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Discussion of the thermally activated phase slip (TAPS) and quantum 

phase slip (QPS)  rates 

To fit the low-bias R vs. T data we used the expression,   

 ( ) 11 1
LAMH N( )R T R T R

−− − = +   (1) 

Here, we have taken into account the normal conductance channel, which is due to 

quasi-particles and this conductance is typically estimated as 1/RN.  This normal channel 

is connected in parallel with the conductance of the condensate in the wire (RLAMH), 

which is not infinite due to TAPS (1,2).  The theory of TAPS, developed by Langer-

Ambegaokar and McCumber-Halperin, is called LAMH (3,4).  According to this theory 

the resistance due to TAPS is given by  

 ( ) ( )2

2( ) exp
2LAMH

B B

T F T
R T

e k T k T
π Ω ∆ 
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 is the energy barrier for phase slips, 

( )( ) ( )1/2( ) / ( ) ( ) / 1 /B GLT L T F T k Tξ τΩ = ∆  is the attempt frequency, 

GL B C[ / 8 ( )]k T Tτ π= −h  is the Ginzburg-Landau (GL) relaxation time, L is the length of 

the wire, A is the cross-sectional area, ξ(T)  is the GL coherence length, HC(T) is the 

critical field  and TC is the critical temperature of the wire.  The T dependence of the of 

the energy barrier ( )F T∆  and the attempt frequency ( )TΩ  come in the expression via 

ξ(T) and C ( )H T ,  which are given as 
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Here we have found the temperature dependence of HC(T) by fitting the numerical 

tabulation given by Muhlschlegel to a polynomial fit (2,5) applicable at all temperatures 

below TC.  Also, the energy barrier at zero temperature ( )0F∆  can be expressed in 

terms of wire parameters (6), 
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where 2
Q / 4 6.45kR h e= ≈ Ω .  The fitting parameters are TC and ξ(0) .  The length L of 

the wire is determined from SEM images.  The normal resistance RN of the wire is taken 

to be resistance measured as the film electrodes, connected in series with the wire, 

become superconducting.   

 Alternatively, one can express the free energy barrier in terms of the critical de-

pairing current IC(T) (6,7,8,9) as, C6 ( )( )
2
I TF T
e

∆ =
h , where, 
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 (where, L and ξ(0) are in nm, TC is in K and RN is 

in Ω).  A more useful expression directly applicable for our high-bias measurements 
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data, which takes into account both the temperature and bias-current dependence of the 

energy barrier ( , )F T I∆ , is given by (7,8), 
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The TAPS rate, TAPSΓ  used in the overheating model is given by,  
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 (7) 

 A simple model of quantum phase slips was suggested by Giordano (10).  We 

use this model, but instead of the Ginzburg-Landau relaxation time, which is only 

correct near TC, we use the notion of the effective “quantum” temperature TQPS, which is 

a common (and well-tested) approach in Josephson junctions (JJ) (11).  Thus, the QPS 

rate, QPSΓ  is given by, 
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 (8) 

Here, TQPS is the effective quantum temperature representing the strength of zero-point 

fluctuations in the LC-circuit formed by the nanowire, which has a nonzero kinetic 

inductance of the order of 0.1 nH, and the leads, with a mutual capacitance of the order 

of 1-10 fF.  Thus we can roughly estimate the plasma frequency as 1/ LC  and 
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5 

therefore the expected quantum temperature is / 2 Bk LCπh  ~ 1 K.  Experimentally we 

indeed find that the quantum temperature is of the order of 1 K.  We also note that that 

to obtain a good agreement between the experimental switching rate and the quantum 

model a week linear dependence of TQPS on the bath temperature T has to be assumed 

(see Fig. 4c).  More precisely, we use ( )QPS   0.726  0.40T T T= + ×   (in Kelvins) for sample 

S1.  For all the TAPS and QPS rates the wire parameters [i.e., RN, L, TC, and ξ(0)] are 

kept the same.  For example, for sample S1, RN = 2666 Ω, L = 110 nm, TC = 3.872 K 

and ξ(0) = 5.038 nm. 

