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Beads on a string: structure of bound aggregates
of globular particles and long polymer chains

Anton Souslov,*a Jennifer E. Curtisab and Paul M. Goldbarta

Macroscopic properties of suspensions, such as those composed of globular particles (e.g., colloidal or

macromolecular), can be tuned by controlling the equilibrium aggregation of the particles. We examine how

aggregation – and, hence, macroscopic properties – can be controlled in a system composed of both

globular particles and long, flexible polymer chains that reversibly bind to one another. We base this on a

minimal statistical mechanical model of a single aggregate in which the polymer chain is treated either as

ideal or self-avoiding, and, in addition, the globular particles are taken to interact with one another via

excluded volume repulsion. Furthermore, each of the globular particles is taken to have one single site to

which at most one polymer segment may bind. Within the context of this model, we examine the statistics

of the equilibrium size of an aggregate and, thence, the structure of dilute and semidilute suspensions of

these aggregates. We apply the model to biologically relevant aggregates, specifically those composed

of macromolecular proteoglycan globules and long hyaluronan polymer chains. These aggregates

are especially relevant to the materials properties of cartilage and the structure–function properties of

perineuronal nets in brain tissue, as well as the pericellular coats of mammalian cells.

I Introduction

For suspensions composed of long polymer chains and colloidal
particles, a wealth of materials properties can be explored by tuning
the polymer–colloid interactions. For example, in suspensions in
which the polymers and the colloids do not bind to one another,
flocculation of large aggregates can be controlled by tuning the
polymer concentration, which determines the effective depletion or
electrostatic forces between colloidal particles (as reviewed in, e.g.,
ref. 1 and 2). In other systems, polymer–colloid interactions lead to
the formation of polymer bridges between colloidal particles, which
results in macroscopic gelation or flocculation (as reviewed in, e.g.,
ref. 3). A similar bridging mechanism leads to gelation in
polymer-micelle systems.4–6 Such bridging phenomena have
been modeled in terms of the adsorption of polymer chains
onto the surfaces of suspended particles.7,8 In this work, we
instead consider a suspension in which polymer bridges form
between globular suspended particles due to the presence on
each such particle of a single specific site to which the polymer
binds. For this system, aggregation is limited by the polymer
chain length and, therefore, the aggregates are limited to the
microscale and, thus, do not flocculate. We consider the case
for which the polymer–colloid binding is reversible. For this

case, we describe how it may be possible to control experimentally
the characteristic size of aggregates, for example by tuning the
length of the polymer chains, the temperature, or the density of
colloidal particles. The size of aggregates then determines the
macroscopic materials properties of the suspension.

To develop a statistical mechanical approach to the structure
of these aggregates, we model the colloidal particles as hard
spheres, and the polymers as Gaussian chains, possibly with self-
avoidance. By considering key physical features of polymer–
colloid suspensions – the steric repulsion between the colloidal
particles and the presence on each particle of exactly one
binding site for polymer chains – we derive results for the
statistics of the number M of colloidal particles attached to each
polymer chain and, consequently, of the linear size R of the
aggregate. Thus, for self-avoiding polymer chains we derive the
following expressions for the mean and variance of M:

hMi B (b(m + Eb))2/3(Rg/2a)5/3 = (b(m + Eb))2/3N(c0/2a)5/3, (1)

h(dM)2i B (b(m + Eb))�1/3(Rg/2a)5/3, (2)

in terms of b = 1/kBT (where T is the temperature), the chemical
potential m of the colloidal particles, the polymer–colloid binding
energy Eb, the characteristics of an isolated polymer chain (i.e.,
the segment length c0, the number of segments N, and the
radius of gyration Rg = N3/5c0), and the radius a of a colloidal
particle. The relative width of the distribution [which is given by
h(dM)2i/hMi2 B (b(m + Eb))�5/3] decreases as the binding energy
(and, thus, the size of the aggregate) increases. As a consequence,
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for sufficiently large aggregates the size distribution is sharply
peaked around the mean, and the aggregates may be addressed
within one of the two essentially equivalent ensembles –
canonical at fixed M, or grand canonical at fixed m. In suspen-
sion, such aggregates may themselves be modeled in terms of
effective self-avoiding chains, each composed of M segments of
segment length 2a, so that the typical linear size R of an
aggregate is given by aM3/5.

