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We study ionic microgel suspensions composed of swollen particles for various single-particle
stiffnesses. We measure the osmotic pressure π of these suspensions and show that it is dominated by
the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of
the suspension ϕ, we can determine ϕ from π, even at volume fractions so high that the microgel particles
are compressed. We find that the width of the fluid-solid phase coexistence, measured using ϕ, is larger
than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer
microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction.
By calculating the dependence on ϕ of the mean volume of a microgel particle, we show that the behavior
of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the
volume fractions corresponding to fluid-solid phase coexistence.
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The hard sphere model (HSM), which underpins the
current understanding of entropic effects in crystallization,
applies directly to suspensions with hard sphere interactions
[1]. In this model, all intensive thermodynamic quantities,
including the pressure π, depend only on the packing fraction
ϕ≡ ρv, where ρ is the particle number density and v is
the individual particle volume. For ϕ ≪ 1, the equation of
state of the hard-sphere fluid follows the ideal gas law,
π ≈ ρkT ¼ kTϕ=v, where k is the Boltzmann constant andT
is the temperature, with small corrections of order ϕ2. At
sufficiently large ϕ, the fluid phase (at ϕf ≈ 0.49) coexists
with a crystalline solid phase (atϕs ≈ 0.54), so that thewidth
of the coexistence region for this discontinuous transition
ΔϕHS ≡ ϕs − ϕf is approximately 0.05 [2].
The fluid-solid phase transition is also observed in

colloidal suspensions comprising microgels [3–7], which
are deformable colloidal particles consisting of a network
of cross-linked polymers. For such compressible particles,
the particle volume v depends on the density ρ, so that the
volume fraction ϕ is difficult to quantify [8]. Instead, it is
convenient to introduce the generalized packing fraction
ζ ≡ ρv0, where v0 is the volume of the particle in a dilute
suspension. For low ρ, ζ ≈ ϕ; at high ρ, the particles are
compressed, and therefore v=v0 ¼ ϕ=ζ is significantly
smaller than 1. The overall effect of particle softness on
suspension thermodynamics is determined by a combina-
tion of two features: the elastic forces between the particles
and the dependence of v on ϕ [9].
One of the first studies of the fluid-solid phase transition

of microgel suspensions reported coexistence of a fluid
phase at ζf ≈ 0.59 and a solid phase at ζs ≈ 0.61 [10]. The
higher values of these quantities, compared to ϕf and ϕs for
the HSM, result from the soft-repulsive interaction between

the swollen microgels [11]. Consistent with this, the
coexistence width Δζ ≡ ζs − ζf was found to be smaller
than ΔϕHS. Throughout subsequent studies, the exact
values of ζf, ζs, and Δζ were found to vary with the
details of microgel composition [3,5,6,12,13]. Indeed,
depending on the system considered, Δζ has been found
to be smaller than [3,10], similar to [6,12], or larger than
[5,13] ΔϕHS, without any apparent correlation with any
physical characteristics of the material composing the
microgel. Evidently, the phase behavior of suspensions
of soft microgels is not fully understood.
In this Letter, we address two challenges: (i) systemati-

cally quantifying the particle volume v, and therefore the
packing fraction ϕ, as a function of ρ for soft microgels, and
(ii) studying the effect of softness on the width of the
coexistence region, as characterized by Δϕ. We accomplish
this by measuring the osmotic pressure π of ionic microgel
suspensions and showing that it is dominated by the partial
pressure of free ions in solution, which is significantly
larger than the osmotic pressure due to the translational
degrees of freedom of the colloidal particles. We then
calculate the packing fraction ϕ using a model for this ionic
osmotic pressure. We show that Δϕ decreases for pro-
gressively softer microgels. Moreover, the softest microgels
that we study exhibit neither crystalline nor glassy states.
We then connect our findings with two well-known models
of soft spheres [14]: (i) the penetrable-sphere model [15],
for which Δϕ > ΔϕHS, i.e., behavior that coincides with
that of the stiffer microgels in our study, and (ii) the
Hertzian [16] (as well as Gaussian [17]) repulsive sphere
model, which exhibits a decrease in Δϕ with increasing
softness, such that for the softest spheres, no crystallization
transition is observed.
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We use poly-vinylpyridine microgels cross-linked with
divinylbenzene at pH3, for which the microgels are fully
swollen [18]. At this pH, the vinylpyridine groups are
mostly ionized but their charge is strongly screened by the
counterions in solution. The counterions are thus drawn
inside the microgel, creating an imbalance of osmotic
pressure between the inside of the microgel and the solution
outside. Thus, electrostatic repulsions between fixed
charges may be ignored but the ions exert an osmotic
pressure that favors the swelling of the microgels. This
pressure is counteracted by the elasticity of the cross-linked
polymer network due to the configurational entropy of the
chains. The equilibrium size of the microgel particle is
determined by the balance between these two effects [19].
The elasticity of the polymer network is thus controlled