 Furthermore, we find that below a crossover temperature T*, the QPS rate 

dominates over the TAPS rate, i.e., quantum fluctuations dominate over the thermally 

induced fluctuations.  For sample S1, T* = 1.21 K (see Fig. 4c).  Similar analysis on 

another four nanowires (S2-S5) reveals that the crossover temperature decreases with 

decreasing critical depairing current; as shown in Fig. 4c.  This is an important fact 

since it leads to a conclusion that the observed QPS effect, i.e., the observation of TQPS 

to be higher than the bath temperature, is not due to some noise or weak links in the 

wires.  This analysis is analogous to the discussion of macroscopic quantum tunnelling 

in JJ (see ref. 2, Fig.7.4 (page 263) in the paragraph about MQT).  This increase of the 

T* with the critical current indicates that the observed large value of the width of the 

switching current distributions is an intrinsic property of the nanowires, occurring due 

to QPS. In the following table, we enlist the wire parameters that were used for all the 

four samples to get ΓTAPS  and ΓQPS  and their form of TQPS(T).  

 We would like to mention that we discovered two data points (out of a total of 

10,000 points for T = 0.9 K) and one data point (out of a total of 10,000 points for  
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T = 1 K) that have anomalously low values of switching current (with more than 30 

standard deviations). For example, at T = 0.9 K the mean value of the switching current 

was 4.67 μA, the standard deviation was 0.04 μA, and the points that we term 

anomalous correspond to switching currents of 2.66 μA and 3.35 μA.  It seems to us 

highly likely that these three points are due to factors extrinsic to our measurement 

setup.  It is precisely these anomalous data points that cause the bump in the standard 

deviation for sample S5 plotted in the inset of Fig. 2. If we remove these points, the 

resulting curve no longer exhibits the bump. We emphasize that these anomalous points 

and the corresponding bump in the standard deviation versus temperature graph have no 

consequences on our conclusions: namely the dependence of the effective quantum-

fluctuation temperature TQPS on bath temperature T.  Our fits for TQPS (T) are linear by 

definition. These anomalous points are outside the range of our fitting to the switching 

rates for the two temperatures.  

 
Table 1| Nanowire sample parameters, TQPS(T) and T* for all samples 

Nanowire Sample L 

(nm) 

RN 

(Ω) 

TC 

(K) 

ξ(0) 

(nm) 

IC(0) 

(nA) 

A 

(nm2) 

TQPS(T)  

(In the form  a+bT) (K) 

T* 

(K) 

S1 110 2666 3.872 5.038 2917 74.2 0.726+0.40T 1.210 

S2 195 4100 3.810 9.650 1727 85.6 0.404+0.362T 0.633 

S3 104 1430 3.160 12.560 1683 130.9 0.199+0.678T 0.620 

S4 200 3900 2.870 12.250 1105 92.3 0.275+0.33T 0.410 

S5 120 1450 4.55 5.6366 6164 148.9 1.834 1.834 
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FIG. S1: High-bias V-I measurements at high temperatures where the voltage 

due to phase diffusion is measurable even before the switching event. The solid 

lines are predictions of phase slip rate using the TAPS model with the wire 

parameters used are those which were obtained by fitting the switching rates 

measurements between T = 0.3 K to 2.3 K. The phase-slip rate ΓTAPS (shown in 

the right axis) is converted into voltage using the relation, ( )TAPS / 2V h e= Γ .The 

dashed line is the line connecting the data points, not a fit. 

 Another independent validation of the TAPS model, applied at higher 

temperatures, and the wire parameters used, can be obtained from non-linear I-V curves 

measured at relatively high temperatures.  At these temperatures measured I-V curves 

show tails due to TAPS that are large enough to be measured in our set up; as shown in 

Fig. S1 (see also Fig. 1c).  In Fig. S1, we also plotted the predicted voltage obtained 
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from the TAPS model, using ( )TAPS / 2V h e= Γ .  For the TAPS rate calculations, the 

wire parameters used for all our fittings (as shown in Fig. 3) are kept the same and only 

the T was varied to get the corresponding TAPS rate.  The measured voltage (or phase-

slip rate) and the predicted voltage (or the TAPS rate) are in good agreement for the five 

temperatures noted in Fig. S1.  This agreement indeed verifies our model for TAPS.  