The physical system that inspired this model is the suspension
of biomolecular aggregates composed of long chains of the poly-
saccharide hyaluronan (HA, which behaves as a polymer chain9)
and the types of globular macromolecules called proteoglycans (PG,
e.g., aggrecan, versican, brevican and neurocan – collectively known
as lecticans10) that bind to HA. Although the ‘‘beads on a string’’
language has been used to describe the euchromatin structure of
nucleosome beads along a string of DNA, we do not intend to
describe that system in this work. These aggregates are found in
numerous biological contexts, including the extracellular matrix
(ECM)11,12 and the cell-surface-associated polymer matrix called the
pericellular coat.13,14 For example, in cartilage, a high concentration
of aggrecan (which is bound to hyaluronan strands and therefore
aggregated) works in concert with a dense network of collagen
fibrils to form a tough and resilient load-bearing material. The
aggrecan attracts water into the tissue by osmosis, thereby exerting
a swelling pressure on the collagen network and enabling the
cartilage to resist large compressive loads (see e.g., ref. 15). As
another example, when bound to the surfaces of cells, PG
aggregates co-regulate cell behavior, especially processes that involve
changes in cell adhesion, such as migration,16 proliferation,17 and
synaptogenesis.18

In this biological context, the parameters in eqn (2) take on
specific values or ranges of values:
� For HA chains, we choose the segment length to be twice

the persistence length, i.e., c0 B 14 nm,9 and the contour
length Nc0 to be up to 25 mm,11 such that N t 103 segments.

�We choose a B 100 nm to correspond to the size of the PG
molecules that attach to the HA chain. In real systems, the PG
molecules are somewhat anisotropic bottlebrushes, having
cylindrical dimensions B100 nm � 100 nm � 350 nm when
fully stretched19,20 but, for simplicity, we do not include this
anisotropy in the model. We expect that, as a consequence of
thermal fluctuations, the typical shape of the PG molecules in
solution is less anisotropic. In order to model globular bottle-brush
polymers that are highly swollen as a result of electrostatic repulsion
between their highly charged side-chains (see Fig. 1),21,22 we include
hard-core repulsion between the globules. In biological contexts, the
Debye length is sufficiently short (B1 nm) that the only relevant
interaction is the strong, steric repulsion that suppresses PG–PG
overlap.
� The binding site of each PG molecule occupies B10 nm of

HA contour length, i.e., a length Bc0.23

� PG–HA aggregates in cartilage are composed of up to B100
PG globules bound to a single HA chain.23

II Model and results

We begin by giving a detailed account of the models we shall
use to describe a composite system consisting of a single
polymer chain and the globular particles that bind to it. Next,
we construct the partition function for a single aggregate. We
then simplify this partition function to obtain our main result:
the distribution of aggregate sizes, by which we mean the
distribution of M as well as of R.

We emphasize the interplay between chain entropy and the
binding statistics of globules, and also emphasize associated
phenomena occurring on lengthscales that are much larger
than the HA persistence length. At these large lengthscales, a
chain model is sufficient to capture the physical properties of
the polymer, and we consider both the models of Gaussian and

