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Emergent crystallinity and frustration with
Bose–Einstein condensates in multimode cavities
Sarang Gopalakrishnan1,2*, Benjamin L. Lev1 and Paul M. Goldbart1,2,3

We propose that condensed-matter phenomena involving the spontaneous emergence and dynamics of crystal lattices
can be realized using Bose–Einstein condensates coupled to multimode optical cavities. It is known that, in the case of a
transversely pumped single-mode cavity, the atoms crystallize at either the even or the odd antinodes of the cavity mode at
sufficient pump laser intensity, thus spontaneously breaking a discrete translational symmetry. Here we demonstrate that,
in multimode cavities, crystallization involves the spontaneous breaking of a continuous translational symmetry, through a
variant of Brazovskii’s transition, thus paving the way for realizations of compliant lattices and associated phenomena, such
as dislocations, frustration, glassiness and even supersolidity, in ultracold atomic settings, where quantum effects have a
dominant role. We apply a functional-integral formalism to explore the role of fluctuations in this correlated many-body system,
to calculate their effect on the threshold for ordering, and to determine their imprint on the correlations of the light emitted
from the cavity.

Since the development of modern laser cooling and trapping
techniques, a range of phenomena associated with condensed-
matter physics have been realized in ultracold atomic systems.

The value of these realizations stems from their superb tunability
and purity. Systems realized, so far, frequently involve externally
imposed periodic potentials to simulate, for example, electrons in
static crystal lattices or low-dimensional quantum fluids. Many
areas of condensedmatter—for example, soft matter, glassiness and
supersolidity1—have, however, remained inaccessible to ultracold
atomic physics, because the lattices realized have been imposed
externally using lasers, rather than arising spontaneously from
many-body effects. Therefore, it has not yet proved possible to
realize phenomena that depend on the presence of an emergent,
compliant lattice, capable of exhibiting, for example, dynamics,
defects and melting. Tunable ultracold atomic versions of such
phenomena are welcome because several fundamental issues
remain unresolved, such as the dynamics of glassymedia.

A major advance towards self-generated, dynamical optical
lattices was the discovery of cavity-induced self-organization2–5.
Consider N two-level atoms in a single-mode optical cavity,
interacting with the cavity mode and a pump laser oriented
transverse to the cavity axis. The atoms coherently scatter light
between the pump and cavity modes. Atoms arranged at every
other antinode of the cavity field (that is, one cavity-mode
wavelength λ apart) emit in phase and populate the cavity with
photons, leading to the collective, superradiant enhancement of
the atom–cavity coupling by a factor proportional to the number
of organized atoms. If the pump laser has sufficient intensity and
is red-detuned from the atomic transition (so that the atoms are
attracted to field-intensity maxima), an instability arises: λ-period
fluctuations of the atomic density trigger superradiance, which
enhances the atom–cavity coupling and further traps the atoms
in λ-spaced wells at either the even or odd antinodes. This
leads to greater superradiance, stronger atomic trapping and so
on. The system reaches a spatially modulated steady state when
the energy gain from superradiance is balanced by the cost, in
kinetic energy or repulsive interactions, of confining the atoms
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to the even or the odd sites of the emergent lattice. Signatures
of this non-equilibrium phase transition have been observed
experimentally6, and it has an important role in schemes for cooling
exotic atomic or molecular species7,8.

Single-mode cavities, unlike artificial optical lattices, feature an
emergent lattice depth and a discrete symmetry breaking between
even and odd antinode ordering. However, the locations of the
antinodes are not themselves emergent, instead being fixed by the
cavity geometry. In contrast, even in the simplest multimode cavity
(that is, the ring cavity, which supports two counterpropagating
modes9), the atoms collectively fix the locations of the antinodes,
thus spontaneously breaking a continuous translational symmetry.
As with real crystals, this results in an emergent rigidity with respect
to lattice deformations. In cavities possessing many degenerate
modes, one can anticipate realizing further phenomena associated
with crystallizing systems, including topological defects such as
dislocations and domain walls.

