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It is shown, within the framework of the Ginzburg-Landau theory for a superconductor withdx22y2

symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of
order-parameter components of distinct symmetry. The induction ofs-wave anddxy(x22y2)-wave components
is considered in detail. It is shown that in both cases the order parameter remains gapless; however, the
structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the
magnitudes of these modifications differ in their dependence on the (a-b plane! current direction. The mag-
nitude of the induceds-wave component is estimated using the results of the calculations of Renet al. @Phys.
Rev. Lett.74, 3680~1995!#, which are based on a microscopic approach.@S0163-1829~97!06905-1#
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I. INTRODUCTION

As a result of recent experimental1–3 and theoretical4

work there is an emerging consensus that the symmetr
the superconducting state in high-temperature supercond
ing ~HTS! materials is that ofdx22y2 wave. Given this situ-
ation, it seems worthwhile to explore the phenomenolog
implications of such a state, even if the microscopic origin
the superconductivity has not yet been fully established
particular, the following feature of the phenomenologic
theory ofd-wave superconductors has attracted the atten
of a number of workers. In the absence of any exter
agents~e.g., magnetic fields, surfaces, currents, etc.!, the
only component of the superconducting order parameter
has a nonzero mean equilibrium value is the component w
dx22y2 symmetry, the other~i.e., subsidiary! components ex-
hibiting equilibrium fluctuations around a mean value
zero. External forces can give rise to nonzero mean value
subsidiary components. Interestingly, general symmetry c
siderations permit a coupling between the gradients
dx22y2 and of other components.5 In particular, this means
that any inhomogeneity indx22y2 acts as asourceof inho-
mogeneities in other components and, therefore, as a so
of these components themselves. This mechanism has
exploited by a number of authors. Notably, Volovik,8 fol-
lowed by Soininenet al.9 and other workers,10,11 has pre-
dicted that the vortices in ad-wave superconductor shoul
exhibit a rich structure, in whichs andd components of the
order parameter coexist. Furthermore, the surface region
these superconductors are predicted to be in a mixeds-d
state.13

In this work we pursue one further consequence of
gradient coupling mechanism; viz., we predict that an ex
nal current can induce nonzero subsidiary components o
superconducting order parameter via the~current-induced!
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inhomogeneity of the dominant~i.e., dx22y2) component. As
opposed to the cases of vortices8–11 and surfaces,13 which
both have anamplitudevariation of the dominant (dx22y2)
component, the induction of subsidiary components by
current requires only itsphase variation. In Sec. II, we
present the Ginzburg-Landau theory of the current-indu
s component in ad-wave superconductor. Our treatment
based on the Ginzburg-Landau~GL! theory for ad-wave
superconductor5,11 that incorporates the effects ofs/d cou-
pling. As it is not yet clear which of the subsidiary comp
nents has the strongest coupling to thedx22y2 component,
we then~in Sec. III! extend this treatment to include subsi
iary irreducible representations of the tetragonal (D4) sym-
metry group other thans wave. Finally, we discuss som
experimental settings in which current-induced subsidi
components of the order parameter might be observable

II. CASE OF s/dx22y2 COUPLING

First we focus on the case ofs/dx22y2 coupling, in which
the order parameter has two spatially varying complex co
ponentss(r ) and d(r ). We neglect the magnetic fields in
duced by the current.12 The GL equations ford ands com-
ponents were derived in Refs. 5 and 11; they are

~2gd¹
21ad!d1gv~¹x

22¹y
2!s12b2udu2d1b3usu2d

12b4s
2d*50, ~1a!

~2gs¹
21as!s1gv~¹x

22¹y
2!d12b1usu2s1b3udu2s

12b4d
2s*50, ~1b!
6599 © 1997 The American Physical Society
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where gr[\2/2mr , and r5d,s,v. The current density is
given by

J5
e\

imd
$d*¹d2c.c.%1

e\

ims
$s*¹s2c.c.%2 x̂

e\

imv
$s*¹xd

2d¹xs*2c.c.%1 ŷ
e\

imv
$s*¹yd2d¹ys*2c.c.%, ~2!

where we have chosen the effective chargee to be twice the
electron charge. The parameters of the GL equations@Eqs.
~1a! and ~1b!# are chosen in such a way9,11 that, in the ab-
sence of the current,udu.0 ands50. In the presence of the
current, we assume thats is nonzero but small compare
with d and, therefore, can be analyzed perturbatively. In t
way, the inhomogeneity ind acts as a source fors. To the
zeroth order in perturbation theory, we have

d5d0e
iq0•r, s5s050. ~3!

