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Squeezing Superfluid from a Stone: Coupling Superfluidity and Elasticity in a Supersolid
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Starting from the assumption that the normal solid to supersolid (NS-SS) phase transition is continuous,
we develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the
elasticity of the crystalline 4He lattice. We find that the elasticity does not affect the universal properties of
the superfluid transition, so that in an unstressed crystal the well-known � anomaly in the heat capacity of
the superfluid transition should also appear at the NS-SS transition. We also find that the onset of
supersolidity leads to anomalies in the elastic moduli and thermal expansion coefficients near the
transition and, conversely, that inhomogeneous lattice strains can induce local variations of the superfluid
transition temperature, leading to a broadened transition.
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Superfluidity—the ability of liquid 4He, when cooled
below 2.176 K, to flow without resistance [1,2] through
narrow pores—has long served as a paradigm for the phe-
nomenon of ‘‘off-diagonal long-range order’’ (ODLRO) in
quantum liquids and superconductors [3]. Supersolidity—
the coexistence of ODLRO with the crystalline order of a
solid—was proposed theoretically [4–12] as an even more
exotic phase of solid 4He, but it has eluded detection
[13,14]. Recently, Kim and Chan [15,16] have reported
the onset of ‘‘nonclassical rotational inertia’’ [6] in a tor-
sional oscillator experiment with solid 4He, and they in-
terpret their results as indicating the onset of supersolidity.
However, their interpretation remains controversial [17–
22], so it is important to complement the nonequilibrium
torsional oscillator measurements with equilibrium ther-
modynamic measurements, e.g., of the specific heat. In this
work we start from the assumption that normal solid to
supersolid (NS-SS) phase transition is continuous, and
develop a phenomenological Landau theory of the transi-
tion in which superfluidity is coupled to the elasticity of the
crystalline 4He lattice. We find that the elasticity does not
affect the universal properties of the superfluid transition,
so that in an unstressed crystal the well-known � anomaly
in the heat capacity of the superfluid transition should also
appear at the NS-SS transition. We also find that the onset
of supersolidity leads to anomalies in the elastic moduli
and thermal expansion coefficients near the transition;
conversely, inhomogeneous strains in the lattice can induce
local variations of the superfluid transition temperature,
leading to a broadened transition. As our theory is rooted in
a few simple assumptions and symmetry principles, we
expect our results to be robust and insensitive to the details
of a microscopic model for the supersolidity.

We hypothesize that, as with the superfluid 4He, the
appropriate order parameter describing the onset of super-
solidity is a complex scalar field  �r�, depending on the
location r. We shall assume that the phase transition to the
supersolid state is continuous, as is the superfluid 4He
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transition. Then, as is well known from the theory of
critical phenomena [23], the universal properties of the
supersolid transition may be obtained via a model that
retains only those terms in the free energy up to leading
(relevant) order in powers of the fields and their spatial
gradients, resulting in the Landau form:
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Here, a�T� depends smoothly on the temperature T; it is
negative at low temperatures, changing sign slightly above
the transition temperature Tc. [If fluctuations of  are
ignored, Tc would be exactly the temperature at which
a�T� changes sign.] For T < Tc (T > Tc) the thermal ex-
pectation value of h i is nonzero (zero). The constant w
measures the strength of the nonlinearity, and the symmet-
ric tensor c�� characterizes the spatial anisotropy inherited
from the crystallinity of the normal solid. For an isotropic
superfluid or for a cubic crystal c�� � c���, with c a
constant, whereas for an hcp crystal (such as solid he-
lium [24]) c�� is uniaxial, such that c�� � czn�n� �
c?���� � n�n��, with n a unit vector that points along
the preferred axis of the crystal, and cz and c? independent
constants. It is important to note that the symmetry of
the superfluid density tensor �S

�� (which relates the super-
fluid velocity to the momentum density) is the same as that
of c��.

If we were dealing with the normal-to-superfluid tran-
sition, Eq. (1) (with c�� � c���) would be the entire story.
However, because we are dealing with the normal-to--
supersolid transition, it is not: when formulating theories
of continuous phase transitions, it is necessary to keep all
of the degrees of freedom that are soft (i.e., exhibit large
thermal fluctuations) at the transition [23]. For a superfluid,
 is the only such degree of freedom. However, in a
supersolid there are additional phonon degrees of freedom
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that are soft not only at the transition but throughout both
the normal and supersolid phases. These are associated
with displacements u�r� of the positions r of the undis-
torted crystal lattice. (The normal solidification of the 4He
occurs at a temperature substantially higher than Tc so that
amplitude fluctuations of the density waves are not soft and
may be neglected.)

