding remarks and hint at some possible

applications of the ideas we have presented.

We then turn from Andreev billiards and s-wave superconductivity to the subject

of d-wave superconductors. After a brief introduction to d-wave superconductors in

Chapter 8, we move on to explore the properties of low-energy electron-hole quasi-

particle excitattions near extended scatterers in d-wave superconductors (Chapter 9).

We then discuss, in Chapter , possibility of using the low-energy density of states as

a probe of d-wave pairing correlations the pseudogap regime.

We have relegated to appendices some background material, including a derivation
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of the Bogoliubov–De Gennes wave equation and the rudiments of boundary integral

methods, as well as some technical and parenthetical passages.

The work presented in Chapters 2-7 was done in colloboration with Paul M. Gold-

bart. The work presented in Chapter 9 was done in colloboration with Goldbart,

Alexander Shnirmann and Ali Yazdani. The work presented in Chapter 10 was done

in collobotation with Daniel S. Sheehy, Goldbart and Yazdani.
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Chapter 2

Introduction to Andreev Billiards

The purpose of this work is to consider the quantal dynamics of elementary electron

and hole quasiparticle excitations existing within and in the vicinity of a normal-

state region of matter that is completely surrounded by an essentially infinite region

of conventional superconductor. The entire system—normal-state region and super-

conducting surround—may be envisaged as three-dimensional, although the approach

that we shall be developing is applicable in any number of dimensions. Owing to the

inability of the surrounding superconductor to support propagating quasiparticle ex-

citations at sufficiently low energies, electron and hole quasiparticle excitations at

such energies are bound to the normal-state region and its vicinity, and it is on the

properties of such bound states that we shall be focusing our attention.

The process responsible for the confinement of these excitations to the normal-

state region and its vicinity is Andreev reflection [4] from the surrounding super-

conducting condensate; we shall therefore refer to such structures, near to which

quasiparticles are confined, as Andreev billiards . Andreev billiards were introduced

and certain simple aspects of their classical dynamics were discussed in Ref. [5]. A

very brief account of the approach and results contained in the present thesis were

reported in Refs. [6, 7]. Certain quantum-mechanical properties of Andreev billiards

were studied in Refs. [8].
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As we explore the quantal dynamics of quasiparticle excitations of Andreev bil-

liards, our primary focus will be on the relationship between the quasiparticle energy

eigenvalue spectrum and the geometrical shape of the normal-state region, i.e., the

question of spectral geometry in this novel setting of excitations confined by a super-

conducting pair-potential. In the setting of conventional billiard systems [9] confine-

ment is, by contrast, accomplished by an infinite (or occasionally finite) single-particle

potential [20]. As mentioned above, we shall primarily be concerned with confined

quasiparticle states, and therefore in energy eigenvalues lying within the quasiparticle

gap of the surrounding superconductor (although our approach is also suited to the

study of scattering states). The strategy that we shall develop is inspired by the

beautiful work of Balian and Bloch, in which, inter alia, the eigenvalue spectrum of

the Laplace operator was investigated for generically-shaped spatial regions and var-

ious types of boundary conditions [10–12]. The central theme of the work of Balian

and Bloch is the relationship between the boundary shape, the type of boundary con-

ditions, and the the eigenvalue spectrum. We shall refer to Refs. [10–12] respectively

as BB-I, BB-II, and BB-III.

As it is so central to the properties of Andreev billiards, let us pause to review the

core qualitative features of the Andreev reflection process: to a high degree of accu-

racy it (i) interconverts electron and hole excitations; and (ii) reverses the velocity of

excitations. It is this latter, retro-reflective, character of the Andreev reflection pro-

cess that endows Andreev billiards with dynamical characteristics quite distinct from

those of conventional billiards, in which confinement is caused by specular reflection

from a single-particle potential.

We shall take as a model for the normal-state region of an Andreev billiard a Fermi

gas, parametrized by the Fermi energy. Thus, in the normal-state region we shall be

neglecting the effects of band structure, impurity scattering, and quasiparticle inter-

actions. We shall account for the superconducting nature of the matter surrounding
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the normal-state region by asserting that there is a superconducting pair-potential ∆

that varies discontinuously: inside the normal-state region ∆ = 0; outside the normal-

state region ∆ takes on the constant value ∆0 (6= 0). We shall refer to the surface

on which ∆ changes discontinuously as the shape of the Andreev billiard. Thus, we

shall not be working self-consistently, but shall benefit from being in a position to

develop an interface-scattering approach to the quasiparticle dynamics, in which we

are able to focus on processes occurring at the interface. Hence, we can incorporate

in a direct and natural manner the impact of the shape of the billiard (i.e. the shape

of the interface) on the spectrum of energy eigenvalues of the confined electron-hole

quasiparticles.

We see four principal sources of motivation for the present work. First, Andreev

billiards provide a novel setting for the exploration of spectrum-shape relationships,

a branch of mathematics with a distinguished history [21, 22]. The novelty is fed in

by the Andreev reflection process occuring at the normal-to-superconductor bound-

ary. Second, the usual spectral-geometric scenario [in which deviations of the density

of modes from its large-system limit become appreciable as the wavelength become

comparable to the characteristic linear size of the system] is not the whole story for

the case of Andreev billiards. Instead, owing to the presence of a second, much larger,

lengthscale, set by the difference between the momenta of incident electrons and the

holes they become upon Andreev reflection (and vice versa). As this momentum

difference is small (on the scale of the Fermi momentum), the corresponding length-

scale is much larger that the Fermi wavelength. Through this new lengthscale the

eigenvalue spectrum can be sensitive to the shape of the billiard even when the char-

acteristic size of the billiard is much larger than the underlying wave length associated

with quasiparticle motion. This relevance of the new lengthscale has long been appre-

ciated, showing up, e.g., in the effectively one-dimensional settings of Tomasch [23]

and McMillan-Rowell [24] oscillations in the tunneling density of states above the
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superconducting gap, and in de Gennes–Saint-James bound states [25] below the su-

perconducting gap Third, as we shall see when we develop a trace formula for the

(oscillatory part of the) density of quasiparticle eigenstates (DOS), there turns out to

be a novel and useful separation in the scale of periods of the two dominating classes

of (primitive, classical, periodic) trajectories that feature. As a consequence, the

DOS will comprise: (i) a relatively smooth contribution due to retracings of geomet-

rical chords across the billiard of stationary lengths, dressed by (ii) a more rapidly

varying contribution arising from orbits located near the boundary and involving

charge-preserving as well as charge-interconverting reflection processes. Thus, from

the oscillatory part of the DOS one can “hear” aspects of the shape of the billiard

such as the stationary values of the lengths of the chord ). We are not aware of

any other spectral-geometric contexts that feature this type of information. Fourth,

the quasiparticle energy eigenvalue spectrum, and its sensitivity to the shape of the

billiard, should be experimentally accessible, e.g., via tunneling spectroscopy on hy-

brid superconducting/normal-state structures. The current state of microfabrication

technology makes such experiments realizable [26].

We see the following as the principal results of the present work. First, we provide

the machinery for computing the Green function for Andreev billiards of arbitrary

shape in terms of a multiple scattering expansion that focuses on the influence of the

billiard shape. Second, we implement this machinery to construct two semiclassical

schemes (resulting in two semiclassical trace formulas) for computing the oscillatory

component of the DOS. One, which we shall refer to as Scheme A, simply amounts

to an elaboration (to billiards of arbitrary shape) of Andreev’s approximation. Thus,

it gives a DOS that takes the form of an integral over the chords of the normal-state

region with an appropriate weight function. Hence, it realizes the intuitively natu-

ral notion that the chords, being the periodic orbits at the Andreev level, determine

the energy eigenvalue spectrum, according to Bohr-Sommerfeld quantization condi-
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tions. The other, Scheme B, captures certain physical effects that are inaccessible to

Scheme A, such as mesoscale oscillations in the DOS.
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Chapter 3

Andreev billiards

3.1 Idealization of the physical system

The physical system of interest in the present thesis is an Andreev billiard of arbitrary

shape, i.e., a normal-state region embedded inside an infinite superconducting region,

as depicted in Fig. 3.1. Following Gor’kov’s mean-field approach to superconductiv-

ity [27, 28], we describe the system by the (variable particle-number) Hamiltonian H,

given by

H =
∑
α=±

∫
ddxψ†α(x)

{
− ~

2

2m
∇2 − µ

}
ψα(x)

+

∫
ddx

{
∆(x)∗ ψ+(x) ψ−(x) + ∆(x) ψ†+(x) ψ†−(x)

}
. (3.1)

Here, m is the effective electron mass, µ is the electron chemical potential (which we

take to be uniform throughout the system), ∆(x) is a given superconducting pair-

potential which characterizes the superconducting condensate, ψ†α(x) and ψα(x) are

creation and annihilation field operators for electron quasiparticles having position

x and spin-projection α = ±, and d is the dimension of space (typically two or

three). We shall not go beyond the picture of quasiparticle excitations propagating

in the presence of a superconducting condensate implied by this description. Within

the Gor’kov description of the consequences of the electron-electron interaction, any

10
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Figure 3.1: Two-dimensional example of an Andreev billiard, showing a normal
region (N) surrounded by a superconducting region (R). In this example the billiard
is convex.

(Heisenberg-representation) excited state that is arrived at by the addition of a single

spin-up electron quasiparticle to the (Heisenberg-representation) ground state |Φ0〉
evolves into a coherent superposition of such a state and a state arrived at by the

removal of a spin-down electron quasiparticle from the ground state[29], the Hamil-

tonian (3.1) maintaining the system in this sector of Fock space. Thus, it is adequate

to address states of the form

|Φ1〉 ≡
∫

ddx
(
u(x) ψ†↑(x) + v(x) ψ↓(x)

)
|Φ0〉, (3.2)

which are described by the two-component complex-valued amplitudes (u(x), v(x)),

i.e., the family of one-quasiparticle excited states.

To derive the equation of motion for these one-quasiparticle states (i.e. the so-

called time-dependent BDG equation [30]), we follow Andreev [4] and suppose that

the system is in some (Heisenberg-representation) one-quasiparticle excited state

|Φ1〉. Then the amplitude u(x, t) for finding the state at time t to be the ground

state with an up-spin electron quasiparticle added at position x (i.e. the Heisenberg-

11



representation state ψ†+(x, t)|Φ0〉) is given by

〈Φ0|ψ+(x, t)|Φ1〉. (3.3)

Similarly, the amplitude v(x, t) for finding the state at time t to be the ground state

with a down spin electron quasiparticle removed at position x (i.e. the Heisenberg-

representation state ψ−(x, t)|Φ0〉) is given by

〈Φ0|ψ†−(x, t)|Φ1〉. (3.4)

Here, ψ+(x, t) ≡ eiHt/~ ψ+(x) e−iHt/~ and ψ†−(x, t) ≡ eiHt/~ ψ†−(x) e−iHt/~ are, respec-

tively, Heisenberg-representation field operators. Thus, the wave functions u(x, t)

and v(x, t) serve as amplitudes for the present up-spin electron quasiparticle and the

absent down-spin electron (i.e. up-spin hole) quasiparticle. Then, by virtue of the

Heisenberg equation of motion for the field operators (see, e.g., Ref. [28], Sec. 6),

together with the Hamiltonian (3.1), it is a straightforward exercise in computing

commutators of field operators to show that the amplitudes u(x, t) and v(x, t) evolve

according to the appropriate time-dependent Schrödinger equation, i.e., the time-

dependent BDG equation:

i~
∂

∂t




u(x, t)

v(x, t)


 =



− ~2

2m
∇2 − µ ∆(x)

∆∗(x) −
(
− ~2

2m
∇2 − µ

)







u(x, t)

v(x, t)


 . (3.5)

Analysis of this equation via the separation of the time variable, appropriate when

there is no external time-dependence, leads to the BDG eigenproblem



− ~2

2m
∇2 − µ ∆(x)

∆∗(x) −
(
− ~2

2m
∇2 − µ

)







un(x)

vn(x)


 = En




un(x)

vn(x)


 , (3.6)

where n is a (collective) index for all quantum numbers and {En} and {(un(x), vn(x))}
are the corresponding energy eigenvalues and (two-component) eigenfunctions.

In general, ∆ may vary spatially. However, we shall consider the situation in which

deep inside the superconductor ∆ goes to a constant value ∆0, whereas throughout the
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normal metal it vanishes. In the intermediate region (i.e. within a superconducting

coherence length outside of the billiard boundary) ∆ is suppressed to a value smaller

than ∆0, and falls to zero as the N region is entered. We shall ignore the effects

of this suppression and assume that ∆ varies discontinuously between 0 to ∆0 at a

surface, which we refer to as the billiard boundary and denote by ∂V , that divides

the system into two homogeneous regions, the billard interior (denoted V) and the

billiard exterior (denoted V). For the sake of simplicity, we further assume that

there are no metallurgical differences between the normal-state and superconducting

regions, inasmuch as the only difference between them is the value of the pair potential

(the effective mass, e.g., being common).

To ease the notation we shall adopt units in which ~2/2m = 1. To recover results

in terms of the original physical units, one multiplies the three variables having the

dimensions of energy [viz. µ, ∆(r) and E] by the factor (2m/~2).

The Bogoliubov–De Gennes eigenproblem plays the same role for Andreev billiards

that the Schrödinger eigenproblem plays for conventional billiards. If a conventional

billiard is surrounded by a region in which the single-particle potential is infinite then

we refer to the billiard as a hard billiard, and the Schrödinger equation outside the

billiard is replaced by the homogeneous Dirichlet (i.e. vanishing) boundary condition

on the Schrödinger eigenfunction, this boundary condition leading to the quantization

of the eigenvalue spectrum. If, on the other hand, a conventional billiard is surrounded

by a region in which the single-particle potential is finite then we refer to the billiard

as a soft billiard, and the solution to the Schrödinger equation outside must be

matched on to the the solution of the Schrödinger equation inside, this matching

leading to the quantization of the eigenvalue spectrum. The Andreev billiard is,

therefore, analogous to a soft Schrödinger billiard; its hard limit seems difficult to

realize because, at least in known superconductors, the pair potential is far smaller

than the chemical potential.
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The eigenproblem for Andreev billiards, then, is given by Eq. (3.6) with ∆(x) = 0

for x inside the billiard, and ∆(x) = ∆0 for x outside the billiard. Thus, we are faced

with the task of addressing the BDG eigenproblem for the case in which the system

comprises two spatially homogeneous regions (one normal, one superconducting) that

meet at a closed surface. Owing to the spatial homogeneity of these regions, the

general solution of the BDG equation can readily be obtained in each region. The

quantization of the eigenvalue spectrum results from the matching of the solutions

and their normal derivatives across this surface, together with the confinement of the

eigenfunctions to the vicinity of the Andeev billiard. The resulting spectrum depends,

therefore, on the shape of this surface. Exploring this dependence is the central aim

of the present work. It would be straightforward to extend the present framework to

handle issues such as Josephson coupling between superconducting regions, scattering

from Andreev billiards, etc.

3.2 Green function and density of states

The spectrum of eigenvalues of the BDG wave equation {En} is assembled into the

DOS ρ(E), which is defined as

ρ(E) ≡
∑

n

δ(E − En). (3.7)

As is commonly the case, it is convenient to approach ρ(E) via a Green function for

the BDG wave equation, which we now introduce.
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3.2.1 Green function for the Bogoliubov–De Gennes equa-

tion

The (2× 2 matrix) Green function G(x,x′; z) for the BDG wave equation is defined

by the following matrix partial differential equation:



−∇2 − µ− z ∆(x)

∆∗(x) ∇2 + µ− z


G(x,x′; z) = I δ(x− x′), (3.8)

where z is the complex energy and I is the (2×2) identity matrix. Under the far-field

boundary condition G(x,x′; z) → 0 as |x − x′| → ∞ the Green function G(x,x′; z)

is unique [31]. For the case of the Andreev billiard we have ∆(x) = 0 for x in V and

∆(x) = ∆0 for x in V .

It is useful to express G(x,x′; z) in terms of the eigenfunctions (un, vn) of the

BDG Hamiltonian, i.e.,

G(x,x′; z) =
∑

n

1

En − z




un(x) u∗n(x′) un(x) v∗n(x′)

vn(x) u∗n(x′) vn(x) v∗n(x′)


 . (3.9)

In order to see that this form does indeed satisfy Eq. (3.8), one may substitute this

expression into Eq. (3.8) and make use of Eq. (3.6) and the completeness of the

eigenfunctions, i.e.,

∑
n




un(x) u∗n(x′) un(x) v∗n(x′)

vn(x) u∗n(x′) vn(x) v∗n(x′)


 = I δ(x− x′). (3.10)

3.2.2 Connection between Bogoliubov–De Gennes

Green function and density of states

We now follow the standard practice of expressing a DOS in terms of the correspond-

ing Green function by making use of the identity

1

π
Im lim

ε→+0

1

En − E − iε
= δ(En − E). (3.11)
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Together with Eqs. (3.9) and (3.7), this allows us to see that

ρ(E) =
1

π

∫
ddx {Im TrG(x,x′; E + iε)}x′=x

=

∫
ddx

∑
n

1

π
Im
|un(x)|2 + |vn(x)|2

En − E − iε

=
∑

n

1

π
Im

1

En − E − iε
=

∑
n

δ(E − En).

Here, TrG denotes the (matrix) trace over the diagonal components of G.

Equation (3.12) is an expression for ρ(E) in terms of G(x,x′; E + iε), and any

approximation to G(x,x′; E + iε) thus furnishes an approximation to ρ(E). However,

being a sum of delta functions, ρ(E) is not a smooth function and can, therefore, be

extremely awkward to approximate. In order to find approximations to ρ(E) it is

preferable to seek a continuous function that carries essentially the same information

as it. One candidate is the smoothed DOS ργ(E), defined via

ργ(E) ≡
∫ ∞

−∞
dE ′ f(E − E ′; γ) ρ(E ′), (3.12)

where f(E −E ′; γ) is some smoothing function and γ is the (real) smoothing width.

We remark, parenthetically, that any DOS derived from experiment will be smoothed

to some extent, depending on the resolving power of the apparatus and/or the lifetime

of the single-particle excitations.

There are several possible choices for the smoothing fuction f(E −E ′; γ), includ-

ing, e.g., Lorentzian, Gaussian and logarithmic-Gaussian. It is also possible to define

a continuous integral transform of ρ(E) that is, itself, a physical property, and for

which we can derive some approximation. For example, under the Lambert trans-

form of ρ(E), which exchanges energy for temperature, ρ(E) is transformed into the

total (equilibrium internal) energy as a function of temperature [32]. Which smooth-

ing procedure is the best choice depends on the method used to approximate ρ(E).

For Green-function–based methods, such as the one we shall adopt, the Lorentzian
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smoothing function,

f(E − E ′; γ) ≡ 1

π

γ

(E − E ′)2 + γ2
, (3.13)

is the most appropriate, for reasons that should become clear below.

We now give the analogue of Eq. (3.12) for relating the Lorentzian-smoothed DOS

ργ(E) and the Green function at complex energy G(x,x′; z). Following essentially

the procedure that lead to Eq. (3.12), we have the following identity for arbitrary

(real) γ:

ργ(E) =
1

π

∫
ddx Im TrG(x,x′; E + iγ)

∣∣∣
x′=x

=

∫
ddx

∑
n

1

π
Im

|un(x)|2 + |vn(x)|2
En − E − iγ

=
∑

n

1

π

γ

(E − En)2 + γ2
=

∫ ∞

−∞
dE ′ 1

π

γ

(E − E ′)2 + γ2

∑
n

δ(E ′ − En). (3.14)

Naturally, in the limit γ → 0+, ργ(E) passes to ρ(E).

3.2.3 Fundamental Green function for a homogeneous nor-

mal region

In this section we derive the fundamental (i.e. homogeneous) normal-state Green

function, the first of two Green functions that are central to the construction of the

Green function for an Andreev billiard. Along the way, we introduce some convenient

notation that we shall subsequently make use of. This fundamental Green function

is the translationally-invariant solution GN(x,x′; z) of the equation

(H− zI)G0(x,x′; z) = δ(d)(x− x′) I, (3.15)

H =

(
p̂2 − µ 0

0 −p̂2 + µ

)
≡ (−p̂2 + µ) σ3 , (3.16)

where σ1,2,3 are the three Pauli matrices, together with the boundary condition that

the Green function vanishes at infinity:

GN(x,x′; z) → 0 as |x− x′| → ∞ . (3.17)
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The solution for this Green function is given by the (spatial) matrix element of the

operator (zI−H)−1, i.e.,

GN(x,x′; z) = 〈x| 1

zI−H
|x′〉 = 〈x|z I + (p̂2 − µ)σ3

z2 − (p̂2 − µ)2
|x′〉

= (z I− (∇2
x + µ) σ3)/2E

×
(
〈x|(z − p̂2 + µ)−1|x′〉+ 〈x|(z + p̂2 − µ)−1|x′〉

)
, (3.18)

which is, of course, a matrix in electron/hole space. The two terms inside the paran-

theses are quite familiar: they are the usual Green functions of the Helmholtz wave

equation, and can be evaluated in the standard way. In three dimensions, e.g., one

has

〈x|(z ∓ p̂2 ± µ)−1|x′〉 = ± 1

4π

e±ik±|x−x′|

|x− x′| , (3.19)

The symbols k±, which will be used throughout this thesis, denote particle and hole

wave numbers, and are given by the expressions

k± =
√

µ± z , (3.20)

where it is understood that the roots having positive real parts are the ones that are

adopted. Then, for the three-dimensional case, one arrives at the the fundamental

Green function for the normal state:

GN(x,x′; z) =
zI− (∇2 + µ)σ3

2z

1

4π

(
eik+|x−x′|

|x− x′| −
e−ik−|x−x′|

|x− x′|
)

=
1

4π|x− x′|

(
eik+|x−x′| 0

0 −e−ik−|x−x′|

)
. (3.21)

This Green function has the expected form: an outgoing spherical wave in the particle

component (i.e. the particle Green function) and an incoming spherical wave in the

hole component (i.e. the hole Green function), the latter representing an outgoing

hole. Moreover, as we expect in the normal state, there is no mixing between the par-

ticle and hole components, the off-diagonal elements being zero. Next, we introduce
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some convenient notation for the components of this fundamental Green function,

viz.,

g±(x,x′) ≡ e±ik±|x−x′|

|x− x′| , (3.22)

in terms of which GN becomes

GN(x,x′; z) =

(
g+(x,x′) 0

0 −g−(x,x′)

)
. (3.23)

3.2.4 Fundamental Green function for a homogeneous super-

conducting region

The fundamental Green function for a homogeneous superconducuting region is the

translationally invariant solution GS(x,x′; z) of the equation:

{
zI + (∇2 + µ) σ3 + ∆1σ1 + ∆2σ2

}
GS(x− x′) = I δ(d)(x− x′), (3.24)

together with the boundary condition that it vanishes as |x − x′| goes to infinity.

Here ∆1 and ∆2 represent the (constant) real and imaginary parts of the complex

pair-potential. Note that we shall henceforth take the complex energy z to be the

real energy E. We shall be concerned with situations in which the quasiparticles are

bound to the billiard and shall, threfore, assume that |E| < ∆, where the magnitude

∆ of the pair potential obeys ∆2 ≡ ∆2
1 + ∆2

2. In the present work, it is convenient to

choose a specific gauge, which we do by setting ∆1 = 0 and ∆2 = ∆. However, for

extensions of the present work to settings, such as SNS junctions, in which there are

physical implications of phase differences it is necessary to ksow the Green function for

arbitrary gauges, and it is therefore for this case that we provide the Green function.

To obtain the Green function one first formally inverts Eq. (3.24) to obtain

GS(x− x′) =
{
E I + (∇2 + µ) σ3 + ∆1σ1 + ∆2σ2

}−1
δ(d)(x− x′). (3.25)

By manipulating this equation so as to separate the matrix and partial-differential
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aspects of the inversion operation one then arrives at

GS(x− x′) =
{
E I + (∇2 + µ)σ3 + ∆1σ1 + ∆2σ2

}−1
δ3(x− x′)

=
{
E I− (∇2 + µ)σ3 −∆1σ1 −∆2σ2

}

×{
E2 −∆2 − (∇2 + µ)2

}−1
δ(d)(x− x′)

=
{
E I− (∇2 + µ)σ3 −∆1σ1 −∆2σ2

} 1

2i
√

∆2 − E2

×
{(
∇2 +

(
kS

+

)2
)−1

−
(
∇2 +

(
kS
−
)2

)−1
}

δ(d)(x− x′), (3.26)

where we identify the wave vectors kS
+ and kS

− for the electron-like and hole-like

components, respectively, as follows:

kS
± ≡

√
µ± i

√
∆2 − E2, Re kS

± > 0. (3.27)

As the partial differential operators
(
∇2 +

(
kS
±
)2

)
are partial differential operators

of the Helmholtz wave equation for wave vectors of length kS
±, their inversion is well

known,

gS
±(x− x′) ≡ −

(
∇2 +

(
kS
±
)2

)−1

δ3(x− x′) =
e±ikS

±|x−x′|

4π|x− x′| , (3.28)

where the final form on the right hand side holds for the three-dimensional case, and

the minus sign in the exponent for holes ensures the proper decay at large distances.

Upon using Eq. (3.28), GS becomes

GS =
{
E I− (∇2 + µ)σ3 −∆1σ1 −∆2σ2

} 1

2i
√

∆2 − E2

(
gS
+ − gS

−
)

(3.29)

=
1

2

{
E

i
√

∆2 − E2
I− ∆1

i
√

∆2 − E2
σ1 − ∆2

i
√

∆2 − E2
σ2

} (
gS
+ − gS

−
)

+
1

2
σ3

(
gS
+ + gS

−
)
. (3.30)

To get to the second line, the action of (∇2 + µ) on gS
± is calculated with the help of

Eq. (3.28).
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3.3 Andreev’s quasiclassical aproximation scheme

We now review the conventional approximation scheme for studying N-S hybrid sys-

tems, such as Andreev billiards. This approximation scheme was put forth by An-

dreev [4], and we shall refer to it as Andreev’s approximation. It takes advantage of

the fact that for typical N-S systems the dimensionless parameter ∆/µ is much less

than unity. The scheme consists of the separation of rapid and slow oscillations in the

wavefunction. It can be motivated in the following way: consider an arbitrary N-S

structure (i.e. arbitrary ∆(x) ¿ µ). Suppose that the electronic properties of the sys-

tem are probed during a short time ∆t, so that there is insufficient energy resolution

around E = 0 to resolve ∆(x). Then no measurement obtained via this probe is capa-

ble of distinguishing between the original system and a system described by the same

BDG equation but with ∆(x) set to zero. An energy resolution of ∆E around E = 0

corresponds to a momentum resolution of ∆p = m ∆E/kF which, via the Heisen-

berg uncertainty relation, corresponds to a spatial resolution of ∆x = ~2kF/m ∆E.

Therefore, in order to resolve any effects of the pair-potential on the electronic states,

the system must be probed on lengthscales larger than ξ ≡ ~2kF/m∆, i.e., the su-

perconducting coherence length. Thus, the single-particle wavefunctions must have

the form of plane-waves at the Fermi momentum with an envelope that varies on the

lengthscale ξ, i.e., (
u(x)

v(x)

)
= eikF n·x

(
ū(x)

v̄(x)

)
, (3.31)

where the unit vector n defines the orientation of the wavevector of the plane wave

and ū and v̄ are the slowly varying envelope amplitudes. By substituting this form

into the BDG equation (3.6) one obtains(− (∇2 + 2ikFn ·∇) ∆(x)

∆∗(x) (∇2 + 2ikFn ·∇)

)(
ū(x)

v̄(x)

)
= E

(
ū(x)

v̄(x)

)
. (3.32)

As ū and v̄ vary on the lengthscale ξ, one has that

|∇2ū|
|kFn ·∇ū| ∼ O

(
1

kF ξ

)
= O

(
∆

µ

)
¿ 1 . (3.33)
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Thus, to leading order in ∆/µ it is permissible to ignore the ∇2 term in Eq. (3.32), a

singular approximation because it involves changing the order of the system of partial

differential equations. This approximation to the BDG Hamiltonian is Andreev’s

approximation, and leads to the Andreev eigenproblem
(−2ikFn ·∇ ∆(x)

∆∗(x) 2ikFn ·∇

)(
ū(x)

v̄(x)

)
= E

(
ū(x)

v̄(x)

)
. (3.34)

Let us now apply Eq. (3.34) to Andreev billiards. First, it is useful to express the

variable x in terms of b (i.e. the impact parameter or, equivalently, the transverse

parameter), and s (i.e. the longitudinal parameter) such that

x = b + n s. (3.35)

Notice that b represents the transverse degree(s) of freedom whereas s represents

the longitudinal degree of freedom of the excitation. As, in Eq. (3.34), there is no

differential operator acting on the variable b, the wavefunctions take the form
(

ū(b, s)

v̄(b, s)

)
= δ(b− b0)

(
u(s;b0)

v(s;b0)

)
, (3.36)

where b0 can be interpreted as the transverse quantum number. By substituting this

form into Eq. (3.34) one obtains
(−2ikF ∂/∂s ∆(b0, s)

∆∗(b0, s) 2ikF ∂/∂s

)(
u(s;b0)

v(s;b0)

)
= E

(
u(s;b0)

v(s;b0)

)
. (3.37)

Thus, one has reduced the partial differential eigenvalue equation (3.6) to a family of

approximate ordinary differential eigenvalue equations parametrized by (n,b0).

