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The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to
their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-
deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this
mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-
strain relation and shows good agreement with experiments. It also leads to the prediction of a phonon
correlation function that depends on the external deformation.
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The term rubber (elastomer) refers to amorphous, essen-
tially incompressible, solids that consist of a crosslinked
polymer network and that can sustain large, reversible,
shear deformations. It has long been understood that the
elasticity of rubber is predominantly entropic, being asso-
ciated with the suppression of the entropy of the polymer
network by the imposed deformation. As a result rubber
elasticity is characterized by a shear modulus that is pro-
portional to temperature.

The classical theory of rubber elasticity [1,2], developed
by Kuhn, Wall, Flory, Treloar, and many others around the
1940s, qualitatively accounts for the entropic nature of
rubber elasticity. It is based on the crucial assumption
that the junctions of polymer networks do not fluctuate in
space, but nevertheless deform affinely with an imposed
uniform shear strain. The entropy of the entire rubber
network is then given by the sum of the entropies of each
polymer chain. For a uniform shear, i.e., for a homoge-
neous, volume-preserving deformation �, the elastic free-
energy density f is given by

 f0 � �
kBT
V

�S �
1

2
�0Tr�T�; (1)

where T is the temperature, �S is the total entropy change
due to �, V is the volume, and �0 � kBT=�

d is the
entropic shear modulus in d dimensions, with � being the
typical mesh size of the polymer network. For a uniaxial
stretch,

 � � ��� ��1=2�ẑ ẑ���1=2I; (2)

where � is the stretch ratio along the z direction [3]. The
classical theory predicts

 f0��� �
1

2
�0

�
�2 �

2

�

�
: (3)

It has long been known that the classical theory does not
work well for large deformations [1]. Its failure becomes
most salient in the so-called Mooney-Rivlin plot of the
stress-strain relation, in which �df=d��=��� ��2� is plot-

ted versus 1=�. While from Eq. (3) it is clear that the
classical theory predicts a horizontal line at �0, almost
all rubbery materials, natural or synthetic, exhibit universal
and nontrivial features (e.g., a peak around a compressed
state), as illustrated in Fig. 1 [4].

A number of mechanisms put forward to explain these
features, including polymer entanglement [5–7], non-
Gaussian chain statistics, irreversible effects, internal en-
ergy effects, as well as nematic order of various types, and
crystallization [1,2]. However, to date, there is no broad
consensus on the nature of the dominant mechanism re-
sponsible for the deviation of rubber elasticity from the
classical theory.

Our main result, Eq. (17), plotted in Fig. 1, is a generic
and simple explanation for the Mooney-Rivlin data in
terms of incompressible phonon fluctuations of the rubber
network. It is based on the key observation that the classi-
cal theory is an effective mean-field theory that misses a
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FIG. 1. The Mooney-Rivlin plot of the Mooney stress
�df=d��=��� ��2� for a uniaxial shear deformation, Eq. (2),
versus 1=�. While the classical theory predicts a horizontal line,
real rubbery materials universally exhibit a pronounced peak
feature. Squares: data from Xu and Mark [13] (unit: 105 Pa). Top
curve: our theory fit that incorporates lowest-order phonon fluc-
tuations on scales beyond the crosslink spacing, using Eq. (17).
Fitting parameters: B � 1, �0 � 8:92, �1 � 7:10. Also plotted
are the curves for finite bulk moduli B, which are calculated
using Eq. (18) and the same fitting parameters �0 and �1.
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large entropic contribution to the free energy, due to ther-
mal phonon fluctuations of the polymer network having
wavelengths longer than �. These corrections are in fact
comparable to the classical elastic free-energy density,
Eq. (1), whose scale is given by the shear modulus �0 �
kBT=�d. To see this, we note that, by the equipartition
theorem, each phonon mode contributes kBT to the total
free energy, and that the phonon density of states is given
by ��d, set by the mesh size �, which is the short-scale
cutoff for these long-wavelength fluctuations [8].

