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Inherent Stochasticity of Superconductor-Resistor Switching Behavior in Nanowires
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We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased
superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time
using the master-equation formalism, and hence obtain the distribution of switching currents. We find that
as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show
the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that
although several phase-slip events are generally necessary to induce switching, there is an experimentally
accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to

induce switching, via the local heating it causes.
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Recent advances in the fabrication of ultranarrow super-
conducting wires—using carbon nanotube-[1] or DNA
templating [2]—have spurred renewed interest in quasi-
one-dimensional superconductivity. Phase-slip fluctua-
tions, in which the phase of the order parameter between
the left and right ends of the wire changes by a multiple of
2, have long been known to be an important ingredient in
determining the properties of superconducting wires [3,4].
It is well established that thermally activated phase slips
(TAPS) can provide an intrinsic source of dissipation that
results in wide superconducting transitions of widths of up
to several Kelvins [1,3,5,6]. The latest generation of ex-
periments on even narrower superconducting nanowires
aims to investigate quantum phase slips (QPS), i.e., phase
slips proceeding by quantum instead of thermal fluctua-
tions. QPS are thought to be important in the quantum
phase transitions from the superconducting to the normal
state (depairing transition) [7—10] and from the supercon-
ducting to the insulating state (SIT) [11-13] that have been
observed in various experiments [1,14—19]. These experi-
ments have prompted new theoretical investigations of
quantum phase transitions and the properties of QPS in
general. Beyond their importance in phase transitions,
understanding fluctuations is important for the use of nano-
wires as components in microelectronics, including as
current-limiting switching elements [20] and qubits [21].
Although QPS are quite plausible, the experimental evi-
dence for their observation has been mixed. In addition,
there is no generally agreed-upon theory of these fluctua-
tions and of the relevant phase transitions.

Typically, superconducting nanowires show hysteretic
current-voltage characteristics, with switching from the
superconducting to the resistive state being both abrupt
and stochastic (i.e., the current at which switching occurs
differs from run to run). Because of fluctuations, this
switching occurs at a lower current than the one associated
with the depairing phase transition. By studying experi-
mentally the temperature dependence of the switching
statistics, one can learn about the nature of phase-slip
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fluctuations, as one can with underdamped Josephson junc-
tions [22]. This strategy works well at low temperatures,
where the wires become hysteretic; thus it compliments
traditional experiments, which study fluctuations using
low-bias current measurements and become intrinsically
difficult at low temperatures, where the wire resistance
becomes very small. The analogy to Josephson junctions,
however, breaks down because phase-slip dynamics in
nanowires are strongly over-damped in most regimes,
and thus a single phase slip does not, in general, result in
a switching event. Instead, multiple consecutive phase slips
are required to trigger switching.

Inspired by recent experiments [23], in this Letter we
study the stochastic aspects of the superconducting-to-
resistive switching dynamics of current carrying nano-
wires, an area that has not received much attention to
date. We construct a stochastic model in the spirit of the
steady state model of Ref. [24]. Our model consists of two
ingredients: (i) stochastic phase-slips that heat the wire,
and (ii) heat dissipation that cools the wire. As the phase-
slip rate depends on the local temperature of the wire,
heating by phase slips can create a runaway cascade that
eventually overheats the wire. We derive an equation for
the dependence of the mean switching time on current
and temperature that describes this model, and solve it
numerically.

Having in mind the configuration adopted in recent and
ongoing experiments on superconducting nanowires, we
consider a freestanding wire of effective length L and
cross-sectional area A, the ends of which are held at a fixed
temperature 7, as shown in Fig. 1. L may differ slightly
from the geometric length of the wire to compensate for the
heat spread in the lead at the wire attachment point. We
concentrate on wires in the dirty limit, for which the mean
free path is much shorter than the coherence length, which
is shorter than the charge imbalance length required for
thermalization, which itself is shorter than L. As the wire is
suspended, essentially all heat generated locally in the wire
[Q(x, )] can be taken away only through the ends. The
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FIG. 1 (color online). (a) Schematic of the experimental con-
figuration described by our model: a superconducting nanowire
is suspended between two thermal baths. (b) Sketch showing the
attenuation of the order parameter in the core of a phase-slip.
(¢) Schematic of the simplified model. All phase slips are taken
to occur in a central (i.e. shaded) segment of length /, which is
assumed to be at a uniform temperature 7'; heat is carried away
through the end segments, which are assumed to have no heat
capacity. The temperature at the ends of the wire is fixed to be
T,,. (d) Sketch of a typical temperature profile.

corresponding heat conduction equation for the tempera-
ture O(x, ¢) at position x along the wire at time ¢ reads

C,(0)9,0(x, 1) = 9,[K(0)a, 00, )] + O(x, 1), (1)

and is characterized by the specific heat C,(®) [25] and
thermal conductivity K,(®) [26] of the wire, together with
the boundary condition ®(*L/2,1) =T, at its ends.
Although our analysis rests on the premise that there are
no additional heat-removing channels, it can readily be
extended to account for such possibilities.