Now, for Andreev billiards ∆ is real and piecewise constant. In this case, the

solution of Eq. (3.34) proceeds as follows. The parameters (n,b0) fix a line, which

determines ∆(b0, s), in the sense that ∆(b0, s) = ∆(b0+n s). As ∆(b0, s) is piecewise

constant, the task of solving Eq. (3.37) is straightforward. The quantization condition

depends on the chord length `(n,b0) [i.e. the length of the part of the line (specified

by (n,b0)) lying inside N]:

E `(n,b0)/kF − 2ϕ = 2πm , (3.38)
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where m = 0,±1,±2, . . . and ϕ ≡ cos−1(E/∆). Thus, for each chord there is a ladder

of energy eigenvalues. In order to obtain the DOS one must first obtain the DOS for

a single chord, and then sum over all chords. However, it is not a priori completely

clear what weight should be assigned to each chord in performing the continuous

summation. In fact, as we shall see in Sec. 6.1, at the Andreev level of approximation

the DOS for a (convex, d-dimensional) Andreev billiard is given by

ρ(E) ≈
∞∑

m=−∞

kF
d−2

2(2π)d−1

∫
dn db `(n,b0) δ

(
E

kF

`(n,b0)− 2ϕ− 2πm

)
, (3.39)

the two (d − 1)-dimensional integrations, one over n and one over b, implement the

summation over chords.
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Chapter 4

Multiple scattering expansion

We now construct a Multiple Scattering Expansion capable of yielding the Green

function G(x,x′) associated with the BDG equation (3.8), in settings in which ∆(x)

is piecewise constant (i.e. takes on certain constant values in various regions of space

that are delineated by d − 1-dimensional surfaces). Although the construction is

applicable to a wider range of settings, we shall have in mind the application to

an Andreev billiard, for which ∆(x) vanishes inside the billiard and has a constant

nonzero value ∆0 outside it. The spirit of our approach very much parallels that

of BB-I, although there there are significant differences arising from (i) the form of

the eigenproblem (BDG rather than Laplace), and (ii) our need to employ matching

(rather than boundary) conditions.

In this section we set up the general formalism for the exact BDG Green function

for the case in which the system is divided, via a change in the pair potential, into at

least two distinct regions. As we shall see, the exact Green function can be expressed

as a sum, generated by an interation scheme, over all possible scatterings from the

boundary dividing these regions.

Readers not familiar with the elements of potential theory that we shall be us-

ing (which are sometimes referred to as boundary integral techniques) may wish to

pause to read App. A, in which we give a self-contained introduction to this subject
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and develop the elaborations necessary for application to the BDG eigenproblem.

Specifically, we shall need to handle two-component wave functions in the context of

matching (rather than boundary) conditions.

4.1 Matching conditions and boundary integral

equations for the Bogoliubov–De Gennes

Green function

We now introduce a convenient parametrization of the Green function G(x,x′). We

do this by decomposing G(x,x′) into a particular integral and a complementary

function. The particular integral, which yields the delta function under the action

of the BDG operator, is built from the fundamental Green functions GN(x − x′)

and GS(x− x′). The complementary function, which obeys the BDG wave equation

[i.e. the homogeneous version of Eq. (3.8], is specified in terms of as-yet undetermined

single and double layers µii(α,x′), νoi(α,x′), µio(α,x′), and νoo(α,x′). Thus we

write

G(x,x′) =





Gii ≡ GN(x,x′) +
∫

∂V dσα ∂α GN(x,α) µii(α,x′), if x ∈ V and x′ ∈ V ;

Goi ≡ ∫
∂V dσα GS(x,α) νoi(α,x′), if x ∈ V and x′ ∈ V ;

Gio ≡ ∫
∂V dσα ∂α GN(x,α) µio(α,x′), if x ∈ V and x′ ∈ V ;

Goo ≡ GS(x,x′) +
∫

∂V dσα GS(x, α) νoo(α,x′), if x ∈ V and x′ ∈ V .
(4.1)

We are employing the notation ∂αf(α) to indicate the value of the component of

the gradient of f(x) with respect to x, evaluated at the surface point α, directed

along the inward normal direction at α. Similarly, dσα indicates the (scalar) surface

element at the point α. We shall find it useful to decorate G(x,x′) with labels (such

as, e.g., ii and io) according to the region of space in which the variables x and x′ lie.
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For example, if x ∈ V and x′ ∈ V then we write Gio(x,x′) for G(x,x′), conveying the

idea that x lies inside V whereas x′ lies outside V .

Next, we focus on the surface ∂V across which the pair-potential is discontinuous.

From the Green function equation (3.8) it is evident that both G(x,x′) and its normal

derivative n · ∇xG(x,x′) are continuous as x varies across ∂V . What this means is

that

lim
x∈V→�∈∂V

G(x,x′) = lim
x∈V→�∈∂V

G(x,x′); (4.2)

lim
x∈V→�∈∂V

nβ ∇xG(x,x′) = lim
x∈V→�∈∂V

nβ ∇xG(x,x′). (4.3)

We apply this pair of matching conditions across ∂V to the parametrizations (4.1),

once for x′ ∈ V and once for x′ ∈ V . To evaluate the necessary limits we make

use of the using the continuity conditions (A.36) and (A.35), as well as the jump

conditions (A.34) and (A.37), thus arriving at the following conditions on the single

layers νoi and νoo and double layers µii and µio:

1

2
σ3 µii(β,x′) = −GN(β,x′)−

∫

∂V
dσα ∂α GN(β,α) µii(α,x′) (4.4)

+

∫

∂V
dσα GS(β, α) νoi(α,x′);

1

2
σ3 νoi(γ,x′) = ∂γ GN(γ,x′) +

∫

∂V
dσα ∂+

γ ∂α GN(γ,α) µii(α,x′) (4.5)

−
∫

∂V
dσα ∂γ GS(γ,α) νoi(α,x′);

1

2
σ3 µio(β,x′) = GS(γ,x′) +

∫

∂V
dσα GS(β, α) νoo(α,x′) (4.6)

−
∫

∂V
dσα ∂α GN(β,α) µio(α,x′);

1

2
σ3 νoo(γ,x′) = −∂γ GS(γ,x′)−

∫

∂V
dσα ∂γ GS(γ, α) νoo(α,x′) (4.7)

+

∫

∂V
dσα ∂+

γ ∂α GN(γ, α) µio(α,x′).

These four matching conditions constitute a system of coupled integral equations for

the single layers νoi and νoo and the double layers µii and µio. It is convenient to
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collect together the single and double layers into a 4× 4 matrix M(γ,x′), defined via

M(γ,x′) ≡



µii(γ,x′) µio(γ,x′)

νoi(γ,x′) νoo(γ,x′)


 . (4.8)

In terms of M(γ,x′) the system becomes

M(γ,x′) = 2M0(γ − x′) + 2

∫

∂V
dσαG(γ, α)M(α,x′), (4.9)

where the inhomogeneity M0 and the kernel G are defined via

M0(γ − x′) ≡


−σ3 GN(γ − x′) σ3 GS(γ − x′)

σ3 ∂γ GN(γ − x′) −σ3 ∂γ GS(γ − x′)


 ; (4.10)

G(γ,α) ≡


−σ3 ∂α GN(γ −α) σ3 GS(γ −α)

σ3 ∂γ ∂α GN(γ −α) −σ3 ∂γ GS(γ −α)


 . (4.11)

Equation (4.9) is one of the central elements of this Paper. Its output (µii etc.) can

be fed into Eq. (4.1) to obtain the ingredients (Gii, etc.) of G In terms of our 4× 4

notation, this connection becomes




Gii(x,x′) Gio(x,x′)

Goi(x,x′) Goo(x,x′)


 =




GN(x,x′) 0

0 GS(x,x′)


 (4.12)

+

∫

∂V
dσγ




∂γG
N(x, γ) 0

0 GS(x,γ)


 M(γ,x′).

When the iterative solution of Eq. (4.9) is fed into Eq. (4.12) for the Green function,

the resulting expansion is called a Multiple Scattering Expansion (MSE) for the Green

function. A typical term in this expansion is shown diagrammatically in Fig. 4.1. The

physical content of the MSE is this: the iterations generate terms that correct the free

Green function by accounting for multiple scatterings from the superconducting con-

densate surrounding the billiard. However, the expansion is not simply a perturbation

expansion in powers of the pair-potential; instead, terms involving n transmissions

(i.e. terms with GN followed by GS and vice versa) account nonperturbatively for all

27



�
���

�
� �

�

Figure 4.1: Typical term in the MSE for the Green function. Lines running in-
ternally (externally) to the billiard represent homogeneous-region normal (supercon-
ducting) Green functions GN (GS); each point on the boundary (α, β, etc.) at which
a scattering event occurs is to be integrated over the complete boundary.

Feynman trajectories that traverse the boundary n times, thus spending intervals in

the superconducting region. (The reason such a re-organization of the simple pertur-

bation expansion in powers of the pair-potential is possible is that one knows fully

the fundamental Green functions that describe propagation in homogeneous N or S

regions.)

4.2 Reorganized multiple scattering expansion

The multiple scattering expansion for the Green function was constructed by iter-

ating a four-by-four matrix integral equation, viz., Eq. (4.9). In fact, this 4 × 4

structure consists of two substructures: (i) the electron-hole structure, which is an

essential ingredient in Andreev billiards. (In fact it is an essential ingredient for any

system involving superconductivity.) (ii) the inside-outside structure: this structure

is specific to Andreev billiards, as they consist of two distinct regions separated by

a boundary. As for the inside-outside structure, it is possible to diagonalize this (as

we shall soon show), and thus to obtain a 2 × 2 matrix integral equation, whose it-

eration produces exactly the same MSE as the 4 × 4 matrix integral equation does.

In this way, we reduce the problem of determining the full-space Green function to

an effective, but nonetheless exact interior (or, if one wishes, exterior) problem. (In-
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deed, in the following section we shall obtain effective boundary conditions for the

interior Green function problem, the solution of which coincides with the that for the

full-space problem.)

The advantages of this formulation are two-fold: First it allows us to easily obtain

the (Feynman) rules for evaluating a generic term in the MSE. Second, as we shall

see when we develop approximation schemes for the Green function, it is especially

well suited for the task of integrating out the outside-propagation processes and,

thus, obtaining an effective Multiple Reflection Expansion. In this way, the physics

of Andreev reflection as well as the corrections associated with charge-preserving

reflection will become evident.

To make this reorganization, let us introduce the operators D (diagonal) and O

(off-diagonal), defined as follows by their action on 4-component functions:

DΨ(γ) ≡ 2

∫

∂V
dσβ



−σ3 ∂αG

N(γ − β) 0

0 −σ3 ∂γG
S(γ − β)


Ψ(β),(4.13)

OΨ(γ) ≡ 2

∫

∂V
dσβ




0 σ3 GS(γ − β)

σ3 ∂γ∂αG
N(γ − β) 0


Ψ(β). (4.14)

These operators constitute the (two-by-two block) diagonal and off-diagonal operator

elements of the kernel G in the integral equation (4.9), the iterative solution of which

generates the MSE. Note that we write the four-by-four identity as I. In terms of D

andO Eq. (4.9) can be written symbolically (i.e. using an obvious condensed notation)

as

M = 2M0 + 2 (D+O)M . (4.15)

To obtain the reorganized MSE, first we rewrite Eq. (4.15) as

(I− 2D)M = 2M0 + 2OM , (4.16)

and then, by inverting the operator (I− 2D), we obtain

M = (I− 2D)−1 2M0 + (I− 2D)−1 2OM , (4.17)
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in which the kernel has become (block) off-diagonal. Next, in order to obtain a (block)

diagonal structure, we iterate this equation once, thus arriving at

M = 2 (I− 2D)−1M0+4 (I− 2D)−1O (I− 2D)−1M0+4 (I− 2D)−1O (I− 2D)−1OM .

(4.18)

At this stage it is useful to define the kernel K obeying

(I− 2D)K = I . (4.19)

This kernel is block diagonal,

K =

(
Kii 0

0 Koo

)
, (4.20)

and the diagonal (two-by-two) blocks obey

Kii + 2σ3 ∂GN Kii = I, (4.21)

Koo + 2σ3 δGS Koo = I. (4.22)

Here and elsewhere we shall use δ (resp. ∂) without a subscript to indicate an inward

normal derivative with respect to the first (resp. second) argument of the succeeding

Green function, i.e.,

δG(α,β) ≡ ∂αG(α, β), (4.23)

∂G(α,β) ≡ ∂βG(α,β). (4.24)

In terms of K , Eq. (4.18), when pre-multiplied by (I− 2D), becomes

(I− 2D)M = 2M0 + 4OKM0 + 4OKOM, (4.25)

the upper-left (two-by-two) block of which can be rearranged to read

µii = −2σ3 GN + 4σ3 GS Koo σ3 δGN +
{−2σ3 ∂GN + 4σ3 GS Koo σ3 ∂δGN

}
µii.

(4.26)
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What we have accomplished via these transformations is the construction of a closed

(2 × 2) system of integral equations for the boundary layer µii, which is all that is

needed to complete the computation of the Green function Gii. The virtue of this

transformation is that it facilitates the subsequent elimination (via the integrating

out of processes involving virtual propagation in the superconducting region) of the

states located in the superconducting region. This elimination can now be made

straightforwardly, owing to the fact that all superconducting Green functions are

now conveniently located in the kernel in Eq. (4.26).

The reorganization just described also allows one to identify the following rules

for the construction of all possible contributions at any order n (= 1, 2, 3, . . .) to the

inside-to-inside Green function Gii:

1. Write down all possible permutations of GN and GS (having a total of n+1 Green

functions), subject to the restriction that the first and last Green functions are GN.

2. Associate to each permutation a factor (−1)iN+1, where iN is the number of GN

factors.

3. Furnish all GN factors (except the last) with normal derivatives acting on their

second arguments; all GS factors carry no normal derivatives.

4. Furnish any Green function factor that follows a GS factor with an additional

normal derivative acting on its first argument.

5. Insert a Pauli-matrix factor σ3 before every GN and GS except the first.

In this way one can construct Gii. An example is provided by the process depicted

in Fig. 4.1, for which the corresponding amplitude is

∫

∂V
dσα dσβ dσγ dσδ ∂GN(x,α) σ3 ∂GN(α,β) σ3 ∂GN(β,γ) σ3 GS(γ, δ) σ3 δGN(δ,x′).

It is worth noting that the resulting series features terms containing two or more

consecutive factors of GN. As GN is diagonal, such terms correspond to electron-

to-electron and hole-to-hole reflection processes. At first sight, the presence of such

terms might be disconcerting, given the charge-interconverting character of Andreev
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reflection. However, it should be recalled that not only does the superconducting

surround interconvert electrons and holes, but also it confines these quasiparticles

to the normal region. For example, consider the series of terms that contain no

superconducting Green functions GS. This series is precisely the Dirichlet series

obtained in BB-I. Furthermore, this series can be embedded in any term of the MSE,

which amounts to replacing the fundamental (i.e. unconfined) Green function by a

suitably confined Green function. Therefore, terms involving consecutive factors of

GN, rather than being disconcerting, are necessary to correct the free-propagation

term, doing so by cancelling the Feynman paths that venture into the superconductor.

4.3 Effective boundary conditions

Before proceeding with our main issues (viz. the computation of the BDG Green

function inside the billiard), we pause to pose and answer two questions: (i) Is there

any boundary condition that can be imposed on Gii so that Gii can be computed by

solving the BDG Green function equation solely in V , i.e., without any reference to

the region V . And if so, (ii) what is the precise form of this boundary condition? (If

such an approach turns out to possible then one could dispense with the cumbersome

task of dealing with Green functions having arguments outside V , as well as the

concomitant need to match Green functions across the boundary.)

To see that such a boundary condition does indeed exist, and to determine its ex-

plicit form, we substitute into Eq. (4.26) the parametrization of Gii given in Eq. (4.1)

in terms of µii. Then all reference to µii cancels, and we arrive at a nonlocal and

billiard-shape–dependent effective boundary condition obeyed by Gii, viz.,

Gii = −2GS Koo σ3 δGii. (4.27)

The reason that the boundary condition is nonlocal is that there exists the possibil-

ity of virtual propagation within the superconductor surrounding the billiard. The
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reason that the boundary condition is shape-dependent is that this virtual propaga-

tion outside the billiard is modified (from the value it would have in a homogeneous

superconductor) due to the presence of the normal region.
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Chapter 5

Asymptotics of the multiple

scattering expansion

Up to the present point, our investigation of the Green function for the BDG wave

equation has been exact, and we have developed the machinery—the MSE—for com-

puting this Green function in terms of the fundamental (N and S) Green functions

and the shape of the billiard. The construction, however, is in terms of an infinite

series, each term in which involves repeated integration over the boundary of the bil-

liard. Thus, the direct computation of an arbitrary term in this series is prohibitively

difficult, unless the shape of the billiard is exceptionally simple. To make progress we

therefore need to invoke some approximation scheme and, as the Fermi wavelength

is taken to be much smaller than the characteristic linear dimension of the billiard

L, a very natural one to consider is the semiclassical approximation. In the present

setting, this involves the evaluating of the repeated boundary integrals via a short-

wave asymptotic approximation scheme. What we mean by this is that we seek an

asymptotic approximation for every term in the MSE, the expansion parameter being

1/kFL, where kF is the Fermi wave vector; having invoked such an approximation, we

shall re-sum the MSE.

By following this scheme we shall be able to obtain, inter alia, the Green function
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for single-particle excitations, as well as a trace formula for the oscillatory part of the

density of energy eigenvalues, valid in the semiclassical regime. What we mean by a

trace formula is an explicit formula for the oscillatory part of the density of energy

eigenvalues, expressed in terms of a sum over all closed semiclassical particle orbits.

As we shall see, by virtue of the retro-reflective character of Andreev reflection, this

sum over particle orbits is quite distinct from that arising in the setting of conventional

billiards.

Our approach has the virtue of delivering results not only for the DOS at the

coarsest of energy resolutions (i.e. the Andreev level of approximation, in which mo-

tion is confined to chords traversing the billiard) but also at the finer level, thus

revealing the mesoscale oscillations due to the quantal particle motion transverse to

each chord.

5.1 Classical dynamics in Andreev billiards

The purpose of this subsection is to make a brief intermezzo in which discuss the

physics of Andreev reflection from the point of view of geometrical optics. To this

end, we develop stationary phase arguments aimed at elucidating the origin of the

retro-reflective character of Andreev reflection. Along the way, we shall see that owing

to the difference in the wavelengths of the incoming and reflected quasiparticles there

is imperfectness in the this retro-reflection, i.e., the reflected excitation does not, in

general, precisely retrace the path of the incoming one. Arguments of this type will

be useful, subsequently, when we come to incorporate quantum fluctuations around

the classical trajectories associated with Andreev reflection.

It is well known that Eq. (3.6) gives rise to the Andreev reflection phenomenon,

in which the electrons arriving from the normal metal are converted into holes (and

vice versa) at the superconductor boundary, and are retro-reflected (i.e. have the
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Figure 5.1: Geometry for Andreev reflection from a planar surface. Initial and final
points (i.e. the off-boundary points) are kept fixed, and the point of reflection from
the boundary is then determined via the stationarity of the corresponding phase.

excitation velocity reversed). In the present section we discuss the classical limit of

this reflection process by making use of the method of stationary phase (i.e. via the

principle of least action). Throughout this section we make the (physical-optics–type)

assumption that an electron wave having energy E and traveling a distance r acquires

a phase

eik+r, (5.1)

whereas a hole traveling the same direction acquires the phase

e−ik−r, (5.2)

where k+ and k− are, respectively, the wavevectors appropriate for for particle and

hole motion in the normal region. The energy dependence of these wavevectors is

given by

k± =
√

µ± E. (5.3)

Following the standard optics-type approach, we envision some process (for an exam-

ple see Fig. 5.1) and then, by using Eqs. (5.1) and (5.2), we calculate the total phase

acquired during this process. In the classical limit, the dominant process is the one
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(or ones) that make stationary this total phase, and hence determines information

such as relationships between angles of incidence and reflection. Thus, in effect we

are finding the rules of classical dynamics for Andreev billiards.

At this point we have to introduce the physics of Andreev reflection “by hand,’’

and do so by requiring that after one reflection from the billiard boundary an electron

is converted into a hole (and vice versa). Thus we are demanding that there is no

electron-to-electron (or hole-to-hole) scattering (due to a single reflection). Under

these conditions, any scattering process can be analyzed in terms of the basic electron-

to-hole and hole-to-electron processes. We need only examine one of these because

the corresponding phases are identical and thus, at stationarity the two processes

have the same geometry. In other words, the stationary path describing an incoming

electron and scattered hole may be reversed (by reversing the direction of propagation

of each particle) to give the stationary path of an incoming hole and the scattered

electron.

+

-
�

�

�

+

Figure 5.2: The analogy between Andreev reflection and optical refraction

It might be useful to note the similarity between the phenomena of Andreev

reflection and the the refraction of light. The common feature is that, in both settings,

before and after scattering the waves have the same frequency but differing wavevector
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magnitudes. In the case of the refraction of light, the wavevector is changed because

the wave enters a medium with a distinct index of refraction. In the case of Andreev

reflection, the wavevector is instead changed because the electron wave is converted

into a hole wave, the latter having a distinct dispersion relation. In fact, by reversing

the sign of the phase for a hole wave, as well as the direction of propagation of the

hole wave, one transforms the Andreev reflection process into the familiar optical

refraction process. Thus, one has an electron-to-hole reflection law that is essentially

identical to Snell refraction (rather than specular reflection). Thus, Andreev reflection

looks like optical refraction but with the outgoing direction reversed with respect to

the scattering point (see Fig. 5.2).

To quantify these remarks, consider the problem depicted in Fig. 5.1, in which an

electron arriving from a fixed point (1) is reflected and converted at the variable point

x into a hole, which then propagates to another fixed point (2). The classical path

corresponds to the value of x at which the total phase for the process is stationary

with respect to variations of x. For the process at hand, total phase is given by

k+

√
h2

+ + x2 − k−
√

h2− + (x− l)2, (5.4)

for which the stationarity condition reads

k+
x√

h2
+ + x2

− k−
x− l√

h2− + (x− l)2
= 0. (5.5)

By rewriting this condition in terms of the angles of incidence and reflection (i.e. θ+

and θ− shown in Fig. 5.1) one recovers the Snell’s law form:

k+ sin θ+ = k− sin θ− . (5.6)

By using Eq. (5.6) one can construct the stationary paths for an Andreev billiard, just

as one does in the case of geometrical optics. When there is more than one reflection,

Eq. (5.6) must be satisfied at each one.

One feature of Eq. (5.6) is that it makes evident the fact that the reflected particle

is not, in general, perfectly retro-reflected (i.e. θ+ 6= θ−). However, when k+ and k−
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are very close to each other, θ+ and θ− will be, too. Let us now calculate this small

deflection angle θ− − θ+ in terms of µ and E. To do this, let us assume that θ+ and

θ− are close and that E/µ ¿ 1, and expand Eq. (5.6) to obtain

θ− − θ+ ≈ (E/µ) tan θ+ . (5.7)

As expected, the deflection angle is O(E/µ), unless the incident direction grazes

the boundary. This qualification divides the space of incoming trajectories into two

classes: (i) a large fraction, occupying most of the phase space, in which tan θ+ is

of order unity, and (ii) the rest, in which the deflection angle θ− − θ+ is not small.

Equation (5.7), although approximate, provides a guide for addressing whether or not

deflections (i.e. imperfectness in retro-reflection) needs to be taken into account.

Figure 5.3: Typical closed classical trajectory in an Andreev billiard. Black lines
depict electron paths; gray lines depict hole paths. The imperfectness of the retro-
reflection is exaggerated.

We are now at the point where we can construct classical dynamics in an Andreev

billiard. For any trajectory, the reflection rule in Eq. (5.6) has to be satisfied at

every reflection point. This will generate a type of dynamics that differs from that

generated by the usual specular reflection rule (in which the outgoing angle equals
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the incoming one). An example of a closed trajectory in an Andreev billiard is shown

in Fig. 5.3.

5.2 Asymptotics of the fundamental Green func-

tions and their derivatives

In the present section we investigate the asymptotic behavior of the fundamental

Green functions GN and GS for both small and large values of their (position) argu-

ments. This investigation will allow us to estimate the relative dominance of various

processes, and thus to organize the multiple scattering expansion for the exact BDG

Green function into a form suitable for establishing its approximate behavior at large

kF L.

The asymptotic behavior of GN,S is related to the corresponding Helmholtz Green

function gN,S
± , which can be represented through the Fourier integral

gN,S
± (l) =

∫
ddp

(2π)d

eip·l

p2 − k2
, (5.8)

where k = kN,S
± , depending on the Green function in question. Then the asymptotic

behavior of gN,S
± for large kl can be obtained from the asymptotic evaluation of this

Fourier integral, which gives

gN,S
± (l) ≈ ±i

(
kN,S
±

2πl

) d−1
2

exp(±ikN,S
± l ∓ iπ(d− 1)/4)

2kN,S
±

. (5.9)

The derivatives of the Green functions for large kl can be obtained by differentiating

this asymptotic expression.

Determining the small kl asymptotics of gN,S
± (l) is more tricky. By scaling p with

l we get

g(l) = l(2−d)

∫
dda

(2π)d

eia·̂l

a2 − (kl)2
, (5.10)
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where a ≡ pl, and g is shorthand for any of the four gN,S
± . Thus for small kl we have

g(l) ∼
{

l(2−d), if d 6= 2;

ln(kl), if d = 2.
(5.11)
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Figure 5.4: Approximating the surface by its tangent plane

Having determined the form of g for small kl, we now investigate what can be said

about g(l), ∂g(l) and ∂δg(l) when l is a vector connecting two nearby points on the

surface ∂V . The geometry (for the d = 3 case ) is illustrated in Fig. 5.4. In this figure,

l = β−α, where β and α are points on the surface. In the following, we shall work in

d = 3, although results obtained will be applicable for all d. Without loss of generality,

we choose α to be the origin of our coordinate system, with the z direction coinciding

with the inward normal direction of the surface at α. The remaining directions are

chosen arbitrarily (at least for the time being), the only constraint being that the

coordinate-system be right handed. In this coordinate system the surface may be

defined locally through an equation of the form z = f(x, y), where x and y span the

tangent plane, and ∂xf |(x,y)=(0,0) = ∂yf |(x,y)=(0,0) = 0. Then a point β (near α) on

the surface will approximately have the coordinates

β =
(
x, y,

∂2f

∂x2

∣∣∣
0
x2 +

1

2

∂2f

∂x∂y

∣∣∣
0
xy +

∂2f

∂y2

∣∣∣
0
y2

)
. (5.12)
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However, by a suitable rotation within the tangent plane the equation for β may be

written as

β =
(
x, y,

x2

2R1

+
y2

2R2

)
, (5.13)

where R1 and R2 are the two principal radii of curvature of the surface at the point

α. For reasons that should soon become clear, we define the vector β// to be the

projection of β on to the tangent plane at α. Next, we make two assumptions:

1. the radii of curvature are on the order of the linear size of the billiard, i.e.,

R1,2/L = O(1).