As the free energy must be invariant under spatial trans-
lations and rotations [25], it can only depend upon u�r�
through the symmetric strain tensor u�� �

1
2 �

�@�u� � @�u� � @�u�@�u��. Thus, at long wavelengths
the relevant terms in the free energy involving u�� alone
are simply those of standard elastic theory: F e �

1
2 �R

d3r�����u��u��, where ����� are the bare elastic con-
stants, and repeated indices are summed over. The form of
����� is dictated by the symmetry of the crystal; for an hcp
crystal such as 4He, it is parametrized by 5 independent
elastic constants [25].

To determine the form of the coupling between the
supersolid order parameter  and the local displacement
field u�r�, we follow the work of Aronovitz et al. [26] by
allowing the (formerly constant) parameters in F s [i.e.,
a�T� and w] to depend on the local value of u in a manner
consistent with the symmetries of the system. Thus, we
expand in powers of the strain tensor, a�T� ! a�0� �

a�1���u�� � a
�2�
����u��u�� � 	 	 	 , and similarly for w.

Here, the tensor a�� has the same symmetry as c��, and
hence for a uniaxial crystal (such as the hcp phase of solid
helium [24]) a�1��� � azn�n� � a?���� � n�n��, with az
and a? independent coupling constants.

The terms of O�u2
��� in the expansion of a and of

O�u��� in the expansion of w all prove, by naı̈ve power
counting [23], to be irrelevant; i.e., they do not affect the
universal critical properties of the transition. Hence, these
properties follow from the following minimal model:
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In our minimal model the effect of the elasticity is to
produce a local, strain-dependent critical temperature for
the superfluid. In fact, our minimal model is formally
equivalent to that of a magnetic system of planar spins
[an O�2� ferromagnet] on a compressible lattice, for which
locally dilating or compressing the lattice causes the ex-
change couplings to decrease or increase, resulting in a
local change of the critical temperature. Compressible
models of this sort have a long history [27], but the most
relevant work is that of De Moura et al. [28], which shows
that the elasticity is irrelevant to the critical properties of
the O�2� ferromagnet, provided the specific-heat exponent
� of the decoupled (i.e., a�1��� � 0) system is negative,
which it is at d � 3 [29]. Thus, we may conclude that
05530
the universality class, and hence universal properties, as-
sociated with the supersolid transition are unaltered by the
coupling of elastic degrees of freedom to the supersolid
order parameter. In particular, this implies a � anomaly in
the specific heat Cp near the transition:

Cp�t� �
A


�
jtj���1� a
c jtj� � b
c jtj2� � 	 	 	� � B; (3)

where t � �T � Tc�=Tc denotes the reduced temperature,
� � �0:0127
 0:0003 is the universal specific-heat ex-
ponent of the superfluid transition, and � � 0:529
 0:009
is the equally universal correction to the scaling exponent
[29]. The subscripts � and � in Eq. (3) denote behaviors
above (T > Tc) and below (T < Tc) the transition, respec-
tively. Although the constants A
 are nonuniversal (they
will, e.g., change as one moves along the SS-NS phase
boundary in the pressure-temperature phase diagram), their
ratio is universal; the current best estimate of its value is
A�=A� � 1:053
 0:002 [29]. The superfluid density ten-
sor �S

�� also exhibits universal scaling with reduced tem-
perature t, i.e., �S

�� �
0�S

��jtj
�, where the tensor 0�S

�� is
temperature independent, and � � 0:671 55
 0:000 27 is
[29] the universal correlation-length exponent.

