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Induction of non-d-wave order-parameter components by currents ind-wave superconductors
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It is shown, within the framework of the Ginzburg-Landau theory for a superconductor dyith.
symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of
order-parameter components of distinct symmetry. The inductigvedve andd,,2_,2-wave components
is considered in detail. It is shown that in both cases the order parameter remains gapless; however, the
structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the
magnitudes of these modifications differ in their dependence onaheflane current direction. The mag-
nitude of the induced-wave component is estimated using the results of the calculations oétRen Phys.

Rev. Lett.74, 3680(1995], which are based on a microscopic approd&2163-1827)06905-]

[. INTRODUCTION inhomogeneity of the dominalite., d,2_,2) component. As
opposed to the cases of vorti€es and surfaces® which
As a result of recent experimental and theoreticdl  both have aramplitudevariation of the dominantd,z_2)
work there is an emerging consensus that the symmetry afomponent, the induction of subsidiary components by the
the superconducting state in high-temperature supercondudurrent requires only itphase variation. In Sec. Il, we
ing (HTS) materials is that ofl,>_,2 wave. Given this situ- present the Ginzburg-Landau theory of the current-induced
ation, it seems worthwhile to explore the phenomenologicak component in al-wave superconductor. Our treatment is
implications of such a state, even if the microscopic origin ofhased on the Ginzburg-LanddGL) theory for ad-wave
the superconductivity has not yet been fully established. '%uperconductéﬁl that incorporates the effects sfd cou-

particular, the following feature of the phenomenologicalp"ng_ As it is not yet clear which of the subsidiary compo-

theory ofd-wave superconductors has attracted the attentio ;
ents has the strongest coupling to thg_,2 component,
of a number of workers. In the absence of any externaﬂ/ g Pand y? P

S e then(in Sec. Ill) extend this treatment to include subsid-
agents(e.g., magnetic fields, surfaces, currents,)etthe .

only component of the superconducting order parameter thz'}ﬁry irreducible representations of the tetragoriaLX sym-

has a nonzero mean equilibrium value is the component witlg etry group othe_r thar; wave. Finally, we discuss some

: o xperimental settings in which current-induced subsidiary
dye_,2 symmetry, the othefi.e., subsidiarycomponents ex- components of the order parameter might be observable.
hibiting equilibrium fluctuations around a mean value of
zero. External forces can give rise to nonzero mean values of
subsidiary components. Interestingly, general symmetry con-
siderations permit a coupling between the gradients of
dy2_y2 and of other componentsin particular, this means First we focus on the case efd,2_,» coupling, in which
thatany inhomogeneity ind,>_> acts as @ourceof inho-  the order parameter has two spatially varying complex com-
mogeneities in other components and, therefore, as a sourg@nentss(r) and d(r). We neglect the magnetic fields in-
of these components themselves. This mechanism has begficed by the curred The GL equations fod ands com-

lowed by Soininenet al® and other workert®! has pre-

dicted that the vortices in d-wave superconductor should

Il. CASE OF s/d,2_y2 COUPLING

exhibit a rich structure, in whick andd components of the (— ygV2+ ag)d+ v (Vz—Vz)er2B2|d|2d+B3|s|2d
order parameter coexist. Furthermore, the surface regions of ey

these superconductors are predicted to be in a ms«dd +28,8%d* =0, (13
state!®

In this work we pursue one further consequence of the
gradient coupling mechanism; viz., we predict that an exter- (_ v2 4 )5+ 5 (V2—V2)d+2,|s|%s+ B3/d|%s
nal current can induce nonzero subsidiary components of the ’ Y
superconducting order parameter via tfoairrent-induceg +28,d%s* =0, (1b)
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where y,=#2/2m,, and p=d,s,v. The current density is wheref=d,/\[ay|/28, is the dimensionlesd-wave order

given by

J= eh d*vd +eﬁ *V o *V,d
_imd{ c.c} ims{s s—c.c} Ximv{s X

fi

€
— * v
dv,s c.c.}+yim

{s*V,d—dV,s*—cc}, (2

where we have chosen the effective chagge be twice the
electron charge. The parameters of the GL equati&us.
(1a) and (1b)] are chosen in such a wa¥ that, in the ab-
sence of the currentd|>0 ands=0. In the presence of the
current, we assume thatis nonzero but small compared

parameter normalized by its equilibrium value,
£q=h212my|aq| is the correlation length of theé-wave or-
der parameter, andl, is the critical current density. The de-
pendence of, and thus ofdy, onj is given by the implicit
relation (4b). In particular,f =1 for j=0, andf approaches

the value ofy2/3 from above a$ approaches 1 from below;
for j>1 we havef =0. To first order in perturbation theory,

s acquires a nonzero value andchanges from its zeroth-
order value. This also leads to a change in the right-hand side
of Eq. (2), which determines the wave vector of the order
parameter for a given current density. This means that at this
order the wave vector found in the previous order is changed.

