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In this document, we elaborate on the derivation of the atom-only action, i.e., Eq. (4) of the main
text, and on the reduction of Eq. (4) to the order-parameter-based actions Eqs. (7) and (11). We
begin with the second-quantized Hamiltonian of the theory, written out in detail:

H =


ddx


Ψ†g(x)


−2∇2

2M
− µ


Ψg(x) + Ψe(x)


−2∇2

2M
− µ+ ωA


Ψe(x)

+U |Ψg(x, τ)|2(|Ψg(x, τ)|2 + |Ψe(x, τ)|2)


+ i


ddx

Ψ†g(x)Ψe(x)


α
gα(x) a

†
α +Ω


− h.c.


+ ωC


α
a†α aα +H (1)

where the terms describing the environmental modes and their coupling to the system are given by

H =


ε
ωεA†εAε +


α,ε
( κα,εA†ε aα +h.c.) + i


ddx


ε

γε(x)A†εΨ†g(x)Ψe(x)− h.c.

(2)

contains the terms describing, respectively, the environmental photon modes, their coupling to the
cavity modes (with coupling constants κ), and their coupling to the intracavity atoms (with cou-
pling constants γ). These terms, when the environmental modes are integrated out, generate the
dissipative effects due to cavity photon loss and spontaneous emission.

Quasi-adiabatic switching

We now justify the limit of approximately adiabatic switching (discussed in the Effective Action
section of the main text), which underpins our functional-integral formalism. The extent to which
the assumption of adiabatic switching fails is given by the flux of energy through the system, which is
the sum of the irreversible contributions due to (i) spontaneous emission and (ii) cavity-photon loss,
viz., Nγ(Ω2/4∆2

A)+2κ


αnα [1]. Below the threshold for self-organization, nα ∝ NΩ2; slightly
above threshold, nα ∝ Ω2ρ2

α, where ρα(∝ N) is the order parameter for self-organization. Our
model, whose focus is to describe the threshold regime, is concerned only with the flux near threshold.
We shall see that Ωth (i.e., the laser’s Rabi frequency at threshold) scales as N−1/2; therefore, below
thresohld, the energy flux is independent of particle number, and contributes negligibly, per particle,
as N →∞.

Above but near threshold, ρα/N  1, because the transition is weakly first-order; together
with the assumption that κ/∆C  1 (see the section on Experimental Considerations in the main
text), this implies that the dissipative dynamics due to cavity loss is dominated by the Hamiltonian
dynamics of the atom-cavity coupling, and for sufficiently large particle number it is therefore valid
to neglect the departure from equilibrium near the transition.

Effective atomic action

In the approximately adiabatic limit, the dynamics described byH can be encapsulated in a coherent-
state functional integral by the procedure described in, e.g., Ref. [2]. We transform the fields into
a frame rotating with the laser as follows: Ψe → Ψee−iωLt, aα → aαe

−iωLt. After doing this, we
Wick-rotate all the fields into imaginary time, as described in Ref. [2]. The central object in the
functional-integral formalism is the quantum partition function,

Z =

[d(Ψg,Ψ∗g,Ψe,Ψ

∗
e, {aα, a∗α}, {Aε, A∗ε})] exp(−S), (3)
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from which densities and correlation functions—which are the objects of primary physical interest—
can be obtained by means of functional differentiation with respect to suitable source terms. The
action is given by Eqs. (3) of the main text, which we reproduce here:

S = Sat + Sem + Sint + Sdis,

Sat =


ddx dτ

Ψ∗g(x, τ)


∂τ −

∇2

2M
− µ




Ψg(x, τ)

+Ψ∗e(x, τ)

∂τ −

∇2

2M
+ ωA −

µ




Ψe(x, τ)

+
U


|Ψg(x, τ)|2(|Ψg(x, τ)|2 + |Ψe(x, τ)|2)


,

Sem =


dτ


α
a∗α(τ) (∂α + ωC) aα(τ),

Sint =


dτ ddx


α
igα(x)Ψ∗e(x, τ)Ψg(x, τ) aα(τ) + iΩΨ∗e(x, τ)Ψg(x, τ) + h.c.