It is worth noting that these elastic fluctuations were
previously studied by James and Guth [10] in a phantom
network, where interactions between neighboring polymer
chains are ignored. They concluded that these fluctuations
are independent of the imposed strain deformation and
therefore have no effect on the elasticity.

However, real rubber is nearly incompressible. So, in
addition to the global volume-preserving constraint on the
macroscopic distortion, i.e., det� � 1, the elastic fluctua-
tions are constrained to preserve the local density. As we
shall show, the interplay between this local incompressi-
bility constraint and an imposed macroscopic shear defor-
mation alters the spectrum of phonon fluctuations. This
leads to an entropic correction to the free energy that
depends strongly on the imposed distortion, and thereby
qualitatively modifies the stress-strain relation beyond that
of the classical theory.

To go beyond classical rubber elasticity and incorporate
thermal fluctuations on scale beyond �, we consider the
Lagrangian [11] of an incompressible, homogeneous, iso-
tropic elastic manifold (appropriate for an amorphous
solid, when local heterogeneities are ignored) with the
elastic energy given by the classical theory [Eq. (1)]:

 L �
Z
dd ~X

�
1

2
� _~r� ~X�2 �

1

2
�0�

~r ~r� ~X��2
�
; (4)

where ~r� ~X� is the elastic configuration of a d-dimensional
manifold satisfying the local incompressibility constraint

 det ~r ~r� ~X� � 1; (5)

with ~X the equilibrium position of the mass point in the
undeformed reference state, and � the mass density. Now
consider a uniformly shear-strained state characterized by
a deformation gradient � that preserves the volume, i.e.,
det� � 1. The mass point ~X, which was fluctuating about
the position ~X in the unstrained state, now fluctuates
around the new equilibrium position � � ~X in the strained
state.

Our task is therefore to sum over all long-wavelength
elastic fluctuations in the strained state that satisfy local
incompressibility. However, the highly nonlinear nature of
the constraint, Eq. (5), is the major impediment to the
analysis. The key to our progress in the solution of this
problem is the resolution of the constraint (5) through the
following parametrization of ~r� ~X�:

 ~r� ~X� � � � e ~v� ~X��
~r ~X: (6)

It can be proven that ~r� ~X� is volume preserving if and only
if the field ~v� ~X� is divergenceless, i.e.,

 

~r � ~v� ~X� � 0 or ~q � ~v ~q � 0; (7)

where the second form is the equivalent transversality (to
~q) condition on ~v ~q, the Fourier transform of ~v� ~X� [12]. The
resolution of the nonlinear constraint Eq. (5) by the linear
relation Eq. (7) in terms of ~v paves the way for a systematic
treatment of thermal fluctuations in an incompressible
elastomer.

Setting ~v � 0 in Eq. (6), we find ~r0 � � � ~X, i.e., the
uniformly strained reference state. For small ~v, the expo-
nential in Eq. (6) is

 ~r� ~X� � � � � ~X� ~v� ~X� � � � �	; (8)

identifying � � ~v� ~X� with a phonon field displacement
from the uniformly strained reference state ~r0.

The canonical momentum field ~�� ~X� conjugate to ~v� ~X�
is calculated in the standard way [11]. To lowest order in ~v,
we find

 

~�� ~X� �
�L

� _~v� ~x�
� �g � _~v� ~X�; (9)

where g 
 �T� is the metric tensor.
The Hamiltonian H is related to the Lagrangian via the

Legendre transformation: H� ~�; ~v	 �
R
dd ~X�� ~X� _~v� ~X� �

L. Using ~r� ~X�, Eq. (8), the Lagrangian Eq. (4), and using
Eq. (9) to eliminate _~v in favor of the conjugate momentum
~�, to lowest (i.e., quadratic) order in ~v [11], we find

 H � E0��	 � �H�� ~�; ~v	; (10)

 �H� �
Z
d ~X

�
1

2�
~� � g�1 � ~��

�0

2
@a ~v � g � @a ~v

�
:

(11)

Here, E0��	 is the elastic energy for the uniform strained
reference state, identical to the classical theory result f0,
Eq. (1), whereas �H� describes collective elastic fluctua-
tions and depends explicitly on the uniform shear defor-
mation � through the metric tensor g.