Fig. 1 A schematic diagram of the model presented in this work and its relation to molecular aggregates composed of hyaluronan (HA) and
proteoglycans (PG). The variables rn and Xm correspond to the positions of the chain segments and the globule centers, respectively. The model
parameters include Eb – the binding energy, c0 – the chain segment length, and a – the globule size. The PG globules, which are bottle-brush polymers
that avoid overlap, are modeled as hard spheres and the polysaccharide HA chain is modeled as a Gaussian chain. These two components aggregate due
to the affinity of the globules to bind to the chain.
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self-avoiding chains. For a Gaussian chain, the polymer segments
are modeled by Hookean springs (of natural length c0), which
connect universal joints at positions rn (with n = 1, . . ., N0). Self-
avoiding chains, in addition, self-interact, via the potential
Un,n0 � U(|rn � rn0|), which is relevant for physical polymers in
a good solvent. Thus, the effective free energy of chain configu-
ration {rn} is given by

GN0 rnf gð Þ ¼ kBT
X
n

rn � rn�1j j2

2‘02
þ
X
no n0

Un;n0 :

We use this chain model only for sufficiently small stretching
of the chain. The opposite case of chains so taut as to resist
further stretching through molecular binding energy, rather
than through entropic elasticity, requires more detailed, chain-
specific, considerations.

We model the globular proteoglycans as particles at posi-
tions Xm (with m = 1, . . ., M), interacting with one another via a
two-body potential. We assume the effects of the inherent
anisotropy of these molecules to be negligible, and thus model
their interactions via a central-force potential V. Furthermore,
we approximate V as a short-range, hard-sphere potential of
radius a, to account for the mutual impenetrability of the
globules, which in essence holds at the relevant energy scales:

Vm;m0 � Vhs Xm � Xm0j jð Þ ¼
0; for Xm � Xm0j j4 2a;

1; otherwise:

(

The partition function for one aggregate factors in all
configurations of the chain segments {rn} and of the hard
spheres {Xm}, as well as the locations {sm} of the binding sites
of the mth hard sphere along the chain backbone (which we
may take to be ordered, i.e., sm o sm+1 for all m). Each sm may
take on values in {1, . . ., n}, and is associated with the binding
constraint Xm = rsm

. Thus, in terms of the chemical potential m
of the suspended globules and the binding energy Eb, the
Boltzmann factor for creating a globule bound to a monomer
of the chain is eb(m+Eb).24 For an aggregate formed in a suffi-
ciently dilute suspension of globules, m is related to the density
of unbound globules ru via the expression m = kBT ln (rua3),
obtained from the analogous expression for the chemical
potential of an ideal gas. In this (grand canonical) ensemble
(with respect to the globules), the partition function of an
aggregate may be expressed as

Z ¼
X
M

eb mþEbð ÞMZM ; (3)

where ZM is the partition function for an aggregate with a fixed
number M of bound globules (i.e., in the canonical ensemble)
and is given by

ZM ¼
X
smf g

0
ð YN 0

n¼1
drn

" # YM
m¼1

dXm

" # Y
mom0

e�bVm;m0

 !
e�bG rnf gð Þ

�
YM
m¼1

dð3Þ Xm � rsmð Þ;

(4)

in which
P0 is the sum over all ordered binding locations {sm}.

Thus, this partition function considers all of the configurations
of a single aggregate, and assigns each configuration the appro-
priate weight. We use the assumptions that N0 c 1 and M c 1,
so we need not consider polymer end effects. Thus, we replace N0

by N = sM � s1 + 1, and chose the index n to run from 1 to N. As a
consequence of the assumption that M c 1, the sum in eqn (3)
can be approximated by an integral, with the result that

Z �
ð
dMeb mþEbð ÞMZM : (5)

To achieve further progress, we make the following assumptions,
which are mathematical consequences of the physical ranges of
the parameters necessary for the aggregates to form:

(1) Only ‘‘nearest-neighbor’’ globule–globule interactions
matter. Thus, the globule at Xm only interacts with those at
Xm�1.

(2) |rsm
� rsm0

| � 2a { 2a for all such pairs, indicating that
the interacting hard-core globules almost touch each other.

(3) |sn � sn�1| = N/M c 1, indicating that the bound globules
are evenly spaced along the contour of the polymer chain.