The calculation of the TAPS V-I curve is made under the assumption that the wire 

temperature equals the bath temperature, i.e., no significant Joule heating occurs.  These 

type of phase diffusion “tails” on the V-I curves can only be seen at temperature of 

about 2.7 K or larger, which is about 10 times higher a temperature than those where the 

QPS effects are found.  

 

FIG. S2: The measured mean switching current (squares) and the predicted 

mean switching current by our model (red line) as a function of temperature.  

The predicted fluctuation-free critical depairing current, Ic(T) is shown (blue 
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line). At all temperatures a premature switching occurs before the bias current 

reaches the critical depairing current. 

 The mean switching current predicted at each temperature by the overheating 

model and the mean switching current for each distribution (Mean ISW) is compared in 

Fig. S2.  We have also plotted the critical depairing current 

( )
3/22

C C( ) (0) 1 / CI T I T T = −  (9).  We find that at all temperatures the switching is 

premature. 

 

FIG. S3: The data (open circles) and the calculated QPS rate (solid blue line) at 

0.3 K for wire S1. The observed agreement is very good. Different estimates of 

TAPS rate by using different attempt frequency expressions are also shown by 

solid red, green, and grey lines. For all our estimates of TAPS rate, the data is 

at least ~ 1015 orders of magnitude higher than the predicted thermal rate. 
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Hence, the data can not be explained by considering thermal fluctuation alone, 

even if the uncertainty in the attempt frequency is taken into account. Note also 

that for the lowest bias current of 2.2 μA, the thermal rate is about 1025 orders 

lower than the experimental rate, which further proves our point. 

 We would like to briefly comment on the attempt frequency Ω, that is used to 

get the TAPS rate.  In Fig. S3, we have plotted the TAPS rates estimated using different 

expressions for Ω (curves 2 - 4), the data (open circles) and the QPS rate (curve 1) (all 

at 0.3 K).  For curve 2 we have used, ( )( ) ( )1/2/ ( ) / 1/B GLL T F k Tξ τΩ = ∆ according to 

McCumber and Halperin expression (eq. 7), based on time-dependent Ginzburg-Landau 

equations.  In this expression, ( )/L Tξ is of the order of ~ 10, ( )1/2/ BF k T∆ is of the 

order of ~ 10 and ( )1/ GLτ  is of the order of ~ 1012.  Hence ( )1/ GLτ is the dominant term 

in the expression for Ω.  We also attempt to obtain the estimates of the thermal phase 

slip rate without relaying on time-dependent Ginzburg-Landau equations, and arrive 

practically at the same conclusions, as is explained in detail below. 

 For curve 4, we have replaced ( )1/ GLτ  by the characteristic frequency of the 

nanowire, which acts as an inductor and forms an LC-circuit with the leads, which are 

coupled to each other by a capacitance.  In other words, we replace ( )1/ GLτ  

with 0 1/ wL Cω = , where / 3 3 ( ) ( )w CL L eI T Tξ� h is the kinetic inductance of the wire 

(12), and C is the capacitance of the leads.  For the calculations C is taken to be 10 fF 

(13).  Thus obtained curve (grey line in Fig. S3) is very close to the traditional LAMH 

result (the red curve).  In another attempt to verify the approximate validity of the 

McCumber-Halperin attempt frequency, we replaced ( )1/ GLτ  by a well-known 
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expression of plasma frequency for a JJ (2), i.e., 2 ( ) /p CeI T Cω = h .  Again, the 

obtained curve 3 (the green line in Fig. S3) appears very close to the LAMH result.  

Thus, in all cases, we find that with the TAPS model, the prediction of the phase slip 

rate is ~ 1015 orders of magnitude smaller than the data and we can in no way account 

for this difference by changing the attempt frequency.  Hence, it strongly indicates that, 

at low temperatures, the measured phase slips are QPS, not TAPS. 