The partition function of a macroscopically sheared
rubber is then given by the following phase-space path
integral:

 Z� � Z�
� � Z

v
� �

Z
D ~�D ~v

Y
~q

�� ~q � ~v ~q�e
���H� ; (12)

where� 
 1=kBT. We note that to quadratic order in ~v and
~� (which is our focus here) the partition function, Eq. (12),

separates into a product of kinetic (Z�
� ) and elastic (Zv�)

parts. Furthermore, the incompressibility constraint applies
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only to the ~v field but not to the canonical momentum field
~�. As a result, the momentum contribution Z�

� leads to an
inconsequential strain-independent constant. We empha-
size, however, that because of the nonlinear couplings
between ~v and ~�, this property does not persist to higher
orders, and in our formulation (in terms of ~v) the momen-
tum degrees of freedom contribute nontrivially to rubber
elasticity [11].

The elastic part of the partition function is given by

 Zv� �
Z
D ~v

Y
~q

�� ~q � ~v� exp
�
�
��0

2

Z
~q
q2 ~v ~q � g � ~v� ~q

�
:

(13)

Because of the incompressibility constraint on ~v, encoded
in the � functional, the dependence of the free energy on
the imposed strain � cannot simply be eliminated by a
change of variables. This contrasts with the aforemen-
tioned result of James and Guth [10] for a phantom net-
work, where such a constraint and concomitantly the
dependence on the imposed deformation are absent.

The structure of Zv� for the unstrained case of g � I is
identical to that of a U�1� gauge field theory in the trans-
verse gauge. Representing the � functional by its func-
tional Fourier representation, Zv� is easily computed via
two standard Gaussian integrations:
 

Zv� �
Z
D�~qD ~v~qe

�
R

~q
����0=2�q2 ~v ~q�g� ~v� ~q�i�~q ~q� ~v ~q	;

�
Y
~q

�
2���0

Tr�PL~qg�1�

�
1=2
; (14)

where PL 
 ~q ~q =q2 � q̂ q̂ is the longitudinal projection
operator onto q̂. Ignoring irrelevant �-independent addi-
tive constants, we obtain the free-energy correction due to
elastic fluctuations from scales longer than �:
 

�F� � �kBT lnZv� �
1

2
kBT

X
~q

ln�TrPLg�1�;

�
1

2
kBTV�

�d�dhln�TrPLg�1�iq̂; (15)

where h� � �iq̂ denotes an average over the orientation of the
d-dimensional unit vector q̂, while �d is a numerical factor
of order of the surface area of a d-dimensional unit sphere.

By combining this result with the classical contribution,
E0��	 � f0��	, Eq. (1), we arrive at the central result of
this Letter, i.e., the elastic free-energy density of an in-
compressible rubber, subject to a uniform shear deforma-
tion �, computed to lowest-order in the thermal
fluctuations:

 f��� �
�0

2
Trg�

1

2
T�d��dhln�TrPLg�1�iq̂: (16)

As was argued earlier, the scale of fluctuation contribution
(i.e., the second term), measured by T�d��d, is of the

same order of magnitude as the classical, mean-field con-
tribution set by the shear modulus �0.

For a three-dimensional uniaxially deformed system,
with � given by Eq. (2), we have calculated the average
in Eq. (16) explicitly, and thus obtain an analytical expres-
sion for f���. Ignoring a �-independent constant, we find

 f �
1

2
�0

�
�2 �

2

�

�
��1

�
tanh�1

�����������������
1� ��3
p

�����������������
1� ��3
p � ln�

�
;

(17)

where �1 
 2T�d��d. For compression, i.e., � < 1, the
second term should be analytically continued in such a
way that it remains real and positive, namely, with �1�
��3��1=2tanh�1

����������������
1���3
p

!���3�1��1=2tan�1
����������������
��3�1
p

,
for � < 1.