The amplituded0 and the wave vectorq0 are found in the
usual way14 from Eqs.~1a! and~2! with s having been set to
zero:

q05jd
21~12 f 2!1/2 and q0iJ, ~4a!

j[J/Jc53A3 f 2~12 f 2!1/2/2, ~4b!
d
t

r

e
is
-

b

rs
is

where f5d0 /Auadu/2b2 is the dimensionlessd-wave order
parameter normalized by its equilibrium valu
jd[A\2/2mduadu is the correlation length of thed-wave or-
der parameter, andJc is the critical current density. The de
pendence off , and thus ofd0, on j is given by the implicit
relation ~4b!. In particular,f51 for j50, and f approaches
the value ofA2/3 from above asj approaches 1 from below
for j.1 we havef50. To first order in perturbation theory
s acquires a nonzero value andd changes from its zeroth
order value. This also leads to a change in the right-hand
of Eq. ~2!, which determines the wave vector of the ord
parameter for a given current density. This means that at
order the wave vector found in the previous order is chang
Thus the appropriate ansatz at first order is

d5d0e
i ~q01q1!•r1d1e

i ~q01q1!•r, ~5a!

s5s1e
i ~q01q1!•r, ~5b!

where quantities with the subscript 1 are small compared
those with the subscript 0. As can be readily checked,
ansatz satisfies Eqs.~1a!, ~1b!, and~2!. Keeping only terms
linear ind1, s1, andq1, and after some lengthy but straigh
forward algebra,15 we obtain
s1
d0

5
gvq0

2cos~2f!

gsq0
21as29gv

2q0
2cos2~2f!/~23gdq0

21ad16b2d0
2!24~gv

2/gd!q0
21~b312b4!d0

2 , ~6!
is

is

-
y
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e

wheref is the angle betweenJ and thex axis in thea-b
plane. Already at this stage two conclusions can be ma
First, the amplitude of the induceds component depends no
only on theamplitudebut also on thedirection of the cur-
rent: usu is maximal for a current flowing along the majo
crystallographic axes~i.e., forf50 or f5p/2) and is zero
~at this order of perturbation theory! for a current flowing
along the diagonal of the unit cell~i.e., forf5p/4). Second,
the rather cumbersome expression~6! is simplified consider-
ably for temperaturesT very close to the critical temperatur
Tc ~i.e., in the critical regime, when the GL approach
strictly valid!. In the limitT→Tc all the terms in the denomi
nator of Eq.~6! that containq0 become small becausejd
diverges, and the last term in the denominator is small
caused0 is small. On the other hand, asTc is not a critical
temperature for thes-wave component,as is nonzero in this
limit; thus as dominates the denominator. Equation~6! then
takes on the simpler form

s1
d0

5
md

mv

uadu
as

~12 f 2!cos~2f!. ~7!

Equation~7! shows that for generic values of the paramete
i.e., formd.mv andf.1, the smallness ofs1 with respect
e.

e-

,

to d0, and thus the validity of the perturbation theory,
guaranteed by the smallness of the ratiouadu/as}(Tc2T).
Therefore, in the critical region, the perturbation theory
valid even for currents that are not small compared toJc ~i.e.,
for values off that are not close to 1).

In order to obtain~semi!quantitative estimates for the am
plitude of the induceds-wave order parameter as given b
Eq. ~6!, we need to know the values of the phenomenologi
parameters of the GL theory. These can be estimated, e.g
comparing Eqs.~1a!, ~1b!, and~2! with the GL equations tha
were derived recently by Renet al.10 from the Gor’kov equa-
tions for a particular microscopic model of pairin
interactions.16 Reference 10 gives the following ratios of th
phenomenological GL parameters:

ms :md :mv51:2:2, ~8a!

b1 :b2 :b3 :b451:3/8:2:1/2, ~8b!

uadu/as5ldln~Tc /T!/2~11Vs /Vd!, ~8c!
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whereld is the BCS coupling constant in thed-wave chan-

nel, andVd andVs are interaction parameters, which in th

model of Ref. 10 describe nearest-neighbor attraction

on-site repulsion, respectively. As mentioned in Ref. 10,
t
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s-wave component is induced by inhomogeneities in
d-wave component even ifVs50. For lack of better infor-
mation aboutVs , we set it to zero, which does not signifi
cantly affect our results. By using the ratios of the GL p
rameters given above, Eq.~6! is cast into the following form:
s1
d0

5
1

2

~12 f 2!cos~2f!

1/ldln~Tc /T!2
9

4
~12 f 2!2cos2~2f!/~3 f 221!111 f 2

. ~9!
the
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To estimate the BCS coupling constantld , we use the resul
of Monthoux and Pines,17 who find that, in a spin-fluctuation
model, the value ofTc590 K is obtained forld close to 1
~the precise value depending on the doping!. Solely for illus-
trative purposes, we use the valueld51. The dependence o
s1 /d0 on j is shown in Fig. 1 for three values o
t[(Tc2T)/Tc . For the valuest50.01 and 0.1 the resul
given by Eq.~9! is very close to that given by its simplifie
version, Eq.~7!. For t50.5 the result given by Eq.~9! is
approximately one-half of that given by Eq.~7!. At tempera-
tures far belowTc ~i.e., for t.1), the microscopic derivation
of the GL parameters leading to Eq.~9! is not strictly valid,
and the term ln(Tc /T) is expected to be replaced byt @note
that ln(Tc /T)5t for t!1#, thus avoiding the apparent singu
lar behavior in Eq.~9!.