2. the region we of interest around α has a linear size on the order of k−1
F .

Under these assumptions, we have that

l ≡ |β −α| = |β//|
{
1 +O (

(kF L)−2
)}

. (5.14)

Let us now turn to ∂g. In the coordinate system specified above, the normal

vector nβ at the surface point β is given by

nβ =
( x

R1

,
y

R2

, 1
)

+O (
(kF L)−2

)
. (5.15)

Then the quantity ∂l is given by

∂l ≡ nβ ·∇β|β −α| = 1

|β//|
(

x2

R1

+
y2

R2

)
+O (

(kF L)−2
)

= O
(

l

L

)
. (5.16)

Hence, we have that the normal derivative of the Green function is given by

∂g(l) ≈ ∂g(l)

∂l

1

l

(
x2

R1

+
y2

R2

)
. (5.17)

By generalizing to arbitrary dimensionality d we obtain

∂g(l) = O (
L−1l(2−d)

)
. (5.18)

In order to evaluate ∂δg, we consider a third point on ∂V , which we denote by γ,

focus on the quantity ∂δl′ (where l′ ≡ |β− γ|) and, at the end of our calculation, let
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γ tend to α . We shall use primed coordinates x′ and y′ for γ. In this way, we find

that

∂δl′ ≡ (nβ ·∇β)(nγ ·∇γ)|β − γ|

≈
(

x

R1

∂

∂x
+

y

R2

∂

∂y
+

∂

∂z

)(
x′

R1

∂

∂x′
+

y′

R2

∂

∂y′
+

∂

∂z′

)
|β − γ|

=

(
∂2

∂z ∂z′
√

(x− x′)2 + (y − y′)2 + (z − z′)2

)

z= x2

2R1
+ y2

2R2
, z′= x′2

2R1
+ y′2

2R2

= − 1

l′3

(
x2 − x′2

2R1

+
y2 − y′2

2R2

)2

− 1

l′
= −1

l′

(
1 +O

(
l′2

L2

))
. (5.19)

We are now in a position to evaluate ∂δg, for which we find

∂δg(l) =
∂g

∂l
∂δl +

∂2g

∂l2
(∂l)(δl) = −1

l

∂g

∂l

(
1 +O

(
l′2

L2

))
. (5.20)

In the MSE, for each term that includes the product g ∂δg there is a corresponding

term in which g ∂δg is replaced by ∂g ∂g. It is therefore desirable to estimate relative

size of these terms for small values of their arguments. The asymptotic formulas given

in the pressent section are useful for this comparison, giving

|∂g(l) ∂g(l)| = |g(l) ∂δg(l)| ×
{O (l2/L2) , for d 6= 2;

O (l2/L2 ln kl) , for d = 2.
(5.21)

5.3 Asymptotic expansion for the quantal ampli-

tude

The MSE of Sec. 4 has provided us with a series expansion for the Green function

(i.e. the full quantum-mechanical amplitude for the propagation of a quasiparticle

excitation from one point x to another x′). This series expresses the correction to the

free-space propagation of quasiparticles caused by multiple scattering processes of the

quasiparticles from the boundary that separates the normal and superconducting re-

gions of the billiard. A generic term features the following possible processes: (i) inner

reflections (which are marked by the occurrence of an adjacent pair of normal-state
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Green functions in the algebraic expression for the contribution), (ii) transmissions

(marked by the occurrence of an adjacent pair of Green functions, one normal and one

superconducting), (iii) and outer reflections (marked by the occurrence of an adjacent

pair of superconducting-state Green functions). Throughout the present section, we

shall assume that d = 3. (The extension of the following discussion to general d is

straightforward.)

The generic contribution to the amplitude involving a total of n reflections and

scatterings can be written as

A(x,x′) ≡
∫
M(x,α1,α2, . . . , αn,x′) exp ikFS(x,α1,α2, . . . , αn,x

′), (5.22)

where the integral is taken over all values of {α1,α2, . . . , αn−1,αn}, each element

ranging over the surface ∂V . The modulus function M(x,α1,α2,α3, . . . , αn,x′) is real

and, as can be seen from the iterative solution of Eqs. (4.1-4.7), is a sum of products

of functions such as |αi−αi+1|−1, first and second normal derivatives of this function,

as well as a polynomial in kF and kN,S
± . The phase function S(x,α1,α2,α3, . . . , αn,x

′)

is, in general, complex and, as can also be seen from the iterative solution of Eqs. (4.1-

4.7), is a sum of terms each of the form (kN,S
± /kF) |αi −αi+1|.

The approximation scheme that we shall invoke involves the short-wave asymp-

totic expansion of this quantal amplitude A, valid for large kFL. The method used

for the construction of this expansion is the asymptotic expansion of the multiple

integrals appearing in the terms in the MSE. (See, e.g., Ref. [33] for a discussion of

the asymptotic expansion of multiple Fourier integrals.) This method allows one to

approximate A(x,x′) as a sum over critical points (c.p.) of the domain of integration

(which, in this case, is the 2n-dimensional manifold M = ∂V × ∂V × · · · × ∂V):

A(x,x′) ≈
∑
c.p.

Ac.p.(x,x′), (5.23)

where Ac.p.(x,x′) depends solely on the local properties of M and S at the critical

point. As kFL → ∞, corrections to this formula vanish faster than any power of
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(kFL)−1 [34]. In other words, for large kFL contributions from the critical points

dominate the total amplitude. A critical point (αc
1,α

c
2,α

c
3, · · · ,αc

n) can be interpreted

as a trajectory (although not necessarily a classical one) in which an excitation travels

from point x to x′, along the way scattering at the points αc
1, α

c
2, . . . , α

c
n, so that

Ac.p.(x,x′) can be interpreted as the amplitude corresponding to this trajectory.

Before actually proceeding with the construction of the expansion of the multiple

integrals appearing in the terms in the MSE, we first classify the critical points of M:

these are

1. Points at which the gradient of the phase, i.e., ∇�i
S(x,α1, α2,α3, · · · ,αn,x

′)

vanishes for all i.

2. Points at which M(x,α1, α2, · · · ,αn−1, αn,x
′) has a singularity.

3. Points at which M or S fail to be infinitely differentiable.

4. All points on the boundary of the manifold M.

5. Points satisfying criteria (1-4) in a mixed sense, i.e., points satisfying criterion (1)

within a submanifold of points satisfying criterion (2) within a submanifold of points

satisfying criterion (3) within a submanifold of points satisfying criterion (4).

In the present setting, M has no boundaries and, thus, there are no Type 4 crit-

ical points. As for Type 3 critical points, when ∂V is infinitely differentiable, so

are M and S and, hence, there are no Type 3 critical points either [35]. Thus,

the only possible types of critical point are (1), (2) and (5). In present case, M
consists of products of functions such as |αi −αi+1|−1 and its first and second nor-

mal derivatives. Thus, critical points of types 2 and 5 occur whenever one or more

of the propagation distances |αi − αi+1| vanish. In accordance with the trajectory

interpretation of critical points, in which the sequence {α1,α2, · · · ,αn} defines the

trajectory, we call the part of the critical trajectory having vanishing propagation

distance a zero-length path. Then, all Type 5 critical points can be generated from

Type 1 critical points by the insertion of zero-length paths. Stated technically, if
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(α1,α2, · · · ,αi,αi+1, · · · ,αn−1) is a critical point of the [(2n− 2)-dimensional] man-

ifold M′ then the point (α1,α2, · · ·αi,αi,αi+1, · · · ,αn−1) will be a critical point of

Type 5 in the [2n-dimensional] manifold M. Criterion (1) amounts to the familiar

stationary-phase approximation for the amplitude function, because the points at

which all gradients of S vanish are the stationary phase points.

Throughout this Paper we are interested in leading-order contributions to quantal

amplitudes. Thus, it is useful to determine whether or not a process contributes to

the full amplitude at leading order. To do this, we must be able to estimate the order-

of-magnitude of contributions from different types of critical point. To this end, let us

consider a type 1 critical point (i.e. a trajectory defined via the principle of stationary

phase), and a Type 5 critical point constructed from this Type 1 critical point via

the insertion of a zero-length path. For the sake of simplicity, let us consider as our

Type 1 critical point a very simple amplitude, i.e., one having just one reflection:

A(x,x′) =

∫
∂g(x,α) g(α,x′), (5.24)

where g is a generic Helmholtz Green function. [For the purposes of determining the

order-of-magnitude of the contribution from various critical points, whether the Green

function is gN or gS is irrelevant.] By using the asymptotic formulas for g presented

in Sec. 5.2, it is possible to write asymptotically (up to from numerical factors)

A(x,x′) ∼
∫

ik

|x−α| |α− x′| exp (ik|x−α|+ ik′|α− x′|). (5.25)

Here, k and k′ can be ±kN,S
+,−. The position (αc) of the critical point will depend on

the chosen values of k and k′ via the stationarity condition. However, owing to the

facts that k and k′ are both O(kF) and that |x − αc| and |αc − x′| are both O(L),

it is possible to estimate the order-of-magnitude of the contribution associated with

(αc) to be

A(x,x′) = O (
kF/L2

)
exp (ik|x−αc|+ ik′|αc − x′|)

×
∫

dx dy exp
(
ikFL(Ax2 + Bxy + Cy2)

)
, (5.26)
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where we have expanded the phase to second order in deviations from (αc). From

dimensional considerations we know that A,B and C are all O(L−2) and, thus, that

A(x,x′) = O (1/L) exp (ik|x−αc|+ ik′|αc − x′|). (5.27)

Now let us consider the insertion of a zero-length path. The rules described in Sec. 4.2

for constructing a term in the MSE allow three possible types of such insertions: (i) the

insertion of g, (ii) the insertion of ∂δg, and (iii) the insertion of ∂g. More specifically,

we are interested in the amplitudes

Ai(x,x′) ≡
∫

∂g(x, α) g(α,β) δg(β,x′), (5.28)

Aii(x,x′) ≡
∫

g(x,α) ∂δg(α,β) g(β,x′), (5.29)

Aiii(x,x′) ≡
∫

∂g(x,α) ∂g(α,β) g(β,x′), (5.30)

and their leading-order asymptotic contribution due to the critical point (α,β) =

(αc,αc). Let us start with Ai. By using a coordinate system centered at αc and the

short-distance asymptotics of g, and expanding S to second order around αc, we find

that

Ai(x,x′) = O
(

k2
F

L2

)
eiSc

∫
dσα dσβ

eikF (D(xα−xβ)+E(yα−yβ))
√

(xα − xβ)2 + (yα − yβ)2

× exp
(
ikFL(Ax2

α + Bxα yα + Cy2
α + A′x2

β + B′xβ yβ + C ′y2
β)

)

= O
(

k2
F

L2

)
O

(
1

kF

)
eiSc

∫
dx dy exp

(
ikFL(A′′x2 + B′′xy + C ′′y2)

)

= O
(

1

L

)
eiSc , (5.31)

where A, A′, A′′, B, B′, B′′, C, C ′ and C ′′ are O(1/L2), D and E are O(1), and

Sc = k|x−αc|+ k′|αc − x′|. Thus, Ai contributes at the same order as A. A similar

calculation provides an estimate of the order-of-magnitude of Aii, and show it to be

of the same order as A and Ai. Next, let us consider Aiii. By using the short-distance

behavior

∂g(l) ≈ O
(

1

L

)
∂g(l)

∂l
l ∝ O

(
1

L

)
g(l), (5.32)
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the order of magnitude of Aiii can be deduced from the estimate of Ai:

Aiii = O
(

1

kFL2

)
eiSc . (5.33)

Thus, we see that Aiii contributes to the full amplitude only at subleading order.

In the usual case of a Schrödinger billiard with hard walls (i.e. Dirichlet boundary

conditions), the asymptotic contribution coming from the critical points of Type 2 and

Type 5 have been shown to be smaller than the stationary-phase (i.e. Type 1 critical

points) contributions, and by a factor of kFL [12]. The reason for this is that in the

hard wall case all the singularities of M are due to ∂g’s. Thus, for the Schrödinger

billiard with hard walls, as far as the leading-order contribution is concerned the

Type 2 and Type 5 critical points are irrelevant. Thus, in such billiards, the leading

asymptotic contribution comes from the stationary-phase points.

In constrast with the case of Schrödinger billiards with hard walls, in Andreev bil-

liards (and Schrödinger billiards with soft walls, i.e., with a finite bounding potential)

the Type 2 and Type 5 critical points do not necessarily give only subleading-order

contributions. More specifically, in Andreev billiards, in addition to its ∂g singulari-

ties, M can have additional singularities due to g and ∂δg. As shown above, both of

these singularities contribute at leading order in the (kFL)−1 expansion [36]. Thus,

Type 2 and Type 5 critical points are relevant for Andreev billiards.

Having determined the significance of Type 5 critical points for Andreev billiards,

we now examine these critical points more closely. The first important observation

is that the insertion of a zero-length path does not change the value of the phase

function S. As all Type 5 critical points can be regarded as originating from Type 1

critical points via the insertion of a suitable number of zero-length paths, the phase

of any Type 5 critical point is equal to that of the originating Type 1 critical point.

The second important observation is that, because the phase is not changed by the

insertion of zero-length paths, all amplitudes originating (via insertions) from a given

Type 1 critical point carry a common phase, and therefore add coherently. Thus,
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the effect of the Type 5 critical points is to modify (but not necessarily increase) the

amplitude of the contribution to the originating Type 1 critical point.

In order to make less abstract the issue discussed in the previous paragraph,

consider the example of reflection from an infinite plane boundary in the short-wave

asymptotic limit. For the case of the hard Schrödinger billiard there is a single

critical point, which is of the stationary-phase type: it is the classical reflection point

(for which the angle of incidence equals the angle of reflection). For the case of

the Andreev billiard there are two possible electron reflections: electron-to-hole and

electron-to-electron. These two processes have differing phases and, correspondingly,

differing stationary-phase (i.e. classical reflection) points. If one were to take into

account only the stationary-phase (i.e. Type 1) points then one would find that the

amplitude for electron-to-hole reflection would vanish, whereas that for electron-to-

electron reflection would be of order unity. However, this finding would be misleading,

owing to the fact that the set of critical points that contribute at leading order (in

the the short-wave asymptotic limit) is much larger. To see this, focus on the case

of electron-to-electron reflection. Let us label the classical reflection point by αc.

Then set of critical points is (αc), (αc,αc), (αc, αc,αc), (αc,αc,αc,αc), etc., i.e.,

there is the possibility of multiple scatterings from the boundary, all taking place in

the vicinity of the classical reflection point. These additional critical points correct

the amplitude for this scattering process, and yield the expected result, namely that

the net electron-to-electron amplitude is very small. The origin of this correction,

then, is that multiple virtual propagations, inside the superconductor but near to the

classical reflection point, decrease the amplitude of the electron-to-electron reflection

process. Mutatis mutandis , this mechanism increases the electron-to-hole reflection

amplitude, leading to the familiar physics of Andreev reflection.

There is a simple physical explanation for this mechanism. Quasiparticle propaga-

tion in the bulk of the normal region is not affected by the superconducting surround,
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except via those Feynman paths that pass nearby the boundary. In the short-wave

asymptotic limit, this occurs near reflection points. Thus, quantum mechanically,

there is an effective volume around the boundary in which propagation is modified

due to the amplitude for electron-to-hole conversion (and vice versa). Hence, there

is an effective volume around the classical reflection points, and in this volume mul-

tiple scatterings convert electrons arriving from the interior of the normal region into

holes departing for the interior. Classically, the volume for such processes is zero,

i.e., the conversion takes place precisely at the reflection point. Thus, zero-length

propagation at the boundary is responsible for the electron-hole interconversion as-

pect of Andreev reflection, whereas the requirement of phase-stationarity, applied to

propagation in the interior of the normal region, is responsible for the retro-reflection

aspect of Andreev reflection.

5.4 Integrating out propagation in the supercon-

ducting region: Effective reflection

We now actually evaluate the contribution to the short-wave asymptotic approxima-

tion to the Green function that arises from all critical points involving zero-length

propagation. In doing this, we collect contributions from Type 5 critical points, and

arrive at the expected result that reflection leads to almost complete electron-hole

interconversion.

We start with the expression (4.26) for µii which, for the sake of convenience, we

rewrite here along with the explicit form of Koo obtained from definition (4.22):

µii = −2σ3 GN + 4σ3 GS Koo σ3 δGN +
{−2σ3 ∂GN + 4σ3 GS Koo σ3 ∂δGN

}
µii,

Koo ≡ (
I + 2σ3 · δGS

)−1
.

As we have shown in Sec. 5.3, in the short-wave asymptotic limit, critical trajectories
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that have been obtained from a Type 1 critical trajectory (i.e. a pure stationary-phase

trajectory) by the insertion of zero-length propagations of ∂δGN and GS contribute

at the same order as the original Type 1 critical trajectory. Thus, such contributions

should be summed to all orders. On the other hand, critical trajectories obtained

from Type 1 critical trajectories by the insertion of ∂GN and δGS contribute only at

sub-leading orders. Thus, it is appropriate to ignore such contributions.

Moreover, we are considering situations in which the range of GS is much smaller

than the size of the billiard. Thus, all critical points that include finite-range su-

perconducting propagation are suppressed exponentially (in the size of the billiard),

despite their being formally of leading order. We shall therefore neglect them, at least

for the time being. Such contributions constitute the single-particle tunneling ampli-

tude through the classically-inaccessible S region. Below, in App. C, we shall study

the consequences of relaxing the condition that the range of GS be much smaller than

the size of the billiard. We shall then show that in settings involving convex billiards

(i.e. billiards for which all chords lie inside the billiard) such contributions cancel

each other at leading asymptotic order. Thus, for the purposes of a leading-order

calculation we can make the approximation δGS ≈ 0. It follows that

Koo ≈ I. (5.34)

The only remaining appearances of the superconducting Green function (i.e. GS with

no derivatives) in the MSE generate critical points having zero-length superconduct-

ing propagation. Moreover, the only Green function that contributes at leading order

to both zero-length and nonzero-length propagation is ∂δGN. In order to re-sum all

possible zero-length propagations it is natural to separate the operator ∂δGN into

two parts: one solely generating zero-length propagation; the other solely generating

finite-length propagation [37]. A convenient way to do this is to define the following
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operators:

(
∂δGN

z F
)
(α) ≡

∫

∂V
dσβ ∂α ∂β GN(α, β)F(β) w(α− β), (5.35)

(
∂δGN

f F
)
(α) ≡

∫

∂V
dσβ ∂α ∂β GN(α, β)F(β) (1− w(α− β)), (5.36)

where w(α−β) is a smooth function that equals unity whenever α and β are close to

one another and vanishes whenever α and β are far away from one another. The effect

of this function is to isolate the critical point at β = α from the remaining critical

points, the latter having finite-length propagation involving ∂δGN. For the purposes

of our asymptotic expansion, the isolating function w is only a convenience, and its

particular form does not affect the final results (as long as the range of w precludes

its enveloping simultaneously any pairs of critical points). Then the equation for µii

becomes

µii ≈ −2σ3 GN + 4σ3 GS σ3 δGN +
{

4σ3 GS σ3 ∂δGN
z

+
(−2σ3 ∂GN + 4σ3 GS σ3 ∂δGN

f

) }
µii. (5.37)

Having decomposed the kernel of this equation into two pieces (the first consisting

of critical points having zero-length propagation and the second consisting of critical

points having finite-length propagation) we invert this equation with respect to the

former piece, obtaining

µii ≈ (
I− 4σ3 GS σ3 ∂δGN

z

)−1
{
− 2σ3 GN + 4σ3 GS σ3 δGN

+
(−2σ3 ∂GN + 4σ3 GS σ3 ∂δGN

f

)
µii

}
. (5.38)

We now define the renormalized Green function GR(α,x′):

GR(α,x′) ≡ (
I− 4σ3 GS σ3 ∂δGN

z

)−1 {−σ3 GN + 2σ3 GS σ3 δGN
}

. (5.39)

In terms of GR, Eq. (5.38) becomes

µii ≈ 2GR + 2∂GR µii. (5.40)
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We note that this equation, no critical points containing zero-length propagation

contribute to µii at leading order. Thus, the summation of short-range critical orbits

is achieved via the calculation of GR in the short-wave asymptotic approximation.

The main contributions to the integrals implied in Eq. (5.39) come from the neigh-

borhood of α. This follows from: (i) the fact that isolating function is short-ranged;

(i) the fact that GS is finite-ranged; and (iii) the assumption that the billiard is large

enough to exponentially suppress any finite-range critical points produced by GS.

Therefore, it is adequate to approximate the boundary surface ∂V around α. The

lowest-order approximation to ∂V is the tangent plane at α. The corrections to this

approximation are smaller by a factor of (kFR)−1, where R is the radius of curvature

at the point α. Throughout this thesis we are assuming that the surface ∂V is suf-

ficiently smooth that R is of order L, i.e., the radius of curvature is comparable to

the billiard size. Thus, corrections due to the curvature of the surface do not con-

tribute at leading order. Having replaced ∂V by a tangent plane, the integral equation

for GR(α,x′) becomes solvable, owing to the resulting translational invariance in all

directions parallel to the tangent plane. Thus, by introducing the two-dimensional

Fourier transform (2DFT; see App. B) of all Green functions appearing in the integral

equation (5.39), it is straightforward to obtain the following algebraic result for the

2DFT of the renormalized Green function:

GR(p, z′) =
{
I− 4σ3 GS(p) σ3 ∂δGN(p)

}−1

×{−σ3 GN(p, z′) + 2σ3 GS(p) σ3 δGN(p, z′)
}

, (5.41)

to which there are corrections of order (kFR)−1. (This Grenn function is exactly the

Green function for a planar boundary.) Here and elsewhere, p denotes the magnitude

of the 2D vector p conjugate to the position-vector in the tangent plane.

We now embark on the task of inverting the 2DFT GR(p, z′) in order to obtain

the approximate real-space renormalized Green function GR(α,x). Thus, we need to

53



evaluate the integral

GR(α,x′) =

∫
d2p

(2π)2
GR(p, z′) exp ip · (α− β), (5.42)

where β is the component of x parallel to the plane and z′ is the perpendicular

component. The quantities GN(p, z′) and δGN(p, z′), needed to construct GR(p, z′),

are derived in App. B, where they are found to be given by

GN(p, z′) =

( 1
2a+(p)

e−a+(p)|z′| 0

0 − 1
2a−(p)

e−a−(p)|z′|

)

=

( 1
2a+(p)

0

0 − 1
2a−(p)

)(
e−a+(p)|z′| 0

0 e−a−(p)|z′|

)
, (5.43)

δGN(p, z′) =

( 1
2
e−a+(p)|z′| 0

0 −1
2
e−a−(p)|z′|

)
(5.44)

=

( 1
2

0

0 −1
2

)(
e−a+(p)|z′| 0

0 e−a−(p)|z′|

)
, (5.45)

in which a±(p) ≡ √
p2 − k2±, the square roots being taken such that their real parts are

always positive. Note that the only z′ dependence in GR(p, z′) comes from GN(p, z′)

and δGN(p, z′), and it is only in these terms that there is exponential dependence on

p. By inserting Eqs. (5.43) and (5.45) into Eq. (5.41) we find that GR(α,x′) is given

by

GR(α,x′) =

∫
d2p

(2π)2
R(p)

( 1
2a+(p)

e−a+(p)|z′| 0

0 − 1
2a−(p)

e−a−(p)|z′|

)
exp ip · (α− β),

(5.46)

Here, R(p) is a certain algebraic function of p, and is defined by

R(p) ≡
{
I− 4σ3 GS(p) σ3 ∂δGN(p)

}−1

×
{(

1 0

0 −1

)
+ 2σ3 GS(p)

(
a+(p) 0

0 −a−(p)

)}
, (5.47)

The analytic expression for R(p) is obtained using the 2DFTs of GS(p) and ∂δGN(p):

GS(p) =
1

2

{
E

i
√

∆2 − E2
I− ∆

i
√

∆2 − E2
σ2

}(
1

2aS
+(p)

− 1

2aS−(p)

)
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+
1

2
σ3

(
1

2aS
+(p)

+
1

2aS−(p)

)
, (5.48)

∂δGN(p) = −1

4
I
(
a+(p)− a−(p)

)
− 1

4
σ3

(
a+(p) + a−(p)

)
. (5.49)

We evaluate the integral in Eq. (5.46) via the method of stationary phase, which

becomes exact in the limit kF|α − x′| → ∞. From the form of a±(p) we see that

for values of p for which a±(p) is essentially imaginary (i.e. for p < Ree k±) there

exists the possibility of a stationary-phase point. Note, however, that a+ behaves

differently from a−, due to the fact that the imaginary parts of k2
± have opposing

signs. For p < Rek− (note that k− is always smaller than k+) we have

a±(p) = ∓i
√

k2± − p2. (5.50)

The stationary-phase point is defined by the condition

∂

∂p

(
p · (α− β)± z′

√
k2± − |p|2

)
= 0, (5.51)

from which we see that stationary-phase point pc satisfies

(α− β)

z′
= ± pc√

k2± − |pc|2
, (5.52)

and that |pc|2 has the value k2
± sin2 θαx′ , where θ�x′ is defined to be the angle between

the normal vector at the surface point α and the vector x′ − α. Then the effective

Green function can be asymptotically approximated as

GR(α,x′) ≈
(

R++(k2
+ sin2 θαx′) R+−(k2

− sin2 θαx′)

R−+(k2
+ sin2 θαx′) R−−(k2

− sin2 θαx′)

)

×
∫

d2p

(2π)2

( e−a+(p)|z′|
2a+(p)

0

0 − e−a−(p)|z′|
2a−(p)

)
eip·(�−�)

=

(
R++ R+−

R−+ R−−

)(
g+(α− x′) 0

0 −g−(α− x′)

)
. (5.53)

The second line is obtained by noting that the integral is, in fact, the 2DFT of GN

(see App. B). The amplitudes R++, R+−, R−+ and R−− can now be respectively in-

terpreted as the electron-electron, electron-hole, hole-electron and hole-hole reflection
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amplitudes, and can be obtained from Eq. (5.47). These amplitudes are, in general,

nonvanishing. However the charge-preserving amplitudes (i.e. R++ and R−−) are

smaller than the charge interconverting amplitudes (i.e. R+− and R−+) by a factor of

∆/µ cos2 θ. In order to evaluate R to leading order in ∆/µ cos2 θ, we first note that

for θαx′ not near π/2 (i.e. not near grazing) one has the following approximations for

a(p):

a±(kF sin θαx′) = ∓ikF cos θαx′ +O (E/µ) , (5.54)

aS
±(kF sin θαx′) = ∓ikF cos θαx′ +O (∆0/µ) . (5.55)

By applying these approximations to Eqs. (5.48-5.49) we find

GS(kF sin θαx′) '
(

E

2i
√

∆2
0 − E2

I− ∆0

2i
√

∆2
0 − E2

σ2

)
1

−ikF cos θαx′
,(5.56)

∂δGN(kF sin θαx′) ' 1

2
I ikF cos θαx′ . (5.57)

By using these expressions in Eq. (5.47) we obtain R(kF sin θαx′) ≈ e−iϕσ1 and, thus,

from Eq. (5.53) we obtain

GR(α,x′) ≈ exp
(
−iϕ + i

π

2

)



0 −gN
−(α,x′)

gN
+(α,x′) 0


 . (5.58)

The off-diagonal structure represents the total electron-hole interconversion that oc-

curs for large perpendicular momenta. However, strictly speaking, electron-hole inter-

conversion is not perfect, i.e., the amplitudes R++ and R−− do not vanish. Moreover,

these charge-preserving amplitudes increase, as the angle of incidence approaches π/2.