The purpose of this article is to develop and apply a
field-theoretical framework for exploring the quantum statistical
mechanics of correlated many-atom, many-photon systems in
multimode cavities. This framework enables us to treat phenomena
such as quantum phase transitions exhibited by the atom–
cavity system and, in particular, to analyse the consequences
of collective fluctuations, which have a pivotal role in the
formation of ordered states. We apply our framework to the case
of a pancake-shaped Bose–Einstein condensate (BEC) confined
in a concentric cavity (see Fig. 1), and find a transition to a
spatially modulated state that realizes Brazovskii’s transition10

and persists to zero temperature, thus becoming a quantum
phase transition of an unusual universality class. Furthermore,
we discuss the imprint of the associated quantum fluctuations in
the correlations of the light emitted from the cavity. Finally, we
generalize our model to incorporate layered, three-dimensional
(3D) distributions of atoms, and find that (in certain parameter
regimes) such systems cannot order globally because of frustration,
and are expected to develop inhomogeneous, static domains.
Indications of such phenomena were observed in simulations
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Figure 1 | The layered atom–cavity system. The cavity is transversely
pumped by two counterpropagating lasers, which create a deep optical
lattice and confine atoms at the antinodes of this lattice. a, The pump laser
antinodes (red sheets) and the atomic BEC confined to a single equatorial
sheet. b, The mode function labelled by (l,m,n)= (2,1,5), or alternatively
by TEM21. The three numbers enumerate the nodes (one fewer than the
number of lobes) in the pump (z), angular and radial directions,
respectively. The radial mode number n is fixed by the requirement that
l+m+n be constant for a family of degenerate modes, and can therefore
be omitted. c, The cross-section of mode TEM21 at one of the end mirrors.

(H. Ritsch, personal communication); in this work, we identify the
origin of these domains.

Spatial ordering in multimode cavities is a form of supersolidity,
because the ordered states are characterized by off-diagonal long-
range order (arising from the BEC of the atoms) as well as emergent
crystalline (that is, diagonal) order. A key difference between our
system and those studied in refs 11 and 12 is that the solidity is
associated with a spontaneously broken continuous symmetry, and
can therefore be used to carry out ultracold atomic versions of
experiments studying the transport properties of supersolids1.

Elements of the model
The system discussed here comprises N two-level bosonic atoms
confined in a multimode optical cavity and pumped transversely
by lasers. In addition to having cavity-mediated interactions, the
atoms repel each other by means of a contact interaction of
strength U ; we focus on the case of Bose-condensed atoms, but
the self-organization phenomenon is not restricted to condensates.
For simplicity, we address one particular kind of multimode cavity,
namely the concentric cavity, which consists of two incomplete
spherical mirrors with coincident centres of curvature. Perfectly
concentric cavities lie at the stability boundary, but it is possible
to make nearly concentric cavities having stable modes that
are frequency-degenerate to within the cavity’s linewidth. The
analysis below focuses on concentric cavities because of their
simple, spherical symmetry structure, but it applies qualitatively
to any cavity having a large family of degenerate modes, for
example, the confocal cavity.

We start with the Hamiltonian H for a 3D system of N
identical two-level atoms, each of mass M and internal electronic
energy-level spacing h̄ωA, interacting with the degenerate cavity
modes and a transverse pump field that varies spatially along the
z direction13:

H =
N∑
i=1

[
|pi|

2

2M
+ h̄ωAσ

z
i

]
+U

∑
1≤i<j≤N

δ(xi−xj)

+

∑
α

h̄ωC a†
α aα+ ih̄

N∑
i=1

∑
α

[
gα(xi) a†

α σ
−

i −h.c.
]

+ ih̄Ω
N∑
i=1

cos(kLzi)(σ−i −σ
+

i )+Hdis (1)

The σ matrices are Pauli matrices acting on the internal state
of the atoms; xi and pi are atomic positions and momenta;
{aα} are cavity-photon-annihilation operators for each mode α;
gα(x)≡ gΞα(x), where g is the atom–cavity coupling strength and
Ξα is the normalized mode function of mode α ≡ (l,m,n) (see
Fig. 1b);Ω is the Rabi frequency (proportional to pump laser field);
kL is the pump laser wave vector; and Hdis consists of dissipative
terms arising from the loss of intracavity photons through the cavity
mirrors and from the spontaneous decay of the atomic excited
state. The net rate of cavity loss is denoted κ (that is, the cavity’s
linewidth), and that of spontaneous decay γ ; we return shortly to a
moremicroscopic analysis of these dissipative terms.