by the cross-linker concentration cX. Hence, increasing cX
at a constant pH of 3 results in smaller, stiffer, swollen
particles, as shown in Table I. We study the suspension
phase behavior for microgels at various values of cX as a
function of ζ, and we visually classify whether the sample
is in a fluid, solid, or phase-coexisting state. We determine
ζf and ζs, and thus Δζ, from a linear fit to the dependence
of the crystal fraction in the samples on ζ, in samples
exhibiting phase coexistence [1,10]. This is shown in
Fig. 1(a) for microgels at cross-linker concentration
cX ¼ 1.6 wt%. We find that both Δζ and ζf increase with
decreasing cX, as shown in Table I, which is consistent with
previous observations [5]. Note that ζf is always larger than
the ϕf ≈ 0.49 seen for the HSM, suggesting that repulsive
interparticle electrostatic interactions are negligible [20];
this is a consequence of the screening of the fixed charge of
the microgels by the counterions inside them. Thus, the
dominant interparticle interaction arises from the elastic
energy associated with particle deformation. Also note that
suspensions composed of microgels with cX ¼ 0.2 wt% do
not exhibit the Bragg reflections indicative of a crystalline
state, as shown in Fig. 1(b). Hence, these suspensions
remain a fluid, irrespective of ζ, in agreement with previous
observations on the same type of particles [5].
To characterize the equation of state for our suspensions,

we measure their osmotic pressure π as a function

of ζ using a membrane osmometer (Wescor 4420).
Significantly, πðζÞ does not appreciably depend on cX,
and therefore the particle volume v, as shown in Fig. 2(a),
in contrast to the HSM equation of state. Furthermore, if the
pressure π were to result from the translational degrees of
freedom of the colloidal particles, at low ζ the equation of
state would be described by the ideal gas law. For ζ ¼ 0.02
this would imply a microgel osmotic pressure of ∼0.1 mPa
for cX ¼ 0.2 wt%, but we measure π ∼ 5 Pa, which is
about 4 orders of magnitude larger. By using dialysis [21],
we confirm the values of π measured with the membrane
osmometer, as shown in Fig. 2(b) for microgels with
cX ¼ 0.2 wt%. We obtained similar results for suspensions
of microgels at other values of cX. Thus, we are confident
that we have measured the osmotic pressure of the
suspension correctly, which forces us to conclude that
the dominant effect on the pressure results from some
contribution not yet considered.
We hypothesize that the values of π that we measure

correspond to the osmotic pressure of free counterions in
solution, as there are more ions than there are microgel
particles in our suspensions. To calculate this osmotic
pressure πc, we note that the Donnan potential, which
confines most of the counterions to within the microgel
particles, is constant inside a particle, but must go smoothly
to zero near the particle edge over a region of thickness
corresponding to the Debye length κ−1 [Fig. 2(c)]. At a
distance such that this potential energy is OðkTÞ, the ions
are not bound to the microgel particle, and thus contribute
to the osmotic pressure of the solution. The fraction Γ of
deconfined ions can be estimated using the model in
Ref. [22] as

Γ ¼ ½ðκ−1 þ ds=2Þ3 − ðds=2Þ3�=ðds=2Þ3 ≈ 6κ−1=ds;

where κ−1 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðds=2Þ3=ð3lBQÞ
p

, with Q being the number
of charges in a microgel, lB the Bjerrum length, and ds the

TABLE I. Cross-linker concentration cX, swollen diameter ds
measured with dynamic light scattering, generalized packing
fraction jump across the fluid-solid phase transition Δζ, and
generalized packing fraction at freezing ζf .

cX (wt%) ds (nm) Δζ ζf

0.2 □ 1050� 21 � � � � � �
0.5 ○ 1020� 21 0.41� 0.07 1.9� 0.1
1.3 △ 705� 8 0.19� 0.05 1.05� 0.05
1.6 ▿ 701� 13 0.21� 0.04 0.87� 0.04
1.8 ⋄ 634� 8 0.18� 0.04 0.76� 0.03
2.5 ⊲ 545� 7 0.14� 0.04 0.65� 0.04
4.0 ⊳ 431� 6 0.11� 0.02 0.58� 0.02 Liquid

(b)

(a)