The presence of thes-wave component, which accordin
to Eqs.~5a! and~5b! is in phase with thed-wave component,
implies that excitations with momentum along th
F56p/4 directions are no longer gapless. Rather, th
have an energy gap given byDs5Dds1 /d0, whereDd is the
maximum value of thed-wave gap in the absence of th
currents. The lines of nodes, oriented along theF56p/4

FIG. 1. The magnitudes1 of thes-wave component induced b
the applied current densityJ, for the reduced temperature value
t50.5 ~dotted line!, t50.1 ~dashed line!, and t50.01 ~solid line!.
The curves are obtained from Eqs.~4b! and ~9! with f50.
y

directions in the absence of current, are now rotated by

angle dF5 1
2 cos

21(Ds/Dd) @see Figs. 2~a! and 2~b!#. The
k-space structure of the order parameter undergoes anortho-
rhombic distortion; i.e., the current-induced s-wave comp
nent mimics the effect of having an orthorhombic~rather
than tetragonal! lattice and no supercurrent. By using th
typical value ofDd.100 K, we see, e.g., that fort50.5 ~i.e.,
for T50.5Tc) and for j50.5 the gapDs.1 K, and the lines
of nodes rotate bydF.0.3°. We must emphasize that
lower temperatures~i.e., whent.1) and for currents com-
parable to the critical current, there is no longer a natu
small parameter in the theory that would automatically gu
antee the smallness ofs1 with respect tod0. The fact that
s1 remains small even in this region is due to the particu
choice of the ratios of the GL parameters. However, the
theory is not expected to be quantitatively correct in t
region, and so the microscopic theory might give other n
merical values ofDs anddF. The absence of a natural sma
parameter suggests that these values might be larger
those given by the perturbative treatment of the GL eq
tions.

III. COUPLING TO OTHER SUBSIDIARY
ORDER-PARAMETER COMPONENTS

So far, we have considered the coupling of the domin
dx22y2 component to the~subsidiary! s-wave component,
which is taken as the main subsidiary component in the
croscopic approaches of Ref. 9 and 10. In general, the
theory should incorporate all irreducible representations
theD4 symmetry group; it is then the task of a microscop
theory to determine the dominant, and leading subdomin
components. Although the growing consensus is that
leading component corresponds to thedx22y2 representation,
it is not clear, at present, which representation describes
subleading component.13 Therefore, we now extend the trea
ment presented above to include couplings between
dx22y2 component and components of the order param
other thans wave.

The irreducible representations of the~planar! D4 group
are ~see, e.g., Ref. 7! G1 or s wave ~transforming as
x21y251), G2 @transforming asxy(x22y2)#, G3 or dx22y2

wave~transforming asx22y2), G4 ~transforming asxy), and
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FIG. 2. ~a! Thek-space structure of the superconducting order parameter with~a! puredx22y2 symmetry@cos(2f)#, ~b! mixeddx22y2 and
s symmetry@cos(2f)10.1#, and ~c! mixed dx22y2 and dxy(x22y2) symmetry@cos(2f)10.3sin(2f)cos(2f)#. Note that for the purpose o
illustration, the magnitude of thes-wave component in b has been chosen to be larger than that expected from microscopic estima~see
the main text!.
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G5 ~transforming as the two-component vector$x,y%).
~These representations are also commonly denotedA1g ,
A2g , B1g , B2g , andE2g , respectively.! Note thatG5 is a
two-dimensional representation, whereas the other repre
tations are one dimensional.

We now focus on the determination of the terms in t
GL free energy describing the couplings between the gr
ents ofG3 (dx22y2) and of other representations. We co
sider only the leading terms of this type, i.e., terms of
form

Cmn¹mcG3
¹ncG i

, ~10!

wherecGk
is the component of the order parameter tra

forming according to representationGk . Here, m,n5x,y,
n-

i-

e

-

and i51, . . . , 5. These terms transform as the~reducible!
representationG5G33G i3G53G5. As each term in the free
energy must transform as a scalar, themaximumnumber of
such gradient-coupling terms is given by the numberNi of
times the identity (G1) representation occurs in the decom
position of G into the irreducible representations.5 Ni is
given by the normalized product of characters correspond
to irreducible representationsG3 andGk ~see, e.g., Ref. 18!.
This givesNi51, for i51, . . . ,4, andN550. First, we con-
sider the casei52. A term satisfying all the symmetries o
the groupD4 can be written as