We work in the rotating-wave approximation, and assume
throughout that the pump laser frequency ωL is red-detuned from
the cavity mode by 10–100MHz, and that both of these frequencies
are substantially red-detuned from the atomic transition by
1–10GHz, so that ωL� (ωA−ωL)� (ωC−ωL)> 0. We express
the frequencies in terms of detunings ∆A≡ωA−ωC≈ωA−ωL and
∆C≡ωC−ωL.

To emphasize the spontaneity of the symmetry breaking, we
initially assume that the atoms are confined to the ‘equatorial’ plane
z= 0 by the pump-laser-dipole potential (or by another laser). This
situation, realizable through selective loading techniques14, has the
advantage that, below threshold, the condensate has no external
forces acting on it in the z = 0 plane, so that the choice of the
mode into which the atoms self-organize is a strictly emergent
process. Although a single-pancake cloud would certainly meet this
requirement, so could a narrow,multi-pancake cloud, as long as the
atomic distribution along z does not extend as far as the off-equator
maxima of higher-order (l 6=0) cavity modes along z (see Fig. 1). In
the ‘Frustration in layered systems’ section,we relax this assumption
and discuss the effects of 3D pump–cavity interference.

Effective atomic action
To account for the quantum statistics of the (bosonic) atoms, we
work with second-quantized atomic fields, Ψg(x) and Ψe(x), for
the ground and excited states of the atom, and at fixed chemical
potential µ. Thus, the Hamiltonian (including the chemical
potential term) becomes

H=
∫

ddx
[
Ψ †

g Ψ †
e

][ H0 Hint

H †
int H0+ h̄ωA

][
Ψg

Ψe

]
(2)

where all terms depend on x,H0≡−h̄2∇2/2M+UΨ †
g (x)Ψg (x)−µ

andHint≡ i
(
Ω∗+

∑
α gα(x)a

†
α

)
. As the density of excited-state atoms

is small, we have neglected their self-interactions.
We now reformulate our description of the system plus

environment in terms of functional integrals, a procedure that is
subtle because of the dissipative and driven nature of the system.
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The standard formalism of quantum many-body theory15 assumes
that if interactions are turned on adiabatically in the distant past and
turned off adiabatically in the distant future, the ground state of the
non-interacting system evolves back to itself, up to a phase factor
(that is, adiabatic switching). This assumption does not generically
hold away from equilibrium: a completely general description
of the coupled atom–cavity dynamics requires the Schwinger–
Keldysh formalism16,17, a straightforward extension of our approach
that avoids this assumption. However, in the case at hand, the
assumption of adiabatic switching holds to a good approximation
near the threshold for self-organization, because the energy flux
through the system is negligible on the timescales associated with
the internal dynamics of the system.One can establish the validity of
the aforementioned approximation within the Keldysh formalism;
however, a more transparent argument that uses perturbation
theory is given in the Supplementary Information.

We now transform to a frame rotating at the laser frequency
ωL, and write the coherent-state ‘partition function’—neglecting
spontaneous decay owing to large ∆A—as a path integral over
all of the atomic and photonic fields, with an action S that
consists of atomic, electromagnetic (that is, cavity), interaction
and dissipative parts:

S= Sat+Sem+Sint+Sdis (3)

where

Sat ≡
∫

ddx dτ
[
Ψ ∗g (x,τ )

(
∂τ −

h̄∇2

2M
−
µ

h̄

)
Ψg(x,τ )

+Ψ ∗e (x,τ )
(
∂τ −

h̄∇2

2M
+ωA−

µ

h̄

)
Ψe(x,τ )

+
U
h̄
|Ψg(x,τ )|2

(
|Ψg(x,τ )|2+|Ψe(x,τ )|2

)]

Sem ≡
∫

dτ
∑
α

a∗α(τ )(∂α+ωC)aα(τ )

Sint ≡
∫

dτ dx
[∑

α

igα(x)Ψ ∗e (x,τ )Ψg(x,τ )aα(τ )+h.c.