with d and, therefore, can be analyzed perturbatively. In thisl hus the appropriate ansatz at first order is

way, the inhomogeneity il acts as a source f&. To the
zeroth order in perturbation theory, we have

d=dge'%", 3

The amplituded, and the wave vectoq, are found in the
usual way* from Egs.(1a) and(2) with s having been set to
zero:

s=57=0.

d=doei(qO+Q1)‘f+dlei(qOJrCIl)'f,

(5a)
s=s,el(@0T )T, (5b)

where quantities with the subscript 1 are small compared to
those with the subscript 0. As can be readily checked, this

do=£4 (1122 and qg|J, (48  ansatz satisfies Eqéla), (1b), and(2). Keeping only terms
linear ind,, s;, andq;, and after some lengthy but straight-
j=J313.=33f4(1— )12, (4b)  forward algebra® we obtain
|
s1 7,050042¢)

do 703+ as—97,203c0(2¢))/ (— 3yaG3+ ag+ 6B8203) — 4( 7,2 v4) a3+ (Bs+2B4)d3’

where ¢ is the angle betweed and thex axis in thea-b

(6)

to dg, and thus the validity of the perturbation theory, is
guaranteed by the smallness of the rduQ|/a < (T.—T).

plane. Already at this stage two conclusions can be madd&herefore, in the critical region, the perturbation theory is

First, the amplitude of the inducedcomponent depends not
only on theamplitudebut also on thelirection of the cur-
rent: |s| is maximal for a current flowing along the major
crystallographic axe§.e., for =0 or ¢=«/2) and is zero
(at this order of perturbation thegryor a current flowing
along the diagonal of the unit cdile., for ¢ = 7/4). Second,
the rather cumbersome expressiéhis simplified consider-
ably for temperature$ very close to the critical temperature
T. (i.e.,
strictly valid). In the limit T— T, all the terms in the denomi-
nator of Eq.(6) that containg, become small becausg

in the critical regime, when the GL approach is;ions for a particular

valid even for currents that are not small comparedl.t6.e.,
for values off that are not close to 1).

In order to obtainsemjquantitative estimates for the am-
plitude of the induced-wave order parameter as given by
Eq. (6), we need to know the values of the phenomenological
parameters of the GL theory. These can be estimated, e.g., by
comparing Egs(l1a), (1b), and(2) with the GL equations that
were derived recently by Rest al1°from the Gor'kov equa-
microscopic model of pairing
interactions'® Reference 10 gives the following ratios of the
phenomenological GL parameters:

diverges, and the last term in the denominator is small be-

caused, is small. On the other hand, 8s is not a critical
temperature for the-wave componentyg is nonzero in this
limit; thus as dominates the denominator. Equati@ then
takes on the simpler form

Sl _md |ad| 2
dO_mv o (1-f%)cog24¢).

(@)

Equation(7) shows that for generic values of the parameters,

i.e., formg=m, and =1, the smallness of; with respect

mg:my:m,=1:2:2, (89
B1:B2:B3:84,=1:3/8:2:1/2, (8h)
|agll as=NgIN(T/T)I2(1+Vs/Vy), (80
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where) 4 is the BCS coupling constant in tllewave chan- s-wave component is induced by inhomogeneities in the

nel, andV, and V, are interaction parameters, which in the d-Wave component even Ws=0. For lack of better infor-
. . : ation aboutvg, we set it to zero, which does not signifi-
model of Ref. 10 describe nearest-neighbor attraction an antly affect our results. By using the ratios of the GL pa-

on-site repulsion, respectively. As mentioned in Ref. 10, theameters given above, E) is cast into the following form:

s; 1 (1-f?)cog24)
4”2 9 . : 9
1/)\dln(TC/T)—Z(l—f )2c0g(2¢)/(3f2—1) + 1+ 2

directions in the absence of current, are now rotated by the

To estimate the BCS coupling constant, we use the result angle & =1cos (A/Ay) [see Figs. @) and 2b)]. The
of Monthoux and Pine&’ who find that, in a spin-fluctuation k-space structure of the order parameter undergoestho-
model, the value off ;=90 K is obtained forq close t0 1 hgmpic distortion i.e., the current-induced s-wave compo-
(thg precise value depending on the dopirdplely for illus- nent mimics the effect of having an orthorhomkiather
trative purposes, we use the vakg=1. The dependence of than tetragonallattice and no supercurrent. By using the

