
a protein complex, and additional subunits may

be required for its activity and could be limiting

in vivo. Indeed, immunoprecipitation of Ttll1p-

GFP from overproducing Tetrahymena cells led

to a recovery of polyglutamylase activity.

Ttll6Ap is a much larger protein (116 kD)

than TTLL1 (49 kD) and Ttll1p (42 kD), and it

may contain all properties required for auton-

omous polyglutamylase activity. The four non-

catalytic subunits identified in the neuronal

TTLL1 complex may be involved in tubulin

substrate recognition, regulation of enzymatic

activity, or subcellular localization, as has been

suggested for PGs1 (11). It is likely that Ttll1p

is also in a complex, as is the murine homolog.

Except for PGs4, we could not identify homo-

logs of the other subunits of the neural com-

plex (PGs1, PGs2, PGs5) outside of vertebrates,

including Tetrahymena; therefore, variations in

the composition of noncatalytic subunits likely

occur across phyla. The unusually large number

of TTLL genes in Tetrahymena and the lack of

a detectable loss-of-function phenotype for

TTLL1 suggest functional redundancy. In con-

trast, a mutation in the PGs1 component of the

murine TTLL1 complex led to defective sperm

axonemes and changes in animal behavior (14).

In Caenorhabditis elegans, RNA interference

(RNAi) depletion of C55A6.2 (a TTLL5 type)

causes embryonic lethality and sterility (25).

Depletion of TTLL1 mRNA in PC12-E2 cells

inhibited neurite outgrowth, suggesting an es-

sential function in neurogenesis (22).

The phylogenetic association of TTLL1,

TTLL9, TTLL4, TTLL6, TTLL5, and TTLL15

protein types (86% bootstrap value; Fig. 4)

suggests that these protein types are all involved

in glutamylation of tubulin or possibly of other

proteins such as NAPs (4). Other members of

the TTLL family may catalyze different types

of posttranslational addition of an amino acid,

such as polyglycylation (26).
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Quantum Interference Device
Made by DNA Templating of
Superconducting Nanowires

David S. Hopkins, David Pekker, Paul M. Goldbart,
Alexey Bezryadin*

The application of single molecules as templates for nanodevices is a promising
direction for nanotechnology. We used a pair of suspended DNA molecules as
templates for superconducting two-nanowire devices. Because the resulting wires
are very thin, comparable to the DNA molecules themselves, they are susceptible
to thermal fluctuations typical for one-dimensional superconductors and exhibit a
nonzero resistance over a broad temperature range. We observed resistance oscil-
lations in these two-nanowire structures that are different from the usual Little-
Parks oscillations. Here, we provide a quantitative explanation for the observed
quantum interference phenomenon, which takes into account strong phase gra-
dients created in the leads by the applied magnetic field.

DNA has recently been considered as a ‘‘back-

bone[ for the fabrication of information-

processing devices, chemical and biological

sensors, and molecular transistors at the

nanometer-size scale (1, 2). By taking ad-

vantage of DNA self-assembly possibilities

(3), one can envision using single DNA and

self-assembled DNA constructs as scaffolds

for precise nanometer-scale positioning of

other molecules and nanoscale objects. Re-

cently, electronic devices with features that

have molecular-scale dimensions have been

assembled on such molecular-scale scaffolds

(4). One of the simplest practical realiza-

tions of this approach lies in the metalli-

zation of DNA molecules (5). Previously, a

wet-chemistry approach was used to metal-

lize DNA (5–8), which tends to yield rather

granular wires that become highly resistive

at low temperatures.

We used a physical method of metalliza-

tion Eanalogous to (9)^ that involves sputter

deposition of metallic films over suspended

DNA molecules to fabricate wires as thin as

3 to 4 molecular diameters (as thin as 5 to

15 nm). Our nanowires are homogeneous, make

seamless contacts with the leads, and become

superconducting at low temperatures. We

REPORTS
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fabricated structures with pairs of such DNA-

templated nanowires (Fig. 1) (10) to study

quantum interference effects and the effect

of thermal fluctuations at the nanoscale.

Well-known examples of quantum inter-

ference include critical-current oscillations in

conventional superconducting quantum inter-

ference devices (SQUIDs) (11, 12) and Little-

Parks resistance oscillations in thin-walled

cylinders (13). In these examples, the periods

of the oscillations are controlled by the super-

conducting flux quantum F
0
(Kh/2e) where

h is Planck_s constant and –e is the electronic

charge, divided by the geometrical area

enclosing the magnetic field. Our measure-

ments on two-nanowire devices show a strong

discrepancy with the usual behavior, and we

provide a quantitative theoretical explanation

for the observed period and amplitude of the

oscillations.