+ iΩΨ ∗e (x,τ )Ψg(x,τ )+h.c.
]

Sdis ≡
∫

dτ
∑
ε

A∗ε(∂τ +ωε)Aε+
∑
α,ε

κ̃α,εa†
αAε+h.c.

where Aε denote free-space (that is, extracavity) environmental
modes, and τ is imaginary time. We proceed as follows to develop
an effective atom-only action (for details, see Supplementary
Information): first, we carry out the Gaussian path integrals overΨe
and Aε ; next, we carry out the (also Gaussian) path integral over aα ,
thus arriving at an action entirely in terms of the atomic motional
states. Below threshold, this action has the form

Seff =
∑
ν

∫
ddx Ψ ∗(ων,x)

[
iων−

h̄∇2

2M
−
µ

h̄

]
Ψ(ων,x)

− ζ
∑
α

∫
dτ ddx ddx ′ Ξα(x) |Ψ(τ ,x)|2Ξ ∗α (x

′) |Ψ(τ ,x′)|2

+
U
h̄

∫
dτ ddx |Ψ(τ ,x)|4+··· (4)

where {ων} are Matsubara frequencies18, which are Fourier
conjugates of imaginary time, Ξα is the normalized mode function
of mode α and the coupling constant ζ ≡ g 2Ω 2∆C/(∆2

A(∆
2
C+κ

2)).
In taking Seff to be the leading term, we have assumed that
Ω 2

th ≥ g 2N ; this assumption is generally satisfied (see the ‘Experi-
mental considerations’ section).

Order-parameter formulation
We analyse the atom-only action by reformulating it in terms of
an order parameter for self-organization into mode α; the natural
choice for such an order parameter is the expectation value of the
component of the atomic densitymodulation inmodeα:

〈ρα〉≡

∫
dx
〈
|Ψ ∗(x,τ )|2

〉
Ξα(x) (5)

This resembles the order parameter for crystallization, except
that for crystallization one typically has Ξα ≡ eik·x (ref. 19). The
mode structure of the concentric cavity, in contrast, is indexed
by the integers (l,m,n) (see Fig. 1b). The family of cavity modes
nearest the laser in frequency satisfy 2π(l+m+n)=K0R, which is
analogous to the dispersion relation |k|2 = (ωC/c)2; these are the
modes into which the atoms tend to crystallize. Of the modes with
2π(l+m+n)= K0R, those with l = 0 have the largest amplitude
near the equator, and are therefore the first to become unstable as
the pump laser power is increased. Assuming that the atoms are
spread out over a large number of optical wavelengths, we can use
the asymptotic result∫

dx
∏
i

Ξmini(x)≈ δ∑mi,0 δ
∑

ni,0 (6)

which is the analogue of momentum conservation, to derive a
Landau–Wilson action in terms of the order parameter. There are
various cases, all qualitatively similar; we focus on the two simplest
and most instructive ones: T > 0, in the absence of interactions,
and T = 0, with repulsive interactions. In the former case (see
Supplementary Information for details), we arrive at the action

SLW =
∑
mn

[
r
χ
+

(
|m|+n−

K0R
2π

)2
]
ρmnρ−mn (7)

+
4ζ 2NM 2

χ 2h̄2K 4
0

∑
mini

ρm1n1ρm2n2ρm3n3ρm4n4δ
∑

miδn1+n2,n3+n4

where we have scaled ρmn to be dimensionless. The control
parameter r is given by

r = 1−
N ζ

h̄K 2
0 /2M 2

(8)