The limits of validity of these assumptions, and the correc-
tions that would arise from relaxing them, are explored in the
appendix. As a consequence of Assumption 1, the partition
function depends on the coordinates of the globules only
through the combinations Xm � Xm�1 for m = 2 . . . M. Further-
more, using Assumption 2, the inter-globule interaction simpli-
fies via e�bVm,m�1 - d(|Xm � Xm�1| � 2a), which implements the
notion that all pairs of adjacent, mutually impenetrable globules
are strongly tethered to one another. Finally, using Assumption
3, the partition function decomposes into that of M subchains,
with each subchain being composed of N/M segments and each
being stretched to a distance 2a (and where Z1 is the partition
function for one subchain). Thus, we have:

ZM � Vð4pÞM Z1ð ÞM ¼ Vð4pÞM
ð YN=M

n¼2
drn

" # 

� d r1 � rN=M
�� ��� 2a
� �

e�bGN=M rnf gð Þ
�M

;

(6)

where V is the volume of the entire system and the factor (4p)M

results from the orientational degrees of freedom of the sub-
chains, i.e., the freedom of the spheres to relocate around one
another.

A A single ideal chain

For an ideal chain, for which U = 0, the free energy
Fid = �kBT ln Z1 of a single stretched chain has the form

Fid ¼
3

2

ð2aÞ2kBT
ðN=MÞ‘02

,25 which from eqn (6) results in the scaling,

ZM;id � e
�3
2
ð2aÞ2M2

N‘02 : (7)

To evaluate the mean, variance, and relative width of this
(Gaussian) distribution, we substitute ZM;id into eqn (5) to
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obtain the results

Mh i ¼ 1

3
b Eb þ mð Þ Rg

2

ð2aÞ2; (8)

ðdMÞ2
� �

¼ 1

3

Rg
2

ð2aÞ2; (9)

ðdMÞ2
� �
hMi2 ¼ 1

3
b Eb þ mð Þ½ 	�2ð2aÞ

2

Rg
2
� Rg

ahMi

� 	2

; (10)

where for an ideal chain Rg �
ffiffiffiffi
N
p

‘0. Expression (10) indicates
that the relative width of the distribution is small:
ðdMÞ2
� �
hMi2 
 1, which follows because Rg { hMia, i.e., because

the bound globules swell the chain.

B A single self-avoiding chain

The entropic elasticity of self-avoiding chains has two regimes:
a harmonic regime, in which the chain is stretched much less
than the radius of gyration; and an anharmonic regime, in
which the chain is stretched much more than the radius of
gyration. In the harmonic regime, (N/M)nc0 c a, i.e., the radius
of each ‘‘blob’’26 comprising the stretched chain is much
greater than the size of the globular particle. In this regime,
the globules all fit inside the blobs of the polymer chain and,
therefore, the aggregate is only slightly swollen by the globules.
By contrast, physical hyaluronan–proteoglycan aggregates are
significantly larger than isolated chains, and therefore correspond
to the anharmonic regime.

In this anharmonic regime, for which (N/M)nc0a and the
chain is highly stretched,25 we have from eqn (6)

ZM;sa � e
�C 2aM

Rg

� �d

; (11)

where the radius of gyration of the globule-free chain is Rg B
Nnc0 (for self-avoiding chains, n = 3/5 according to Flory theory),
d � (1 � n)�1 = 5/2,25 and C is a constant. Note that ZM;sa

becomes ZM;id if the ideal chain values n ¼ 1

2
and C ¼ 3

2
are

substituted into eqn (11). Next, the use of the method of
steepest descent27 gives the following expressions for the mean,
variance, and relative width of the size distribution of aggre-
gates for the case of self-avoiding polymer chains:

hMi � b mþ Ebð Þ
Cd

� 	 1
d�1 Rg

2a

� 	 d
d�1

¼ b mþ Ebð Þ
Cd

� 	1
n�1 Rg

2a

� 	1
n

¼ b mþ Ebð Þ
Cd

� 	1
n�1

N
‘0
2a

� 	1
n

(12)