Transport measurements at temperatures

as low as 0.3 K at various magnetic fields

(10) reveal a resistive transition, associated

with the development of superconducting

phase coherence throughout the nanowires,

occurring over a broad temperature range in

the absence of a magnetic field (Fig. 2A).

This transition is found to broaden and nar-

row periodically with magnetic field. Conse-

quently, at any temperature in the transition

region, we see highly pronounced and very

regular oscillations of the resistance with mag-

netic field (Fig. 2B). For higher temperatures

in this region, the oscillation appears cosi-

nusoidal, with a maximum in the amplitude

at some intermediate temperature. For each

sample, the observed period does not show

any temperature or field dependence.

What distinguishes our resistance oscilla-

tions from those found, for example, by Little

and Parks? First, the most notable aspect of

these oscillations is the value of the mea-

sured period (456 mT in Fig. 2B), which is

far shorter than one would estimate on the

basis of the superconducting flux quantum

divided by the area of the hole between the

wires (F
0
/2ab 0 25 mT with dimensions a

and b, defined in Fig. 1A, for sample 219-4

of Table 1). Thus, we see that the period of

our oscillations is not controlled by the

geometrical area defined by the nanowires

and the edges of the leads. Instead, we find

that in the low magnetic-field regime (when

no vortices are present in the leads), the

period is controlled by F
0

divided by a new

quantity: the product of the lead width (2l È

9 to 15 mm) and the interwire spacing (2a È

0.3 to 4 mm). The reason for this is that the

leads are mesoscopic—i.e., they are narrow-

er than the perpendicular magnetic penetra-

tion depth (l
±

È 70 mm)—and therefore the

magnetic field penetrates the leads with

negligible attenuation. Second, because the

resistance is caused by thermal phase fluc-

tuations (i.e., phase slips) in very narrow wires,

the oscillations are observable over a wide

range of temperatures (È1 K). Third, the

Little-Parks resistance is wholly ascribed to a

rigid shift of the R(T ) curve with magnetic

field as the critical temperature T
c

oscillates.

In contrast, in our system we find a much

more substantial contribution to the resist-

ance oscillations coming from the modula-

tion of the barrier heights for phase slips.

Superconducting nanowires are unusual in

that they never show zero resistance, although

resistance does decrease exponentially upon

cooling. As discussed by Little (14), Langer

and Ambegaokar (LA) (15), and McCumber

and Halperin (MH) (16), the origin of this

resistive behavior lies in the occurrence of

thermally activated slips of the phase of the

Ginzburg-Landau (GL) order parameter y ðr¯Þ.
During a phase slip, a small normal segment

appears on the nanowire for a short time,

causing the loss of phase coherence between

the leads. Resistance is then associated with a

nonzero value of the average voltage, which

matches the imbalance, due to the current, be-

tween forward and backward phase slips (12).

We developed an extension of LAMH

theory that applies to devices containing two

nanowires connected in parallel, including the

effect of an applied magnetic field. The mod-

el accurately describes the period, magnitude,

and temperature dependence of the observed

magnetoresistance oscillations. The essential

ingredients in our model are (i) leads, in which

the applied magnetic field induces super-

currents and, hence, gradients in the phase of

the order parameter and (ii) the two wires,

whose behavior is controlled by the leads

through the boundary conditions imposed by

the leads on the phase of the order parame-

ters in the wires. We assume that the wires

have sufficiently small cross sections that the

currents through them do not feed back on

the order parameter in the leads.

In our model, thermally activated phase

slips cause the superconducting order param-

eter to explore a discrete family of local

minima of the free energy. These minima

(and the saddle-point states connecting them)

may be indexed by the net (i.e., forward mi-

nus reverse) number of phase slips that have

occurred in each wire (n
1

and n
2
) or, more

usefully, by n
s
0 min(n

1
, n

2
) (i.e., the net

number of phase slips that have passed through

both wires) and n
v
0 n

1
– n

2
(i.e., the number

of vortices accumulated in the loop, which is

formed by the wires and the edges of the

leads). Notably, two configurations with iden-

tical n
v

but distinct n
s

and n
s¶ have identical

order parameters but differ in energy by F
0

I

(n
s¶ – n

s
), due to the work done by the cur-

rent source supplying the current I.