and χ is a parameter that describes the width about K0 of the
strip of atomic density modes for which the stability is reduced
owing to intracavity-photon-mediated atom–atom interactions.
Contributions to χ arise from the intrinsic linewidths of the cavity
modes, their broadening owing to atom–cavity coupling and the
coupling between the atoms and l > 0 cavity modes (which satisfy
2π(m+ n)< K0R). This action can be understood as follows: for
r > 0, all density fluctuations cost energy, so the system does not
self-organize. For r < 0, the system can lower its energy by forming
a density wave of wave vector 2π(m+ n)= K0R, so the uniform
state is unstable towards self-organization into one (or more) of the
spatiallymodulated states having 2π(m+n)=K0R; the extent of this
modulation is determined by a competition between the quadratic
and quartic terms in the action. The action has no cubic term
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Figure 2 |Ordered state with defects. The ordered states form
two-dimensional patterns. This diagram shows a regime near threshold,
with domains locally populating distinct cavity modes at the equatorial
plane. Domains can be punctuated by dislocations (shown in the left half of
the figure), but might also show textural variation in space (right half of the
figure). The black lines represent nodes of the cavity field, which separate
‘even’ and ‘odd’ antinodes. As the atoms are Bose-condensed, the atomic
population per site is not fixed.

because, to satisfy ‘momentum’ conservation, such a term would
have to involve at least one mode with 2πm ≥ K0R/2. However,
modes with most of their structure in the angular (that is, large
m) direction are suppressed because (1) such modes have higher
diffractive losses20 and (2) the atoms are confined to the intersection
of pump and cavity modes (which lies near the centre of the cavity),
and are therefore locatedmostly nearmodes withm�n.

Consequently, the effective action is not—as one might have
expected—of the Landau form for crystallization19, but is instead
a variant of Brazovskii’s action10, which describes phase transitions
from isotropic to striped structures in various condensed-matter
settings, from diblock copolymers21 to convective patterns22.
Qualitatively, in these systems the uniform state becomes unstable
to a density wave of wave vector k in any direction; the direction
of ordering wanders across the sample, resulting in wavy lamellar
patterns punctuated by defects. In our realization, the condensate
becomes unstable towards self-organization into any mode with
2π(m+n)=K0R; different regions organize into different modes,
leading to a profusion of defect textures and dislocations, as shown
in Fig. 2. In practice, the crystallizing states might not be exactly
degenerate: for example, cavity modes of higher m are of lower
finesse, whereas the repulsive interaction energy is greatest for
atoms crystallizing into modes of lower m. Incorporating fictitious
biasing fields into ourmodel would account for such effects.

A distinctive feature of Brazovskii’s transition is that, owing to
the large manifold (in our case, a strip at 2π(m+n)≈K0R) of low-
energy modes, fluctuations have an unusually strong role near the
transition: they control not only the critical exponents, but even the
order of the transition itself. The mean-field threshold Ωmf for the
pump intensity can be read off from the action SLW by setting r=0:

h̄2K 2
0

2M
=

h̄∆C g 2 Ω 2
mf

∆2
A (∆

2
C+κ

2)
N (9)

This expression is the same as that derived in ref. 5 at zero
temperature using the Gross–Pitaevskii equation; this is because
at low temperatures (T ≤ TBEC) it is primarily quantum effects
that act to delocalize the BEC. Furthermore, mean-field theory
predicts a continuous transition. However, the true threshold Ωth,
which follows from applying Brazovskii’s scheme for including
fluctuations in the action, is higher, and is given by the expression:

Ω 2
th−Ω 2

mf∼

[
g 2∆C

∆2
A(∆

2
C+κ

2)
Ω 8

thMR2

h̄Nχ

] 1
3

(10)

In addition, the transition is first-order: the order parameter jumps
discontinuously from zero. As with other first-order transitions,
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Figure 3 | Effects due to frustration. a, Atoms are loaded into sheets (i)
and (ii), marked by thick red lines, which are an integer number of pump
wavelengths apart. The blue (dashed) and orange (dash–dot) curves are,
respectively, antinodal regions of the modes TEM1m, which have low
intensity near the centres of sheets (i) and (ii), and TEM2m, which have low
intensity away from the centres of sheets (i) and (ii). Near the centre of
each sheet, atoms crystallize into TEM2m; away from the centre, they
crystallize into TEM1m′ . b, Within a sheet, regions may be separated by a
discommensuration, for example, in the left side of the figure, or a
dislocation, for example, in the right side of the figure. Between sheets, the
opposite parity of adjacent modes leads to frustration, which precludes
ordering, as in the regions indicated by a triangle and a square. Dislocations
(squares), being more localized, are less energetically costly than
discommensurations (triangles).