ðdMÞ2
� �

� 1

Cdðd� 1Þ 2a=Rg

� �dhMid�2
¼ 1

Cdðd� 1Þ b mþ Ebð Þð Þ
1
n�2

Rg

2a

� 	1
n

¼ 1

Cdðd� 1Þ b mþ Ebð Þð Þ
1
n�2N

‘0
2a

� 	1
n

(13)

ðdMÞ2
� �
hMi2 � b mþ Ebð Þð Þ�

1
n

Rg

2a

� 	�1n
�M�1 b mþ Ebð Þð Þ�1
 1

(14)

In particular, if the Flory result n = 3/5 is inserted, these
expressions simplify to eqn (2) (Fig. 2).

III Many aggregates in suspension

To study the structure and thermodynamics of aggregates in
suspension, we first consider the configurations of a single
isolated aggregate, and then include the effects of inter-
aggregate interaction. Thus, let us focus on an aggregate having
M bound globules, and consider the configurations of the
aggregate that dominate ZM. Under assumptions 1, 2, and 3,
these configurations form a family characterized by the location of
the center of mass of the aggregate, as well as the values for the
B2M angular coordinates of Xm � Xm�1. Thus, the configuration
space is identical to that of a freely-jointed polymer chain composed
of M segments of segment length 2a. As a result, the characteristic

linear size of a single aggregate is approximately 2a
ffiffiffiffiffi
M
p

.
However, Assumption 1 is too strong to describe a physical

aggregate. Thus, we relax this assumption by allowing for
interactions between arbitrary pairs of globules (which are
labeled m and m0). There are then two notable effects of these

Fig. 2 Scaling laws [eqn (8) and (12)] for the number of globules hMi in an
aggregate as a function of b(m + Eb) (bottom, thin) and c0/a (top, thick),
plotted on a log–log scale, with the numbers indicating the line slopes.
The results from the ideal chain model are dashed, whereas those from the
Flory theory of self-avoiding chains are solid. The inset shows the radius of
gyration hRi of an aggregate as a function of hMi: for sufficiently large
aggregates, hRi scales as hMin. The dashed line is the result for only
nearest-neighbor globule–globule interactions, whereas the solid line is
the result that includes interactions between all globule pairs.
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additional interactions. First, for small |m�m0|, the interactions
limit the ranges of the bond angles. For example, as a consequence
of the fact that two next-nearest-neighbor spheres cannot overlap,
the angle between globules m, m + 1, and m + 2 must lie within the
range p/3 to 5p/3. Such effects quickly diminish as |m � m0|
increases. Macroscopically, these interactions have the effect of
stiffening the chain at fixed contour length. We take this effect into
account by representing the aggregates as a freely-jointed chains
having a segment length on the order of, but somewhat greater
than, 2a. Second, the avoidance between distant globules swells the
aggregate, which, therefore, we represent as a self-avoiding chain.
This effect is analogous to that of the swelling of a polymer chain
in good solvent, with the consequent result for the aggregate size:
hRi B 2aMn.28,29 The size distribution of the aggregate, given by
eqn (8) and (12)–(14), is not affected by these interactions. This is a
consequence of the fact that the number 2M of orientational
degrees of freedom of the effective aggregate chain is small
compared to the total number 3N of chain degrees of freedom.

We now consider many aggregates in suspension, and explore
their thermodynamics in three regimes—dilute, semidilute, and
dense. As we shall see: (1) For sufficiently dilute suspensions, the
properties of the individual aggregate should be largely independent
of the aggregate concentration, with only small corrections due to
aggregate–aggregate interactions. This results from a separation of
energy scales, as the entropy of stretching is much larger than the
aggregate-concentration-dependent free energy. On the other hand,
(2) for sufficiently dense suspensions, the suspension behaves
essentially as a dense suspension of globules, with only small
corrections due to the presence of the polymer chains. This results
from the fact that the concentration-dependent free energy is
much larger than the entropy of chain stretching. (3) The cross-
over between these two regimes occurs at densities sufficiently
large that the suspension is described as dense rather than
dilute or semidilute.