 We can also estimate the zero-bias resistance from our high-bias switching 

current measurements for very low temperatures, by an extrapolation. Using eq. 2, we 

can convert the zero-bias phase slip rate, ( ) ( )exp
B

F T
T

k T
∆ 

Ω − 
 

to resistance.  We find 

that the resistance drops exponentially from 10-50 to 10-80 Ω for temperatures from 1.1 K 

to 0.3 K in the QPS dominated regime.  This resistance is obviously very small to be 

measured in a typical lab setup and can only be estimated from such an extrapolation of 

the switching current measurements data.  We verified that this resistance is of the same 

order as predicted by Golubev-Zaikin (GZ) theory (14), which gives for zero-

temperature limit the result as follows, ( )exp( / (0))QPS Q NR T AR L R ξ= Ω − .  To get the 

resistance value of 10-50 to 10-80 Ω we varied A from 2.7 to 4.0 for T = 1.1 K to 

T = 0.3 K.  This is in agreement with the GZ theory, since they predict that A should be 

of the order of unity, which we confirm. 

 

Heat capacity and thermal conductivity of nanowire 

 We will briefly outline the form of CV and KS that were used in the overheating 

model to get the switching rates from the phase slip rates at different temperatures.  The 

diameters of the wires used in our experiments are comparable to ξ0.  Thus, the 
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thermodynamic properties of these wires should be somewhere between a bulk 

superconductor and a normal metal. Therefore, for the purpose of computing the 

thermodynamic functions we model the wire as being composed of a BCS 

superconducting wire with cross-section A1 in parallel to a normal metal wire with 

cross-section A2. 

 The BCS and Fermi liquid expressions for heat capacity are 

                    
( )

0
,

2 ,k k
v BCS k k k

k

N df dEC E E d
T d E d

β ξ
β β

 = − + 
 ∫                                 (9) 

                     2 2
, 0

2 ,
3v FL BC N k Tπ=                                                                          (10)     

where 1/ Bkβ = Θ  (with ( )xΘ ≡ Θ  is the temperature at position x along the length of 

the wire), 2 2 ( )k kE ξ= + ∆ Θ , fk  is Fermi function and ( )∆ Θ  is obtained from BCS gap 

equation. Thus the total heat capacity of the wire is, 

                                         1 , 2 ,

1 2

v BCS v FL
v

A C A C
C

A A
+

=
+

                                              (11) 

Similarly, the dirty limit BCS and Fermi liquid expressions for the thermal conductivity 

are, 

                        

2
2

,BCS 0

sech
2

( ) 2 ,
2

B
s

B B

k
K N D d

k k
∞

∆

 
 Θ Θ =

Θ Θ∫
•

• ••                               (12) 

                                           0
,FL ( )  ,s

n

L LK
AR

ΘΘ =                                                    (13) 



nature physics | www.nature.com/naturephysics	 13

supplementary informationdoi: 10.1038/nphys1276
12 

thermodynamic properties of these wires should be somewhere between a bulk 

superconductor and a normal metal. Therefore, for the purpose of computing the 

thermodynamic functions we model the wire as being composed of a BCS 

superconducting wire with cross-section A1 in parallel to a normal metal wire with 

cross-section A2. 

 The BCS and Fermi liquid expressions for heat capacity are 

                    
( )

0
,

2 ,k k
v BCS k k k

k

N df dEC E E d
T d E d

β ξ
β β

 = − + 
 ∫                                 (9) 

                     2 2
, 0

2 ,
3v FL BC N k Tπ=                                                                          (10)     

where 1/ Bkβ = Θ  (with ( )xΘ ≡ Θ  is the temperature at position x along the length of 

the wire), 2 2 ( )k kE ξ= + ∆ Θ , fk  is Fermi function and ( )∆ Θ  is obtained from BCS gap 

equation. Thus the total heat capacity of the wire is, 

                                         1 , 2 ,

1 2

v BCS v FL
v

A C A C
C

A A
+

=
+

                                              (11) 

Similarly, the dirty limit BCS and Fermi liquid expressions for the thermal conductivity 

are, 

                        

2
2

,BCS 0

sech
2

( ) 2 ,
2

B
s

B B

k
K N D d

k k
∞

∆

 
 Θ Θ =

Θ Θ∫
•

• ••                               (12) 

                                           0
,FL ( )  ,s

n

L LK
AR

ΘΘ =                                                    (13) 

13 

 where D is the diffusion constant (for MoGe 2~ 1cm / sD ), and 2 2 2
0 / 3BL k eπ= . The 

total heat conductivity is  

                                  1 , 2 ,

1 2

s BCS s FL
s

A K A K
K

A A
+

=
+

                                                    (14) 

The fitting parameters describing heat capacity and heat conductivity are the cross-

sections A1 and A2, and the TC of the nanowire. 