Despite the irrelevance of the elastic couplings to  for
the universality class of the transition, these couplings do
have important, experimentally observable consequences:
because of them, the elastic properties inherit singularities
in their temperature dependence from parent singularities
associated with the critical fluctuations of the supersolid
order parameter. Following Ref. [26], we construct the
effective free energy F eff governing the elastic fluctuations
by integrating out the supersolid fluctuations:

e�F eff �u���=kBT �
Z

D� ; ��e�F rel� ;u���=kBT: (4)

Proceeding perturbatively, in powers of the  � u�� cou-
pling term, we obtain (neglecting an additive constant)

F eff�u��� �
Z
d3r
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where the singular parts of the fluctuation corrections to the
bare elastic constant and stress tensors are given, to leading
order, by

������ � �a
�1�
��a

�1�
��Ĉ�t�=kBT; (6a)

��� � �a
�1�
��D�t�: (6b)

Here, the governing functions, Ĉ (which proves to be
proportional to the singular part of the specific heat) and
D, are given by
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where the expectation values h	 	 	i0 are taken with respect
to the rigid  system (i.e., a system in which all u��’s are
frozen at zero), whose free energy F rig is just F eff�u���
with all u��’s set to zero. Moreover, j j2k denotes the
Fourier transform of j �r�j2, and h	 	 	ic indicates a con-
nected correlator. In addition, ~F rig is the free energy
density associated with F rig.
D�t� and Ĉ�t� can readily be related to the specific-heat

singularity of the rigid system, by noting that a�0� is a linear
function of T close to Tc, so that derivatives with respect to
a�0� are proportional (near Tc) to derivatives with respect to
T. Hence, simple thermodynamic identities imply thatD�t�
and Ĉ�t� are proportional to the entropy and the specific
heat of the rigid system, respectively, near Tc. This imme-
diately determines their critical behavior: D�t� �
G
jtj1���1� a
c jtj� � 	 	 	� and Ĉ�t� � A0
jtj���1�
a
c jtj� � 	 	 	�, where G�=G� � A0�=A0� � A�=A� �
1:053
 0:002 are universal.

It is evidently valuable to estimate the size of the ex-
pected elastic and thermal expansion anomalies. To do this,
we need an estimate of the couplings a�1��� in Eq. (2), and
this can be obtained, following Ref. [30], from the form of
the SS-NS phase boundary, Tc�P�, in the pressure-
temperature phase diagram. In particular, the couplings
are related to the slope of the boundary via

@Tc�P�=@P
 a
�1�=��a0�; (8)

where a0 � da�0�=dT, and � is a typical elastic constant.
With this in hand, we can now estimate the size of the
elastic and thermal expansion anomalies. This can be
accomplished by using Eq. (7) to estimate Ĉ and D well
away from the critical point (say, at T � 2Tc), where we
can make the Gaussian approximation to the correlation
functions, which gives, e.g.,

D�T�jT�2Tc 

Z
d3k

kBT

a�0��T�



kB
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3
0
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where 
0 is the high-temperature correlation length for  
fluctuations. We have taken the integral over k to have an
ultraviolet cutoff comparable to 
0, used the fact that, well
above Tc, a�0��T�=c
 
�2

0 to replace the propagator [up to
O�1� factors] by a�0� for all k, and estimated a�T � 2Tc� 

a0Tc. For superfluid 4He, the length 
0 is known to be
comparable to the atomic size: 
0 
 0:2 nm; for want of
better information, we shall assume that this is also true for
the supersolid.

By using this estimate for D�T� in Eq. (6b), and then
minimizing Eq. (5) over u��, we arrive at a typical value
for the thermal expansion:
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where in the last step we have used Eq. (8). Estimating
j@Tc�P�=@Pj 
 10�2 K=atm by its value in the liquid state
of 4He [24] gives a typical value of �u�� 
 0:16. For the
fractional anomaly in the elastic constants, arguments es-
sentially identical to those just used give
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Perhaps the best way to observe the predicted anomalies
in the elastic constants is through sound speed measure-
ments. In single crystals, the polarization of the sound
modes studied must be chosen judiciously: the uniaxial
form for the expansion coefficients, a�1��� � azn�n� �
a?���� � n�n��, implies that only ‘‘bulk’’ elastic moduli,
specifically, the terms �zz�n�n�u���2 � �??����� �
n�n��u���2 � �?z����� � n�n��u����n�n�u���, ac-
quire anomalous temperature dependence. The elastic con-
stants �zz, �??, and �?z are readily shown by a standard
sound mode analysis [31] to affect only the sound speeds of
modes polarized in the plane formed by the normal to the
hexagonal layers and the direction of propagation.
Furthermore, in this plane, transverse modes propagating
either along, or orthogonal to, the layers also have sound
speeds independent of the anomaly displaying elastic con-
stants �zz, �??, and �?z. Hence, to observe the anomaly in
the sound speeds in a single crystal of supersolid hcp
helium, one should study modes polarized in the plane
formed by the hexagonal layers and the direction of propa-
gation, and choose that propagation direction not to lie in,
or orthogonal to, the layers.