,

Sdis =


dτ


ε
A∗ε (∂τ + ωε)Aε +


α,ε
[κα,ε a†αAε + h.c].

To proceed, we first note that the action is entirely linear or quadratic in (Ψe,Ψ
∗
e). These fields can

therefore be integrated over by completing the square; if we assume that ∆A  U

ddx|Ψg(x)|2,

as is true for weak repulsive contact interactions, this yields

Z =

[d(Ψg,Ψ∗g,Ψe,Ψ

∗
e, {aα, a∗α}, {Aε, A∗ε})] exp(−S) (4)

× exp


−

kBT




dτ dτ ddx


ων ,α,β

e−ων |τ−τ |

iων −∆A


Ψ∗g(x, τ) gα(x) a

∗
α(τ)Ψg(x, τ

) Ω + h.c.




where S comprises all terms in S that do not depend on (Ψe,Ψ∗e), and we have omitted terms that
involve exchange of photons between cavity modes, which are similar in form to the one written
out above. The neglected terms are subleading near threshold, as the cavity photon populations
are small relative to that of the laser mode. For ∆A larger than the other relevant energy scales,
the atom-cavity interaction is local in time as well as space (intuitively, because the virtual “excited
particle” is formed locally and decays almost instantaneously), and the exponent then reduces to
the following simpler form:

gΩ
∆A


dτ ddx

�
|Ψg(x, τ)|2 Ξα(x) a∗α + h.c.


. (5)

(Recall that Ξα is the normalized mode function.) Our next step is to integrate out the environmental
fields Aε; each such integration adds a term to the effective action, and their overall contribution is
as follows [3]:


[d(Aε, A

∗
ε)] exp(−Sdis) ≡ exp(−SCL), (6)

where

SCL = κ


dτdτ 

ε

e−ωε|τ−τ |

4ωε


α
a∗α(τ) aα(τ

). (7)

The expression above can generically be rewritten, at low temperature, as follows:

SCL = κ

ν,α

|aα(ων)|2f(ων), (8)
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where f(ων) is some non-analytic function of ων that depends on the details of the mode-environment
coupling, and is most commonly of the form |ων |β . In the regime where dissipative effects dominate
dispersive ones, this term might modify the physics in interesting ways; in the present case, however,
this term is dominated by the energy of the photons (∼ ∆C) and the important point to note is
that the integrating out of the environment leaves the action quadratic in the cavity photon modes;
these modes can therefore be integrated out along the same lines as the previous integrations, leaving
the effective action given in Eq. (4) of the main text:

Seff =

ν


ddxΨ∗(ων ,x)


iων −

∇2

2M
− µ




Ψ(ων ,x) +

U




dτ ddx |Ψ(τ,x)|4

− ζ kBT



α


dτ dτ  ddx ddx


ν

e−ωC |τ−τ
|

iων − ωC
Ξα(x) |Ψ(τ,x)|2 Ξ∗α(x) |Ψ(τ ,x)|2 + · · · (9)

where ζ ≡ ∆Cζ, and ζ ≡ Ω2g2∆C/[∆2A(∆
2
C + κ2)]. In the case at hand, ∆C being larger than the

typical atomic kinetic energy, the second line of Seff simplifies to Eq. (4) of the main text.

Order-parameter theory at nonzero temperatures

The next step is to re-express the effective action in terms of the order parameter ρmn defined in the
main text. We proceed as follows: we note that the cavity mediated interaction term can be written
as


dτ


mn ζmnρmn(τ) ρ−mn(τ), where ζmn is the cavity-mediated interaction for modulation at

wavenumber m + n. The coupling ζmn is to be considered as being sharply peaked about modes
obeying m + n = K0R/2π. It is helpful to rewrite the partition function as follows, introducing a
Dirac delta functional:

Z =

[d(Ψ,Ψ∗)][dρmn] δ


ρmn(τ)−


ddxΨ∗(x, τ)Ψ(x, τ) Ξα(x)


e−Seff . (10)

We now use the path-integral identity1:

δ[x(τ)] =

[dy] exp


2i


dτ x(τ) y(τ)


to introduce an additional functional integral over a field ρ, so that the partition function takes the
form:

Z =

[d(Ψ,Ψ∗)][dρmn][dρmn] e−Seff−2i


mn(kBT/)


dτρmn[ρmn(x,τ)−


ddxΨ∗(x,τ)Ψ(x,τ)gα(x)], (11)

which is a path integral over Ψ,Ψ∗ and ρ, ρ with the action

S =


dτ


ddxΨ∗(x, τ)


∂τ −

∇2

2M
− µ


+ 2i


mn

kBT


ρmn(τ)Ξmn(x)


Ψ(x, τ)

−


dτ

mn


ζmn ρmn(τ) ρ−mn(τ) + 2ikBT ρmn(τ) ρ−mn(τ)


. (12)

(The above action S does not explicitly contain an interatomic contact repulsion term, but such a
term could, in principle, be included via a redefinition of ζmn.) For a Bose-condensed gas below the
self-organization threshold, the field operators Ψ(x, τ) can be written in terms of condensate and
non-condensate parts as Ψ(x, τ) =


N0/V + Φ(x, τ), where N0(T ) is the equilibrium condensate

fraction at temperature T . Expanding the Bose fields in the basis of m,n mode functions, in which
1Factors of 2π are absorbed into the functional-integral measure.
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they are diagonal, one finds that Ψmn(ων) =
√
N0 δm,0 δn,0 δν,0 + Φmn(ων). Integrating out ρ and

(Φ∗,Φ), which appear quadratically in the action and are not coupled to each other, one arrives at
the action

S =
1
2
Tr ln(M) +

kBT



mnν


1

ζmn
ρmnν ρ−mn−ν −N0 ρmnν (M−1)mnν,mnν ρmnν


, (13)

where the (infinite-dimensional) matrix M is defined by

Mmnν,mnν ≡

iων −

(m+ n)2

2MR2
δmn,mn


δνν +

kBT



pqν

ρpqν δmm+p δnn+q δν+ν,ν . (14)

Below threshold, one can expand the matrix M in powers of the order parameter ρ; the quadratic
term in the action is then given by2


mn

ρmn ρ−mn


kBT

ζmn
− N0kBT

2(m+n)2

2MR2

− (kBT )2

22


pqν

1

iων − (p+q)2

2MR2 − µ

1

−iων − (m+n−(p+q))2

2MR2 − µ


.

(15)
The last expression can be rearranged, if one recalls that


mnν(iων − (m + n)2 − µ)−1 = N −N0

for a Bose-Einstein condensate [2]. (This statement also holds for a non-Bose-condensed gas, if one
sets N0 = 0.) We now use the fact that the particles in a Bose-Einstein condensate typically have
energies that are low compared with the recoil energy to evaluate the last term approximately, and
find that at low temperatures the quadratic term in the action is then given by

kBT



mn

ρmn ρ−mn


1

ζmn
− N

(m+ n)2/2MR2


, (16)

which is the mean-field expression for threshold. Note that this result holds only for sub-recoil
temperatures at which quantum effects are the primary reason for delocalization. We choose ζmn ≡
ζ(1 − χ(m + n − Λ0)2), where χ is the broadening term discussed in the main text. Likewise, we
arrive at the term quartic in ρ by adding up the appropriate terms in the power-series expansions
of log(M) and M−1 and keeping the leading term in a gradient expansion:

(kBT )2N
4K4

0/4M2


mini

ρm1n1 ρm2n2 ρm3n3 ρm4n4 δ


mi,0 δn1+n2,n3+n4 . (17)

To express the action in Brazovskii’s form, we make the rescaling ρ → ρ

ζ/kBTχ. In terms of

the rescaled fields, the full action is given by the following expression, which is of precisely the same
form as Brazovskii’s free energy [4]:

SLW =

mn


1
χ


1− Nζ

K2
0/2M


+ (m+ n− (K0R/2π))

2


ρmn ρ−mn (18)