Macroscopic quantum tunnelling in high-TC intrinsic Josephson 

junctions 

 In order to verify that we can observe MQT in our 3He setup, we measured two 

high-TC crystal samples with intrinsic Josephson junctions (IJJ), using the same 

measurement scheme that was used for the nanowire sample measurements.  The 

general idea in doing this was that the MQT in high-TC stacked junctions is well known 

and well understood.  By observing the results seen by other groups we hope to gain 

extra confidence in the correctness of our setup.  Indeed, the results obtained in such test 

confirm that the setup is working properly, as is explained in more details below.   
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FIG. S4: Standard deviation (σ) of switching current distributions 

vs. temperature for two high-Tc crystal with intrinsic Josephson junction 

samples (IJJ1 and IJJ2), measured in the same 3He system in which all the 

nanowire samples were measured.  We clearly see the MQT regime (denoted 

by the saturation of the distribution width) below a crossover temperature 

T* = 0.65 K for IJJ1 and T* = 0.35 K for IJJ2 (indicated by the two arrows). In 

the high temperature range, as predicted by the thermal activation model, σ is 

proportional to T 2/3 (solid black line). The fluctuation free critical currents for the 

samples are 170.2 μA (IJJ1) and 17.6 μA (IJJ2). 

 Fig. S4 shows the standard deviation of the switching current distributions as a 

function of temperature obtained from the two samples, IJJ1 and IJJ2.  The samples 

were fabricated from Bi2Sr2CaCu2O8+x crystal shaped using focused ion beam (FIB) to 

the lateral dimensions of 1.6 × 2.4 µm2 (IJJ1).  The bias current in these measurements 
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was injected parallel to the c-axis (i.e., perpendicular to the weakly coupled 

superconducting planes of the crystal).  In Fig. S4, we observe a crossover from a 

thermal activated escape regime to MQT regime near T* = 0.65 K for IJJ1 and near 

T* = 0.35 K for IJJ2, which is manifested by a saturation behaviour of the standard 

deviation at lowering temperatures (15).  We also find that, in the high temperature 

range, σ is proportional to T 2/3 which is expected for a thermally activated escape model 

(16).  To validate this further, we estimated the escape temperature, Tesc , from the 

escape rates, Γ (obtained from switching current distributions) at different temperatures 

(see Fig. S5 a).  For this, we used the usual expression, p B esc( / 2 ) exp( / )U k Tω πΓ = −∆ , 

where pω is the plasma frequency and ( )( )3/ 2
0 0 04 2 / 6 1 /U I I Iπ∆ = Φ − (I0 is the 

fluctuation free critical current) the barrier energy for escape of the “phase particle”(11).  

The obtained Tesc is plotted versus the bath temperature, Tbath in Fig. S5 b.  We find that, 

for, high temperatures, Tesc = T bath, indicating the escape process is dominated by 

thermal activation.  For Tbath < 0.65 K, Tesc saturated to a value of 0.73 K, indicating a 

region where escape process is dominated by MQT (11). 

 

Fig. S5: a, Switching rates obtained from the switching current distributions 

(symbols) and the fits obtained (solid lines) using the expression 
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p B esc( / 2 )exp( / )U k Tω πΓ = −∆ for sample IJJ1 (see text). b, The escape 

temperature Tesc obtained at various bath temperatures. Tesc saturates below 

~ 0.65 K (indicated by the arrow). The inset shows the most probable switching 

currents for the two samples obtained from switching current distributions. The 

critical current for IJJ1 is ~ 10 times larger than IJJ2.  

 Furthermore, to verify that the saturation in σ is not due to noise (i.e., the 

electronic temperature not decreasing below 0.6 K), we measured another sample (IJJ2) 

with a critical current ~ 10 times smaller than IJJ1 (IC(0) for IJJ1 ~170.2 μA, IC(0) for 

IJJ2 ~17.6 μA).  As shown in Fig. S4, the σ follows the prediction of the thermal 

activation to a lower crossover temperature of ~ 0.35 K, as is expected for a sample with 

a lower critical current (since the crossover temperature is proportional to /CI C  

where IC is the critical current and C is the junction capacitance) (15).  Also, for both 

the samples, the most probable switching current increases with temperature decreasing, 

indicating that the sample temperature decreases with the bath temperature, down to the 

lowest attainable temperature (see the inset of Fig. S5 b).  