Brazovskii’s proceeds by the nucleation and growth of droplets
of the stable phase. The morphology of these droplets is known
to be rich: there are regimes dominated by anisotropic and
diffuse droplets, as well as ones in which the droplets form
‘focal conic’ structures23.

We now turn to the quantum phase transition at T = 0. As
is generally the case at zero temperature, the effective action in
this case involves an integral over the Matsubara frequency. An
argument adapted from ref. 18 (see Supplementary Information)
yields the effective low-frequency action:

S =
∫

dω
∑
mn

1
ζ

[
r ′+ω2

+χ ′(2π(m+n)−K0R)2
]
|Bωmn|

2

+
U
h̄

∫
d̃τ d2x |B(x,τ̃ )|4+··· (11)

where B describes the collective Bogoliubov excitations of the
condensate, r ′ ≡ (h̄K 2

0 /2M )2 − (ζNh̄K 2
0 /2M ) and χ ′ serves (as

χ did in the classical case) as a broadening of the constraint
2π(m+ n)' K0R. The extra dimension arising from the integral
over ω changes the spectrum of fluctuations; instead of a ribbon of
fluctuations, wemust consider an anisotropic tube. In the extremely
anisotropic limit, large χ ′ (achievable at very weak coupling to
l 6= 0 modes), Brazovskii’s argument applies once again; more
generally, however, this phase transition is of an unusual and
unfamiliar universality class. Power-counting arguments suggest
that the variation of U or χ ′ might tune the system across a
tri-critical point from a Brazovskii-like region to one in which
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the transition is continuous. We shall address this issue using
renormalization-group techniques in future work.

Experimental considerations
It is essential to any experimental realization of the above
physics that the atoms stay Bose-condensed long enough for the
slow dynamics of critical fluctuations to be observable. This is
experimentally challenging because spontaneous emission, as well
as the noise owing to the coupling between atoms and intracavity
photon-number fluctuations, heats a BEC. The rate of heating by
means of spontaneous decay is given by Rγ ≈ γΩ 2/4∆2

A; that due
to fluctuations in cavity photon number, by24

Rc≈Rγ ×
κ2

∆2
C
×

∑
α〈nα〉
N

×
g 2

κγ
(12)

Typical experimentally realizable parameters for a cavity quantum
electrodynamics system showing these phase transitions might
be (g ,κ,γ )= 2π(0.1,0.1,6)MHz (achievable using, for example,
rubidium atoms in a 1 cm concentric cavity with mirrors of
finesse 104); in addition, let us choose ∆C = 2π× 100MHz and
∆A = 2π× 10GHz, and the number of atoms N = 105. With
these parameters, the laser strength at the mean-field threshold
Ωmf

th ≈ 2π× 100MHz, and the true laser threshold is higher by
1–5MHz; therefore, Rγ ≈ 500Hz. Below threshold, when there are
very few photons in the cavity, this is the dominant heating process.
Above but near threshold, nα = (gΩth/∆A∆C)2(ρmn)2 ∼ 10−10ρ2

mn,
where ρmn � N (= 105), so that Rc ≤ Rγ even in this regime.
Heating is therefore dominated by spontaneous emission, and
the criterion for the visibility of critical fluctuations—or other
effects, such as supersolid correlations or glassy dynamics—
is that they take place on timescales faster than 500Hz. An
estimate of the range of pump intensities for which critical
fluctuations should be visible, that is, of the strength of critical
effects, is given by the difference between the old and new
thresholds (which can be obtained from equation (10)); for
the above parameters, critical fluctuations are expected to have
an important role for pump intensities Ωmf

th ± ∆Ω , where
∆Ω ≈ 1 − 5MHz, which is much greater than the 500Hz
heating time and the typical laser intensity noise, and should
therefore be observable.