37.815.35.872.790.75=0.50

Liquid L-C coexistence Crystal

=0.80 0.89 0.95 0.99 1.08

FIG. 1 (color online). (a) Crystal fraction versus generalized
packing fraction for microgels with cX ¼ 1.6 wt%. (b) Liquid
samples at various values of ζ for microgels with cX ¼ 0.2 wt%.
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diameter of a microgel: ds ∼ v01=3. These ions occupy the
region outside the microgel particles, and are sufficiently
dilute that we can estimate their osmotic pressure using
the ideal gas law [22]: πcðϕÞ ¼ kTðΓQ=v0Þðϕ=1 − ϕÞ.
Substituting ϕ ≈ ζ, which we find to hold for ζ < 0.63,
this expression fits well the ζ dependence of the osmotic
pressure that we measure up to random close packing.
From this fit [see Fig. 2(b)], we obtain the parameter ΓQ.
Furthermore, we find that the values of ΓQ for microgels
with different values of cX and, therefore, differing ds,
increase linearly with

ffiffiffiffiffi

ds
p

, as shown in Fig. 2(d). This
dependence is consistent with the model expectation that
results from considering the ds dependence in the expres-
sions of Γ and κ−1, provided Q is constant. Indeed, Q does
not depend on cX, as all particles are synthesized with
the same polymer weight fraction and all have the
same deswollen size [18]. The slope of the linear fit in
Fig. 2(d) is ð7.3� 1.5Þ × 103 nm−1=2. Using the value ofQ
obtained from titrations [19], we get a corresponding value
of 1.6 × 103 nm−1=2, which compares favorably with our
result, given the fact that the comparison is between
different syntheses of the same system and is based on
values that are obtained by two completely independent
means, each with a corresponding experimental error [23].
Our results are thus consistent with our hypothesis that

the suspension osmotic pressure is dominated by the
contribution due to the counterions that lie outside of
and unbound to the microgel particles. Significantly, as this
contribution is sensitive to ϕ and not to ζ, we can take
advantage of the fact that π ¼ πc to obtain ϕ ¼ ϕðζÞ. That
is, we use the model to find the volume of the compressed
microgels vðϕÞ ¼ v0ϕ=ζ as a function of ζ. Using this ζ →
ϕ mapping, we can obtain the phase-coexistence width in
terms of the microgel volume fraction ϕ. In contrast to the
behavior of Δζ with cX, we find that Δϕ is approximately
constant for the stiffer microgels and decreases progres-
sively with particle softness, as shown in Fig. 3(a). For the
softest microgels, no crystallization is observed. We also
find that vðϕÞ ¼ v0 for volume fractions that are always

above, but close to, random close packing [24], as shown in
Figs. 3(b)–3(h). Significantly, for the stiffer microgels the
particles are not appreciably compressed within the phase-
coexistence region, which is indicated by square points in
these figures [see Figs. 3(b)–3(d)]. In contrast, for the softer
microgels, the particles are compressed in suspensions that
are at fluid-solid coexistence [see Figs. 3(e)–3(g)].
We now compare these experimental findings with

various simulation results on models of soft spheres that
interact via distinct potentials. In such models, in addition
to the entropy of the translational degrees of freedom there
is an energetic cost associated with each particle configu-
ration, defined in terms of the pair potential uðrÞ, such that
uðrÞ is ϵðr0 − rÞ5=2 (if r < r0) for Hertzian, ϵe−r

2=r2
0 for

Gaussian, and ϵ (if r < r0) for penetrable spheres. In all of
these models, r0 defines the particle radius, and ϵ−1 is a
softness parameter. In the limit ϵ−1 → 0, the Hertzian and
penetrable-sphere models reduce to the HSM. [This limit is
not well defined for the Gaussian model due to the smooth
tail of uðrÞ.] For the penetrable-sphere model, the potential
uðrÞ is independent of the penetration depth r, such that
additional overlap does not cost additional energy. This
qualitative difference distinguishes penetrable spheres from
Hertzian or Gaussian spheres.
By measuring the coexistence width of our experimental