These results follow by considering a suspension of aggregates,
and introducing the additional thermodynamic quantities r
(the aggregate number density), V (the system volume), and P
(the number of aggregates). For convenience, we choose to work
at fixed r � P/V. We remark that the suspension is considered
dilute if the characteristic size of the aggregate is much smaller
than the inter-aggregate spacing, i.e., if (Mna) { (V/P)1/3 = r�1/3;
see Fig. 3. For a dilute aggregate suspension, we may estimate
the osmotic pressure P using the virial expansion as

P ¼ rT 1þ B2

v0
rv0 þ � � �

� 	
; (15)

where v0 �
4

3
p Mnað Þ3 is the volume of a single aggregate, rv0 {

1 and B2/v0 is a numerical virial coefficient (which for a hard-
sphere fluid has the value 4). Note that the first term on the
right-hand side of eqn (15) is independent of aggregate size; a
weak dependence on aggregate size results from the (small)
second term. Thus, in the dilute regime, the total Helmholtz
free-energy density of the suspension f is given by

f = P � rT ln ZM, (16)

which is dominated by the large chain-stretching term
�ln ZM B �(aM/Rg)d c 1. The second term in the virial expansion
provides only a small correction to the result, shown in eqn (12), for
hMi, associated with deswelling of each aggregate.

We now turn to the semidilute regime, in which the suspended
aggregates overlap, although the spacing between individual
globules is large, relative to their size; see Fig. 3. This occurs for
the density range v0

�1 { r { a�3. By analogy with the ideal
chains, a mean-field approximation for the properties of semi-
dilute suspensions yields an expression for the free-energy
density given by30

bf � 1

2
a3ðMrÞ2 þ rC 2aM=Rg

� �2
: (17)

As a3r { 1, the two terms are only comparable when
(2a/Rg)2 { 1, which may exist for some range of parameters.
However, for the physical parameters of HA–PG aggregates, a/Rg

is of order one. This means that for semi-dilute suspensions of
HA–PG aggregates, the concentration of aggregates will not
affect aggregate size.

The scaling laws resulting from this mean-field theory can
be corrected to account for aggregate-density fluctuations in
suspensions of self-avoiding aggregates. To do so, we introduce
the stretching exponent d (=5/2); then the expression for the
free-energy density becomes (see ref. 30)

bf � 1

2
a�3 a3Mr
� �9=4þrC 2aM=Rg

� �5=2
: (18)

Fig. 3 The structure of aggregates in suspension. The aggregates behave
as self-avoiding polymer chains of segment length 2a, composed of M
segments. In the dilute regime, the aggregates do not overlap, as shown
on the bottom right. In the semi-dilute regime, as shown on the bottom
left, the aggregates overlap at small globule packing fractions. In the dense
regime (not shown), the globule packing fraction approaches 1. The
assumptions are indicated using the circled numbers 1, 2, and 3.
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These fluctuation corrections suggest that only for parameter
values such that (a/Rg)5/2M1/4

c (a3r)5/4 would the aggregate
concentration not affect aggregate size.

For solutions dense in globules, the osmotic pressure of the
hard-sphere globules can dominate over the chain-stretching
entropy. In that case, the chain degrees of freedom provide
small corrections to a free energy that is essentially the same as
the free energy of hard spheres of radius a. That is, sufficiently
dense suspensions behave as dense suspensions of globules,
with only small corrections arising from the chain binding.