Fig. 1. (A) Schematic of the DNA-templated
two-nanowire device. Two strands of DNA are
stretched across a trench etched into SiN/SiO2
on a Si chip (6). The molecules and the banks
are coated with superconducting Mo21Ge79. The
dimensions are indicated. (B) SEM micrograph
of two metal-coated DNA molecules (sample
219-4).

Fig. 2. (A) Resistance versus temperature mea-
surements (sample 219-4) in zero magnetic
field (open circles) and at a magnetic field of
228 mT (solid circles) corresponding to a max-
imum change in magnetoresistance. The lines
are theoretical fits, based on the short-wire
limit of our theory, with the following fitting
parameters: Jc1 0 639 nA, Jc2 0 330 nA, Tc1 0
2.98 K, and Tc2 0 2.00 K, with corresponding
coherence lengths x1(0) 0 23 nm and x2(0) 0
30 nm. (B) Resistance versus magnetic field mea-
surements (sample 219-4) at temperatures from
1.2 to 1.9 K in 0.1 K increments. The lines are
theoretical fits using the same fitting parame-
ters as in (A) with the period set to 456 mT.
Resistance is measured in ohms.
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Due to the screening currents in the left

lead (Fig. 1A), induced by the applied per-

pendicular magnetic field B (and indepen-

dent of the wires), there is a field-dependent

phase d1Y2;LðBÞ 0 X
2

1dr¯ Il
¯
8ðBÞ, where 8(B)

is the field-dependent phase of the order

parameter, accumulated in passing from the

point at which wire 1 (the back one) contacts

the left (L) lead to the point at which wire 2

(the front one) contacts the left lead. Similarly,

the field creates a phase accumulation

d
1Y2,R

(B) between the contact points in the

right (R) lead. Because leads are geometrically

identical, the phase accumulations in them

differ in sign only, d
1Y2,L

(B) 0 –d
1Y2,R

(B).

We define d(B) 0 d
1Y2,L

(B). In determining

the local free-energy minima, we solve the

GL equation for the wires for each vortex

number n
v
, imposing the single-valuedness

condition on the order parameter, q
1,RYL

–

q
2,RYL

þ 2d(B) 0 2pn
v
. Here, q1;RYL 0

X
L

RdrY I l
Y
8 is the phase accumulated along

wire 1 in passing from the right to the left

lead; q
2,RYL

is similarly defined for wire 2.

Because we can neglect the direct effect of

the magnetic field on the wires, d(B) is the

only field-dependent parameter that affects

the wires. The magnetic field increases d(B)

and imposes additional phase gradients in the

wires, which, according to LAMH theory,

decrease the barriers for phase slips and,

hence, increase the resistance. The period of

the observed oscillations is derived from the

fact that whenever the magnetic field is such

that 2d(B) 0 2pm (where m is an integer, and

the factor of 2 reflects the presence of two

leads), the family of free-energy minima

(all of which are statistically populated ac-

cording to their energies) of the two-wire

system is identical to the B 0 0 case. The

identity is established by redefining n
v
Y n

v
–

m. Thus, the resistance of the device re-

turns to the zero-field value each time the

phase accumulation in the leads satisfies d 0
pm.

Next, we describe how d 0 d(B) is cal-

culated. Consider an infinitely long, thin-film,

superconducting strip of width 2l, much nar-

rower than the perpendicular penetration depth

and subject to a uniform, perpendicular mag-

netic field Bẑ, sufficiently weak that no vorti-

ces are present in the strip. The vector

potential A
¯
0 Byx̂ is always in the plane of

the strip with A
¯
0 0 along the middle of the

strip. Thus, for the infinite strip, we have the

London gauge (12) and the two-dimensional

current density is J
¯ðx; yÞ 0 jtf A

¯ðx; yÞ=m0l2 0
jðtf By=m0l2Þx̂, where t

f
is the film thickness

and l is the magnetic penetration depth. Then,

J
¯

has magnitude t
f
Bl/m

0
l2 at the strip edges. In

our experiment, the lengths of the two leads are

much greater than their widths. Thus, the above

estimate for the current density near the long

edges continues to hold. By continuity, this

edge current must sweep around at the short

edges of the leads and, in so doing, must flow

in the ŷ direction as it passes the connection

points of the wires. Owing to the finite length of

the leads, our choice of gauge is not London

type, given that the vector potential is perpen-

dicular to the short edges of the leads. Thus, the

supercurrent along the short edges is determined

by the gradient of the phase, by J
¯ðx; yÞ 0

ðtfilmF0=2pm0l2Þðly8Þ ŷ, which means that

ly8 , ð2p=F0ÞBl. Correspondingly, the phase

drop between the ends of the wires is ap-

proximately given by d(B) 0 2p(2alB/F
0
). It

follows that the period of the resistance os-

cillations, DB, is given by F
0
/4al. A more

precise analysis (valid for the case a GG l)

Esupporting online material (SOM) text^ yields

DB 0 (p2/8G)(F
0
/4al), where G 0 0.916I is

the Catalan number.