Note the difference between the regimes of validity for the approximate expressions

Eq. (5.53) and Eq. (5.58): the former becomes valid for kFL À 1 whereas the latter

becomes valid for kFL À 1 and ∆/k2
F ¿ 1. However, in either case the MSE can be

cast into the following effective Multiple Reflection Expansion:

Gii(x,x′) = GN(x,x′) + 2

∫

∂V
dσα ∂αG

N GR + 4

∫

∂V
dσα dσβ ∂αG

N ∂βG
R GR

+8

∫

∂V
dσα dσβ dσγ ∂αG

N ∂βG
R ∂γG

R GR + · · · . (5.59)
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We stress two points about Eq. (5.59): (i) it is free of leading-order short-range critical

points [i.e. the contributions of short-range critical points to Gii are smaller, by at

least a factor of O(1/kFR), than the leading-order contribution, and this is what

we were aiming for]; and (ii) all propagations inside the superconductor have been

integrated out, leading to the effective reflection expansion for Gii.
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Chapter 6

Density of states oscillations

In Sec. 5.4 we integrated out superconducting propagation by evaluating the short-

range critical points in the MSE and, hence, we obtained an effective expansion for

the Green function, which we have termed an MRE. In the present Section we shall

focus on the density of states ρ(E), expressing this quantity in terms of the Green

function which, in turn, we express via the MRE. In this section we shall ignore the

effects of normal reflection, returning to them only in Sec. 6.2.4. Thus, by using the

results of the previous section, we have

ρ(E) ≈ 1

π

∫
ddx Im

{
gN
+(x,x′) + gN

−(x,x′) + 4

∫

∂V
∂gN

+ ∂gR
− gR

+

+4

∫

∂V
∂gN

− ∂gR
+ gR

− · · ·+ 22n

∫

∂V

(
∂gN

+ ∂gR
− · · · ∂gR

− gR
+

)

+22n

∫

∂V

(
∂gN

− ∂gR
+ · · · ∂gR

+ gR
−
)

+ · · ·
}

x′=x

, (6.1)

where terms with odd numbers of reflections vanish, owing to the off-diagonal struc-

ture of GR. First, let us note that the first two terms on the right hand side of

Eq. (6.1), which have zero-length propagation and hence vanishing action, do not

introduce any oscillations into the DOS. As these terms do not involve any surface

integrals (and, hence, do not involve any surface effects), they produce the bulk DOS
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of a homogeneous N region [38]:

1

π

∫

V
ddx Im gN

±(x− x′)
∣∣∣
x′=x

=
Sd−1

2(2π)d
V kd−2

± , (6.2)

where Sd−1 is the (d−1)-dimensional surface area of a d-dimensional unit sphere and

V is the volume of V . We now deal with the (remaining) critical points that contribute

at leading order. These critical points are closed classical trajectories consisting of

the propagation of quasiparticles through the bulk of the billiard (i.e. the N region),

connected by reflections from the billiard boundary (i.e. the N-S interface).

We shall distinguish between two asymptotic approximation schemes for ρ, both

of which are obtained by evaluating the integrals in Eq. (6.1) within the stationary-

phase approximation, valid for for large kFL and small ∆/k2
F. From a technical point

of view, the difference between the two schemes concerns the stationary-phase points

they use, which must be in accordance with the particular limits assumed for the

parameters kFL and ∆/k2
F (which the approximation becomes exact).

Scheme A: The first scheme is, in essence, equivalent to the (by now conventional)

adiabatic approximation to the wave function, first introduced by Andreev [4]; it

becomes exact when energy-level spacing goes to zero, which occurs for the following

limit:

kFL →∞, ∆/k2
F → 0, and L∆/kF → constant. (6.3)

In this scheme, an excitation undergoes perfect retro-reflection (i.e. perfect velocity-

reversal) because in this limit the difference between k+ and k− is ignored in the

calculation of the critical trajectories. The resulting classical dynamics is confined to

the chords of the billiard and, thus, is integrable, regardless of the shape of the billiard.

However, for finite values of the parameters (i.e. large but finite kFL and small but

finite ∆/k2
F), Scheme A produces the locally-energy-averaged DOS, which becomes

numerically accurate only around the DOS singularities that it correctly captures.

However, it fails to capture the DOS oscillations arising from the confinement of
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quasiparticles to the billiard. To capture these oscillations is the main motivation of

the following scheme.

Scheme B: In this scheme we shall take into account the previously neglected differ-

ence in electron and hole wavevectors. This leads to imperfectness in retro-reflection

because, upon reflection, the wavelengths of the incoming and outgoing waves are no

longer identical (as happens with refraction except, of course, that the waves are now

on the same side of the boundary). Technically speaking, approximation scheme B

becomes exact when

kFL →∞, and ∆/k2
F is a small parameter. (6.4)

Now the classical trajectories are determined by the reflection rule given by Eq. (5.6)

and, consequently, the dynamics is no longer a priori integrable; on the contrary, it

is weakly chaotic for most billiard shapes [39].

In order to understand the distinction between asymptotic schemes A and B,

consider the phase function S for a process having 2n reflections:

S(x,α1, · · · ,α2n) = k+`x,α1 − k−`α1,α2 + · · · − k−`α2n−1,α2n + k+`α2n,x , (6.5)

where `αi,αi+1 ≡ |αi − αi+1|. Notice that S can be separated into two parts, a large

one SAnd and a small one Simp so that S = SAnd + Simp, where

SAnd(x, α1, · · · ,α2n) ≡ k+ + k−
2

(
`x,α1 − `α1,α2 + · · · − `α2n−1,α2n + `α2n,x

)
, (6.6)

Simp(x, α1, · · · ,α2n) ≡ k+ − k−
2

(
`x,α1 + `α1,α2 + · · ·+ `α2n−1,α2n + `α2n,x

)
. (6.7)

For n not too large (i.e. n ¿ kF L), SAnd = O(kF L) and Simp = O(L∆/kF ). Although

it is clear that SAnd is large and must be included in any stationary phase calculation,

whether or not Simp should be included in a stationary phase calculation depends pre-

cisely on the nature of the limiting scheme. If one solely uses SAnd for the calculation

of stationary-phase points then the critical trajectories feature retro-reflection; this is

60



the content of Scheme A. On the other hand, with the inclusion of Simp in the calcula-

tion of stationary-phase points, the critical trajectories feature small deviations from

retro-reflection, due to the difference in electron and hole wavevectors. (Note that

Simp is proportional to k+ − k−.) This, in turn, is Scheme B. For larger n (and thus

higher resolution contributions to the DOS), Simp becomes larger, so that Scheme B

should be used [40]. These higher-resolution contributions show up in the DOS as

mesoscale oscillations due to the superconducting confinement of quasiparticles.

6.1 Scheme A: Andreev approximation

In the present section we shall evaluate Eq. (6.1) for the DOS within the stationary-

phase approximation via asymptotic Scheme A. In this scheme, the stationary-phase

points (i.e. the closed classical trajectories) are obtained by making stationary the

phase SAnd alone. The factor exp iSimp is considered to be slowly-varying, and thus is

evaluated at the critical points determined from SAnd alone. In all other factors, the

difference between k+ and k− can be neglected. The reflection rule can be obtained

from Eq. (5.6) by letting k+, k− → kF. In this limit, velocity vectors are, upon

reflection, exactly reversed. The classical trajectories obtained by this reflection rule

are tracings of the chords of the billiard. This allows us to label every classical

trajectory by two boundary points, along with the number of reflections (or tracings).

Therefore, the closed classical trajectories of Scheme A with n tracings are degenerate

(in the sense that their phases SAnd are identical) and they belong to a (2d − 2)-

parameter family.

Let us first explore the underlying physics of Scheme A. In conventional billiards,

degeneracy of closed trajectories is usually related to the symmetry of the billiard

(e.g. rotational symmetry of a circular billiard). However, in Andreev billiards this

degeneracy is due to the underlying electron-hole symmetry at the Fermi surface, and

61



is broken explicitly at nonzero energies by the term Simp [41]. This (approximate)

non-geometric symmetry is the reason for the (approximate) integrability of Andreev

billiards, whatever the shape of the billiard.

The method for evaluating the DOS is as follows. We fix two reflection points (so

that the degeneracy is lifted), evaluate the rest of the (surface and volume) integrals

in the stationary-phase approximation, and then evaluate the remaining two surface

integrals. Without loss of generality, we choose the first and last reflection points as

those to be fixed, and label them α and β, respectively. We focus on the contribution

to the DOS from the term having 2n + 2 reflections:

πρ±2n(E) ≡ Im

∫
dσα dσβ dσα1 · · · dσα2n ∂g∓(α, α1) ∂g±(α1,α2) · · · ∂g∓(α2n,β)

× 22n+2 e2niϕ

∫

V
ddx g±(β,x) ∂g±(x,α), (6.8)

where the +/− sign represents the contribution from the electron/hole sector.

�

�
� �

l

�����
�
	

Figure 6.1: Geometry for x integration in Eq. (6.10)

.

We first evaluate the x integral. The stationary-phase points of the x integration

lie on the line joining α to β. Because the phase does not vary as one moves the
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point x along this line, it is natural to separate the x integration into longitudinal

(i.e. parallel to α− β) and transverse (i.e. perpendicular to α− β) components; see

Fig. 6.1 for the nomenclature and geometry). We use the asymptotic expression (5.9)

for the homogeneous Green functions at large argument, together with the asymptotic

expression for ∂g, i.e.,

2 ∂g±(β,α) ≈
(

k±
2π`αβ

)d−1
2

cos θαβ exp (±ik±`αβ ∓ iπ(d− 1)/4), (6.9)

where θαβ is the angle between the ray joining α to β and the normal direction at the

point α. Then, we fix l, evaluate the t integral in the stationary-phase approximation,

and evaluate the l integral:

∫

V
ddx g±(β, x) ∂g±(x,α) ≈ ±i

kd−2
± e∓iπ(d−1)/2

2d+1πd−1
cos θαβ

∫
dl

(
l(`αβ − l)

) 1−d
2

×
∫

dd−1t e
±ik±

�√
l2+|t|2+

√
(`αβ−l)2+|t|2

�

≈ ±i
kd−2
± e∓iπ(d−1)/2

2d+1πd−1
cos θαβ

∫
dl

(
l(`αβ − l)

) 1−d
2

×
∫

dd−1t e
±ik±`αβ

�
1+

|t|2
2l(`αβ−l)

�

=
±i`αβ cos θαβ

4k±

(
k±

2π`αβ

) (d−1)
2

e±ik±`αβ∓iπ(d−1)/4. (6.10)

Next, we use Eqs. (6.9) and (6.10), together with Eq. (6.8), to obtain the following

asymptotic expression for ρ±2n(E):

ρ±2n(E) ≈ Re

∫
dσα dσβ (cos θαβ cos θβα)n In(α,β; kF)

(
kF

2π`αβ

)nd−n−1

× exp
(
−i2nϕ + in(k+ − k−)`αβ

)
, (6.11)

In(α,β; kF) ≡
∫

sp

dσα1 · · · dσα2n−2 e±ikFSAnd ,

SAnd ≡ `βα − `αα1 + `α1α2 · · · − `α2n−2β , (6.12)

and
∫
sp

indicates that the surface integrals over α1 · · ·α2n−2 should be evaluated in

the stationary phase approximation. In order to do this evaluation, we expand the

functions {`αi αj
} around (α2i,α2i+1) = (α,β).
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Figure 6.2: Geometry for fluctuations of the reflection points

We now focus on the evaluation of the stationary phase integrals in the definition

of In(α, β; kF). In the remainder of this section we shall work in three dimensions;

after going through the calculation for this d = 3 case, the extension to higher dimen-

sions is straightforward. The coordinate system for evaluating these stationary phase

integrals is as follows (see Fig. 6.2). We use a pair of coordinate systems: one for

the set {α2i} (which are near α); the other for the set {α2i+1} (which are near β.)

Each of these coordinate systems is constructed from the normal vector at the point

in question, along with two unit vectors in the tangent plane at this point. Thus,

the coordinate system doublet comprises two sets: one formed by the unit vectors

{x̂α, ŷα, n̂α}; the other formed by the unit vectors {x̂β, ŷβ, n̂β}, where x̂α/β and ŷα/β

respectively lie on the tangent planes at the points α/β. The choices of orientation

of the axes within the tangent planes are somewhat arbitrary; to ease the calculation

we shall choose x̂α to be parallel to x̂β (and thus parallel to the line of intersec-

tion of the two tangent planes), which fixes ŷα and ŷβ. In this coordinate doublet,

we shall label the local coordinates of point αi by (xi, yi). The three-dimensional

position vectors are then determined as follows: (i) If i is even, use the coordinate

system at point α; otherwise use the coordinate system at point β. (ii) Then the
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three-dimensional position vector in the chosen coordinate system can be expressed

as δi ≡ (xi, yi, zηi
(xi, yi)), where

ηi ≡
{

α, for i even,

β, for i odd,
(6.13)

and zηi
(x, y) is the local equation of ∂V near the point ηi. We first expand `α2iα2i+1

to second order:

`α2i−1α2i
∼= `αβ + nαβ · (δ2i−1 − δ2i) +

|δ2i−1 − δ2i|2
2`αβ

− (nαβ · δ2i−1 − nαβ · δ2i)
2

2`αβ

,

`α2iα2i+1
∼= `αβ + nαβ · (δ2i+1 − δ2i) +

|δ2i+1 − δ2i|2
2`αβ

− (nαβ · δ2i+1 − nαβ · δ2i)
2

2`αβ

,

where nαβ ≡ (β −α)/`αβ. We then use this approximation to re-write SAnd:

SAndreev ≈ − 1

`αβ

n−1∑
i=1

(
δ2i−1 · δ2i + (δ2i−1 · nβα)(δ2i · nαβ)

)
. (6.14)

Note that zηi
(x, y) is a quadratic function of x and y and therefore, for the purposes

of expanding SAnd to second order in {xi, yi}, we can neglect the nηi
component of

δi. Thus, the curvature of ∂V does not feature in In(α,β; kF), which implies that the

stability of these trajectories does not depend on the curvature [43]. Then, SAnd can

be written as follows:

SAndreev ≈ 1

`αβ

n−1∑
i=1

( x2i−1 y2i−1 ) ·D ·
(

x2i

y2i

)
, (6.15)

D ≡
(

1− n2
x −nx(ny cos φ + nz sin φ)

−nxny cos φ− ny(ny cos φ + nz sin φ)

)
, (6.16)

where nx, ny and nz are, respectively, the x, y and z coordinates of nαβ) in the coor-

dinate system at point α, and cos φ is the angle between the y axes of the coordinate

systems at the points α and β. Then

In(α, β; kF) =

∫ 2n−2∏
i=1

dxi dyi exp
(
(ikF/`αβ)X† ·D(n) ·X

)
, (6.17)
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X ≡




x1

y1

...

x2n−2

y2n−2




, D(n) ≡




0 D 0 · · · 0

D† 0 −D

0 −D† . . .

... −D

0 −D† 0




(4n−4)×(4n−4)

.(6.18)

Thus we arrive at the following expression for In:

In(α,β; kF) = (2π`αβ/kF)2n−2
(

det D(n)
)−1/2

exp (iπ sgnD/4)

= (2π`αβ/kF)2n−2 (cos θαβ cos θβα)1−n , (6.19)

where sgnD denotes the signature of the matrix D (i.e. the number of positive eigen-

values minus the number of negative ones). By inserting this expression into Eq. (6.11)

we obtain the contribution to the oscillatory part of the DOS associated with the 2n-

reflection term:

ρ±2n(E) ≈ Re

∫
dσα dσβ

(
kF cos θαβ cos θβα

2`αβ

)
exp (−2inϕ + in(k+ − k−)`αβ). (6.20)

By collecting together the contributions from all numbers of reflections (n = 1, 2, . . .)

we arrive at the following formula for the oscillatory part of the DOS in Scheme A:

δργ(E) ≈
∫

dσα dσβ
kF cos θαβ cos θβα

4π2`αβ

Re
exp

(
−i2ϕ + i E

kF
`αβ − γ

kF
`αβ

)

1− exp
(
−i2ϕ + i E

kF
`αβ − γ

kF
`αβ

) . (6.21)

A similar calculation for the d-dimensional case leads to the result

δργ(E) ≈
∫

dσα dσβ
cos θαβ cos θβα

(2π)d

(
kF

`αβ

)d−2

Re
exp

(
−i2ϕ + i E

kF
`αβ − γ

kF
`αβ

)

1− exp
(
−i2ϕ + i E

kF
`αβ − γ

kF
`αβ

) .

(6.22)

Formula (6.22) for the oscillatory part of the DOS simplifies further in the γ → 0

limit. To see this, consider the following familiar identity:

Re
e
−i2ϕ+i E

kF
`αβ− γ

kF
`αβ

1− e
−i2ϕ+i E

kF
`αβ− γ

kF
`αβ

=
1

2

∞∑
n=−∞

e
−i2nϕ+in E

kF
`αβ − 1

2

= π

∞∑
m=−∞

δ

(
E

kF

`αβ − 2ϕ− 2mπ

)
− 1

2
. (6.23)
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Applying this identity to Eq. (6.22), we obtain

δργ(E) ≈
∞∑

m=−∞

∫
dσα dσβ

cos θαβ cos θβα

2(2π)d−1

(
kF

`αβ

)d−2

δ

(
E

kF

`αβ − 2ϕ− 2mπ

)

−
∫

dσα dσβ
cos θαβ cos θβα

2(2π)d

(
kF

`αβ

)d−2

. (6.24)

Figure 6.3: Jacobian of the transformation from boundary points to scattering
parameters

The last term in Eq. (6.24) is a constant term, and it exactly cancels the leading-

order Weyl (i.e. bulk) term. In order to see this, consider the coordinate transfor-

mation from (α,β) to (b,n), where n is the direction of the chord and b is the

position-vector specifying the intersection of the chord with the plane perpendicular

to n (i.e. the impact parameter). The transformation of the surface elements are as

follows (see Fig. 6.3):

dσα dσβ cos θαβ cos θβα `1−d
αβ = dn db. (6.25)

By using the (b,n) coordinate system, the last term in Eq. (6.24) can be cast into

the following form:

− 1

2(2π)d
kF

d−2

∫
dn db `αβ = − 1

2(2π)d
kF

d−2 V

∫
dn = − 1

2(2π)d
kF

d−2 V Sd−1.

(6.26)
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A direct comparison with the leading-order Weyl term, given in Eq. (6.2), shows that

the term in Eq. (6.26) identically cancels with the leading-order Weyl term. Thus,

the DOS in Scheme A can be written as

ρ(E) ≈
∞∑

m=−∞

kF
d−2`αβ

2(2π)d−1

∫
dn db δ

(
E

kF

`αβ − 2ϕ− 2πm

)
, (6.27)

which is precisely the result found via the Andreev approximation, as stated in

Sec. 3.3.

6.2 Scheme B: Mesoscale oscillations beyond the

resolution of the Andreev approximation

The main motivation of Scheme B is to capture the mesoscale oscillations in the DOS

that are caused by confinement of quasiparticles by the superconducting surround.

The reason that Scheme A (and thus the Andreev approximation) is not capable of

capturing such oscillations is that in Scheme A the transverse degrees of freedom

are not quantized (i.e. quasiparticle motion on the chords is quantal, but there are

chords arbitrarily close to one another, indicating that the transverse degrees of free-

dom are treated classically). On the other hand, in Scheme B we take into account:

(i) the imperfectness in retro-reflection (arising from the previously-neglected differ-

ence between the wave vectors of incident and reflected electrons and holes); and

(ii) the imperfectness in charge-interconversion, the amplitude for which is O(∆/k2
F).

A priori , we know that mesoscale oscillations in the DOS must originate from one

or more of the processes not yet taken into account, these being (i) and (ii), above,

as well as the subleading quantal corrections (that are ignored in both schemes). In

fact, as we shall see, it is the imperfectness in retro-reflection that is primarily re-

sponsible for the mesoscale oscillations in the DOS. (Note that the imperfectness in

retro-reflection occurs transverse to the incoming direction.) The imperfectness in
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charge-interconversion does modify these DOS oscillations. However, by itself (such

as in a model with perfect retro-reflection but imperfect charge-interconversion) it

is not capable of producing them. In order to clarify this issue, and thus to assess

the significance of these processes, we shall define a useful intermediate model: the

Perfectly Charge-Interconverting Model (PCIM). This PCIM has the feature of being

fully quantum-mechanical; however, in it, any single reflection from the boundary

is certain to have the effect of converting electrons to holes (and vice versa). As it

contains all quantal effects, the comparison of its predictions with those from the

semiclassical approach enable us to assess the importance of quantal effects beyond

the semiclassical limit. Moreover, from this comparison it is possible to draw con-

clusions regarding whether it is imperfectness in retro-reflection that is capable of

capturing the mesoscale oscillations in the DOS.

6.2.1 Perfectly Charge-Interconverting Model

We are now at a position to define a Perfectly Charge-Interconverting Model (PCIM).

We start with the expansion for G in terms of GR in Eq. (5.59). However, we shall

replace GR by its leading-order form, i.e., −ie−iϕσ1G
N. Then the resulting model is

defined as an integral equation for G, residing inside the billiard:

G(x,x′) = GN(x,x′)− 2ie−iϕ

∫

∂V
dσα ∂GN(x, α) σ1 G(α,x′). (6.28)

The off-diagonal matrix σ1 ensures that, upon each reflection from the boundary,

electrons are totally converted into holes (and vice versa). Moreover, this model is

fully quantum-mechanical, in the sense that it retains wave-propagation effects (as

implied by the presence of surface integrals.) Let us now focus on the DOS of the

PCIM, treated at the semiclassical level.

Due to the imperfectness in retro-reflection in Scheme B, the corresponding clas-

sical dynamics is no longer a priori integrable; on the contrary, it is weakly chaotic
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for generic shapes [5]. However, the closed periodic orbits do fall into two quite dis-

tinct classes: one consists of multiple tracings of each stationary chord (i.e. chord

of stationary length, which we refer to as a Σ); the other of much longer trajecto-

ries that “creep” around the billiard boundary (see Fig. 5.3). Correspondingly, the

DOS is the sum of: (i) an average term, which depends on the volume of the billiard

(i.e. the leading Weyl term); (ii) a finer-resolution term, having a universal lineshape

that depends solely on the length and endpoint-curvatures of the Σs; and (iii) highest

resolution terms, which depend on the classical dynamics of the billiard in question.

6.2.2 Stationary chords

Here, we focus on the contribution to the DOS coming from stationary chords. As we

shall derive below, it is possible to give a closed-form expression for the contribution of

a Σ to the DOS for billiards of generic shape. It is, however, necessary to distinguish

between isolated Σs and degenerate Σs. First, let us consider an isolated Σ in a 2D

billiard, with endpoint curvatures R1 and R2. Then the Σ contribution to the DOS

from 2n reflections is given by

ρn
Σ,± =

`Σ

2πk±
Re

(
k+

2π`Σ

)n/2 (
k−

2π`Σ

)n/2

exp
(
in(k+ − k−)`Σ − i2nϕ

)
In. (6.29)

Here, In is the Gaussian integral resulting from the expansion of the action to second

order:

In ≡
∫ 2n∏

i=1

dxi e
i
Pn

i=1

�
k+
`Σ

x2i−1 x2i− k−
`Σ

x2i x2i+1+
k+−k−

2

�
1

`Σ
− 1

R1

�
x2
2i−1+

�
1

`Σ
− 1

R2

�
x2
2i

�
, (6.30)

where x2n+1 ≡ x1. In order to evaluate this integral, we define a matrix M such that:

∑
i,j

xi Mij xj ≡
n∑

i=1

i

{
k+

`Σ

x2i−1 x2i − k−
`Σ

x2i x2i+1 +

(
1

`Σ

− 1

R2

)
x2

2i

+
k+ − k−

2

(
1

`Σ

− 1

R1

)
x2

2i−1

}
. (6.31)

(Note that, by definition, an isolated stationary chord is one for which none of the

eigenvalues of M is zero; whenever a zero eigenvalue occurs, the stationary chord is
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said to be degenerate.) Then, for an isolated Σ , In can be expressed in terms of the

determinant and signature of M :

In =
πn

√
| det M | exp

(
i
π

4
sgnM

)
. (6.32)

The eigenvalues of M can be obtained from the eigenvalue equation
∑

j Mij xj = λxi.

The symmetry of M under the transformation xi → xi+2 restricts the form of the

eigenvectors to be

x2j = Am ei2mπ( 2j
2n), x2j+1 = Bm ei2mπ( 2j+1

2n ),

where m = 1, 2, · · · , n. Then the eigenvalue equation reduces to

( k+−k−
2

(
1
`Σ
− 1

R2

)
k+

`Σ
e−iπ m

n − k−
`Σ

eiπ m
n

−k−
`Σ

e−iπ m
n + k+

`Σ
eiπ m

n
k+−k−

2

(
1
`Σ
− 1

R1

)
)( Am

Bm

)
= λm

( Am

Bm

)
. (6.33)

The determinant of M is readily obtained as

det M =
n∏

m=1

det

( k+−k−
2

(
1
`Σ
− 1

R2

)
k+

`Σ
e−iπ m

n − k−
`Σ

eiπ m
n

−k−
`Σ

e−iπ m
n + k+

`Σ
eiπ m

n
k+−k−

2

(
1
`Σ
− 1

R1

)
)

=
n∏

m=1

[
`2
Σ − `ΣR1 − `ΣR2

R1R2

(
k+ − k−

`Σ

)2

− 4
k+k−
`2
Σ

sin2
(
π

m

n

)]
. (6.34)

For n ¿ √
k+k−/(k+ − k−), this expression can be simplified to read

det M ≈
(

`2
Σ − `ΣR1 − `ΣR2

R1R2

)(
k+ − k−

`Σ

)2 (
4k+k−

`2
Σ

)n−1
(

n−1∏
m=1

sin2
(
π

m

n

))2

= (−1)n−1

(
`2
Σ − `ΣR1 − `ΣR2

R1R2

)(
k+ − k−

`Σ

)2 (
k+k−
`2
Σ

)n−1

n2 . (6.35)

The signature of M is obtained from the eigenvalue problem (6.33) via the investi-

gation of the signs of the eigenvalues λ±m [or, equivalently, from the trace and the

determinant of the matrix in Eq. (6.33)]. If the determinant is negative then λ+
m

and λ−m are of differing signs and, hence, the associated pair cancel in the signature

of M . If the determinant is positive then there is a pair of negative or of positive

eigenvalues, the sign of which is determined by the trace. These considerations allow

71



us to express sgn M as follows:

sgnM =
n∑

m=1

(
1 + sgn

[(
`2
Σ − `ΣR1 − `ΣR2

R1R2

)(
k+ − k−

`Σ

)2

− 4
k+k−
`2
Σ

sin2
(
π

m

n

)])

× sgn

(
2

`Σ

− 1

R1

− 1

R2

)
. (6.36)

Again there is simplification for n ¿ √
k+k−/(k+ − k−), because in this regime only

m = n term contributes to the sum above and, hence, the expression for sgnM

becomes

sgn M ≈
(

1 + sgn

(
`Σ −R1 −R2

R1R2

))
sgn

(
2

`Σ

− 1

R1

− 1

R2

)
. (6.37)

In particular, when R1, R2 > 0 we have

sgn M ≈ sgn (R1 + R2 − `Σ)− 1. (6.38)

Putting all the pieces together, the expression for the contribution to the DOS origi-

nating from isolated stationary chords is as follows:

ρn
Σ,± ≈ `Σ

2πk±
Re

(
k+

`Σ

)n/2 (
k−
`Σ

)n/2
1√

| det M | e
in(k+−k−)`Σ−i2nϕ+i π

4
sigM (6.39)

≈ Re
1

n

1

k±

√
k+k−`ΣR1R2

4π2(k+ − k−)2|`Σ −R1 −R2| (6.40)

× exp
(
in(k+ − k−)`Σ − i2nϕ + i

π

4
(sgn (R1 + R2 − `Σ)− 1)

)
,

where the second line is valid for n ¿ √
k+k−/(k+ − k−). We can now sum this

expression to all orders in n to obtain the general form for the contribution to the

DOS originating from an isolated stationary chord:

ρΣ ≈ Re

√
(k+ + k−)2`ΣR1R2

4π2k+k−(k+ − k−)2|`Σ −R1 −R2| exp
(
i
π

4
(sgn (R1 + R2 − `Σ)− 1)

)

× ln
{

1− exp
(
in(k+ − k−)`Σ − i2nϕ

)}
. (6.41)

The DOS expression in Eq. (6.41) is valid when its prefactor is free of singularities.