 The observation of crossover temperature (i.e., the observation of MQT) in high-

Tc crystals with weakly coupled superconducting planes indicates that the unexpected 

behaviour in σ(T) of a superconducting nanowire is not due to some uncontrolled 

environmental noise but originates from an intrinsic quantum fluctuations in these 

samples. 

Filtering system in our measurement setup: 

 In this section we discuss the arrangement of RF filters in our 3He measurement 

setup.  The purpose of these filters is to suppress external high-frequency 
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electromagnetic noise, such as the noise originating from cell-phones, radio stations, 

and also the black-body radiation, which can, if filters are not installed, propagate 

through the measurement leads and reach the sample and modify the switching current 

observed in the experiment.  Our filters are designed to reduce this noise effect to a 

negligible level. 

 Our main filtering stage is a Copper powder filter thermalized at the base 

temperature (0.29 K).  The filter is of the type developed by Martinis, Devoret and 

Clarke (11).  More details are presented below. 

 In our system, each signal line has three stages of filtering in series, namely, a π-

filter at room temperature and a copper-powder filter (Cu-F) (at the base temperature) 

and silver-paste filter (Ag-F) (also, at the base temperature).  These filters are necessary 

to suppress noise ranging from low frequency to high microwave frequencies.  The 

compact powder filters (i.e., Cu-F or Ag-F) rely on the skin effect damping for 

attenuation of high frequencies.  At room temperature, commercially available π-filters 

(Spectrum Control, SCI 1201-066) are placed on each electrical lead before they enter 

the cryostat.  The π-filters are mounted inside an aluminium box (Hammond 

Manufacturing) which is attached to the top of the cryostat.  The π-filters used are low-

pass filters with a rated 7 dB cut-off frequency of 3 MHz.  As shown in Fig. S6, for 

frequencies larger than 10 MHz, the measured attenuation of these π-filters is more than 

20 dB.  Our copper powder filters are fabricated using three feet of coiled insulated 

Constantan wire [Cu(55 %)Ni(45 %) alloy, resistance 18.4 Ω/feet, diameter 0.004 inch] 

embedded in a mixture of copper powder (-325 mesh, Alfa Aesar) and epoxy 

(Stycast # 1226, Emerson and Cuming).  Similarly, the silver paste filters are fabricated 

using three feet of coiled insulated Constantan wire (the same wire) in silver paste (Fast 
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drying silver paint, Ted Pella Inc.).  By measuring the signal lines with all the filters, 

using a vector network analyzer (Agilent N5230A), we found the attenuation to be 

larger that 100 dB for frequencies higher than 1 GHz.  Any frequency above 6.25 GHz 

(which corresponds to a temperature of 0.3 K) is attenuated by more than 110 dB and 

falls below the noise floor of our network analyzer.  This level of attenuation is similar 

to the attenuation used in previous experiments on MQT, see for example, ref. 11.  In 

addition, the test performed on wires with different critical currents and on high-Tc 

samples with different critical currents indicate that MQT becomes dominant at higher 

temperatures in samples with higher critical currents.  This is a good proof of the fact 

that the observed behaviour is really due to MQT and not due to a noisy environment.  

For the corresponding discussion see ref. 2, page 262. 

 

FIG. S6: Attenuation of a signal line of our 3He setup measured at room 

temperature between 10 MHz and 20 GHz. For measurement of the signal line 

with all the three stages of filters (blue curve) we find attenuation larger than 
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90 dB for frequencies higher than 40 MHz. For frequencies higher than 6 GHz 

(roughly corresponding to our base temperature of T ~ 0.29 K), we find the 

attenuation to be larger than 110 dB and the signal falls below the noise level of 

our network analyzer. The attenuation of the signal lines without the π-filter is 

also shown (black curve). The π-filters provide an attenuation of 20 dB for 

frequencies larger than 10 MHz (rated 7 dB cut-off frequency of 3 MHz). 
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