To test our prediction for the period, we

measured five different samples (Table 1) and

extracted the periods from the correspond-

ing R(B) curves. Table 1 shows the excellent

agreement between the theoretically calcu-

lated and measured periods. Only one sam-

ple (219-4) showed a 15% deviation from the

theoretical prediction. A scanning electron mi-

croscopy (SEM) inspection of the leads of

this sample revealed that the lead shape was

not precisely rectangular (fig. S1), in contrast

with all other samples. Thus the current flow

near the ends of the wires in 219-4 was dis-

torted, explaining the observed deviation. A

more stringent test of the formula for the pe-

riod was obtained by narrowing the leads of

one of the samples (930-1) with the use of a

focused ion beam (FIB) milling and remea-

suring the period and the lead width: The

new period was larger and remained in ex-

cellent agreement with the new calculated

value (Table 1). One can also account for an

additional Aharonov-Bohm phase shift asso-

ciated with the vector-potential integrated

around the loop formed by the wires. In our

geometry, this effect accounts for a È1%

correction to the calculated period, which is

slightly below the accuracy of our measure-

ments and was neglected (SOM text).

We now consider the question of the mag-

nitude of the resistance oscillations. In our

theory, the phase slip rate G between various

local free-energy minima takes into account

the response of one wire to any phase slip oc-

curring in the other wire, and is determined by

Arrhenius law G 0 WexpE–DF/k
B
T ^, where W

is the attempt frequency and k
B

is the

Boltzmann constant. The free-energy barrier

DF for a phase slip depends on the initial and

final configurations, each of which is defined

by a pair of integers n
v

and n
s
. The zero-bias

resistance is R 0 V/I, where the current I is

small and fixed and the voltage is given by

V 0 ðI=2eÞ8̇, where I is h/2p. The net phase

slip velocity 8̇ 0 2pṅs is determined by the net

number of phase slips that pass through both

wires per unit time, which in turn depends on

G. For example, in the short-wire limit (b G 4x,

where b is the wire length and x is the

superconducting coherence length), we always

have n
v

0 0, and the resistance is R 0
ðpI2W=2e2 kBTÞ expEjDF=kBT ^. In the same

limit, the barrier height is DF 0 ðI=eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð jc1 þ jc2Þ2

cos 2 dðBÞþ ð jc1 j jc2Þ2
sin 2 dðBÞ

q
:

Here, j
c1

and j
c2

are the critical currents for the

wires, given by j
c
0 E113 mA^EbT

c
/R

N
x(0)^E1 –

(T/T
c
)^3/2, where T

c
is the critical temperature of

the corresponding wire, R
N

is its normal state

resistance, and x is its coherence length (17).

The fit of the predictions of our model to the

experimental data is shown as the solid curves

in Fig. 2A (SOM text).

So far, we have concentrated on phenome-

na at magnetic fields below roughly 3 mT,

Table 1. A summary of the geometries (obtained from SEM), the theoretical predictions for the period of
the magnetoresistance oscillations, and the measured periods for all of the two-wire devices. The
geometry of 930-1 was changed by milling with a focused ion beam, and the magnetoresistance period
was remeasured. Wire sep., wire separation; Th. per., theoretical period; Ex. per., experimental period,
diff., difference.

Sample
Wire length

b (nm)
Wire sep.
2a (nm)

Lead width
2l (nm)

Th. per.
DB (mT)

Ex. per.
(mT)

% diff.