Such singularities would indicate that the fluctuation determinant has a vanishing
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Figure 6.4: Example of a billiard that is not circular but has degenerate stationary
chords. Opposite segments of the boundary are partially coincident with a pair of
concentric circles, as shown; when this happens, `Σ = R1 + R2.

eigenvalue. This would mean that the stationary chord is no longer isolated; instead

there is a direction, corresponding to the vanishing eigenvalue, along which fluctua-

tions do not change the phase.

Let us now focus on these prefactor singularities. The first kind occurs when

k+ = k− or, equivalently, when E = 0. The reason that this singularity arises is

that when k+ = k− retro-reflection is perfect and, thus, all chords become stationary.

As, in Scheme B, we are implicitly assuming that k+ and k− are distinct, this kind

of singularity is an artifact of the approximation scheme, and thus is unphysical.

The second kind of singularity occurs when `Σ = R1 + R2. This is a geometrical

singularity, in the sense that whenever the shape of the billiard is such that chords

of stationary lengths are not isolated, such a singularity arises. For example, if the

billiard is circular, the chord of stationary length is the diameter of the circle, and

its length does not change when it is rotated. In this case R1 = R2 = `Σ/2. Another

example is shown in Fig. 6.4; see the caption for details. Such singularities can be

handled in Scheme B as follows: we fix one (or more, if necessary) reflection points, so

that the Σ is no longer degenerate; we then integrate the remaining surface integrals

in the stationary phase approximations; and, after that, we evaluate the remaining

surface integral. In this way, we obtain the general form for the stationary-chord
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contribution to the DOS:

ρΣ(E) ≈ Re
∑

`Σ

ZΣ eiλπ/4 Lid−1−w
2
(1− ei(k+−k−)`Σ−2iϕ). (6.42)

Here, Lin(z) ≡ ∑∞
j=1 zj/jn is the polylogarithm function, w is the dimensionality of

the degeneracy of the Σ (e.g. w = 1 for a circle), ZΣ is a slowly varying real function

of energy, which determines the size of the DOS oscillations, and λ is a measure of

the stability of the Σs, which determines whether the “tail” goes to higher or lower

energies. For example, for a degenerate Σ and d = 2 we have

ZΣ = VΣ

√
(k+ + k−)2`ΣR

8π3k+k−(k+ − k−)|`Σ −R| ,

λ = sgn(R− `Σ),

where VΣ is the volume of the degenerate Σ and R ≡ (R1 + R2)/2.

6.2.3 Creeping orbits

In this section, we shall obtain the finer oscillatory structure that lies beyond the

stationary-chord contribution. The method for obtaining this structure consists of:

(i) finding the classical periodic orbits; (ii) evaluating the surface integrals in the

stationary phase approximation (i.e. expanding the action to second order around

each classical periodic orbit, thus reducing the surface integrals to Gaussian integrals,

and then evaluating the resulting Gaussian integrals); and (iii) summing over all

periodic-orbit contributions. For the purposes of illustrating this method, we now

focus on the case of a circular Andreev billiard and obtain an expression for this finer

oscillatory structure in DOS. In addition to its illustrative purposes, having obtained

this expression for the finer DOS oscillations for circular Andreev billiard will become

useful when we discuss an additional approximation, valid for shapes with slowly

varying curvatures, as we shall do later in this thesis.

(i) Classical Dynamics : The classical dynamics of Andreev billiards is defined through

the Scheme B reflection rule: k+ sin θ+ = k− sin θ−. Here, θ+/− is the angle of inci-
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dence (or reflection) for the electron/hole. In the case of circular Andreev billiards,

the classical periodic orbits can be specified (up to rigid rotations of the full trajec-

tory) by the number of reflections (2n) and by the number of times the orbit “winds”

around the billiard (j). The fact that classical periodic orbits of circular Andreev

billiards can be specified by (n, j) is a consequence of the integrability of the classical

dynamics.

δθ
θ

θ+

−

Figure 6.5: A closed periodic orbit with imperfect retro-reflection; the degree of
imperfectness is exaggerated for the purpose of illustration.

Our goal is to express dynamical quantities, such as the action Scl(n, m, k2
F, E,R),

angles of incidence and reflection, and the length of propagation between two succes-

sive reflections (which we shall denote by `±) in terms of the parameters (n,m, k2
F, E, R).

Here, R is the radius of the circular billiard. First note that, for a given orbit, the an-

gle at which an electron is incident or reflected is the same at all reflections; the same

fact holds for holes (see Fig. 6.5). Next, note that each reflection rotates the direction

of the momentum by δθ ≡ θ−−θ+. Thus, in order for the orbit to close after 2n reflec-

tions the momentum direction must be rotated by 2π j. In other words, δθ = π j/n.

However, θ±, must also satisfy the classical reflection rule k+ sin θ+ = k− sin θ−. By
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using these conditions we find (after a little algebra) that for a closed orbit specified

by n and j we have

cos θ± = ±k± − k∓ cos(πj/n)

∆k
, `± = 2R cos θ±, (6.43)

where ∆k ≡
(

k2
F − 2

√
k2

F
2 − E2 cos(πj/n)

)1/2

. Observe that, owing to the fact that

cos θ+ > cos θ− > 0, the possible values of n and j are restricted:

cos

(
πj

n

)
>

k−
k+

. (6.44)

Next we evaluate the action:

Scl(n,m, k2
F, E, R) ≡ nk+`+ − nk−`−

= 2n(k+R cos θ+ − k−R cos θ−)

= 2nR

(
k2

F − 2

√
k2

F
2 − E2 cos(πj/n)

)1/2

= 2n ∆k R . (6.45)

(ii) Evaluating surface integrals : Having obtained the critical points of the surface

integrals in Eq. (6.1), we now proceed to expand the action around these points. In

order to do this, we expand each g±(α, β) in Eq. (6.1) around the critical values of

its arguments (i.e. (αc,βc)). This can be accomplished by writing

α = αc + δ�, β = βc + δ�, (6.46)

and expressing δ�/� in the coordinate system at α/β with coordinate axes specified

by the normal (i.e. n�/�) and tangent (i.e. t�/�) directions of ∂V at α/β. In this

coordinate system, the coordinates of the boundary point δ�/� can, up to quadratic

order, be parametrized as

δ�/� ≈ s�/� t�/� +
s2
�/�

2R�/�
n�/�, (6.47)
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Figure 6.6: A closed periodic orbit with imperfect retro-reflection; the degree of
imperfectness is exaggerated for the purpose of illustration, but less so than in Fig. 6.5.

where R�/� are the radii of curvature at α/β. The surface elements can also be

expressed using the parameter s�/�:

dσ�/� = ds�/� +O(1/R). (6.48)

Then ∂g± can be approximated as

2∂g±(s�, s�) ≈ ∓
√

kF cos2 θ�
2π`�c �c

exp
(
±ik±`�c�c

∓ iπ/4± ik±Φ(s�, s�)
)
, (6.49)

where the phase function Φ is given by

Φ(s�, s�) ≡ s� sin θ� − s� sin θ� − s2
� cos θ�/2R� − s2

� cos θ�/2R�

+(s� cos θ� + s� cos θ�)2/2`�c �c
(6.50)

The terms linear in s�/� cancel with the linear terms of the next and previous Green

function, due to the stationarity feature of the critical point. For the circle we have

θ� = θ� = θ±, R� = R� = R, and `�c�c
= 2R cos θ±. This allows us to write

Φ±(s�, s�) = −cos θ±
4R

(s� − s�)
2, (6.51)
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and thus 2∂g±(s�, s�) = 2∂g±(s� − s�). We are now in a position to evaluate the

DOS oscillations due to a periodic orbit with 2n reflections that winds j times around

the circular billiard:

ρn,j
± =

`±
2πk±

Re exp
(
iScl(n, j, k2

F, E, R)− i2nϕ
)

In , (6.52)

In ≡
∫ 2n∏

i=1

dsi 2∂g+(s1) 2∂g−(s1 − s2) · · · 2∂g+(s2n−1). (6.53)

Although it is possible to evaluate this Gaussian integral by the usual formula that

relates it to the determinant and signature of the quadratic form in the phase, the

(rotationally invariant) form of Φ in Eq. (6.51) allows the evaluation of the integral

above in an easier way, viz., via Fourier decomposition. By defining the Fourier

transform

2∂g±(p) ≡
∫ ∞

−∞
ds eips 2∂g±(s) = i exp

(±ip2R/k± cos θ±
)

(6.54)

we are able to write In,j as

In,j =

∫ ∞

−∞

dp

2π
(− 2∂g+(p) 2∂g−(p))n

=

∫ ∞

−∞

dp

2π
(−i)n exp

(
inp2R

(
(k+ cos θ+)−1 − (k− cos θ−)−1

))

= (−i)n

√
k+ cos θ+k− cos θ−

4πnR(k+ cos θ+ − k− cos θ−)
exp−iπ/4. (6.55)

Then the contribution to the DOS oscillations originating from a creeping orbit with

2n reflections and winding number j can be written as

ρn,j = Re

(
cos θ+

k+

+
cos θ−

k−

) √
R3k+ cos θ+ k− cos θ−

πn(k+ cos θ+ − k− cos θ−)

× (−i)n exp
(
iScl(n, j, k2

F, E, R)− 2inϕ− iπ/4
)

= Re

√
R3(k+ − k− cos(πj/n))(k+ cos(πj/n)− k−)

πn (∆k)5 k+k−
E cos(πj/n)

× exp
(
2in ∆k R− 2inϕ− iπ/4

)
. (6.56)
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(iii) Summing over all creeping orbits : In order to obtain the creeping-orbit contri-

bution to the DOS oscillations, we must sum the contributions specified by Eq. (6.56)

for all n and j, obeying the restriction given in Eq. (6.44). Although this summation

may appear to be problematic, we remind the reader that E has a nonzero imaginary

part Γ, viz., the smoothing width, which suppresses exponentially (in n) the contri-

butions coming from high n values. Thus, for a given Γ it is possible to perform the

sum up to a value of n such that any contribution from higher n would be invisible

on the scale set by the truncated sum.
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Figure 6.7: Density of states oscillations for a circular Andreev billiard: kFR = 150;
∆/k2

F = 0.08; smoothing width Γ/k2
F = 1.1× 10−4.

In Fig. 6.7 we plot three versions of the oscillatory part of the DOS: the Scheme A

result (dashed line), which includes all chords but is dominated by the stationary

ones; the Scheme B result (dotted line), which includes creeping orbits and stationary

chords; and the exact PCIM result (full line), obtained by the numerical solution of

the PCIM. Observe that, although the local average behavior of the exact DOS is

essentially that captured by Scheme A, in order to capture the mesoscale oscillations

beyond this average behavior one must use Scheme B.

Poisson summation and the semiclassical quantization condition: In the case of a

circular Andreev billiard the summation over n and j can be performed approximately

to all orders. The procedure for doing this involves using the Poisson summation
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formula and evaluating the integrals in the stationary phase approximation. By using

this procedure it is possible to obtain the energies at which the DOS has simple poles,

viz., it is possible to obtain a semiclassical quantization condition. Our starting point

is the expression Eq. (6.56) for ρn,j. In terms of this, the DOS oscillations can be

written in the form

ρ ≈ Re
∑
n,j

a(πj/n)√
n

exp
(
i2n∆k(πj/n)R− 2inϕ− iπ/4

)
, (6.57)

where the amplitude a is defined via

a(x) ≡
√

R3(k+ − k− cos(x))(k+ cos(x)− k−)

π ∆k(x)5 k+ k−
E cos(x).

By using the Poisson summation formula we first cast the expression for the DOS in

the form

ρ ≈ Re
∑
n,m

∫
dj

a(πj/n)√
n

exp
(
2in∆k(πj/n)R− 2inϕ− 2iπmj − iπ/4

)
.

Here, m has an interpretation as the angular momentum quantum number. We then

evaluate the j integral in the stationary phase approximation. The stationary phase

points satisfy

cos

(
πjc

n

)
=

(
λ±

√
(1− λ)2 − E2

k2
F

2

)(
1− E2

k2
F

2

)−1/2

≡ f(m,R, k2
F, E), (6.58)

where λ ≡ m2/(kFR)2, and only real and positive values of cos(πjc/n) are allowed.

The important point to observe here is that cos(πjc/n) is independent of n, which

implies that ∆k is independent of n, too. This allows us to write the expression for

ρ as

ρ ≈
∑
m

(πkFR(f(m)− λ))−1/2a
(
cos−1 f(m)

)

×Re
∑

n

exp in
(
2∆k(m) R− 2ϕ− 2m cos−1 f(m)

)
. (6.59)
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We are now in a position to perform the sum over n:

ρ ≈
∑
m

(πkFR(f(m)− λ))−1/2a
(
cos−1 f(m)

)
Re

ei(2∆k(m) R−2ϕ−2m cos−1 f(m))

1− ei(2∆k(m) R−2ϕ−2m cos−1 f(m))
.

Thus, the semiclassical approximation to the eigenenergies for a given angular mo-

mentum quantum number m (i.e. the DOS peaks) are given implicitly as the roots

of

exp i
(
2∆k(m) R− 2ϕ− 2m cos−1 f(m)

)
= 1. (6.60)

In Table 6.1 we compare the eigenenergies of the PCIM calculated via this semiclas-

sical scheme and exactly. From this Table we see that, as expected, the semiclassical

results agree with the exact results upto contributions of relative order 1/kFR.

6.2.4 Incorporating ordinary reflection

Thus far in our semiclassical treatment we have ignored all amplitudes involving or-

dinary reflection. For non-grazing incidence [i.e. for θ− (π/2) ∼ 1] the amplitude for

ordinary reflection is very small (in fact, of order ∆/k2
F cos2 θ). However, orbits that

contribute dominantly to the oscillatory structure of the DOS obey |θ − (π/2)| ¿ 1,

and therefore ordinary reflection amplitudes are not negligible and must be incorpo-

rated. This can be done by returning to Eq. (5.59) and re-evaluating the trace formula

using the full expression for GR (i.e. not just the leading, off-diagonal, term). Then,

as a result of treating both charge-interconverting and charge-preserving reflections,

the classical limit changes drastically: the initial conditions of specifying position and

momentum (and charge, in the case of Andreev billiards) no longer determines the

full orbit; on the contrary, each reflection splits the incoming ray into two rays: one

(albeit imperfectly) retro-reflecting; the other, ordinarily reflecting. Thus, the classi-

cal dynamics is no longer deterministic (i.e. specifying the position and momentum no

longer determines the full orbit) and, instead, the initial conditions specify a superpo-

sition of orbits. (A similar situation emerges in the context of Schrödinger billiards
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Table 6.1: Comparison of the eigenenergies of the PCIM for a circular Andreev
billiard computed semiclassically and computed exactly (numerically) for kFR = 150;
∆/k2

F = 0.08.

m n Em,n/k2
F
∗

Em,n/k2
F
†

∆E/k2
F

0 4 0.066694 0.066695 0.000001

1 4 0.066698 0.066696 0.000002

2 4 0.066699 0.066700 -0.000001

3 4 0.066708 0.066707 0.000001

4 4 0.066716 0.066716 0.000000

70 4 0.073978 0.073967 0.000011

71 4 0.074204 0.074206 -0.000002

72 4 0.074444 0.074450 -0.000006

73 4 0.074711 0.074700 0.000011

74 4 0.074951 0.074954 -0.000003

110 3 0.067310 0.067285 0.000025

111 3 0.067842 0.067880 -0.000038

112 3 0.068466 0.068495 -0.000029

113 3 0.069169 0.069132 0.000037

114 3 0.069840 0.069791 0.000049

∗ PCIM

† Semiclassical
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when the billiard has sharp jumps in the single-particle potential [20].) Generically,

the number of closed orbits increases exponentially as a function of number of reflec-

tions (as opposed to linearly, as is the case when ordinary reflection is neglected), but

the amplitudes for these orbits are suppressed exponentially (owing to the fact that

the amplitudes for ordinary and Andreev reflections are smaller than unity), allowing

the number of reflections to take care of any divergences arising from this ray-splitting

feature.

The exponential increase in the number of closed orbits, as a function of the num-

ber of reflections, makes evaluation of the periodic-orbit sum difficult. For sufficiently

smooth shapes there is a way to circumvent this difficulty, which involves resorting

to a different approximation scheme, as we shall shortly show. The main motivation

for this approximation scheme is as follows.

1. The closer a primitive creeping orbit is to the boundary (i.e. the closer |θ− (π/2)|
is to zero), the shorter it its total length. As the periodic-orbit contributions are

suppressed exponentially with their lengths, the creeping orbits that are closer to the

boundary contribute more strongly to the DOS oscillations.

2. The closer a creeping orbit is to the boundary, the bigger the ordinary reflection am-

plitude (∼ ∆/k2
F cos2 θ.) Thus, the orbits that involve ordinary reflection contribute

more strongly if they are close to the boundary.

3. For the orbits close to the boundary (which, by the previous considerations, domi-

nate), consecutive reflections take place very near to each other, and thus “see” only

the local curvature of the boundary.

These considerations motivate us to perform an “adiabatic” approximation to the

expansion in Eq. (5.59), in which we assume that the curvature of the boundary

varies slowly, relative to the rate at which creeping orbits sample the boundary.

Our starting point is the integral equation (5.40) that generates the MRE:

Gii(x,x′) ≡ GN(x,x′) +

∫

∂V
dσα ∂α GN(x, α) · µii(α,x′),
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µii ≈ 2GR + 2∂GRµii, (6.61)

where GR is given in Eq. (5.46). These equations can be cast to the following form:

Gii ≡ GN + 2∂GN
(
1− 2∂GR

)−1
GR, (6.62)

which shows that the approximate poles of Gii are given by the poles of K ≡
(
1− 2∂GR

)−1
. Thus, in order to obtain the energy eigenvalues it is sufficient to

consider the following integral equation defined on the surface ∂V :

K(α,β) = I δ(α,β) + 2

∫

∂V
dσγ ∂GR(α,γ)K(γ, β).

This equation will have a regular solution (i.e. one without poles) if and only if none

of the eigenvalues of the operator 2∂GR is equal to unity; conversely, poles of K

occurs at energies for which at least one of the eigenvalues of 2∂GR is equal to unity.

Consequentially, we now focus on the following eigenvalue problem defined on the

boundary of the billiard:

2

∫

∂V
dσβ ∂GR(α,β)u(β) = λu(α). (6.63)

We shall work in the coordinate system in which the boundary is parametrized by its

arc length s. (Recall that we are considering 2D billiards.) Thus, the equation for

the boundary is given by the vector function α(s),

t(s) ≡ dα/ds (6.64)

is the tangent vector,

n(s) ≡ −R(s) d2α/ds2 (6.65)

is the unit normal vector, and

R(s) ≡
∣∣∣d2α/ds2

∣∣∣
−1

(6.66)

is the curvature at the point α(s). Furthermore, we shall transform to the coordinates

t ≡ s− s′ and S ≡ s + s′

2
, (6.67)
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and define

ḠR(t, S) ≡ GR(s, s′). (6.68)

The virtue of this coordinate system is that for a constant-curvature boundary (viz. a

circle) GR(s, s′) = ḠR(s− s′). Thus, if the curvature is slowly varying then ḠR(t, S)

is a slowly varying function of S. In this coordinate system, then, the eigenvalue

equation Eq. (6.63) becomes

2

∫ L

0

dt ∂ḠR(t, s− t/2)u(s− t) = λu(s), (6.69)

u(0) = u(L), (6.70)

where L is the length of the boundary. From periodic-orbit theory we already know

that the dominant mesoscale oscillations in the DOS arise from the part of phase space

in which the component of the excitation momentum lying tangent to the boundary is

O(kF). Thus, in order to capture the dominant mesoscale oscillations, it is sufficient

to solve the eigenvalue equation (6.69) for the sector of eigenfunctions varying on the

length scale O(kF). In this sector of rapidly-varying eigenfunctions, only the small-t

behavior of the kernel ∂ḠR(t, S) is relevant. In the following, we shall obtain an

expression for ∂ḠR(t, S) valid for small t.

Our starting point is the general expression for G in polar coordinates,

G(s, s′) =
∑
m

R ·
( i

4
Jm(k+r<)Hm(k+r>) 0

0 − i
4
Jm(k−r<)Hm(k−r>)

)
eimΘ, (6.71)

where R(m/R(s)) is defined in Eq. (5.47). For s near s′ (i.e. for small t), one can

choose the “polar” coordinate system, in which a circle of radius R((s+s′)/2) coincides

locally with the surface at point (s+ s′)/2. Then the expansion (6.71) can be written

as

Ḡ(t, S) ≈
∑
m

R ·
( i

4
Jm(k+R(S))Hm(k+R(S)) 0

0 − i
4
Jm(k−R(S))Hm(k−R(S))

)

× exp imt/R(S). (6.72)
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The normal derivative ∂G is given by

∂Ḡ ≈
∑
m

R · i

4

( d
dR

(Jm(k+R)Hm(k+R)) 0

0 − d
dR

(Jm(k−R)Hm(k−R))

)∣∣∣∣
R=R(S)

× exp imt/R(S). (6.73)

Having obtained the approximate form of ∂Ḡ, valid for small t, we shall now seek

the eigenfunctions. We shall assume that the rapidly-varying eigenfunctions have the

following form:

u(s) = ū(s) exp ims/R(s), (6.74)

viz., a slowly-varying envelope and a rapidly varying part. Then the eigenvalue equa-

tion becomes

λ ū(s) eim(s)/R(s) = 2

∫ L

0

dt ∂ḠR(t, s− t/2) ū(s− t) eim(s−t)/R(s−t), (6.75)

λ ū(s) ≈ 2

∫ L

0

dt ∂ḠR(t, s) e−imt/R(s) ū(s), (6.76)

λ(m, s) ū(s) = 2

∫ L

0

dt ∂ḠR(t, s) e−imt/R(s) ū(s), (6.77)

λ(m, s) ū(s) =
∑

m′
2∂ḠR(m′, s)

∫ 2πR(s)

0

dt e−i(m−m′)t/R(s)

−2∂ḠR(m′, s)
∫ 2πR(s)−L

0

dt e−i(m−m′)t/R(s) ū(s), (6.78)

λ(m, s) ū(s) =
∑

m′
2∂ḠR(m′, s)2πR(s)δm,m′

−2∂ḠR(m′, s)
∫ 2πR(s)−L

0

dt e−i(m−m′)t/R(s) ū(s), (6.79)

≈
∑

m′
2∂ḠR(m′, s) (2πR(s)δm,m′ − (2πR(s)− L)) ū(s), (6.80)

λ(m, s) ū(s) ≈ 2∂ḠR(m, s) 2πR(s) ū(s) +O (|dR/ds| L) . (6.81)

By ignoring the term O (|dR/ds| L) we have reduced the eigenvalue equation to

λ(m, s)

iπR(s)
ū(s) = (6.82)

R ·
( d

dR
(Jm(k+R)Hm(k+R)) 0

0 − d
dR

(Jm(k−R)Hm(k−R))

)∣∣∣∣
R=R(s)

ū(s),
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The important point to note about Eq. (6.82) is that it is simply a 2 × 2 matrix

eigenvalue equation and, thus, its solution is straightforward. After obtaining the

eigenvalues λ(m, s), the DOS is given by the following formula:

ρ(E) =

∫ L

0

ds

2πR(s)

∑
m

δ(1− λ(m, s; E))

∣∣∣∣
∂λ(m, s; E)

∂E

∣∣∣∣ (6.83)
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Figure 6.8: Density of states oscillations for a circular Andreev Billiard: kFR = 150;
∆/k2

F = 0.08; smoothing width Γ/k2
F = 1.1× 10−4.

In Fig. 6.8 the DOS arising from the solution of the eigenvalue equation Eq. (6.82)

is compared to the the one arising from the exact solution of the full BDG eigenprob-

lem for the case of a circular Andreev billiard, which we have computed numerically.

In this section we have shown that mesoscale oscillations in DOS essentially arise

from imperfectness in retro-reflection. However, in order to correctly account for these

oscillations it is necessary to account for the effects of imperfect charge-interconversion

as well. The latter effects can be incorporated via an extension of the trace formula,

in which a generic closed periodic orbit has both charge-interconverting and charge-

preserving reflections. However, for billiard shapes having slowly-varying curvatures,

it is possible to obtain an adiabatic approximation to the DOS that bypasses the

periodic-orbit summation (which has a number of terms that increases exponentially

with the number of reflections) and, hence, reduces the task to the solution of 2 × 2

matrix eigenvalue equation. The strength of this method is that it relates the DOS to
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the closed form of R(m/R(s)) and, thus, it is readily extendible to cases in which the

N-S boundary is not clean (i.e. reflection amplitudes are modified). As seen above, in

order to calculate the DOS one simply needs the reflection amplitudes at the billiard

boundary.
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Chapter 7

Concluding remarks; Perspectives

In the first part of this thesis, we have explored semiclassical approaches to the os-

cillatory part of the density of states of electron-hole excitations confined to Andreev

billiards. We have done this by deriving two semiclassical trace formulas, each cor-

responding to one of two limiting schemes of the physical parameters specifying the

billiard. The first of these trace formulas (viz. the Scheme A trace formula, discussed

in Sec. 6.1) is essentially equivalent to the conventional quasiclassical approximation

scheme first introduced by Andreev [4]. The physical ingredients of this scheme are

perfect charge-interconversion and perfect retro-reflection. It captures the coarsest

oscillations in the DOS. The second trace formula (viz. the Scheme B trace formula,

discussed in Sec. 6.2) not only captures the coarsest oscillations, but also goes be-

yond this resolution by capturing mesoscale oscillations. At the semiclassical level,

mesoscale oscillations arise from orbits featuring imperfect retro-reflection. Although

such oscillations are sensitive to charge-preserving reflection amplitudes (in addi-

tion to charge-interconverting reflection amplitudes) from the N-S interface, they are

present even if there is no charge-preserving reflection.

The methods developed in the present thesis readily apply to settings such as the

superconducting proximity effect or the Josephson effects. Cases in which the phase

of the pair-potential is relevant can be addressed by the appropriate modification of
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the renormalized Green function for complex ∆. In particular, by using the methods

described in Sec. 5.4, it is possible to show that the leading-order behavior of GR is

modified [cf. Eq. (5.58)], becoming

GR(α,x′) ≈ exp (−iϕ + iφ)




0 −gN
−(α,x′)

gN
+(α,x′) 0


 , (7.1)

where the phase ϕ ≡ cos−1(E/|∆|) and the phase φ is the phase of the pair-potential.

Thus, as one might have anticipated, the phase of the pair-potential simply adds to

the phase acquired by the reflection. By using this modified form for GR one can, e.g.,

account for the zero-energy states observed in π-junctions (i.e. Josephson junctions

through which the pair-potential undergoes a single sign-change).

The Multiple Scattering Expansion that we have developed applies to systems

consisting of piecewise homogeneous N or S regions. It is possible to generalize this

expansion to handle smoothly-varying ∆(x). This can be achieved via an “energy-

slicing” construction (rather than the time-slicing kind familiar from, say, the deriva-

tion of the Feynman path integral [50]). In this way, one arrives at a functional

version of the Multiple Scattering Expansion. To get a feeling why, let us divide the

pair-potential range (0, ∆0) [where ∆0 ≡ max ∆(x)] into a large number N of equally-

spaced subintervals. Let us also break x-space into sub-regions, in each of which the

pair-potential has values lying in solely one of the N energy subintervals. For N

large, ∆(x) can be taken to be constant in each subregion. Then we can apply the

Multiple Scattering Expansion formalism for this intermediate system to obtain its

Bogoliubov-de Gennes Green function. Finally, by taking the limit N →∞ one can

recover the full Bogoliubov-de Gennes Green function associated with ∆(x). Other

spatial inhomogeneities, such as in the single-particle potential, can also be handled

in this way. Semiclassical approximations, as discussed here, can be applied to this

expansion. For systems that have distinct regions of N and S, but in which these re-

gions are modified from the ideal piecewise-homogeneous state because they feature a
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smooth variation of pair-potential, can still be regarded as Andreev billiards. In fact,

as the amplitude for charge-preserving reflection is expected to diminish for more

slowly varying pair-potentials, we expect the Perfectly Charge-Interconverting Model

(PCIM) to be more accurate for such systems. On the other hand, billiards con-

structed by fabricating a normal region inside a superconductor should feature more

charge-preserving reflection, owing to interface effects. Such cases can be modelled

by suitably modifying the reflection matrix R in the definition of the renormalized

Green function GR.