IV Discussion and conclusions

We conclude by first discussing the implications of the model
developed in this work to hyaluronan–proteoglycan aggregates,
and then discussing the implications of this model to other
materials, including synthetic ones. For hyaluronan–proteoglycan
aggregates, we have obtained the dependence of (i) the number of
bound proteoglycans per aggregate and (ii) the size of the aggregate
on model parameters such as the temperature, binding energy, size,
and chemical potential of the globules, as well as the contour and
persistence lengths of the hyaluronan chain. These predictions can,
in principle, be experimentally tested in both biological and
synthetic systems. To clarify these potential tests, we revisit an
important assumption of the model, viz. the assumption that the
polymer chain is flexible. As mentioned above, this assumption
holds as long as the polymer chain segment between two
neighboring bound globules is much longer than the polymer
persistence length. This, therefore, sets limits on the number of
bound globules in an aggregate for which the model remains
applicable. We conjecture that for aggregates outside this limit,
the binding of additional globules is suppressed due to the
bending stiffness of the polymer chain. To test the scaling laws
predicted by the model considered here within a single experi-
ment, one may vary the chemical potential of the globules or,
equivalently, the concentration of free globules in solution.
Other parameters, such as the length-distribution of synthetic
hyaluronan and the size of the aggrecan globules may also be
varied from experiment to experiment. This model also leads us
to obtain expressions for the free energy of a suspension of many
aggregates for several regimes, such as dilute (with respect to the
aggregate concentration) or semi-dilute (and still dilute with
respect to the globules). We thus predict—in terms of the
aggregate parameters—the osmotic pressure and compressibility
of the suspension and, in the semi-dilute regime, the presence of
a correlation length (observable via scattering), as well as the 9/4
scaling of the osmotic pressure with the aggregate density. These
predictions, too, can be tested in experiments on either synthetic
or biological hyaluronan–proteoglycan systems, and can be used
to deduce materials parameters of these suspensions. Thus, the
thermodynamic results obtained here may lead to advances in
the understanding of neuroplasticity as well as the relationship
between joint mechanics and materials properties of cartilage.

The beads-on-a-string model, which we have presented here,
is also sufficiently general to describe materials beyond the

example of hyaluronan–proteoglycan aggregates on which we
have focused. This model combines two basic models of
statistical mechanics: the hard-sphere model, which describes
suspensions, and the random walk model, which describes
polymer chains. It thus has the potential to describe any
material composed of a suspension of large globular particles
that have specific binding sites through which the globules
bind to flexible polymer chains. A possible candidate for such a
material, designed to realize the theory presented here, may be
envisioned as a synthetic system composed of colloidal particles
and polymer chains. For this system to aggregate according to
the model we have considered, the colloidal particles must be
functionalized with a single binding site that has a strong
affinity to be bound to a polymer chain, which could be
accomplished, e.g., with complementary strands of DNA.31

The chains must be sufficiently long to accommodate many
bound colloids, and the binding energy must be sufficiently
strong to promote aggregate formation, but not so strong as to
lead to irreversible binding. Within this artificial system, it may
be possible to control such parameters as the binding energy
(via the DNA strand length and sequence), the temperature,
and the colloid concentration and size – either during the
preparation phase of the experiment or during the experiment
itself. A suspension composed of these microscopic aggregates
would be a biologically inspired fluid metamaterial, and have
the remarkable property that the size of the aggregates is
reversibly controllable. Therefore, the model presented in this
work could guide the creation of suspensions that have finely
tunable viscoelasticity as well as exhibit reversible sedimenta-
tion. By studying the properties of macroscopic suspensions of
these colloid-polymer aggregates, one may gain further under-
standing of the materials properties that biology has realized as
a result of natural selection, as well as use this understanding
for materials engineering.

Appendix A: revisiting initial
assumptions

We revisit the derivation of eqn (8) and (12)–(14), justifying
assumptions 2 and 3 within a mathematical framework and
exploring the corrections to the aggregate partition function
that result from relaxing these assumptions.