It is, however, unlikely that experiments will be per-
formed on single crystals of helium. It is far more likely
that they will be performed on polycrystalline samples,
which are macroscopically isotropic, due to the random
orientations of the constituent crystallites. Calculating the
isotropic shear modulus � and Lamé coefficient � of such
an ensemble of randomly oriented crystallites is well
known to be a formidable problem (see, e.g., Ref. [32]).
Nonetheless, using the exact bounds of Hill [33], we can
show [31] that both the shear modulus and the bulk modu-
lus of a macroscopically isotropic polycrystalline helium
sample will exhibit the jtj�� anomaly we predict here. As a
result, both the transverse and the longitudinal sound
speeds of such a sample will show the jtj�� anomaly.

Beyond the critical properties described above, our
model has the important implication that in a helium
crystal the SS-NS transition would be rounded by any
spatially inhomogeneous internal stresses that make
a�1���u�� � 0. As such stresses are almost unavoidable in
any crystal (and are believed to be present in the experi-
ments of Kim and Chan [15,16]), this rounding is almost
certain to be present in all experiments performed to date.
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The reason for such broadening is very simple: stresses that
make a�1���u�� spatially inhomogeneous make Tc of the SS-
NS transition spatially inhomogeneous as well; cf. Eq. (2).
Therefore, roughly speaking, distinct parts of the sample
would become supersolid at distinct temperatures, broad-
ening the transition. Such broadening is evident in the
�S�T� vs T plots of Kim and Chan [16], which clearly do
not show the expected jtj� singularity near the putative Tc,
with � being the correlation-length exponent. [If they did,
�S�T� vs T would hit the horizontal axis perpendicularly,
rather than—as in those data—tangentially.] This broad-
ening may also explain the apparent absence of the ex-
pected � anomaly in the specific heat [34] near the putative
Tc in those experiments: this peak is simply ‘‘smeared
away.’’

One intriguing, albeit highly speculative, final implica-
tion of the coupling of strains to the supersolid order
parameter  has to do with the very existence of the
supersolid state in 4He. A number of microscopic calcu-
lations [17] suggest that 4He does not have a supersolid
state at all, in contradiction with the experiments of Kim
and Chan [15]. These calculations were presumably done
under conditions of purely hydrostatic stress (i.e., simple
pressure), for which only the three diagonal components of
the strain tensor are nonzero and equal (i.e., uxx � uyy �
uzz � 0). If it were the case that the coefficients az and a?
in the uniaxial coupling tensor for solid hcp 4He happened
to obey az � �2a?, then the effect of this pressure on the
effective Tc for supersolid order would be very small. If the
unstrained Tc were negative [i.e., the coefficient a�0� in
Eq. (2) were positive for all T], this would imply that,
under such a hydrostatic stress, the crystal would never
enter the supersolid state. If, however, the crystal were to
be subjected to an anisotropic stress (i.e., one for which the
relation uxx � uyy � uzz is not satisfied), the near cancel-

lation of a�1���u�� would not occur, and this term might be
able to make the effective Tc positive [i.e., change the
overall sign of the coefficient of j j2 in Eq. (2)]. That is,
it is possible in our model that, although a hydrostatically
stressed sample would not show a supersolid phase, an
anisotropically stressed one might. This could be highly
significant, as Kim and Chan [15] believe that such aniso-
tropic stresses are present in their samples. Although the
above argument is obviously quite speculative, it seems to
us, nonetheless, a possibility that these random stresses, far
from being an experimental nuisance, might just be what is
responsible for the presence of supersolidity. Support for
this idea comes from two other facts: (1) Many experi-
ments [13,14] do not see supersolidity. Perhaps these
samples simply lacked sufficiently large inhomogeneous,
anisotropic stresses. (2) The superfluid fraction in the ex-
periments of Kim and Chan [15] is extremely low. Could
this be because only very small, highly anisotropically
stressed regions of the sample are going supersolid?
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