s1/do on | 'is _shown in Fig. 1 for three values of typical value ofA =100 K, we see, e.g., that for=0.5(i.e.,

t=(T.—T)/T.. For the valuet=0.01 and 0.1 the result . ;
: : : e for T=0.5T) and forj=0.5 the gapA¢=1 K, and the lines
Eq. I h lif ¢ S :
given by Eq.(9) is very close to that given by its simplified of nodes rotate byy®=0.3°. We must emphasize that at

version, Eq.(7). For t=0.5 the result given by Eq9) is .
approximately one-half of that given by E(). At tempera- lower temperaturgg.e., whent=1) anq for currents com-
tures far belowT. (i.e., fort=1), the microscopic derivation parable to the crltlcal current, there is no Ionge_r a natural
of the GL parameters leading to E@) is not strictly valid, small parameter in the thepry that would automatically guar-
and the term IfT./T) is expected to be replaced bynote  antee the smallness sf with respect tod,. The fact that
that In(T./T) =t for t<1], thus avoiding the apparent singu- S1 remains small even in this region is due to the particular
lar behavior in Eq(9). choice of the ratios of the GL parameters. However, the GL
The presence of the-wave component, which according theory is not expected to be quantitatively correct in this
to Egs.(5a and(5b) is in phase with thel-wave component, region, and so the microscopic theory might give other nu-
implies that excitations with momentum along the merical values oA andé®. The absence of a natural small
&= =*7/4 directions are no longer gapless. Rather, theyparameter suggests that these values might be larger than
have an energy gap given = A4s,/dg, whereA, is the  those given by the perturbative treatment of the GL equa-
maximum value of thed-wave gap in the absence of the tions.
currents. The lines of nodes, oriented along e + /4

0.05 - ‘ Ill. COUPLING TO OTHER SUBSIDIARY
ORDER-PARAMETER COMPONENTS

0.04 t So far, we have considered the coupling of the dominant
dy2_y2 component to thesubsidiary s-wave component,

which is taken as the main subsidiary component in the mi-

0.03 croscopic approaches of Ref. 9 and 10. In general, the GL
Ei theory should incorporate all irreducible representations of
@ 0.02 - the D, symmetry group; it is then the task of a microscopic

_ theory to determine the dominant, and leading subdominant,
components. Although the growing consensus is that the

0.01 leading component corresponds to the 2 representation,

it is not clear, at present, which representation describes the
subleading componeft.Therefore, we now extend the treat-

0.00 15 ment presented above to include couplings between the

dy2_y2 component and components of the order parameter
other thans wave.

FIG. 1. The magnituds, of the s-wave component induced by ~ The irreducible representations of tfganay D4 group
the applied current density, for the reduced temperature values are (see, e.g., Ref. )7I'; or s wave (transforming as
t=0.5 (dotted ling, t=0.1 (dashed ling andt=0.01 (solid line). x2+y2=1), I, [transforming axy(x*—y?)], I'5 or dy2_y2
The curves are obtained from Edgb) and (9) with ¢=0. wave (transforming ax®—y?), I, (transforming axy), and
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FIG. 2. (a) Thek-space structure of the superconducting order parameteraiffured,z_,2 symmetry{ cos(2p)], (b) mixedd,2_> and
s symmetry[ cos(25)+0.1], and (c) mixed d,2_,2 and d,y2_y2y Symmetry[cos(2p)+0.3sin(2p)cos(2p)]. Note that for the purpose of
illustration, the magnitude of the-wave component in b has been chosen to be larger than that expected from microscopic e&@nates
the main text

I's (transforming as the two-component vectfx,y}). andi=1,...,5.These terms transform as tlieeduciblg
(These representations are also commonly dendtgg, representatiol’ =I"; X I'; X I's X I'5. As each term in the free
Ayg, Big, Byg, andE,q, respectively. Note thatl's is a  energy must transform as a scalar, theximumnumber of
two-dimensional representation, whereas the other represesdch gradient-coupling terms is given by the numNerof
tations are one dimensional. times the identity ;) representation occurs in the decom-
We now focus on the determination of the terms in theposition of ' into the irreducible representationg\; is
GL free energy describing the couplings between the gradigiven by the normalized product of characters corresponding
ents ofI'; (d,2_,2) and of other representations. We con-to irreducible representatiod$; andI'y (see, e.g., Ref. 18
sider only the leading terms of this type, i.e., terms of theThis givesN;=1, fori=1,...,4, and\s=0. First, we con-
form sider the casé=2. A term satisfying all the symmetries of
the groupD, can be written as