205-4 121 265 11270 929 947 1.9
219-4 137 595 12060 389 456 14.8
930-1 141 2450 14480 78.4 77.5 –1.2
930-1 (FIB-narrowed leads) 141 2450 8930 127 128 0.9
205-2 134 4050 14520 47.4 48.9 3.0

Fig. 3. Critical switching (ISW) and retrapping
(IR) currents plotted versus magnetic field, mea-
sured at T 0 285 mK (sample 219-4).
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and for such fields we observed short-period,

nonhysteretic resistance oscillations. When-

ever fields larger than this scale have been

applied, the magnetoresistance behavior be-

comes hysteretic, even if the field is swept

back to the sub–3 mT regime. The most nat-

ural explanation for this transition follows

from Likharev_s threshold-field theory, accord-

ing to which vortices start to enter the thin film

leads at fields of this magnitude (18–21). Once

present, some vortices remain in the leads and

contribute the phase shifts experienced by the

wires, and therefore can influence the mea-

sured resistance. To reduce the noise caused

by the thermal motion of vortices, we mea-

sured (10) the switching and retrapping crit-

ical currents (instead of resistance) versus the

magnetic field at T 0 0.3 K (Fig. 3). It is clear

that only the switching current shows oscil-

lations, whereas the retrapping current is field

independent. No detailed explanation for this

interesting phenomenon is known to us at this

point. Notably, the period of the switching

current oscillation in the low-field regime

coincides with that of the magnetoresistance

(fig. S2). Two types of oscillatory behavior

are observed (Fig. 3). The short-period oscil-

lation corresponds to the fields at which no

vortices are present and the large-period os-

cillation occurs when vortices have entered

the leads. The large period changes with mag-

netic field and can be estimated as DB
large

È

F
0
/2a(d þ b), where d is the distance between

the vortices.

We report a new class of metallic devices

based on DNA molecules. Such an approach

is promising, due to the self-assembly prop-

erties of DNA. As the resistance of the

devices is controlled by the spatial profile

of the superconducting phase within the

leads, there is the potential for applications.

These include local magnetometry (as is

widely done with conventional SQUIDs) and

the imaging of phase profiles created by

supercurrents—in essence a superconducting

phase gradiometer. Applications are not

limited to a narrow range of temperatures;

the ultranarrow widths of the wires ensure

that the resistive transition occurs over a

broad range of temperatures.
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Spectral Signatures of
Hydrated Proton Vibrations

in Water Clusters
Jeffrey M. Headrick,1 Eric G. Diken,1 Richard S. Walters,2

Nathan I. Hammer,1 Richard A. Christie,3 Jun Cui,3

Evgeniy M. Myshakin,3 Michael A. Duncan,2*

Mark A. Johnson,1* Kenneth D. Jordan3*

The ease with which the pH of water is measured obscures the fact that there
is presently no clear molecular description for the hydrated proton. The mid-
infrared spectrum of bulk aqueous acid, for example, is too diffuse to establish
the roles of the putative Eigen (H3Oþ) and Zundel (H5O2

þ) ion cores. To expose
the local environment of the excess charge, we report how the vibrational
spectrum of protonated water clusters evolves in the size range from 2 to 11
water molecules. Signature bands indicating embedded Eigen or Zundel limiting
forms are observed in all of the spectra with the exception of the three- and
five-membered clusters. These unique species display bands appearing at
intermediate energies, reflecting asymmetric solvation of the core ion. Taken
together, the data reveal the pronounced spectral impact of subtle changes in
the hydration environment.

Despite the ubiquity of aqueous acids in chemi-

cal and biological systems (1–7), a molecular-

level description of the hydrated proton remains

elusive (8–14). The suggestion in introduc-

tory chemistry texts that the dominant spe-

ciation occurs as Bhydronium[ EH
3
Oþ, also

called the Eigen (9) core^ is too simplistic; an

alternative limiting form proposed by Zundel

(10) (H
2
OIIIHIIIOH

2
)þ has long been thought

to play an essential role, and the broad in-

frared absorptions of the aqueous proton at

1250, 1760, and 3020 cm–1 have been as-

signed in the context of both the Eigen and

Zundel species (15–17). Here, we character-

ize the hydrated proton using a bottom-up

approach. Through recent advances in laser

generation of infrared light in the 1000- to

4000-cm–1 range, we directly monitor the

spectral evolution of the proton accommo-

dation motif as water molecules are sequen-

tially added to the hydronium ion, up to an

11-membered cluster.

Infrared spectra of bare Hþ I (H
2
O)

n
clus-

ters in the OH stretching region (2800 to

3900 cm–1, with inconsistent coverage below

2800 cm–1) have already been reported, and the

observed bands are mostly attributed to wa-

ter molecules remote from the proton (18–23).

Dangling water molecules attached to the

exterior of a hydrogen-bonded network, for

example, produce sharp bands arising from the

symmetric (u
s
) and asymmetric (u

a
) stretches

of the nonbonded OH groups. Theoretical anal-

ysis of these spectra indicated a Zundel motif

for the two-, six-, seven-, and eight-membered

clusters, but an embedded Eigen core for the

three- to five-membered clusters (Fig. 1).
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