Apart from problems related to superconductivity, the methods presented here

are also applicable to more conventional topics in quantum chaos. One such appli-

cation is to the so-called Ray-splitting billiards. These billiards consist of regions

of piecewise homogeneous (single-particle) potential, and the (sharp) boundaries be-

tween these regions serve as ray-splitting boundaries. By changing the homogeneous

N and S Green functions to the homogeneous Helmholtz Green functions appropriate

for a given constant potential, the formulation in the present thesis is readily ex-

tended [20]. Another potential application is to multidimensional tunneling, studied

in path-integral language in Ref. [44]. The Green-function language adopted in the

first part of this thesis is especially well suited to the study of tunneling, owing to

the energy (rather than time) dependence of the Green function.

One experimentally relevant application of the work presented so far is to antidot

Andreev billiards. Such billiards (in particular their magnetotransport properties)

were recently studied experimentally by Eroms et al. [26]. In this realization of

Andreev billiards, it is the S region that is embedded in the N region, rather than

the converse. (An experimental virtue of this geometry is that it is well suited to

the study of the effects of weak magnetic fields, as the magnetic flux need not be

quantized.) The methods presented in the present thesis are readily applicable to

this antidot geometry. In particular, in App. C we describe the new features that

91



emerge when the N region is nonconvex, as it is in antidot billiards. Moreover, the

incorporation of magnetic fields—at least in the weak field case, so that it is simply

excluded from the S region—is handled by modifying the Green functions (GN and

GS) to include the magnetic field. As the electromagnetic vector potential further

increases the difference between the action (or accumulated phase) of electrons and

holes, it will increase the degree of imperfectness in the retro-reflection.

The present work, and in particular approximation Scheme B, provides insight

into the general question of when electron dynamics should be handled separately

from the hole dynamics in inhomogeneous superconductors. In doing this, it also

provides a semiclassical framework for studying the effects of electron/hole symmetry

breaking beyond Andreev approximation. From the point of view of quantum chaos,

such electron/hole differences lead to the novel dynamics featuring in the present

work. Phenomena associated with this should be accessible via experiment and,

indeed, the extremely recent experiments by Eroms et al. [26] are paving the way to

a thorough experimental exploration of the novel quantal dynamics of electrons and

holes in Andreev billiards.
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Chapter 8

Intermezzo: d-wave

superconductivity

High-temperature superconductivity in the cuprate materials was discovered by Bed-

norz and Müller in 1986 [73]. After this discovery, several families of cuprate mate-

rials have been discovered to be high-temperature superconductors. These cuprate

families have rather complicated physical/chemical structures; currently there is no

widespread consensus regarding the detailed mechanism causing superconductivity in

these materials.

The many common features related to superconductivity shared by these materials

do, however, suggest an underlying theoretical picture. In particular, it is agreed that

what is responsible for superconductivity is the formation and long-range coherence

of Cooper pairs. The degree of this pairing can be characterized by the pair-potential

∆(x, ρ), where x is the center of mass coordinate and ρ is the relative coordinate

associated with the pair. In conventional superconductors (such as those we have

dealt with in the first part of this thesis) the geometrical symmetry of the pairing

is such that ∆ has no dependence on ρ, i.e. pairing is isotropic and we have what

is called s-wave symmetry. In contrast, it is now widely accepted that pairing in

cuprates is anisotropic and has predominantly d-wave symmetry [51], i.e. ∆ has the
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ρ-dependence ∆(x,ρ) ∝ cos 2θρ, where θρ is the angular variable of the vector ρ.

Perhaps the most important feature of the d-wave symmetry of the pair-potential

in cuprate superconductors is that ∆ has differing signs on different parts of the Fermi

surface. This has important consequences for the quasiparticle spectrum, especially is

cases in which it is possible for quasiparticles to scatter between momenta for which ∆

has distinct signs. These consequences have been explored both theoretically [57–60]

and experimentally [61] when the quasiparticle scattering is caused by (flat) bound-

aries. In the next two chapters we shall exploit the consequences of the sign-changing

nature of the pair-potential on the quasiparticle states in cuprates in the presence

of a strong, extended (but ultimately localized) variation in the single-particle po-

tential as caused, e.g., by an impurity. As we shall see, our semiclassical approach

yields an enlightening picture of the origin and properties of low-energy quasiparticle

excitations in disordered d-wave superconductors.
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Chapter 9

Low-energy quasiparticle states

near extended scatterers in d-wave

superconductors

9.1 Introduction

In the present work we shall explore the low-energy quasiparticle states available

in d-wave superconductors due to the presence of an extended scatterer such as a

boundary or an impurity more than a few Fermi wavelengths across. In the context

of boundary scattering, such states represent an important signature of sign-variations

of the superconducting order parameter, as they have been shown to originate in the

possibility of scattering between momentum orientations that are subject to super-

conducting pair-potentials of differing sign. The main aims of our work are to extend

the idea that sign-variations in the superconducting pair-potential lead to low-energy

quasiparticle states to the context of scattering by general single-particle potentials,

such as those due to impurities (i.e., beyond scattering by boundaries), and to explore

the robustness of this effect.

The theoretical framework that we shall adopt is the semiclassical approach to
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the quantum-mechanical problem of scattering from the single-particle potential,

via which the eigenvalue problem at hand reduces to a family of effectively one-

dimensional problems for the particle-hole dynamics in the presence of the super-

conducting pair-potential. Through this approach, we shall be able to see that the

density of low-energy quasiparticle states (DOS) is determined solely by the classical

scattering properties of the single-particle potential and, furthermore, that this DOS

is insensitive to any suppression of the pair-potential that the impurity might cause.

This approach also provides us with a framework for classifying and calculating cor-

rections to the DOS at low energies, such as those due to diffraction during scattering

from the single-particle potential itself, or due to any pair-potential modifications

beyond mere suppression (such as the induction of any out-of-phase components of

the pair-potential).

Along the way, we shall discuss the fact that the emerging one-dimensional eigen-

problem is a realization of Witten’s supersymmetric quantum-mechanical model [52,

53] which, via the Witten index [52, 53], provides a natural setting in which to ex-

plore zero-energy states [54, 55]. Through this identification with Witten’s model we

shall see that the conditions under which zero-energy states exist are indeed those

mentioned above, viz., propagation between pair-potentials of differing signs. In ad-

dition, we shall examine the role played by the semiclassical approximation to the

scattering problem vis-à-vis the existence of zero-energy states, and thus see how it

is that going beyond this semiclassical approximation introduces transition ampli-

tudes between classical scattering trajectories, causing the dispersion of the formerly

zero-energy states, e.g., into one or more low-energy peaks in the DOS.

We would like to stress at the outset that the issue of the origin of the low-energy

states, viz., sign changes in the pair-potential, has already been soundly understood

and extensively developed theoretically in several contexts: notable examples include

the works of Buchholtz and Zwicknagl [57] on p-wave superconductors near surfaces;
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and of Hu [59], Buchholtz et al. [58], and Fogelström et al. [60] on d-wave superconduc-

tors near flat surfaces. Low-energy states have also received extensive experimental

attention in the context of boundary-scattering in high-temperature superconductors.

In particular, measurements of the (macroscopic) tunneling conductance [61] reveal

a zero-bias anomaly indicating the existence of low-energy states near boundaries.

Apart from the effects of flat boundaries, theoretical research on low-energy quasi-

particle resonances in d-wave materials has mostly been concerned with the effects of

point-like impurities (i.e., impurities for which the size of the impurity is not much

larger than the Fermi wavelength λF). Of particular interest has been the effect of

the impurity strength on the energies and wave functions of the resonances [62, 63].

More recently, attention has been paid to the effects on these resonances of impurity-

induced suppression of the superconducting order parameter [64, 65]. Emerging from

this body of work is a picture in which each strong, point-like impurity gives rise

to a low-energy resonance. This resonance, which would show up in the tunneling

DOS as a pair of peaks symmetrically located around zero energy, transforms (in the

particle-hole symmetric case) into a single, marginal, bound state at zero energy in

the unitary scattering limit. As the impurity strength is reduced, the energy of this

resonance moves towards the gap maximum. Moreover, the quantitative details of the

band structure and/or order parameter can play important roles [66]. In particular,

in particle-hole asymmetric systems the energies of the resonances no longer tend to

zero in the unitary limit.

In contrast, the present work suggests that an extended (rather than point-like)

impurity induces a zero-energy peak in the DOS with a weight of order the linear size

of the impurity (measured in units of the Fermi wavelength). Moreover, the resulting

low-energy DOS is much less sensitive to details such as the precise form of the band

structure and any in-phase order parameter variations, i.e., the peak at zero energy

is inert. In this respect, extended impurities behave more like flat boundaries than
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like point-like impurities.

The theoretical distinctions between point-like and extended impurities raised

here have, to some extent, been addressed experimentally via scanning tunneling

spectroscopy on Bi2Sr2CaCu2O8 surfaces [67, 68]. Work on native defects [67, 68],

which often appear to be essentially point-like in STM imaging, yield weak signatures

in the (smeared, local) DOS near each defect. Such signatures can each be interpreted

as being induced by a point-like impurity that yields a resonance of unit weight. In

contrast, the artificially-induced defects described in Ref. [68], which appear to be

more extended in STM imaging, show much stronger signatures in the DOS. This is

consistent with the idea that extended impurities produce many states, as the present

work indicates.

9.2 Bogoliubov-de Gennes eigenproblem

We regard the single-quasiparticle excitations as being described by the Bogoliubov-

de Gennes (BdG) eigenproblem [4, 69]
(

ĥ ∆̂

∆̂† −ĥ

)(
u

v

)
= E

(
u

v

)
, (9.1)

where the components u(x) and v(x) of the energy eigenstate respectively give the

amplitudes for finding an electron and a hole at the position x, E is the energy

eigenvalue, and ĥ = −∇2 − k2
F + V (x) is the one-particle hamiltonian, in which k2

F

is the chemical potential [i.e., kF (≡ 2π/λF) is the Fermi wave vector] and V is

the single-particle potential. We have adopted units in which ~2/2m = 1, where

m is the (effective) mass of the electrons and holes. The operator ∆̂ (which should

ultimately be determined self-consistently) is the pair-potential (integral) operator,

whose action on the wave functions is specified by the (nonlocal) kernel ∆(x,x′) via:

[∆̂v](x) =
∫

dx′∆(x,x′) v(x′). We assume that sufficiently far from the scatterer

∆ returns to the value that characterizes the bulk superconductor (e.g., s-wave, d-
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wave, mixed, etc.). As we shall see below, our computation of the low-energy DOS is

insensitive to the precise form of any suppression of the superconducting order induced

by the single-particle potential, and therefore continues to hold when ∆ is replaced by

its self-consistent value. However, as we shall also see below, induced modifications of

the superconducting order parameter that go beyond simple suppression in a manner

that causes local supercurrents [i.e., via the addition of any intrinsically out-of-phase

component to ∆] spoil this robustness.

9.3 Andreev’s approximation for a strong single-

particle potential

To analyze the BdG eigenproblem we first apply a semiclassical approximation, which

reduces the full problem to a family of first-order differential eigenproblems labeled

by the classical trajectories of a particle at the Fermi energy in the presence of the

full single-particle potential. This amounts to extending the Andreev approximation

to situations in which there is a single-particle potential whose energy scale V0 is

not negligible compared with the Fermi energy. In technical terms, we are making

an asymptotic approximation valid when k2
F À (∆0, E), V0 ∼ k2

F, and V (x) is slowly

varying relative to λF. To implement this approximation we consider the semiclassical

solution of

(−∇2 − k2
F + V (x)) (M(x) eikFS(x)) = 0, (9.2)

i.e., the “large” part of the BdG eigenproblem, where both M(x) and S(x) are taken

to be slowly varying (with respect to λF) [70]. By retaining the first and second

powers in kF we obtain, from Eq. (9.2), the Hamilton-Jacobi equation |∇S(x)|2 =

1−k−2
F V (x) and the conservation condition ∇ ·(M(x)2 ∇S(x)) = 0. We then use the

resulting semiclassical solution, which is specified in terms of the incoming momentum

orientation n via the asymptotic behavior S(x;n) ∼ n · x [71] (for x far from the
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scattering center) and includes all of the fast (i.e., order of λF) variations of the exact

BdG eigenfunctions, to perform a generalized separation of rapidly and slowly varying

components by writing ( u(x), v(x) ) as M(x) eikFS(x;n) ( ū(x), v̄(x) ), where ū and v̄

are assumed to be slowly varying relative to λF. Then, by inserting this form into

Eq. (9.1) we obtain [ĥ
(MeikFSū

)
](x) ∼ −2ikFM(x) eikFS(x;n)(∇S) · (∇ū).

We now turn to the “small” part of the BdG eigenproblem, which involves the

off-diagonal integral operator ∆̂. It is convenient to transform to relative and center-

of-mass coordinates, r and R: ∆̄(r,R) ≡ ∆(x,x′), r ≡ x − x′, 2R ≡ x + x′. Then

the action of ∆̂ can be asymptotically approximated (for k2
F À ∆0) as

[
∆̂

(M eikFS ū
)]

(x) =

∫
dr ∆̄(r,x− r/2) ū(x− r/2)M(x− r/2) eikFS(x−r/2;n)

≈ (M(x) eikFS(x;n))ū(x) ∆eff(x;n), (9.3)

∆eff(x;n) ≡
∫

dr ∆̄(r,x− r/2)M(x)−1M(x− r/2)

× exp
(
ikFS(x− r;n)− ikFS(x;n)

)
, (9.4)

provided we assume that (ū(x), v̄(x)) varies much more slowly than λF. Thus the

task of solving the full BdG eigenproblem (9.1) is reduced to the task of solving

the (classical) Hamilton-Jacobi equation, along with the (2 × 2) first-order partial

differential eigenproblem

(−2ikF∇S ·∇ ∆eff(x;n)

∆∗
eff(x;n) 2ikF∇S ·∇

)(
ū

v̄

)
= E

(
ū

v̄

)
. (9.5)

In fact, the eigenproblem is an ordinary rather than partial one. To see this, recall

the element of Hamilton-Jacobi theory in which one establishes that the solution S of

the Hamilton-Jacobi equation (at least for classically allowed regions) is indeed the

action computed along the classical trajectory xc(·) that solves Newton’s equation

k2
F ∂2

s xc(s) = −∇V (xc) subject to the condition |∂s xc(s)| → 1 as s → ±∞ (so that

the classical motion is at the Fermi energy). Owing to this connection between ∇S
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and ẋc, Eq. (10.7) can be rewritten as [70]

Ĥ

(
ū

v̄

)
= E

(
ū

v̄

)
, Ĥ ≡

(−2ikF∂s ∆eff(s)

∆∗
eff(s) 2ikF∂s

)
,

where ∆eff(s) is defined to be ∆eff(xc(s);n). This family of first-order ordinary differ-

ential eigenproblems is parametrized by n and the impact parameter b, which uniquely

specify the classical trajectory xc(·) from amongst those having energy k2
F.

9.4 Zero-energy states

To search for zero-energy states it is useful to reduce the eigenproblem via the follow-

ing sequence of steps. We apply the unitary transformation (in electron-hole space)

Û ≡ 1√
2
(1

i
1
−i

), under which

Ĥ → Ĥ ′ ≡ Û † Ĥ Û =

(
0 Â

Â† 0

)
, (9.6)

Â ≡ −2ikF∂s − i∆eff(s), Â† ≡ −2ikF∂s + i∆eff(s). (9.7)

We emphasize that it is not possible to arrive at this structure for values of ∆eff

that are intrinsically complex (i.e., cannot be made real by an elementary gauge

transformation), as is the case, e.g., for supercurrent-carrying states. The virtue

of the structure of Eqs. (9.6) and (9.7) is that it allows us to recognize that zero-

energy eigenfunctions of Ĥ ′ have the form (ϕ+

0
) or ( 0

ϕ−
), where the functions ϕ±

obey (2kF∂s ∓∆eff) ϕ± = 0, provided they exist (i.e., are normalizable). Owing to

their first-order nature, these (zero-energy) eigenproblems may readily be integrated

to give ϕ±(s) ∝ exp±(2kF)−1
∫ s

ds′ ∆eff(s′). However, the ability to normalize ϕ±,

and therefore the existence of zero-energy eigenvalues, depends on the form of ∆eff

via the limiting values ∆± ≡ lims→∞ ∆eff(±s) for a given semiclassical path xc(·).
Specifically, for semiclassical paths for which ∆+ ∆− is negative, one or other (but

not both) of ϕ± is normalizable and, therefore, for such paths provide precisely one

zero-energy eigenvalue. On the other hand, for semiclassical paths for which ∆+ ∆−
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is positive, neither of ϕ± is normalizable, and therefore such paths provide no zero-

energy eigenvalues.

This diagnostic for when semiclassical paths lead to zero-energy states allows us

to assemble the zero-energy contributions to the DOS. If, for the sake of concreteness,

we restrict our attention to two-dimensional systems then our approximation to the

low-energy DOS has the form

ρSC(E) = δ(E)
kF

2π

∫
dn db (1− sgn ∆+ sgn ∆−) . (9.8)

This formula should have corrections, which vanish as E tends to zero, coming from

the nodes in the gap of the homogeneous d-wave state, as well as suppression of the

superconducting state near the impurity.

Let us now highlight some features related to Eq. (9.8): (i) The evaluation of

Eq. (9.8) requires only knowledge of the classical scattering trajectories for V . (ii) The

DOS peak is located at zero energy. Corrections to this result, owing inter alia to

particle-hole asymmetry, are of relative order max (1/kFR, ∆0/k
2
F) (where R is the

characteristic linear extent of the impurity potential). These corrections lead to the

splitting and dispersion of the zero-energy peak. (iii) Only the asymptotic signs of ∆

at the ends of the classical trajectories feature; the DOS is unchanged by deformations

of the pair-potential, provided the asymptotic signs are preserved and no out-of-phase

components are induced. (iv) The degeneracy of the zero-energy level, and hence the

weight of the zero-bias STM peak, is proportional to the typical impurity scattering

cross-section (more precisely, of order R/λF), the exact weight depending on the form

of V . (v) For a sparse collection of (extended) scatterers (i.e., scatterers resolvable

at the scale kF/∆0) their contributions to the DOS are roughly additive; for a dense

collection (i.e., for nearly overlapping impurity potentials) the contribution scales

with the linear size of the collection.
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9.5 Connection with Witten’s model of supersym-

metric quantum mechanics and index theory

Having seen, within the context of an explicit computation, the emergence (or oth-

erwise) or zero-energy states, we now discuss the structure that underlies this issue,

namely index theory [56]. The relevant aspect of index theory is Witten’s index

from Witten’s model of supersymmetric quantum mechanics (SUSY QM). The spe-

cific connection is as follows: Ĥ ′2 (c.f. our 9.6) is Witten’s SUSY Hamiltonian; ∆eff

(our 9.4) is Witten’s SUSY potential; A and A† (our 9.7) are proportional to Witten’s

annihilation and creation operators. Indeed, the analysis leading from Eq. (9.6) to

the conditions for the existence of a zero-energy state, mirrors the standard SUSY

QM analysis.

In SUSY QM, an important tool is the Witten index, i.e., the number of zero-

energy states of the form ( 0
ϕ−

) minus the number of the form (ϕ+

0
). If the Witten

index is nonzero then there certainly are zero-energy states (i.e., SUSY is good; see,

e.g., Ref. [53], Sec. 2.1). If the Witten index is zero then there may or may not be zero-

energy states, as contributions may cancel. In the present context, we are not prima

facie concerned with the Witten index and its properties, but rather with ascertaining

the number of zero-energy states. However, owing to the fact that there is at most

one zero-energy state for any semiclassical trajectory (because the normalizability

condition cannot be simultaneously satisfied by both ϕ+ and ϕ−) the (modulus of

the) Witten index does indeed permit the counting of the zero-energy states.

9.6 Discussion and outlook

The condition on the existence of zero-energy states, together with Eq. (9.4), provide

us with a way of calculating the DOS at low energies by a simple counting of the
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number of classical trajectories that start and end with different signs of the super-

conducting pair-potential [see Eq. (9.8)]. Thus, the DOS at low energies depends only

on the classical scattering properties of the single-particle potential .

As we have stressed earlier, this result is valid in the regime in which the single-

particle potential is both spatially extended and strong and the pair-potential is much

smaller than the Fermi energy. Before turning to a discussion (and classification) of

the generic corrections to this result for the DOS, which arise upon the relaxation

of these conditions, we remark that the foregoing approximation scheme and results

also hold for spatially extended single-particle potentials that are weaker than the

Fermi energy. Moreover, in the regime V0.∆0 our results can be extended to the case

of rapidly-varying single-particle potentials (such as are due to point-like impurities).

However, as the strength of the single-particle potential is diminished, the classical

trajectories tend towards straight lines and, hence, the number of trajectories that

“see” different signs of the pair-potential is reduced. This results in a corresponding

decrease in the degeneracy of the zero-energy level, in accordance with formula (9.8).

Indeed, for V0.∆0 the trajectories are essentially straight lines. Thus, there would

be no zero-energy states, but additional resonances (due to the impurity) may arise

if the pair-potential is suppressed.

By contrast, in the regime V0 ∼ k2
F but V (x) rapidly varying (e.g., for strong,

point-like impurities), the approximation scheme that enabled us to reduce the prob-

lem to a family of one-dimensional eigenproblems breaks down, due to the fact that the

previously-neglected ∇M term becomes comparable to previously-retained ∇S term.

The former term introduces diffraction effects in the (quantum-mechanical) scatter-

ing from the single-particle potential, as well as tunneling through the classically-

forbidden region. These effects can be viewed as consequences of nonzero transition

amplitudes between states associated with the classical trajectories, and would result

in the dispersion of the previously-degenerate zero energy states.
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Let us conclude by remarking that the presence of an extended-impurity in-

duced subdominant component to the pair-potential, provided it is in-phase with

the dominant component, would not change the picture presented here: specifically,

formula (9.8) would continue to hold. On the other hand, if an out-of-phase com-

ponent is induced (i.e. time-reversal symmetry is locally broken, as would be the

case, e.g., if the state were locally to become d+is), this would cause the zero-energy

peak in the DOS to split into two peaks of nonzero width [60, 61], symmetrically

located about zero energy, their lineshapes depending on the full (rather than solely

the asymptotic) details of the pair-potential and computable via perturbation theory.

If observed (and provided other sources of splitting such as diffraction effects can

be ruled out), such a splitting would provide strong evidence for extended-impurity

induced local time-reversal symmetry breaking.
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Chapter 10

Probing d-wave pairing

correlations in the pseudogap

regime of the cuprate

superconductors via low-energy

states near impurities

10.1 Introduction

Among the challenges presented by the high-temperature superconductors, one of

the most persistent concerns the anomalous properties of the normal state of these

materials. In particular, the suppression of single-particle spectral weight around the

Fermi energy [74–76] for temperatures above the superconducting transition temper-

ature Tc of the underdoped cuprates indicates that the electronic behavior of these

materials deviates substantially from that of conventional superconductors. There

have been several theoretical scenarios proposed to explain this so-called pseudogap

behavior [77]. In this Chapter, we shall be concerned with a particular one of these,
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viz., the phase-fluctuation scenario [83–86]. According to this scenario, supercon-

ducting correlations in the form of Cooper pairing are presumed to exist (and to

be responsible for the loss of single-particle spectral weight) for temperatures T be-

low the pseudogap onset temperature T ∗. However, in the intermediate temperature

range (i.e. Tc < T.T ∗) the long-range spatial and temporal coherence in the phase

of Cooper-pair wave functions (occurring for T < Tc) is presumed to present only up

to intermediate length scales, having been disrupted on longer length scales by the

presence and motion of vortex excitations. In other words, although long-range phase

coherence is absent in it, the pseudogap regime is quantitatively distinguished from

the conventional non-superconducting state by the presence of substantial, residual,

local d-wave pairing correlations.

Several recent experimental investigations support the phase-fluctuation scenario

as the origin of pseudogap phenomenology, including Refs. [87, 88]. Further steps

towards an understanding the nature of the pseudogap regime would be furnished

by experimental probes that are targeted towards the question of the existence of

the putative local superconducting correlations [89–92]. Such probes would have the

potential to discriminate between scenarios based on pairing correlations and those

in which the pseudogap is due to some other mode of electronic ordering [77]. The

purpose of the present Chapter is to identify one such probe: scanning tunneling spec-

troscopy (STS) measurements of the single-particle spectral function near extended

impurities in the pseudogap regime [93].

Before explaining the nature of this probe, let us pause to recall one of its essential

ingredients. It is has long been recognized [58–60] that the scattering of quasiparticles

between states corresponding to differing signs of the d-wave pair-potential leads

to the existence of low-energy states [94]. Such scattering, and hence low-energy

state-formation, occurs, e.g., at suitably oriented surfaces in the cuprates, leading to

the observed zero-bias anomaly in the tunneling conductance [61]. In the setting of
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impurity (rather than boundary) scattering in d-wave superconductors, low-energy

states, which in this case are localized near the impurities, have been observed in

STS experiments [67, 68], and have been discussed theoretically for the case of point-

like [95] and extended [96, 97] impurities. We remind the reader that these states co-

exist with the continuum of low-energy quasiparticle states associated with the nodes

at which the d-wave pair-potential vanishes. Distinguishing between impurity states

and nodal states is straightforward because the former give a peaked contribution

to the spectral function whereas the contribution from the latter vanishes linearly at

zero energy. (A clear example of this is furnished by the data reported in Ref. [68].)

Returning to our main task, viz., probing the pseudogap regime for pairing corre-

lations, we now state the central idea on which the present Chapter is based. Let us

suppose that the pseudogap state is indeed distinguished by the presence of local (but

not long range) d-wave pairing correlations. The lack of long-range phase coherence

in such a state complicates the experimental observation of the more conventional

signatures of superconducting correlations (such as the Meissner effect). However,

the low-energy quasiparticle states occurring near extended impurities are localized

in space, i.e., their existence only relies on the presence of local d-wave pairing correla-

tions. In consequence, these states should be only weakly affected by the destruction

of long-range superconducting order that occurs at Tc, and hence should “survive”

the transition into the pseudogap state. Thus, if STS experiments were to reveal a

sharp feature in the single-particle spectral function at low voltage bias, this would

be evidence for the presence of local d-wave pairing correlations. And if such experi-

ments were able to characterize the temperature- and doping-dependence of the width

of this spectral feature, this would provide a characterization of the nature of these

finite-range spatial and temporal correlations. Of course, the interpretation of any

experiment conducted at nonzero temperature would have to contend with broaden-

ing (arising, e.g., from thermal fluctuations of the sample). In order to minimize the
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consequent smearing of the spectral function, which has the potential to obscure the

very feature being sought, it would be preferable to examine cuprate systems having

low values of Tc (e.g. heavily underdoped systems).

Why are we focusing on the case of (non-magnetic) extended impurities as a probe

of the pseudogap regime? The main reason underlying this choice is as follows. In the

setting of extended impurities (as well as boundaries) in the superconducting state,

it has been shown that the existence of low-energy quasiparticle states is a direct

consequence of the d-wave nature (or, more precisely, the sign-changing nature) of

the pair-potential [96]. Extending this reasoning to the case of extended impurities

in the pseudogap regime, there the existence of low-energy states strongly depends

on the presence of superconducting correlations of d-wave type.

We note that Kruis et al. [98] have studied the density of states near a point-

like impurity in the context of a simple phenomenological picture of the pseudogap

regime. In this picture, the physics of the pseudogap regime is incorporated through

the hypothesis that, in the absence of the impurity, the single-particle density of

states vanishes linearly at the Fermi energy. At present, the extent to which an

approach based on this picture can yield information about pairing correlations in

the pseudogap regime is not clear.