+
ζ2N

χ22K4
0/4M2


mini

ρm1n1 ρm2n2 ρm3n3 ρm4n4 δ


mi,0 δn1+n2,n3+n4 . (19)

Having reduced the action to Brazovskii’s form [4], we can apply his analysis of the critical behavior to
our model, and in particular the two-dimensional result [5] that the threshold including fluctuations,
ζth is related to the mean-field threshold ζmf

th by the relation

2We specialize to the ν = 0 sector of the order-parameter theory, as this is the only sector of the theory that plays
an important role for thermal phase transitions.
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ζth − ζmf
th ≈ χ

N

K2
0

2M


K0R

2π
ζ2N

χ22K4
0/4M2

 2
3

, (20)

which, upon substituting the definition of ζ in terms of physical parameters, yields the result given
in the main text.

Features of Brazovskii’s model

The free energy functional that Brazovskii originally introduced on phenomenological grounds [4]
has the form

F =


k

�
r + (|k| − k0)2


ψk ψ−k +

λ

12


ki

ψk1ψk2ψk3ψk4δ


ki,0. (21)

As discussed in the main text, this action appears, according to mean-field theory, to have a contin-
uous phase transition at r = 0. Brazovskii’s transition differs from many commonly studied phase
transitions in an important respect: near most phase transitions, the active low-energy fluctuations
are clustered about a point, or isolated set of points, in momentum space (frequently the origin). By
contrast, for the Brazovskii case, as long as the spatial dimension d of the system is two or greater,
the low-energy fluctuations are clustered about a circular shell of nonzero radius given by the stripe
wavevector. (In our realization, we have a ribbon m+n = K0R rather than a shell, but the essential
physics depends only on the dimensionality of the phase space of fluctuations, which is the same in
both cases.) This has the important consequence that the low-energy density of states is effectively
one-dimensional, regardless of d. Fluctuation effects therefore play a strong role, as they commonly
do in 1D systems: in the present case, they control not only the details of critical behavior at the
phase transition but even the order of the transition itself.

Order-parameter theory at zero temperature

In principle, we could follow the procedure we followed above to construct the order-parameter
theory at T = 0, the key difference being that the sum over Matsubara frequencies would become
an integral. At T = 0, however, there is a more straightforward way to arrive at the effective action.
Let us assume that the quantum depletion of the condensate in the absence of the cavity is relatively
small: then ρmn ≈

√
N0(Φmn +Φ∗mn)/2. Inserting this value of ρ into Seff gives the result:

Seff =

mn


dωΦ∗mn


iω − (m+ n)2

2MR2
− µ




Φmn +N

ζmn
2

�
ΦmnΦ−mn +Φ∗mnΦ

∗
−mn + 2Φ

∗
mnΦmn



+
U




dτ ddx |Φ(τ,x)|4. (22)

(Note that we have dropped the quadratic contributions coming from U but kept the quartic ones;
this is because U  ζ near threshold, but couplings mediated by ζ do not contribute to the quartic
term.) By analyzing this action in the manner of Ref. [6], one finds that in the region near threshold,
the quadratic part of the action simplifies to

S =
1
ζ


dω


mn


ω2 +

(m+ n)2

2MR2


(m+ n)2

2MR2
− ζmn


(Φ∗mn +Φ−mn)

2
. (23)

For an appropriate choice of ζmn, this gives us back the result given in the main text.

Correlation functions of emitted light

The formalism described in the main text and supplementary material can be used to compute the
spatio-temporal correlations of the light emitted from the cavity as well as those of the atoms. One
proceeds as follows: one adds a source term


α(h

∗
αaα+h.c.) to the action before integrating out the

5



6 nature PHYSicS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1403

intracavity photons. Functional derivatives of the partition function with respect to h then generate
photon correlators: e.g.,3

δZ

δh∗αδhβ


h=0

= a∗αaβ. (24)