system in terms of Δζ, we find that the width grows for
softer particles, and that for the softest microgel no
crystalline phase is observed. We have not found these
two features within any single numerical model of the
phase behavior of soft spheres [25]—models such as the
Hertzian [16] or Gaussian [17] soft-sphere models exhibit
no crystalline phase for sufficiently soft potentials, but
rather exhibit a narrowing coexistence region as the
potential softens away from the hard-sphere limit; other
models, such as the penetrable-sphere model [15], exhibit a
widening of the coexistence region with increased particle
softness, but in these models crystallization is observed for
all values of the softness parameter. By recomputing the
width of the coexistence region in terms ofΔϕ, we find that
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FIG. 2 (color online). (a) Osmotic pressure versus ζ for microgels with different cX (see Table I for the symbol code). (b) Dimensionless
osmotic pressure versus ζ for microgels with cX ¼ 0.2 wt%. Hollow symbols: membrane osmometer; crosses: dialysis. The solid line is
the best fit to the theoretical model (see text) for ζ < 0.63. (c) Ionic microgel and its Donnan potential. (d) ΓQ versus
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this width shrinks as cX decreases or, equivalently, for
progressively softer particles, as shown in Fig. 3(a). Thus,
for the softest microgels, models such as the Hertzian [16]
or Gaussian [17] soft-sphere models seem more applicable.
However, for the stiffest microgels, we observe that
Δϕ > ΔϕHS, which is not consistent with the behavior
of Hertzian or Gaussian soft spheres [16,17]. Instead, this
physical aspect of stiffer microgels is better captured by the
penetrable-sphere model [15].
These two distinct regimes of microgel behavior may be

related to the degree of particle compression at coexistence.
In our experiments, we observe that for suspensions
composed of stiffer particles [Figs. 3(b)–3(d)], there is
no appreciable compression at the packing fractions cor-
responding to coexistence, and for these stiff particles,
Δϕ > ΔϕHS and Δϕ does not depend strongly on cX.
On the other hand, suspensions of softer particles
[Figs. 3(e)–3(g)] exhibit appreciable compression at the
packing fractions corresponding to coexistence, and for
these soft particlesΔϕ is strongly dependent on cX and may
be greater than, equal to, or less than ΔϕHS. These two
results suggest that for the stiffer microgels, where indi-
vidual particles are not compressed at phase coexistence,
the interaction potential is probed at distances comparable
to the dilute-particle size. At these distances, the elastic
energy cost is only weakly dependent on the particle

separation, as is the case in the penetrable-sphere model.
This may be justified by noting that the cross-linker
concentration within a microgel particle is not uniform
but, rather, decreases away from the particle center [26,27].
In contrast, for the softer microgels, where individual
particles are appreciably compressed at phase coexistence,
the interaction potential is probed at distances much smaller
than the dilute-particle size. At these distances, the elastic
energy cost is strongly dependent on the particle separation
and, correspondingly, the Hertzian model better captures
the thermodynamics of the coexistence region.
We can further interpret these results in terms of the bulk

modulus kp of the swollen microgels, as we know that
particle deswelling is only appreciable when π ≈ kp
[28,29]. Note that the suspension osmotic pressure is
comparable to kp at volume fractions that correspond to
spheres at or above random close packing, indicating that
below this point the assumption ϕ ≈ ζ is reasonable. The
location in ϕ for phase coexistence, relative to where
microgel deswelling begins, then implies that for stiffer
microgels, whose behavior is consistent with that obtained
in simulations with the penetrable-sphere model, π < kp at
coexistence, so that the particles are not appreciably com-
pressed; for softer microgels, whose behavior is consistent
with that obtained in simulations with Hertzian spheres,
π > kp at coexistence, so that the particles are significantly
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FIG. 3 (color online). (a) Packing fraction jump at the fluid-solid phase transition for various microgel suspensions. The horizontal line
shows the hard-sphere value. The dashed line reflects the approximate constancy of Δϕ for the stiffer microgels. The empty symbols
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compressed. In fact, for cX ¼ 1.3% and cX ¼ 0.5%,
independent measurement of the single-particle bulk
modulus yields [30] kp ¼ ð1.6� 0.1Þ kPa and kp¼
ð0.40�0.02ÞkPa, respectively, with corresponding osmotic
pressures at coexistence that are significantly larger; these
are within the ranges 4.3 ≤ π ≤ 6.7 kPa, for cX ¼ 1.3%,
and 4.1 ≤ π ≤ 5.7 kPa, for cX ¼ 0.5%.
Our results highlight the notion that dissolved ions play a

central role in determining the osmotic pressure of colloidal
suspensions, as was recently noted in sedimentation experi-
ments on charged, nondeformable colloids [31,32]. By
using a model of the ionic osmotic pressure, we estimate
the relation between ζ and ϕ, and this allows us to find the
jump in Δϕ between the solid and fluid phases. In this way,
we find that the phase-coexistence region is wider (in terms
of ϕ) than the HSM value for stiffer microgels, decreases
with increasing microgel softness, and eventually disap-
pears for sufficiently soft microgels. Our results bring
coherence to a broad range of behavior previously reported
for phase transformations of microgel suspensions
[6,10,13] by illustrating how the particle softness deter-
mines the values of the packing fraction at which crystal-
lization occurs and, thus, how the colloidal softness
controls the width of the phase-coexistence region.
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A. G. Yodh for useful discussions.
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