The present Chapter is organized as follows. In Sec. 10.2 we provide a framework

for discussing the influence of local d-wave pairing correlations on quasiparticle states

near extended impurities [99], focusing on the single-particle spectral function. As we

shall see, our expression for this spectral function will take the form of a density of

states (determined at a fixed, locally phase-randomized d-wave pair-potential) aver-

aged over the fluctuations of the phase field. In Sec. 10.3 we develop a semiclassical

scheme for computing this density of states at fixed pair-potential in which we treat

the long-wavelength pair-potential phase variations via perturbation theory. This

scheme allows us to focus on the contribution to the density of states at low energies,
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which involves states arising from changes in sign (as the momentum is varied) of the

local pair-potential. At this point we will have obtained an expression for the spectral

function which consists of a sum of terms each associated with one classical scattering

trajectory that passes through the vicinity of the impurity potential. In Sec. 10.4.1 we

perform the average over the configurations of the fluctuating pair-potential arrived

at via locally randomizations of the phase, under the assumption that the distribution

of phase-field configurations is Gaussian. We make an approximation to the resulting

expression for the spectral function that is valid for the case of phase correlations per-

sisting beyond the Cooper-pair size, finally arriving at an expression for the spectral

function near an extended impurity that consists of a Gaussian peak the linewidth

of which is proportional to the typical gradient of the phase of the pair-potential. In

this section we also compute the linewidth of the spectral function in the pseudogap

regime, doing so by assuming that the phase fluctuations are governed by the BKT

theory of the two-dimensional XY -model. finally, in Sec. 10.5 we make a numerical

estimate of the linewidth by invoking the results of recent high-frequency conductivity

data [87], and provide some concluding remarks.

10.2 Model of cuprate superconductors with an

extended impurity

In the present section we formulate the task of obtaining the single-particle spec-

tral function in settings of systems of fermions interacting via some fermion-fermion

coupling and also interacting with an external single-fermion potential (which could,

e.g., represent an impurity potential). As our aim is to address the phase-fluctuation

picture of the pseudogap regime of the cuprates, we envision following the standard

field-theoretic route (see, e.g., Ref. [100]) of exchanging the fermion-fermion coupling

for a suitable collective quantum field ∆. Thus we arrive at the following formula for
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the one-fermion Green function G(x, x′):

G(x, x′) =

∫
D∆†D∆ e−S[∆] G(x, x′; ∆)

∫
D∆†D∆ e−S[∆]

, (10.1)

(
∂τ + ĥ ∆̂

∆̂† ∂τ − ĥ

)
G(x, x′; ∆) = −δ(x− x′), (10.2)

i.e., a Bogoliubov–de Gennes Green function for pair-potential ∆, suitably averaged

over quantum field ∆, the action for which is S[∆]. Here, x ≡ (r, τ) where r and

τ are respectively the spatial position (in the two-dimensional CuO2 plane) and the

Matsubara time. Furthermore, ĥ ≡ −∇2−k2
F +V (r), in which k2

F is the chemical po-

tential [i.e. kF (≡ 2π/λF) is the Fermi wave vector], V is the single-particle potential,

and we have adopted units in which ~2/2m = 1, m being the (effective) mass of the

electrons and holes. The operator ∆̂ is the pair-potential (integral) operator; how it

acts is specified by the nonlocal kernel ∆(x, x′) via [∆̂v](x) =
∫

dx′∆(x, x′) v(x′).

Our primary interest is in spectral function ρ(E) in the pseudogap regime as

well as the superconducting-to-pseudogap transition regime. This quantity can be

obtained in the usual way from G(x, x′) as follows:

ρ(E) ≡ −π−1Im tr

∫
d2r G(r, r; ωn)|iωn→E+iδ, (10.3)

G(r, r′; ωn) ≡
∫ β

0

dτ eiωnτG(r, r′; τ, 0), (10.4)

where tr denotes a trace only in the 2× 2 particle-hole space, β ≡ 1/T (i.e., we have

chosen units in which Boltzmann’s constant kB = 1) and the ωn ≡ (2n + 1)πT (with

n integral)are fermionic Matsubara frequencies,and δ = 0+. We shall assume that

the temperature is sufficiently high to validate the neglect of nonzero Matsubara-

frequency modes of ∆, which amounts to treating ∆ as a classical (i.e. non-quantal)

statistical field. Under this static condition, in which the fermion dynamics takes

place in the presence of an unchanging ∆ field, the spectral function ρ(E) may be
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expressed in the form

ρ(E) = 〈ρ(E; ∆)〉, (10.5)

ρ(E; ∆) =
∑

n
δ(E − En), (10.6)

where {En} is the collection of energy eigenvalues of the following Bogoliubov–

de Gennes eigenproblem in the presence of a generic classical configuration of ∆:
(

ĥ ∆̂

∆̂† −ĥ

)(
u

v

)
= E

(
u

v

)
. (10.7)

The notation 〈· · ·〉 denotes the aforementioned static average over ∆, i.e.,

〈O〉 ≡
∫

D∆†D∆ e−S[∆]O∫
D∆†D∆ e−S[∆]

. (10.8)

(We do not specifically indicate that this functional average is only over static config-

urations of ∆.) Thus we have expressed the single-particle spectral function ρ(E) in

terms of a suitably averaged density of states ρ(E; ∆) for a corresponding Bogoliubov–

de Gennes eigenproblem.

Before proceeding with the analysis of the eigenproblem given in Eq. (10.7), we

address the issue of the form of the pairing fluctuations that contribute dominantly

to the average in Eq. (10.5). This amounts to a statement about the physical physical

picture of the pseudogap regime that we are concerned with. Now, as discussed shortly

before Eq. (10.5), we are considering only static configurations of ∆, and therefore we

shall henceforth simplify the notation by writing the pair-potential kernel ∆(x, x′) as

∆(x, x′) = ∆(r, r′). In addition, it is convenient to transform ∆(r, r′) to relative and

center-of-mass coordinates, ρ and R:

∆̄(ρ,R) ≡ ∆(r, r′), ρ ≡ r− r′, 2R ≡ r + r′ . (10.9)

It is then convenient to introduce the Fourier transform of ∆̄ with respect to the

relative coordinate ρ, viz., ∆̄(k,R):

∆̄(k,R) ≡
∫

d2ρ e−ik·�∆̄(ρ,R), (10.10)
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thus obtaining a pair-potential at center-of-mass position R and relative momentum

k.

As mentioned in Sec. 10.1, the scenario for the pseudogap regime with which we

are concerned is based on the dominance of configurations of ∆̄(k,R) of the form

∆̄(k,R) = ∆̄0(k,R) eiϑ(R). (10.11)

Here, the non-fluctuating factor ∆̄0(k,R) is taken to have d-wave form (and can

therefore be taken to be real) [101]. The fluctuating factor exp iϑ(R) varies slowly

with R. By assuming this form for ∆̄(k,R) we are adopting the physical picture of

the state as being one in which there is no long-range superconducting order, but

there are local d-wave superconducting correlations, embodied in ∆̄0(k,R) [102].

In the following section, we obtain ρ(E; ∆) by making use of an elaboration of

Andreev’s semiclassical approach [103] to the Bogoliubov–de Gennes eigenproblem.

This elaboration is appropriate for the setting at hand, viz., one in which there

is a strong single-particle potential. This scheme was used in Ref. [96] in order

to address the low-energy density of states near an extended impurity in a d-wave

superconducting state having a negligibly fluctuating, well-formed condensate. In

contrast, our focus here is on situations in which the fluctuations in the amplitude of

∆ are small, but the phase of ∆ is strongly fluctuating. Thus, although there is local

pairing the system does does not exhibit long-range order.

10.3 Semiclassical approach to the

Bogoliubov–de Gennes eigenproblem

In Sec. 10.2 we showed how the single-particle spectral function ρ(E) can be expressed

as a density of states ρ(E; ∆) for the Bogoliubov–de Gennes eigenproblem at arbitrary

pair-potential ∆, averaged over ∆ with a suitable weight, provided ∆ can be treated
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in the static approximation. To make progress with this Bogoliubov–de Gennes eigen-

problem we invoke, in the present section, a semiclassical approximation under which

Eq. (10.7) reduces to a family of one-dimensional eigenproblems labeled by the classi-

cal scattering trajectories of a particle in the presence of the single-particle potential

V (r). This approximation scheme, which was developed in Ref. [96], is valid provided

that k2
F À {∆0, E} for physically relevant configurations of ∆ (where ∆0 is the mag-

nitude of ∆), and provided that V (r) and relevant configurations of ∆ vary slowly on

the scale of the Fermi wavelength λF.
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Figure 10.1: Schematic illustration of a classical trajectory for a quasiparticle scat-
tering from an extended impurity. Also shown is a depiction of the background d-wave
pair-potential; dots indicate incoming and outgoing quasiparticle momenta.

We now turn to the family of one-dimensional eigenproblems arising in our semi-

classical scheme. Following Ref. [96], it is straightforward to determine that the

emerging trajectory-dependent eigenproblem has the form

Ĥ

(
ū

v̄

)
= E

(
ū

v̄

)
, (10.12)

Ĥ ≡
( −2ikF ∂s ∆0(s) exp iϑ(s)

∆0(s) exp−iϑ(s) 2ikF ∂s

)
, (10.13)

∆0(s) ' ∆̄0(kF∂sxc(s),xc(s)). (10.14)
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Here, ϑ(s) ' ϑ(xc(s)), and the parameter s measures the position along a particular

classical trajectory xc(s), the latter obeying the Newton equation

k2
F ∂2

sxc(s) = −∇V (xc(s)). (10.15)

Each such classical trajectory (and associated eigenproblem) is labeled by an impact

parameter b and an incoming momentum direction n.

Our next task is to obtain the low-energy eigenvalues associated with Eq. (10.12)

for the case of a d-wave pair-potential subject to generic spatial phase variations,

i.e., Eq. 10.11. To do this, we perform a local unitary transformation of Ĥ, i.e.,

Ĥ → U Ĥ U †, where

U(s) ≡
(

e−iϑ(s)/2 0

0 eiϑ(s)/2

)
, (10.16)

and thus our eigenproblem acquires the form

(Ĥ0 + Ĥ1)

(
ū

v̄

)
= E

(
ū

v̄

)
, (10.17)

Ĥ0(s) ≡
(−2ikF ∂s ∆0(s)

∆0(s) 2ikF ∂s

)
, (10.18)

Ĥ1(s) ≡
(

kF ∂sϑ 0

0 kF ∂sϑ

)
. (10.19)

The Hamiltonian for this eigenproblem now consists of a term arising from the un-

derlying d-wave pair-potential (i.e. Ĥ0) as well as a term that contains all the phase-

variation information (i.e. Ĥ1). Our strategy is to treat Ĥ1 within perturbation

theory, the starting point for which is the identification of the eigenstates of Ĥ0. As

our purpose is to address low-energy states, it is adequate for us to focus on the zero-

energy eigenstate of Ĥ0, if any there be. As we shall discuss below, such states are

guaranteed to arise for certain classical trajectories xc(s) [52, 96]. The condition for

the existence of such a state is determined by the asymptotic properties of ∆0(s): If

∆0(s) changes sign an odd number of times along an entire trajectory then the Hamil-

tonian Ĥ0 associated with that trajectory has precisely one zero-energy eigenstate.
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Said more formally, if ∆± ≡ lims→±∞ ∆0(s) then the condition for the existence of

the zero-energy state is that ∆+∆− < 0. The explicit form of this eigenstate is

ψ±(s) =
1√
2

(
ϕ±(s)

±iϕ±(s)

)
, (10.20)

ϕ±(s) ≡ α± exp±(2kF)−1

∫ s

ds′ ∆0(s
′) , (10.21)

where ψ+ corresponds to the case ∆+ < 0 (so that ∆− > 0) and ψ− corresponds

to the case ∆+ > 0 (so that∆− < 0). The pre-factors α± are normalization factors,

chosen so that
∫∞
−∞ ϕ±(s)2ds = 1.

Let us emphasize some of the important features of these zero-energy states that

hold provided the scatterer creates only trajectories with at most a single sign change

in the pair-potential [104]. First, the presence or absence of these states depends only

on the properties of the d-wave pair-potential far from any impurity, and is insensitive

to any amplitude variations of the d-wave pair-potential that might occur in the

vicinity of this impurity. Second, the wavefunctions ψ±(s) exhibit exponential decay

away from the impurity with a decay constant of order kF/|∆±|, which is proportional

to the BCS correlation length. As this length-scale is known to be short in the

cuprates, these states are indeed an extremely local probe of local superconducting

correlations.

In the absence of phase fluctuations (i.e. in the pure d-wave superconductor),

these zero-energy eigenstates lead to a sharp peak in the density of states at low-

energies [96]. To access the impact of order-parameter phase variations on this peak,

we include the effect of Ĥ1 on the zero-energy state ψ†±(s) within quantum-mechanical

perturbation theory. Thus, the shift in energy of the previously zero-energy eigenstate

associated with a particular trajectory xc(s) (parametrized by n and b) is given by

ε(n, b) ≡
∫

dsψ†±(s) Ĥ1(s) ψ±(s), (10.22)

= kF

∫
ds ∂s ϑ(s) ϕ±(s)2, (10.23)
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where we have used Eq. (10.20) to get from Eq. (10.22) to Eq. (10.23). The spectral

function at fixed pair-potential ρ(E, ∆) consists of contributions from all trajectories

xc(s). As we are restricting our attention to low energies, it is sufficient to consider

only trajectories for which ∆+∆− < 0 (i.e., those for which Ĥ0 has a zero-energy

state). The contribution to the low-energy spectral function at constant pair-potential

due to the perturbed zero-energy states is given by

ρ(E, ∆) ' kF

∫
dn

2π

∫
db δ(E − ε(n, b))

× (1− sgn ∆+ sgn ∆−) , (10.24)

where the factor (1− sgn ∆+ sgn ∆−) ensures that only trajectories that satisfy the

condition ∆+∆− < 0 (i.e. exhibit an asymptotic sign change in ∆0(s)) contribute.

It is important to emphasize that Eq. (10.24) only includes the contribution from

the perturbed zero-energy states, and that there will be additional, smaller contri-

butions to the density of states at low energies. Sources of these include remnants

of the near-nodal quasiparticles states that exist in pure, d-wave superconductors at

arbitrarily low energies.

10.4 Averaging over phase fluctuations

In Sec. 10.3 we obtained an expression for the Bogoliubov–de Gennes density of states

ρ(E, ∆) in the presence of an extended impurity for the case of a pair-potential with

local d-wave character and specific realization of the spatially varying phase ϑ(r);

see Eq. (10.24). In the present section, we calculate the spectral function ρ(E) in

the pseudogap regime by averaging ρ(E, ∆) over suitable configurations of ϑ(r), i.e.,

by inserting Eq. (10.24) into Eq. (10.5). We remind the reader that our scheme for

computing ρ(E) applies to settings in which the temperature is high enough that we

may treat the phase fluctuations classically, as discussed after Eq. (10.4).
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10.4.1 Gaussian model for phase fluctuations

In order to evaluate the average over configurations of the pair-potential in Eq. (10.5)

explicitly, we need a model for the weight of the various configurations. For the

sake of simplicity, we choose the phase-field configurations to have a (zero mean)

Gaussian distribution characterized by the correlator 〈∇αϑ(r)∇βϑ(r′)〉. In terms of

this correlator, it is straightforward to show that the spectral function ρ(E) is a

superposition of Gaussian distributions, one associated with each classical trajectory

on which ∆0 changes sign:

ρ(E) ' kF

∫
dn

2π

∫
db

exp (−E2/2〈ε(n, b)2〉)√
2π〈ε2〉 (10.25)

× (1− sgn ∆+ sgn ∆−) ,

〈ε(n, b)2〉 ≡ k2
F

∫
ds

∫
ds′ ϕ2

±(s) ϕ2
±(s′) 〈ϑ̇(s) ϑ̇(s′)〉. (10.26)

Here, ϑ̇(s) ≡ ∂sϑ(s), and the width 〈ε(n, b)2〉 of each Gaussian contribution is sensitive

to the degree to which local superconducting correlations have been disrupted, as can

be seen by the presence of the phase-phase correlator 〈ϑ̇(s) ϑ̇(s′)〉 in Eq. (10.26). Our

next task, then, is to evaluate the integrals over the parameters s and s′ in Eq. (10.26)

in order to determine the width 〈ε(n, b)2〉 associated with each trajectory (n, b). In

the next section, we carry out this evaluation within an approximation that is valid

for the case of long-wavelength phase fluctuations.

10.4.2 Approximate evaluation of trajectory integrals

In Sec. 10.4.1, we obtained the expression (10.25) for the spectral function ρ(E) near

an extended impurity in the pseudogap regime. In the present section, we make

an approximation to our expression for ρ(E) that makes use of the local nature of

the low-energy states, as well as the long-wavelength nature of the pair-potential

phase variations (appropriate for T&Tc). By local we mean that the wave functions

ϕ±(s) exhibit exponential decay over a length-scale ξ ∼ kF/|∆±| (where ∆0 is the
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bulk d-wave pair-potential), i.e., the BCS correlation length; this can be seen by

examining Eq. (10.21); see [105]. In the cuprate superconductors, this length-scale

is expected to be much shorter than the length-scale ξϑ for typical pair-potential

phase variations (i.e. the inter-vortex spacing). Thus one has a separation of length-

scales: ξϑ > ξ. (Such a separation is a natural ingredient of the phase-fluctuation

picture of the pseudogap regime because for inter-vortex spacings on the order of ξ

the conventional meaning of local Cooper pairs to break down.)

To make the approximation to our expression for ρ(E), consider the integrations

over the trajectory parameters s and s′ in Eq. (10.26). Now, the correlation function

〈ϑ̇(s) ϑ̇(s′)〉 varies appreciably only over length-scales on the order of ξϑ or longer,

whereas the wavefunctions ϕ± decay exponentially, as mentioned, on the length-scale

ξ. Hence, one can make an asymptotic approximation to the s and s′ integrations

which amounts to pulling the correlator out of the integrals. Thus, owing to the

normalization of ϕ±, we have

〈ε2〉 ' k2
F〈ϑ̇(0) ϑ̇(0)〉, (10.27)

independent of n and b.

Next, we turn to the interpretation of the quantity 〈ϑ̇(0) ϑ̇(0)〉. The derivative of

the phase along a particular trajectory is given by

ϑ̇(s) = ẋc(s) ·∇ϑ(x)|x=xc(s)
, (10.28)

By inserting Eq. (10.28) into Eq. (10.27), we see that the correlator of interest is

〈∇αϑ(r)∇βϑ(r)〉 which, by spatial isotropy, has the form δαβ 〈|∇ϑ(r)|2〉/2. According

to the phase-fluctuation scenario, vortex excitations are the dominant mechanism for

generating phase gradients .

How does this information about the phase correlations translate into information

about the spectral function? By noting that trajectories xc(s) involving sign-changes
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in the d-wave pair-potential obey |ẋc| ∼ 1 and using the aforementioned phase-

gradient correlator, we arrive at the width

〈ε2〉 ∼ k2
F〈|∇ϑ(r)|2〉/2 (10.29)

and, hence, our final expression for the spectral function ρ(E):

ρ(E) ' exp (−E2/2〈ε2〉)√
2π〈ε2〉 (10.30)

×kF

∫
dn

2π

∫
db (1− sgn ∆+ sgn ∆−) .

The first factor is a Gaussian in the energy E with a linewidth 〈ε2〉1/2 associated

with the r.m.s. fluctuations in the phase gradient. The second factor (i.e. the integral

over the impact parameter b and the incoming momentum direction n) determines

the scale for ρ(E), essentially by counting the number of sign-changing trajectories,

and is expected to be only weakly temperature dependent. In the next section, we

compute the linewidth within a Berezinskĭı-Kosterlitz-Thouless-like model of phase

fluctuations near Tc.

10.4.3 Linewidth near the superconducting phase boundary

To make further progress, we now attempt to calculate the spectral function linewidth

due to the phase fluctuations accompanying the destruction of superconducting order

in the neighborhood of Tc. We shall do this by choosing a particular weight for the

phase fluctuations, viz., that associated with the two-dimensional XY -model [106–

108]. Our analysis is reminiscent of that due to Franz and Millis [84] who addressed

the bulk single-particle spectral function in the pseudogap regime. In the present

context, this analysis is provided solely for illustrative purposes, and is only meant

only to provide a rough estimate of the linewidth.

Let us consider the XY -model action,

S[∆] =
K

2

∫
d2r |∇ϑ|2, (10.31)
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where K ≡ ρs(T )/T in which ρs(T ) is the temperature-dependent superfluid den-

sity [109]. Note that we are not suggesting that the true critical fluctuations of the

cuprate superconductors necessarily lie in the universality class of the two-dimensional

XY -model, but simply that the intermediate length-scale fluctuations proposed as

leading to pseudogap phenomena may adequately be modeled by Eq. (10.31). The

form for 〈|∇ϑ(r)|2〉 for the XY -model may be calculated following the Debye-Hückel-

type analysis of Halperin and Nelson [111], giving

〈|∇ϑ(r)|2〉 ' 2

πξ2
ϑK

∗ ln Λξϑ, (10.32)

in which K∗ is the short length-scale stiffness (obtained using the Kosterlitz renormalization-

group equations), Λ is a short-distance cutoff, and ξϑ is a length-scale characterizing

the typical inter-vortex spacing. The principal temperature dependence in Eq. (10.32)

arises via ξϑ: near TBKT [i.e. the transition temperature of the model (10.31), which

is expected to lie not far below Tc] ξϑ is proportional to exp
√

Θ/(T − TBKT), where

Θ is a constant of order unity (which we do not try to calculate in detail).
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Figure 10.2: Spectral linewidth versus (T − TBKT)/Θ. Inset: Immediate vicinity of
the transition.

The proliferation of unbound vortex excitations upon warming through the BKT

transition is reflected by this strong diminution of ξϑ and causes a concomitant dra-

matic increase in the linewidth of the spectral function:

〈ε2〉1/2 ∝ exp
(
−

√
Θ/(T − TBKT)

)
. (10.33)
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Observation of a fluctuation-broadened peak in the spectral function, e.g., via STS

measurements, would provide striking evidence in support of the phase-fluctuation

scenario. Moreover, the temperature dependence of the linewidth would, e.g., provide

access to the details of the vortex-unbinding transition.

10.5 Numerical estimate of the linewidth; Con-

cluding remarks

In the previous section we saw how one could estimate the temperature dependence of

the linewidth of the spectral function near the superconducting transition temperature

Tc. In the present section we make a rough numerical estimate of this linewidth

at one particular temperature in the pseudogap regime by appealing to the data

obtained in the high-frequency conductivity experiments of Corson et al. [87] on

Bi2Sr2CaCu2O8+δ. We shall be specifically concerned with the interpretation of these

data inasmuch as they provide access to the characteristic vortex density.

Until now we have been working with a system of units in which ~2/2m = 1.

Restoring conventional units in Eq. (10.29) gives for the linewidth

〈ε2〉1/2 ∼ ~2

2m
kF〈|∇ϑ(r)|2/2〉1/2. (10.34)

To estimate this width, we turn to the Corson et al. experiments and its analysis by

Corson et al., which is based on the notion that, at sufficiently high frequencies, the

conductivity probes short-length-scale pairing correlations, and leads to an estimate

for the characteristic density of free vortices nf . Assuming that is is vortex excitations

that lead to phase fluctuations, one expects that, up to a constant of order unity,

〈|∇ϑ(r)|2〉 ' nf .

Now, Corson et al. obtain values of nf that are on the order of 0.003 avc (for

T ∼ 75K), where avc is the area of the core of a vortex. If we take the vortex core to
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be a disk of radius ξ ' 1 nm, this leads to the value nf ∼ 103 µm−2. Then, using the

order-of-magnitude estimate kF ' 1 nm−1, Eq. (10.34) gives 〈ε2〉1/2 ' 9 meV.

The value of this estimate is that it shows that, for at least one cuprate material,

there is a temperature at which the free-vortex density is small enough that phase

fluctuations only weakly perturb the energies of the quasiparticle states. Hence, the

linewidth arising from perturbed zero-energy states can be rather smaller than the

scale of the superconducting energy gap (and hence small enough to justify the our

picture of perturbed zero-modes) but be large enough to be resolvable in STS mea-

surements, such as those of Yazdani et al. [68]. Larger densities of free vortices, and

hence large line-widths, would result from working at higher temperatures. More-

over, near Tc the vortex density is expected to show a very strong dependence on

temperature, which should confer a strong temperature dependence on the linewidth.

Of course, if conducted at the temperature of the Corson et al. experiments, thermal

broadening would complicate the task of accessing the intrinsic linewidth (i.e. the

linewidth due to phase fluctuations); recall that 10 K is equivalent to 1 meV. Thus,

as emphasized in Sec. 10.1, one should consider performing experiments on materials

having a lower Tc, so that the pseudogap regime can be explored at temperatures at

which thermal broadening is less significant. These considerations indicate that it is

at least conceivable that STS experiments near extended scatterers could provide a

sharp test of the phase fluctuation scenario for the pseudogap regime.
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Appendix A

Application of boundary integral

technique to the Helmholtz and

Bogoliubov–De Gennes wave

equations

The underlying strategy employed in this Paper is the boundary integral technique [45],

the origin of which was Fredholm’s analysis of the existence of soluions of the interior

Laplace problem subject to Dirichlet boundary conditions. In this scheme, Fredholm

transformed the task of solving the Laplace partial differential equation (subject to

Dirichlet boundary conditions) to one of solving a certain integral equation residing

on the boundary. This prompted Fredholm to develop the theory of what are now

known as Fredholm integral equations and, in particular, to prove the existence of a

solution of the corresponding Laplace problem.

In the present context of spectral geometry, the virtue of this boundary integral

technique is that it allows one to harness the piecewise homogeneity of the system

(and the corresponding simplicity of the fundamental Green functions in the locally

homogeneous regions) and, thereby, to study the physical implications of the bound-
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ary in as direct and a natural manner as possible.

The aim of this appendix is to provide a guide to the boundary integral technique,

beginning with the simplest setting and working towards the setting of the BDG

eigenproblem. When discussing the simplest settings we shall borrow heavily from

Refs. [46, 47]. The elaborations that we shall be needing for the BDG setting arise

from (i) the multicomponent nature of the eigenproblem, and (ii) the presence of

matching rather than boundary conditions. We mention that Jackson [48] gives a

highly readable discussion of the physics of the potential discontinuities that are a

pivotal feature of boundary integral techniques.

A.1 Review of elementary ingredients

In this section we shall discuss the origin of the discontinuities in the three-dimensional

potential and the fields generated by surface charge (which we call single-layer) and

dipole (which we call double-layer) densities, as well as present derivations of explicit

formulas quantifying such discontinuities. Such formulas will become useful in the

next section, where we discuss parametrizations of wave functions in terms of these

single and double layers.

Before turning to the derivation, we consider a simple example which contains

the essential features: a planar charge layer with constant charge density ν. Without

loss of generality, let us assume that the charge layer lies in the xy plane, so that

the normal direction nis ẑ. Then the potential ϕ and the field E are given by the

following surface integrals:

4πϕ(x) = ν

∫
dσα

1

|x−α| , (A.1)

4πE(x) = −ν

∫
dσα ∇x

(
1

|x−α|
)

= ν

∫
dσα

x−α

|x−α|3 , (A.2)

where x ≡ (x, y, z), α ≡ (x′, y′, 0), and dσα ≡ dx′ dy′. Owing to translational invari-

ance in the xy plane, ϕ(x) = ϕ(z) and E(x) = ẑE(z). Without loss of generality,
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let us choose x = y = 0, and focus on E(z). By introducing the polar coordinates

(x′, y′) = (r cos θ, r sin θ), the integral for E(z) becomes

E(z) = ν

∫
r dr dθ

z

4π(z2 + r2)3/2
=

ν

2

∫ ∞

0

rdr
z

(z2 + r2)3/2
=

ν

2
sgn(z) (A.3)

For z > 0, E(z) is independent of z and equal to ν/2; for z < 0, E(z) is independent

of z, however it is equal to −ν/2 and for z = 0, E(z) vanishes. The mathematical

origin of this discontinuity is the noncommutativity of the limit z → 0 and the surface

integral in Eq. (A.3). Thus the value of ϕ is continuous as it approaches the surface

but its normal derivative (in this case partial derivative with respect to z) is not.