If one then integrates out the cavity photons prior to setting h = 0, the functional derivatives of the
effective atomic action with respect to h still generate the cavity-photon correlators. In the weak
single-atom-cavity coupling regime we have considered in this paper, one finds that

a†α(ω) aβ(ω) −
1
∆C

δαβ ∝ ρα(ω) ρβ(ω), (25)

i.e., that the photon correlators are directly proportional to the order-parameter correlations. This
is a particularly simple relationship, which arises because the order parameter couples linearly to
the cavity mode. The utility of the functional-differentiation approach is that it extends to cases in
which the mode-mode scattering term,

 
αβ

dτ ddx ddx g∗α(x) aαgβ(x
) a∗β |Ψ(x)|2 |Ψ(x)|2, (26)

is retained. (This would be the case, for instance, at strong single-atom-cavity coupling.) In this
case, the photonic and atomic correlators at equal times are related to one another by the expression

a†αaβ ∝


ddx ddx g(x) gφ(x)

|Ψ(x)|2 |Ψ(x)|2 (∆−1)α(∆−1)φβ


, (27)

where ∆ is a matrix in mode space given by

∆ij = ∆C δij −


ddx |Ψ(x)|2 gα(x) gβ(x). (28)

Note that, in the regime of strong single-atom-cavity coupling, the two-photon correlation function
depends on arbitrarily high-order atomic correlations. Once the intracavity correlations are ob-
tained, they can be straightforwardly translated into extracavity correlations using the input-output
formalism [7].

Defects and frustration

We now elaborate on the situation depicted in Fig. 3 of the main text, which is reproduced at the
end of this document, first focusing on the non-equatorial sheet marked (i). Near the center of the
sheet, crystallization into l = 1 modes is suppressed because such modes have low intensity, whereas
crystallization into l = 2 modes is favored because they have maximal intensity; away from the
center, the opposite is true. The change in l forces a change in m or n, owing to the degeneracy
condition 2π(l+m+n) = K0R, so the mode functions in the sheet must change across an interfacial
zone between the l = 1 and l = 2 regions. Therefore, either a dislocation, associated with a change in
m, or an abrupt change in lattice periodicity (i.e., a discommensuration), associated with a change
in n, is expected. (This picture assumes that, as is always the case near threshold, the self-organized
lattice is not strong enough to trap the entire atomic distribution at the center or the edge of the
sheet. The kinetic energy cost of localization, as well as the cost in repulsive energy, act to spread
out the atomic cloud.)

Now consider a situation in which two symmetrically disposed sheets on opposite sides of the
equator are populated with atoms, e.g., sheets (i) and (ii) of Fig. 1b. Atoms in sheet (i) and those
in sheet (ii) are coupled via the cavity modes. Because the l = 2 (l = 1) mode functions are
symmetric (antisymmetric) about the equatorial plane, atoms in the l = 2 (l = 1) arrangement in
sheet (ii) occupy the same (opposite) checkerboard as those in sheet (i). If there are no dislocations,

3Strictly speaking, these are the temperature Green’s functions, which yield temporal correlations upon analytic
continuation [2].
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atoms in the interfacial zone remain disordered, because it is impossible for the atoms to satisfy
both desiderata (or, equivalently, because the corresponding cavity modes interfere destructively in
sheet (i) and constructively in sheet (ii)). The introduction of dislocations enables the system to
order in part of the interfacial zone, as shown in the right hand side of Fig. 1b, and is therefore
favored as it decreases the energy of the system.
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Figure 1: Effects due to frustration. Atoms are loaded into sheets (i) and (ii), marked in thick
red lines in panel (a), which are an integer number of pump wavelengths apart. The blue (dashed)
and orange (dash-dot) curves are, respectively, antinodal regions of the modes TEM1m, which have
low intensity near the centers of sheets (i) and (ii), and modes TEM2m, which have low intensity
away from the centers of sheets (i) and (ii). Near the center of each sheet, atoms crystallize into
mode TEM2m; away from the center, they crystallize into TEM1m . Within a sheet, regions may
be separated by a discommensuration, e.g., in the left side of panel (b), or a dislocation, e.g., in
the right-hand side of panel (b). Between sheets, the opposite parity of adjacent modes leads to
frustration, which precludes ordering, as in the regions indicated by a  and a . Dislocations (),
being more localized, are less energetically costly than discommensurations ().
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