Correlations of emitted light
The approach developed here can be used to compute atomic
correlations by means of standard diagrammatic techniques;
such correlations are experimentally obtainable as discussed in
ref. 25. Furthermore, transmission through the cavity mirrors
provides a real-time diagnostic channel for critical phenomena near
threshold—for example, diverging correlation lengths and times—
as well as supersolidity, in the spatial and temporal correlations
of the light emitted from the cavity. Such correlations can be
determined from the atomic correlations as explained in the
Supplementary Information. The local variation in particle number
that is characteristic of supersolidity should manifest itself, for
example, in fluctuations in the spatial transmission pattern (as
discussed in a different context in refs 26 and 27).

Frustration in layered systems
We have discussed how an equilibrium atomic cloud, confined
by the pump laser to a plane near the equatorial plane of the
cavity, spontaneously crystallizes globally into one of a family
of degenerate checkerboard arrangements. Now let us consider
an atomic cloud confined to a plane away from the equator of
the cavity. In this case, spontaneous crystallization still occurs,
but, as we shall now explain, the precise arrangement into
which the atoms crystallize varies statically across the plane—for

example, energetics demands that the centre and edge of the
cloud crystallize in distinct arrangements. This is a consequence of
frustration: satisfying local energetic preferences introduces ‘fault
zones’ between locally ordered regions.

In our analysis of equatorial atomic distributions (see Fig. 2),
we were able to restrict the family of modes considered to TEMlm
with l = 0. To generalize our analysis beyond the equatorial plane,
we must consider all modes that meet the degeneracy condition
2π(l+m+n)'K0R. Consider the situation shown in Fig. 3a: near
the centre of each sheet, crystallization into modes with l = 2 is
favoured because such modes have high intensity; away from the
centre, l= 1 modes are favoured. The change in l forces a change in
m or n, owing to the degeneracy condition, so the mode functions
in the sheet must change across an interfacial zone between the
l = 1 and l = 2 regions. Therefore, either a dislocation (associated
with a change in m) or a discommensuration, or change in lattice
periodicity, associated with a change in n, is expected. Moreover,
because odd- and even-l mode functions are of opposite parity
about the z = 0 plane, the interfacial atoms at −z suffer an energy
cost whether they align or anti-align with those at+z ; this cost can
be mitigated through the introduction of dislocations, as shown in
Fig. 3b. (For details see Supplementary Information.)

The full many-layer, many-mode system is expected to experi-
ence similar disordering effects to the idealization sketched above:
that is, one expects systems slightly above threshold to develop
locally crystalline phases separated by fault zones. It is plausible that
these effects will lead, as they frequently do in condensed-matter
systems, to glassiness.

Outlook
The formalism developed here enables one to explore the statics
and slow collective dynamics of a BEC in a multimode cavity. This
is sufficient for the exploration of critical fluctuations, which take
place on extremely long timescales (≥ 1/κ but ≤ 1/Rγ , the heating
time). To explore dynamics on shorter timescales (for example,
defect motion), the formalism of this article can be extended using
the Schwinger–Keldysh technique.

An experimentally relevant question is the extent to which
the ‘supersolidity’ of BECs in multimode cavities enables one
to test fundamental questions about supersolidity. A system well
known in condensed-matter physics that may show supersolidity
is solid 4He, a phenomenon studied by ‘missing moment of inertia’
experiments1. Analogous experiments could be carried out using a
self-organized BEC in a multimode cavity, and imparting angular
momentum to the BEC, for example, bymeans of the pump laser.

Multimode cavity quantum electrodynamics provides a tun-
able setting in which self-organized states spontaneously break
the continuous translational and/or orientational symmetries of
space, rather than the discrete symmetry between the even and
odd sites of either a single-mode cavity or an externally im-
posed lattice. This setting is expected to provide rich and fertile
experimental terrain for probing quantum states of matter pos-
sessing emergent structural rigidity and superfluidity. Amongst
other possibilities, compliant lattices offer the prospect of realizing
fermionic superfluidity through phonon-mediated pairing of ultra-
cold fermionic atoms.
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