This discontinuity can be summarized by the equation

lim
z→0+

ϕ = ϕ|z=0, lim
z→0−

ϕ = ϕ|z=0, (A.4)

lim
z→0+

∂ϕ

∂z
= −ν

2
+

∂ϕ

∂z

∣∣∣
z=0

, lim
z→0−

∂ϕ

∂z
=

ν

2
+

∂ϕ

∂z

∣∣∣
z=0

. (A.5)

Now consider a generic charge layer ν(α) on the surface ∂V , and focus on the

potential generated by via the Helmholtz (instead of Coulomb) Green function

ϕ(x) =

∫

∂V
dσα gH(x, α) ν(α). (A.6)

As in the case of the simple example of homogeneous planar charge layer, the potential

generated by this generic charge layer is continuous,

lim
x∈V→�∈∂V

ϕ(x) =

∫

∂V
dσα gH(β, α) ν(α), (A.7)

but its normal derivative is not. In order to see this, consider the normal derivative

nβ ·∇x ϕ(x) as x in V tends to a generic point on ∂V , which we denote by β, along

the interior normal and divide the domain of the surface integration into two parts:

(i) a small region Dδ ≡ Cδ

⋂
∂V , where Cδ is a sphere of radius δ around β and

(ii) remaining domain Dδ ≡ ∂V − Dδ, then

lim
x∈V→�∈∂V

nβ ·∇x ϕ(x) = lim
ε→0

∫

Dδ

dσα
∂

∂ε
gH(β + εnβ,α) ν(α)

+ lim
ε→0

∫

Dδ

dσα
∂

∂ε
gH(β + εnβ, α) ν(α) (A.8)
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where ε is the perpendicular distance between x and β. The virtue of this separation

is that the singularity of gH(β,α) at β = α is now contained in the first term on the

right hand side of the Eq. (A.8). As the integrand of second term on the right hand

side of this equation is free of singularities, the limit can be taken inside the integral

sign. Moreover within Dδ and for δ and ε very small,

∂

∂ε
gH(β + εnβ,α) ≈ ε

4π(ρ2 + ε2)3/2
, ρ ≡ |α− β|2. (A.9)

Then the integral over the domain Dδ can be evaluated for small δ as follows

lim
ε→0

∫

Dδ

dσα
∂

∂ε
gH(β+εnβ, α) ν(α) = lim

ε→0
ν(β)

∫ 2π

0

dθ

∫ δ

0

ρ dρ
ε

4π(ρ2 + ε2)3/2
=

1

2
ν(β).

(A.10)

Now that we have evaluated the singular part of the surface integral we take the limit

δ tends to zero:

lim
x∈V→�∈∂V

nβ ·∇x ϕ(x) =
1

2
ν(β) + lim

δ→0

∫

Dδ

dσα nβ ·∇β gH(β,α) ν(α) (A.11)

=
1

2
ν(β) +

∫

∂V
dσα nβ ·∇β gH(β, α) ν(α). (A.12)

We note that this discontinuity originates again from the noncommutativity of limit

x → β and the surface integral. Moreover the calculation of the amount of this

discontinuity involves only the form of gH for small values of distance between its

arguments and this form is simply the Coulomb Green function. Thus, in essence,

this discontinuity is the same as the discontinuity in the simple case of a planar,

electrostatic-charge layer discussed at the beginning of this section.

Let us now consider the potential generated by a generic dipole density µ(α) on

∂V , viz.

ϕ(x) =

∫

∂V
dσα nα ·∇α gH(x,α) µ(α). (A.13)

Notice the similarity of this form to that of the normal derivative of the potential

generated by the charge layer, only difference being the normal derivative acting on

the second rather than the first argument. However, as the GH is a function of the
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difference between its arguments, one expects a similar discontinuity on the potential

across the surface. Let us now consider the case in which x approaches to a surface

point denoted by β from V . Indeed,

lim
x∈V→�∈∂V

ϕ(x) = lim
x∈V→�∈∂V

∫

∂V
dσα nα ·∇α gH(x,α) µ(α) (A.14)

= lim
x∈V→�∈∂V

∫

Dδ

dσα nα ·∇α gH(x,α) µ(α)

+ lim
x∈V→�∈∂V

∫

Dδ

dσα nα ·∇α gH(x,α) µ(α) (A.15)

= − lim
x∈V→�∈∂V

∫

Dδ

dσα nβ ·∇x gH(x,α) µ(α)

+ lim
x∈V→�∈∂V

∫

Dδ

dσα nα ·∇α gH(x,α) µ(α),(A.16)

where in order to get to the third line we have used ∇xg
H(x,x′) = −∇x′g

H(x,x′),

and that in Dδ, as δ goes to zero, nα → nβ. Notice that the first term in the right

hand side of Eq. (A.16) is equal to the first term in Eq. (A.10). Thus in the limit δ

goes to zero, we have:

lim
x∈V→�∈∂V

ϕ(x) = −1

2
µ(β) +

∫

∂V
dσα nα ·∇α gH(β, α) µ(α). (A.17)

The discontinuity in ϕ as x approaches to β from V (rather than V), is obtained

similarly, the result is:

lim
x∈V→�∈∂V

ϕ(x) =
1

2
µ(β) +

∫

∂V
dσα nα ·∇α gH(β,α) µ(α). (A.18)

A.2 Single- and double-layer parametrizations of

wave functions; Jump conditions

The first ingredient needed for the construction of a MSE is the parametrization of a

wave function in terms of single or double layers. As this aspect of classical potential

theory might be unfamiliar to some readers, we first illustrate it in the simpler setting

of the Helmholtz wave equation, before turning to the BDG wave equation.
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A.3 Parametrizations for scalar Helmholtz wave

functions

Consider the Helmholtz wave equation,

(∇2 + E) ϕ(x) = 0, (A.19)

for the wave function ϕ(x) in the region V (which we define to be the region outside

some region V bounded by the closed surface ∂V). Then, from potential theory [46, 47]

it is known that the solutions ϕ(x) can be parametrized in terms of a function ν(α)

defined only on ∂V , via the integral

ϕ(x) =

∫

∂V
dσα gH(x−α) ν(α). (A.20)

Here, x and x′ are positions lying in V , Greek letters, such as α, represent vectors

on the boundary ∂V (as they do throughout this Paper), and gH(x − x′) is the

fundamental Green function for the Helmholtz wave equation, which satisfies

(∇2 + E) gH(x− x′) = δ(3)(x− x′). (A.21)

One can interpret the parametrization by saying that the wave function ϕ(x) is the

Helmholtz wave function due to a single layer of charge of surface density ν(α).

Where does this parametrization come from? First, note that the wave func-

tion (A.20) does indeed satisfy Eq. (A.19). To see this, observe that x and α are

never coincident (α lying on ∂V but x lying in V) so that gH(x−α) solves Eq. (A.19)

for any α, and the parametrization A.20 is simply a superposition of such solutions.

Second, recall that by Green’s theorem one has

ϕ(x) =

∫

∂V
dσα ∂α gA(x, α) ϕ(α)−

∫

∂V
dσα gA(x,α) ∂αϕ(α), (A.22)

where gA(x, α) is any Helmhotz Green function (i.e. not necessarily the fundamental

one). In the most common setting, one then chooses the Green function that satisfies
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the homogeneous version of the boundary condition on ϕ, thus eliminating all absent

boundary information and arriving at an expression for ϕ(x) in terms of information

known about ϕ on ∂V . Here, instead, one takes a different tack. One selects for gA

the fundamental Green function gH, jettisons the first contribution to the right hand

side of Eq. (A.22), and accommodates for this by replacing the boundary information

on ∂ϕ by the (as-yet unknown) single-layer ν(α).

Representations of wave functions by surface integrals are available in other set-

tings, too. We have considered wave functions satisfying the Helmholtz wave equation

outside the region V (i.e. the so-called exterior problem). One can also consider wave

functions satisfying the Helmholtz wave equation inside the region V (i.e. the so-called

interior problem).

Furthermore, one can parametrize wave functions satisfying the Helmholtz wave

equation in other ways. For example, consider wave functions inside the region V ,

which one can parametrize as

ϕ(x) =

∫

∂V
dσα ∂α gH(x−α) µ(α). (A.23)

In this case ϕ(x) is the Helmholtz wave function due to a layer of dipoles on ∂V
of local strength µ(α) and local orientation normal to ∂V at each point α. (We

denote such surface normal vectors as nα, and adopt the convention that they point

towards the interior of V .) One can, of course, regard this dipole layer as consisting

of two single layers, vanishingly close to one another and locally carrying opposite

charges, in the limit that the charges become large and the layer separation becomes

correspondingly small. Such layers are referred to as a double layers . The normal

component of the gradient acting on the Green function accounts for the fact that this

parametrization features opposing, vanishingly close, layers. As with the single-layer

parametrization (A.20), that the parametrization (A.23) satisfies Eq. (A.19) follows

because x and α are never coincident, so that gH(x−α) solves Eq. (A.19) for any α.

Motivation for the parametrization (A.23) also follows from consideration of Green’s
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theorem, Eq. (A.22), but with the second contribution on the right hand side being

jettisoned, rather than the first .

There, of course, remains the issue that whether all solutions can be expressed

in terms of these parametrizations. It turns out that if one uses the double-layer

parametrization for interior wave functions, and the single-layer parametrization for

exterior wave functions then any solution can be thus parametrized. The converse

problem (i.e. parametrizing interior wave functions using double layers and exterior

wave functions using single layers) is also possible, provided certain supplementary

conditions are satisfied; see, e.g., Refs. [46, 47]

We note that the strategy that we are adopting can be implemented in more

general settings. For example, one might consider the case of disconnected supercon-

ducting regions connected by normal regions, and thus address the issue of Joseph-

son tunneling between them. One might also consider disconnected normal regions

connected by superconducting regions, and thus address the issue of single-particle

tunneling between them.

The utility of these parametrizations is that they can be used to transform partial

differential equations in V or V into Fredholm integral equations that reside on ∂V ,

and as we shall see in the following section, such integral equations prove useful in

some cases, especially if the integral equation is of the second type, i.e., if an iterative

solution is possible.

We now turn to the second ingredient needed for the construction of a MSE, viz.,

jump conditions . It is an important result of potential theory that the parametriza-

tion of wave functions in terms of single and double layers, such as those given in

Eqs. (A.20,A.23), leads to representations of wave functions that behave in a singular

fashion for field points x on the surface ∂V . It is precisely this singular behav-

ior, and the attendant jump conditions, that are responsible for the utility of these

parametrizations and, as we shall see shortly, lead to the formulation of integral equa-
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tions for the layer strengths, single or double, known as boundary integral equations .

These equations incorporate what ever boundary conditions one wishes to impose

on the wave function. By solving boundary integral equations one arrives at layer

strengths that parametrize the wave functions.

There are three virtues to this boundary integral equations formulation. First,

the boundary integral equations reside solely on the boundary ∂V (i.e. on a manifold

of dimension one fewer than the original wave equation). From the computational

standpoint it is economical to formulate a problem in terms of functions that reside on

lower-dimensional manifolds (and hence depend on fewer variables). Second, from the

theoretical standpoint, existence theorems have been established for broad classes of

integral equations, often encompassing the boundary integral equations that emerge

from specific examples. (In fact, it was the goal of establishing exitence theorems for

solutions to the Laplace equation in various settings—interior or exterior, Dirichlet

or Neumann boundary conditions—that inspired Fredholm to develop the boundary

intergal equation approach to potential theory, and subsequently to develop the theory

of what we now know as Fredholm integral equations.) And third, from the physical

standpoint, boundary integral equations and their iterative solution allow one to

organize the computation of wave functions in terms of the multiple scattering of

waves from interfaces that separate spatially homogeneous regions, along with free

propagation between those scattering events. Thus, one is in a position to focus on

the boundary scattering events, and thereby to focus on the geometry of the boundary

and the implications of its shape for the physical problem at hand. In essence, we are

invoking the piecewise homogeneity of the system to “integrate up” our description of

it, leaving us with the need to consider one fewer independent variable. As a result of

this “integrating up,” we depart from a purely local description, in terms of differential

equations, and arrive at a nonlocal formulation in terms of integral equations.
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A.3.1 Jump conditions for one-component Helmholtz wave

functions

Consider the single-layer parametrization for Helmholtz wave functions in the region

V , given by Eq. (A.20). Now, it is known from potential theory that this parametriza-

tion is singular as x goes to any value β on the boundary (see App. A.2). Specifically,

ϕ(x) is continuous whereas nβ ·∇x ϕ(x) is not, but the discontinuity of the latter has

a known and useful form:

lim
x∈V→�∈∂V

∫

∂V
dσα gH(x−α) ν(α) =

∫

∂V
dσα gH(β −α) ν(α); (A.24)

lim
x∈V→�∈∂V

nβ · ∇x

∫

∂V
dσαgH(x−α) ν(α) = (A.25)

1

2
ν(β) +

∫

∂V
dσα nβ · ∇β gH(β −α) ν(α).

Now consider the double-layer parametrization of the Helmholtz wave functions

on the region V , given by Eq. (A.23). It is known from potential theory that this

parametrization is also singular as x goes to any value of β on the boundary (see

App. A.2). However, in this case ϕ(x) itself is discontinuous, and nβ ·∇xϕ(x) is even

more singular, the discontinuity of ϕ(x) being given by

lim
x∈V→�∈∂V

∫

∂V
dσα ∂α gH(x−α) µ(α) =

1

2
µ(β) +

∫

∂V
dσα gH(β −α) µ(α). (A.26)

Although nβ · ∇xϕ(x) diverges on ∂V , it is yet a further result from potential theory

that the values of the limits of this quantitity, as x approaches any point β on ∂V
either from V or from V , are equal to one another. It will, therefore, prove to be

convenient to redefine the quantity nβ · ∇xϕ(x)|x=� as its limiting value:

∫

∂V
dσα ∂+

β ∂α gH(β −α) ν(α) ≡ lim
x∈V or V→�∈∂V

nβ · ∇x

∫

∂V
dσα ∂α gH(β −α) ν(α).

(A.27)

Via this definition the normal derivative nβ · ∇xϕ(x) is continuous across ∂V .
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A.3.2 Parametrizations for two-component

Bogoliubov–De Gennes wave functions

We now turn to the issue of parametrizing solutions of the BDG equation (3.6) in

terms of single and double layers, bearing in mind the two-component nature of the

wave functions. For the sake of concreteness, as well as experimental relevance, we fo-

cus on the setting of an Andreev billiard, so that space is partitioned into two regions

by the surface ∂V , with ∆(x) = 0 in the region V inside ∂V (i.e. the normal-metal

region) and ∆(x) = ∆0 in the region V outside ∂V (i.e., the superconducting region).

However, the are no obstacles of principle in applying the present techniques in other

settings, provided they comprise regions of space in which ∆(x) is constant, sepa-

rated by surfaces on which ∆(x) varies discontinuously [i.e. ∆(x) must be piecewise

constant]. The present techniques may also be applied in settings in which other

physical parameters vary in a piecewise continuous fashion.

First, consider the normal-state interior of an Andreev billiard [i.e. a region V
surrounded by a surface ∂V in which ∆(x) = 0] in which the BDG wave functions

satisfy 

∇2 − µ + E 0

0 −∇2 + µ + E







u(x)

v(x)


 =




0

0


 . (A.28)

Solutions of this equation can be parametrized in terms of the two-component double

layer µ(α) in the following way:

ΦN(x) =

∫

∂V
dσα ∂α GN(x−α) · µ(α). (A.29)

Here, GN(x − x′) is the fundamental Green function for the BDG wave equation in

the absence of a pair potential, and is given explicitly by Eq. (3.21). Such solutions

could also be parametrized in terms of the two-component single layer ν(α), as

ΦN(x) =

∫

∂V
dσα GN(x−α) · ν(α), (A.30)
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but it will prove convenient to adopt the former parametrization, Eq. (A.29), rather

than the latter, Eq. (A.30).

The two-component layers, µ(α) and ν(α), reflect the two-component (i.e. elec-

tron and hole) nature of the wave functions. If one were solely concerned with the

case of a normal region, this two-component description would be redundant: as no

matrix elements of the Hamiltonian would connect upper and lower components there

would be no need to adopt a language that embraces wave functions that describe

coherent superpositions of electron and hole states. However, in an Andreev billiard

the normal region is surrounded by a superconductor, the pair potential of which

provides precisely the matrix element connecting electron and hole wave functions.

Therefore it is necessary to adopt this two-component language for the normal region.

In the superconducting exterior of the Andreev billiard (i.e. the region V outside

the surface ∂V in which ∆(x) = ∆0) the BDG wave functions satisfy



∇2 − µ + E −i∆0

i∆0 −∇2 + µ + E







u(x)

v(x)


 =




0

0


 . (A.31)

Solutions of this equation can be parametrized in terms of of the two-component

single layer ν(α) in the following way:

ΨS(x) ≡
(

u(x)

v(x)

)
=

∫

∂V
dσα GS(x−α) · ν(α), (A.32)

where GS(x − x′) is the fundamental Green function for the BDG wave equation in

the presence of a homogeneous pair potential ∆0, and is given explicitly by Eq. (3.30).

Two-component layers are mandatory here, inasmuch as each component of the wave

function is determined by both components of a layer, owing to the presence of

the pair-potential. Such solutions could also be parametrized in terms of the two-

component double layer µ(α), as

ΨS(x) ≡
(

u(x)

v(x)

)
=

∫

∂V
dσα ∂α GS(x−α) · µ(α), (A.33)
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except that under certain circumstances the parametrization must be augmented by

an additional term; see, e.g., Ref. [47]. However, it will prove adequate for us to stick

with the former parametrization.

A.3.3 Jump conditions for two-component

Bogoliubov–De Gennes wave functions

We now echo for the case of BDG wave functions the discussion, given in App. A.3.1, of

the behavior of single- and double-layer parametrizations of Helmholtz wave functions

in the vicinity of the surface ∂V . Consider the double-layer parametrization of the

BDG wave functions on the region V given by Eq. (A.29). This parametrization is

singular, as x goes to any point β on the boundary (see App. A.2), inasmuch as

ΦN(x) is discontinuous, and nβ · ∇xΦ
N(x) is even more singular. From the form of

GN(x− x′), Eq. (3.23), it can be shown that the discontinuity of ΦN(x) is given by

lim
x∈V→�∈∂V

∫

∂V
dσα ∂α GN(x−α) · µ(α)

=
1

2
σ3 · µ(β) +

∫

∂V
dσα ∂α GN(β −α) · µ(α). (A.34)

Although nβ · ∇xΦ
N(x) diverges on ∂V , it can also be shown that that the values of

the limits of this quantitity, as x approaches any point β on ∂V either from V or from

V , are equal to one another. It will, therefore, prove to be convenient to redefine the

quantity nβ · ∇xΦ
N(x)|x=� as its limiting value:

∫

∂V
dσα ∂+

β ∂α GN(β −α) · µ(α)

≡ lim
x∈V or V→�∈∂V

nβ · ∇x

∫

∂V
dσα ∂α GN(x−α) · µ(α). (A.35)

Now consider the single-layer parametrization of the BDG wave functions in the

region V given by Eq. (A.30). This parametrization is singular, as x ∈ V goes to any

value of β ∈ ∂V (see App. A.2). Specifically, ΦS(x) is continuous whereas nβ·∇xΦ
S(x)
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is not, but the discontinuity has a known and useful form. Indeed, from the form of

GS(x− x′), Eq. (3.30), it can be shown that

lim
x∈V→�∈∂V

∫

∂V
dσα GS(x−α) · ν(α) =

∫

∂V
dσα GS(β −α) · ν(α); (A.36)

lim
x∈V→�∈∂V

nβ · ∇x

∫

∂V
dσαG

S(x−α) · ν(α) =
1

2
σ3 · ν(β)

+

∫

∂V
dσα nβ · ∇β GS(β −α) · ν(α). (A.37)

The important point here is that all discontinuities of these parametrizations are

generated solely by components of GN,S proportional to σ3. Other components of

GN,S are proportional to the scalar Green function composition (gN,S
+ − gN,S

− ), and

whatever discontinuity might be generated by the + term is cancelled by a corre-

sponding one generated by the − term. Therefore the discontinuities generated by

the parametrizations have the forms given in Eqs. (A.34) and (A.37).
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Appendix B

(d− 1)-dimensional Fourier

transforms

In this appendix we introduce the d− 1 dimensional Fourier transform for functions

whose arguments are d dimensional vectors, which we use extensively throughout

the text. Mainly, our functions of interest will be the Green functions gN,S
± and the

functions related to them, such as ∂gN,S
± .

The d− 1 dimensional Fourier transform (and its inverse) of a function f(x) of a

d dimensional vector x, are defined by

f̃(κ, z) =

∫

P
dx// ei�·x// f(x), (B.1)

f(x) = (2π)−d+1

∫
dκ e−i�·x// f̃(κ, z), (B.2)

where (x==, z) ≡ x, and x== and κ are vectors on the d − 1 dimensional hyperplane

P perpendicular to the z axis. We now evaluate the (d − 1)-dimensional Fourier

transforms of the functions that are used throughout this Paper. We begin with the

Helmholtz Green function g(x; k2):

g̃(κ, z; k2) =

∫

P
dx// ei�·x// g(x; k2) =

∫

P
dx// ei�·x//

∫
dp

(2π)d

eip·x

p2 − k2

=

∫
dp

(2π)d

∫

P
dx// ei(�+p//)·x//

eipzz

p2 − k2
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=

∫
dp

(2π)d
(2π)(d−1)δ(κ + p//)

eipzz

p2 − k2

=

∫ ∞

−∞

dpz

2π

eipzz

p2
z + κ2 − k2

=
e−a(κ)|z|

2a(κ)
, (B.3)

where a(κ) ≡ √
κ2 − k2 such that Re(a(κ)) > 0. The evaluation of the (d − 1)-

dimensional Fourier transform of ∂δg(x; k2) is very similar, except that now x =

(x//, 0) (i.e. both arguments of the Green function lie on P and the normal direction

is z):

∂δg̃(κ; k2) =

∫

P
dx// ei�·x// ∂δg

(
(x//, 0); k2

)

=

∫

P
dx// ei�·x//

(
− d2

dz2

∫
dp

(2π)d

eip//·x//+ipzz

p2 − k2

) ∣∣∣∣
z=0

=

∫ ∞

−∞

dpz

2π

p2
z eipzz

p2
z + a(κ)2

= −a(κ)

2
. (B.4)

139



Appendix C

Propagation outside the normal

region and nonconvex shapes:

cancellations

In the present section we study cancellations between terms in the MSE, which occur,

in the large kFL limit, when one (or more) of the homogeneous region(s) constituting

the billiard are nonconvex. In the sample billiard shown in Fig. 3.1 the S region is

nonconvex, whereas the N region is convex. Another example in which such cancella-

tions arise is provided by antidot-billiard geometries, in which S regions are embedded

in an N region. For such cases, the N region is certainly nonconvex, and so may be

the S region. In the former case (i.e. convex N; nonconvex S), these cancellations

eliminate terms that include finite–outside-propagation, validating the claim made

in Sec. 5.4 that periodic orbits that include such paths do not contribute at leading

order to the semiclassical DOS oscillations.

In order to bring to the fore the physics underlying these cancellations, consider

a much simpler case: the MRE for the Helmholtz Green function satisfying homoge-

neous Dirichlet boundary conditions [49]. By applying the methods described here,
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α γ δ
β

γ δ

00

Figure C.1: Example of a nonconvex inside and outside regions. Also shown is a
propagation directly from α to β and two-reflection correction.

one can express this Green function in terms of the following MRE:

gD(x,x′) = gH(x,x′)− 2

∫

∂V
∂gH(x,α) gH(α,x′)

+4

∫

∂V
∂gH(x,β) ∂gH(β,α) gH(α,x′) + · · · , (C.1)

where gH is the homogeneous Helmholtz Green function. If the domain V over which

gD is defined is nonconvex then one may be concerned by the presence of amplitudes

involving propagations between pairs of boundary points for which all or part of this

propagation lies outside of V (see Fig. C.1). On physical grounds, one expects that in

the large kL limit the obstacle between these points would suppress such amplitudes.

Balian and Bloch showed that this is indeed the case. To see this, we follow Balian

and Bloch and consider gD for a planar boundary. Then the MRE (C.1) terminates

at the second term:

gD(x,x′) = gH(x,x′)− 2

∫

∂V
∂gH(x,α) gH(α,x′). (C.2)

On the other hand, by using the method of images one has

gD(x,x′) = gH(x,x′)− gH(x, x̃′), (C.3)
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where x̃′ is the mirror image of x′ with respect to the planar boundary. Comparison

of Eq. (C.3) with Eq. (C.2) produces the relation

gH(x, x̃′) = 2

∫

∂V
∂gH(x,α) gH(α,x′). (C.4)

As the length |α − x′| equals the length |α − x̃′|, one can replace x′ by x̃′ in rela-

tion (C.4) and obtain a second relation

gH(x, x̃′) = 2

∫

∂V
∂gH(x,α) gH(α, x̃′). (C.5)

Now suppose ∂V is not planar. Although relations (C.4) and (C.5) no longer hold, in

the large kL limit the dominant contribution comes from the stationary-phase point

and, thus, Eq. (C.5) becomes exact as kL tends to infinity. That Eq. (C.4) is not

exact in this limit is due to the fact that the fluctuation determinant in this case

(viz. when x and x′ are on the same side of the surface) depends on the curvature of

the surface at the stationary-phase point.

Now let us return to what happens for nonconvex surfaces. In particular, consider

a term in MRE in which part of the amplitude has propagation between boundary

points α and β, where part of the line joining α and β lies outside V and intersects

∂V at the points γ0 and δ0 (see Fig. C.1). In relation to this term, consider three

related terms with higher numbers of reflections: (i) the term with one more reflection

near γ0, (ii) the term with one more reflection near δ0, and (iii) the term with two

more reflections near γ0 and δ0. In the MRE, all four are in the sum. The sum of

the part of the amplitude involving direct propagation from α to β and the one with

one more reflection near γ0 is

∂gH(α,β)− 2

∫

∂V
∂gH(α,γ) ∂gH(γ,β). (C.6)

By virtue of Eq. (C.5) this sum vanishes in the kL →∞ limit. The same holds for the

sum of remaining two terms. Thus in the limit kL → ∞ sum of all terms involving

paths that lie partially outside of V vanishes.

142



These considerations extend readily to Andreev billiards. In order to see this, we

must extend the identity (C.5). This can be achieved as follows:

2

∫

∂V
∂GN(x,α) σ3 GN(α, x̃) = 2

∫

∂V

(
∂g+(x, α) g+(α, x̃) 0

0 −∂g−(x,α) g−(α, x̃)

)

=

(
g+(x, x̃) 0

0 −g−(x, x̃)

)
= GN(x, x̃) , (C.7)

where, as in the case of Helmholtz Green functions, ∂V is a planar surface and x and

x̃ lie on different sides of ∂V , and in going to the second line we have made use of

Eq. (C.5). A similar identity holds for GS

GS(x, x̃) = 2

∫

∂V
∂GS(x,α) σ3 GS(α, x̃) = 2

∫

∂V
GS(x̃,α) σ3 δGS(α,x) . (C.8)

This identity can be obtained by performing the matrix multiplication and using

Eq. (C.5) in each matrix element. As in the case of Helmholtz Green functions,

identities (C.7) and (C.8) hold in the large kFL limit, even if ∂V is not planar. As we

did for the Helmholtz case, consider a term in MSE in which part of the amplitude

has propagation between boundary points α and β, where part of the line joining α

and β lies outside V and intersects ∂V at the points γ0 and δ0. However, now we have

additional terms owing to the possibility of propagation between any two boundary

points involving either GN or GS. By using the identities (C.7) and (C.8) it is not hard

to see that, in the large kFL limit, a propagation from α to β is not cancelled only if

the line joining these points lies totally in either V or V , with the propagation involving

the homogeneous Green function appropriate to the corresponding region. Thus, in

the semiclassical limit the terms that survive in the MSE consist of pure reflection or

pure transmission/tunneling. For the example at hand, the surviving term would be

the one with normal propagation from α to γ, superconducting propagation from γ

to δ (i.e. tunneling), and then normal propagation from δ to β
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