C

2
$]xcG2

]ycG3
* 1]ycG2

]xcG3
* %1c.c., ~11!
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and, asN251, there are no further independent terms.6 Next,
we consideri54. The symmetry$x→y,y→x% imposes the
conditionsCxx52Cyy and Cxy5Cyx50, while, e.g., the
symmetry$x→2x,y→y% requires thatCxx50. Therefore,
all the constants are zero and there no are gradient-coup
terms to leading order fori54. The analysis of case
i51,3 has been performed in Ref. 5, leading to Eqs.~1a! and
~1b!, andN5 is zero. Thus, the only case for which the i
duction of the subsidiary component of the order param
by the current remains to be considered is that of the c
pling between thedx22y2 andG2 representations~the latter is
henceforth being referred to asdxy(x22y2)).

We denote the component of the order parameter co
sponding to thedxy(x22y2) representation bya(r …. In order to
construct the GL free energy for the case ofdxy(x22y2)-
dx22y2 coupling, we~i! note that the structure of terms oth
than the mixed gradient terms is the same as for the cas
the s/dx22y2 coupling and~ii ! make use of Eq.~11! for the
mixed gradient term. The usual variational procedure th
leads to the following GL equations ford anda:

~2gd¹
21ad!d2gw¹x¹ya12s2udu2d1s3uau2d

12s4a
2d*50, ~12a!
al

in

in

al
-
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n

~2ga¹
21aa!a2gw¹x¹yd12s1uau2a1s3udu2a

12s4d
2a*50, ~12b!

where gr[\2/2mr , and r5d,a,w. The current density
takes the form

J5
e\

imd
$d*¹d2c.c.%1

e\

ima
$a*¹a2c.c.%

1 x̂
e\

imw
$a*¹yd2c.c.%1 ŷ

e\

imw
$a*¹xd2c.c.%.

~13!

@As the two last terms in Eq.~13! come from the variation of
the ~covariant! mixed gradient terms in the free energy wi
respect to the vector potential, their structure is differe
from that of the analogous terms in Eq.~2!#. As in the case of
s/dx22y2 coupling, we assume that the amplitude ofa in-
duced by the current is small compared tod. The first-order
perturbative calculation analogous to that for the case of
s/dx22y2 coupling leads to the following result for the in
duceddxy(x22y2) componenta1:
a1
d0

52

1

2
gwq0

2sin~2f!

gaq0
21aa1

5

2
gw
2q0

2sin2~2f!/~23gdq0
21ad16s2d0

2!1~gw
2 /gd!q0

21~s312s4!d0
2

. ~14!
e

-
ture

t
bes
n or
gh

rg,
or
SF

is
We see that in contrast to the case of thes/
dx22y2 coupling@cf. Eq. ~6!#, the induceddxy(x22y2) compo-
nent is zero for currents flowing along the principal cryst
lographic axes in thea-b plane~i.e., for f50 or f5p/2)
and reaches its maximum absolute value for currents flow
along the diagonal of the unit cell~i.e., for f5p/4). This
difference could be used in an experiment to determ
which of the two couplings~i.e., s/dx22y2 or dxy(x22y2)/
dx22y2) is realized in a given HTS material. In the critic
region, i.e., whenT→Tc , the termaa dominates the de
nominator of Eq.~14!, due to the reasons described in t
discussion of thes/dx22y2 coupling, and Eq.~14! then takes
the simpler form

a1
d0

52
1

2

md

mw

uadu
aa

~12 f 2!sin~2f!. ~15!

As we are not aware of any microscopic theory describ
the case of thedxy(x22y2)/dx22y2 coupling, we do not know
the values of the GL parameters in Eqs.~12a! and~12b! and,
therefore, cannot give a quantitative estimate for the am
tude of the induced order parameter.
-

g

e

g

li-

IV. DISCUSSION AND CONCLUSIONS

We have seen that the current-induceds-wave component
introduces an orthorhombiclike distortion of thek-space
structure of the order parameter@Figs. ~2~a! and 2~b!#. In
contrast, the induceddxy(x22y2)-wave component distorts th
k-space structure as indicated in Fig. 2~c!. Note that the lines
of nodes atF56p/4 do not rotate in thedxy(x22y2)-wave
case, and, provided thata1,2d0, no new nodes are intro
duced. The distortion of the zero-current, tetragonal struc
of Fig. 2~a! to the structure of Fig. 2~b! or Fig. 2~c! ~or to a
mixture of the latter two! by an externally imposed curren
may be experimentally observable using directional pro
of the order parameter. Techniques such as photoemissio
tunneling may be appropriate, provided that sufficiently hi
resolution can be obtained.
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