In Fig. 1 we compare our prediction for the correspond-
ing Mooney stress, �df=d��=��� ��2�, with that ex-
tracted from the stress-strain curve of Ref. [13] and find
excellent agreement. The ‘‘mean field’’ and long-
wavelength fluctuation shear moduli, �0 and �1, respec-
tively, provide two independent fitting parameters, which
only vertically translate and scale the curve in the Mooney-
Rivlin plot, Fig. 1. However, the shape of the curve is
completely determined by the fluctuation contribution
(i.e., second term) of the right-hand side of Eq. (17), and
thus has no free parameters. Comparison of Eq. (16) with
experimental data on biaxial deformations (analysis of
which we leave for the future) should provide more strin-
gent test of our theory.

Our analysis can be easily extended to a more realistic
system with a finite bulk modulus B. This can be done by
removing the hard constraint, Eqs. (5) and (7), and adding a
term B� ~r � ~v�2=2 to the Hamiltonian, Eq. (11), which
suppresses density fluctuations. In the case of a uniaxial
distortion of a compressible rubber, we find that the lowest-
order fluctuation correction to the free energy becomes
 

�f��; 	� �
�1

2

� ������������������
1� 	=�

1� ��3

s
tanh�1

� ������������������
1� ��3

1� 	=�

s �

�
1

2
ln���2 � 	�

�
; (18)

where 	 
 �0=B. As illustrated in Fig. 1, this result natu-
rally interpolates between an incompressible and phantom
(classical) rubber. This result is consistent with experi-
ments that observe a systematic reduction in the deviation
from the classical theory with softening of the bulk modu-
lus via swelling, i.e., adding solvent to the system [14].

The correlation function

 VGab
~q � hu

a
~qu
b
� ~qi � �ai�bjhvi~qv

j
� ~qi (19)

of the phonon field ~u� ~X� � � � ~v� ~X� [defined by Eq. (8)],
relative to a macroscopically strained state ~r0 � � � ~X, can
also easily be computed. For an incompressible rubber, a
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Gaussian integration with the Boltzmann weight from
Eq. (14) gives

 Gab
~q �

kBT

�0q2

�
�ab �

��1
ia ��1

jb q̂iq̂j
TrPLg�1

�
: (20)

There is a small caveat, however. We have been labeling
the mass points in the deformed state ~r0 � � � ~X by their
undeformed equilibrium coordinate ~X, which is conjugate
to the wave vector ~q. However, the wave vector ~p probed
by scattering experiments is the one conjugate to the
deformed equilibrium position ~r0 � � � ~X. These two vec-
tors are related via

 � ~p;� � ~X� � � ~q; ~X� ! ~q � �T � ~p; (21)

where �� � �� denotes the inner product of two
d-dimensional vectors. Therefore, the phonon correlation
function, as a function of the physical wave vector ~p is
given by Eq. (20) with ~q expressed in term of ~p through
Eq. (21). This leads to

 Gab
~p �

T=�0

~p ���T � ~p
��ab � p̂ap̂b� / PTab� ~p�; (22)

which is proportional to the transverse projector, as ex-
pected from incompressibility. The predicted anisotropic
strain-dependence provides an independent test of the
theory.

In this Letter we have demonstrated the importance of
thermal fluctuations for the elasticity of isotropic rubber,
particularly in the large-deformation regime. It is not diffi-
cult to see, however, that the same general mechanism
extends to all incompressible soft solids, such as liquid
crystalline elastomers. Our current analysis is limited to the
lowest order. Because the effective coupling constant is of
order unity, we expect higher-order corrections to be quan-
titatively important. However, as illustrated in Fig. 1, the
lowest-order contributions already capture the essential
effects of thermal fluctuations on rubber elasticity. Our
formalism provides a systematic approach for addressing
these higher-order contributions. We hope that our work
will stimulate further studies in this direction.
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