First, let us examine a generic pair-interaction potential
between globules V(r) and consider the distance between two
‘‘nearest-neighbor’’ globules r � |Xm � Xm�1| (see Fig. 3) and
the statistical distribution of that distance, i.e., e�(bV(r)+F(r))M,
where F(r) is the free energy of chain stretching. This distribu-
tion is maximized near V0(r) = �F0(r), and is sharply peaked for
sufficiently large M. If we consider a sequence of potentials that
approach Vhc, the solution to this equation must approach
r = 2a, showing that indeed the distribution is dominated by
small inter-globule separations.

For the hard-sphere potential, the validity of Assumption 2
may be tested directly by calculating hr � 2ai and higher
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moments of the distributions ZM;id or ZM;sa. By definition,

rA
� �

¼ K�1
ð1
2a

e
�C rM

Rg

� �d

rAdr; (A1)

where K �
Ð1
2a
e
�C rM

Rg

� �d

dr is the normalization. The ideal-chain
case is obtained by taking C = 3/2, d = 2, in which case the
moments of r may be evaluated exactly, in terms of the Error
function. For arbitrary values of d in the range d 4 1, the above
expectation value can be evaluated using the relation

ð1
2aM
Rg

e�Cx
d
xAdx ¼ 1

dC
2aM

Rg

� 	Aþ1�d
e
�C

2aM

Rg

� 	d

þ Aþ 1� d
dC

ð1
2aM
Rg

e�Cx
d
xA�ddx;

(A2)

which is obtained using integration by parts. On the right-hand
side of this expression, the first term is much larger than the
second term, and the expression can therefore be used to obtain
an asymptotic expansion for the integral on the left-hand side.
Iterating this relation to next order, we obtain (using A = 0 and 1),

hr� 2ai
2a

� 1

dC
Rg

2aM

� 	d


 1: (A3)

Using an additional iteration of eqn (A2) (A = 0, 1, and 2), we
obtain

ðr� hriÞ2
� �
hri2 � 1

d2C2

Rg

2aM

� 	2d

� hr� 2ai
2a

� 	2


 1:

Thus, assumption 2 is justified on the basis that the devia-
tions of r from the value 2a are small, both in terms of the
expectation value of r, and fluctuations around this
expectation value.

Finally, let us now relax Assumption 3 by considering the
distribution of ni � sn � sn�1 (see Fig. 3). If each ni is
considered as an identically distributed independent random
variable, it follows from the central limit theorem that if the
mean of the sum of ni is N, the mean of each ni is indeed N/M.
To calculate the width of the distribution, we consider the
ensemble of fixed M and varying chain contour length N,
determined by a conjugate variable pN. Thus, the corresponding
partition function is given by the sum over all possible arrange-
ments of globules along the chain:

ZMN;sa �
XN

nif gM1 ni¼1

dN;
P

ni
e
�
P
ni

C
2a

‘02n
n
i

� �d

: (A4)

In the pN ensemble, after summing over the chain contour
lengths N, this partition function has the form

ZMpN ;sa �
XN
nif gni¼1

e
�
P
ni

C
2a

‘02n
n
i

� �d

e
�bpN

P
ni

ni

: (A5)

For large ni, each sum may be approximated by an integral, giving

ZMpN ;sa �
ð1
�1

dnie
�C 2a

‘02n
n
i

� �d

�bpNni

0
@

1
A

M

: (A6)

Substituting hnii E N/M for all i, we find the ‘‘equation of
state’’ to be

bpN �
2aM

‘0N

� 	d

: (A7)

By using this approach, we may also calculate the relative width of
the distribution of ni, obtaining,

ni �N=Mð Þ2
D E
ðN=MÞ2 � ‘0N

n

aMn

� 	d


 1; (A8)

which reveals that, indeed, ni is narrowly distributed around the
mean N/M. This narrowness holds for self-avoiding chains (n = 3/5)
as well as for ideal chains (n = 1/2), in both cases under the

condition
‘0N

n

aMn 
 1, i.e., in the physically relevant regime for the

aggregates.
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