vamﬂrsvvlﬁria (10)

where r, is the component of the order parameter trans-

C
. . . = * + ¥ l+c.c.
forming according to representatidn,. Here, u,v=X,y, 7 Wb dyr + dydbr g J+c.c. (1)
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(—vaV2+ag)a— v,V Vyd+204|al?a+ o3ld|*a

and, aiN,=1, there are no further independent tefiiext, )
we consideli =4. The symmetry{x—y,y—X} imposes the +20,d%a* =0, (12b
conditions C,,=—C,, and C,,=C,,=0, while, e.g., the
symmetry{x— —x,y—Yy} requires thatC,,=0. Therefore, where ythZ/Zmp, and p=d,a,w. The current density
all the constants are zero and there no are gradient-couplirntgkes the form
terms to leading order foi=4. The analysis of cases
i =1,3 has been performed in Ref. 5, leading to Efja. and o o
(1b), andNs is zero. Thus, the only case for which the in- J=—{d*Vd-c.c}+—{a*Va—c.c}
duction of the subsidiary component of the order parameter IMgy Mg
by the current remains to be considered is that of the cou- of of
pling between thel,>_,2 andI", representationéhe latter is +x—{a* v, d—c.c} +y—{a*V,d—c.c}.
henceforth being referred to @,z y2). My 1My

We denote the component of the order parameter corre- (13
sponding to thel, 2,2 representation bg(r). In order to

construct the GL free energy for the case ®f2-y2-  [As the two last terms in Eq13) come from the variation of
dyz-2 coupling, we(i) note that the structure of terms other yhe (covariant mixed gradient terms in the free energy with
than the mixed gradient terms is the same as for the case pigpect to the vector potential, their structure is different
the s/d,> > coupling and(ii) make use of Eq(1]) for the 4 that of the analogous terms in E8)]. As in the case of
mixed gradient term. The usual variational procedure theg/dxziy2 coupling, we assume that the amplitude afin-

leads to the following GL equations far anda: duced by the current is small compareddtoThe first-order

V24 a)d— v V.V.a+ 20.|dI2d+ ol al?d perturbative calculation analogous to _that for the case o_f the
(= 7aV"F ag)d = VsVya+20,|d*d+ oslal sldy2_y2 coupling leads to the following result for the in-
+20,4a%d* =0, (129  ducedd,ye_,2) componenty:
|
1 5 .
a 3 YwdoSiN(24)
1
d_o =- . (14

5 , .
Yalot @at YaloSI(2¢)/ (= 3y4do+ aat 602d5) + (¥ o) o+ (o3+204)dg

We see that in contrast to the case of th& IV. DISCUSSION AND CONCLUSIONS
dy2_y2 coupling[cf. Eq.(6)], the inducedl,,2_y2) compo-
nent is zero for currents flowing along the principal crystal-, - . .
lographic axes in the-b plane(?e fo? d)z(?or ¢p: 7-r/2y) introduces an orthorhombiclike distortion of tHespace
and reaches its maximum absolute value for currents flowin§t'ucture of the order parametgfigs. (2(2) and Zb)]. In
along the diagonal of the unit cefl.e., for ¢=m/4). This  contrast, the induced, 2 -wave component distorts the
difference could be used in an experiment to determin&-space structure as indicated in F|gc)2 Note that the lines
which of the two couplings(i.e., s/d,>_y2 OF dyyy2_y2/  Of Nodes atb=2 /4 do notrotate in thed,y2_z-wave
de_,?) is realized in a given HTS material. In the critical Case, and, provided tha <2do, no new nodes are intro-
region, i.e., wherT—T,, the terma, dominates the de- duced. The distortion of the zero-current, tetragonal structure
nominator of Eq.(14), due to the reasons described in the©f Fig. 2@) to the structure of Fig. ®) or Fig. Zc) (or to a

discussion of the/d,> > coupling, and Eq(14) then takes mixture of the latter twpby an externally imposed current
the simpler form may be experimentally observable using directional probes

of the order parameter. Techniques such as photoemission or
tunneling may be appropriate, provided that sufficiently high
resolution can be obtained.

We have seen that the current-indusedlave component

a1 mg|ag o
0 am e (1 fAsin2e). (15)
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