Our aim here is to study the stochasticity inherent in the
switching process, and therefore it is necessary for us to
explicitly take into consideration the fact that the resistive
fluctuations of the superconducting nanowire consist of
discrete phase-slip events (labeled by i) that take place at
random instants and are centered at random spatial loca-
tions along the wire. To capture the essential physics, we
shall consider the simpler model, represented in Figs. 1(c)
and 1(d). Given that edge effects favor phase-slip locations
away from the wire ends, the source term is restricted to the
region near the center of the wire. The system is thus
modeled by assuming that (i) heating takes place within a
central segment of length / to which a uniform temperature
T is ascribed, and (ii) the heat is conducted away through
the end segments, within which we ignore the heat ca-
pacity. The length / can be roughly estimated to be of order

the charge imbalance length required for thermalization.
To simplify the problem further, we make use of the fact
that the probability per unit time I" . for an antiphase slip to
take place is much smaller than the rate I'_ for a phase slip
to take place, and ignore the process of cooling by anti-
phase slips. To account indirectly for their presence, we use
areduced rate I' =I'_ — I', instead of I'_. This ensures
that the discrete expression for Q correctly reduces to
continuous Joule heating.

With the model defined above, the description reduces to
a stochastic ordinary differential equation for the time
evolution of the temperature of the central segment:

% = —a(l.T,)(T —T,) + n(T,DY.8(t —1;). ()

The second term on the right-hand side corresponds to
(stochastic) heating by phase slips that occur at the tem-
perature- and current-dependent phase-slip rate I'(7, I)
[27]. The first term corresponds to (deterministic) cooling
as a result of conduction of heat from the central segment
to the external bath via the two end segments, each of
length (L — 1)/2. The temperature-dependent cooling rate
« is given by

4 L ("ark ). 3

a(T, T,) = L—DC(T)T—T, Jr,

If 7; and Ty are temperatures before and after a phase slip
then we can express the temperature ‘““impulse” due to a
phase slip, i.e., Ty — T; = 7(T;, I) = 7(T, I), as function
of either T; or T (depending on the context) by using

7 hi
Al f " (ThdT = =~ @)
T; 2e

In writing these equation, in addition to restrictions on
length scales, we assume that the time for a phase-slip
(~7g1) and the quasiparticle thermalization time 7y are
both smaller than the heat diffusion time 1/a(T, T}).

Let us now elucidate the physical and mathematical
structure of Eq. (2). To begin with, we shall consider the
continuous-heating limit, n(7, I)I'(T, I), for the source
term, and express Eq. (2) as dT/dt= —dU/dT. In
Fig. 2, we illustrate the form of the “potential”
U(T, T, I) for fixed T,: there is a range of currents / for
which U has two local minima, corresponding to the super-
conducting (at low-T) and resistive (at high-7') states,
separated by a local maximum. In what follows, we focus
on the stochastic variable T'(z); to ease the notation we do
not display the dependences on / and 7T}, unless essential.
To continue the analysis of the stochastic equation, we
imagine turning off the (deterministic) cooling term. If
we now start with an initial temperature 7, then

Ty + n(Ty) + [Ty + n(Tp)], ...
)

defines the discrete sequence of values that phase slips

Ty, Ty + n(Ty),
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FIG. 2 (color online). Effective potential U(T, T}, I) (dashed
line) and mean first-passage time 7 as functions of the tempera-
ture T of the central segment for various bias currents / and for
T, = 1.2 K. The marks on the temperature axis indicate the
temperatures that the central segment would have after
1,2,..., 10 phase slips in the absence of cooling [as given by
Eq. (5) for Ty = T,].

would cause 7 to jump to, as marked on the horizontal axes
in Fig. 2 for Ty = T,. The probability per unit time, I'(T),
to make a jump changes at each step, and so does the size
1(T) of the jump, owing to their explicit dependence on
temperature. On the other hand, if we turn off the heating
term then we would have a deterministic problem in which
T would decay at a rate a(T'), from its initial value T, > T},
to the bath temperature T),. It is the competition between
the discrete heating and the continuous cooling that makes
for a rather rich stochastic problem.

The master equation for P(7, t), the probability for the
central segment of the nanowire to have temperature 7" at
time ¢ reads

a,P(T, 1) = d7[(T — T,)a(T)P(T, )] — T(T)P(T, t)

+ (T = #()P(T — #(T), D1 — a77(T)),
(6)

where the first (i.e., the transport) term corresponds to the
effect of cooling, and the last two terms correspond to the
effects of heating. Note that the term (1 — d77(T)) appears
because of the dependence of the jump size on 7, as given
by 7(T).

The fundamental quantity of interest is the mean switch-
ing time 7,(T}, I), i.e., the mean time required for the wire
to switch from being superconductive to resistive, assum-
ing that the entire wire has temperature 7 = 7}, when the
current / is turned on at time # = 0. The master equation
(6) provides the starting point for generalizing the standard
procedure for computing 7, via the evaluation of the mean
first-passage time [28], i.e., 7(T — T*), the time to go past
a point T = T* for the first time having started from some
T < T*. 7 can be shown to obey

— (T, = T)a(T)ar7(T) + T(T)[7(T) — (T + n(T)] =1,
(7
together with the conditions 7(7) = 0 for T > T* and

d7(T)/dT = 0 at T = T, which are appropriate for our
problem. Some illustrative plots for 7(7 — T™), obtained
by numerically solving Eq. (7), are shown in Fig. 2, with
the choice of 7" being somewhat larger than the location of
the local maximum of U. As long as the high-7 minimum
is lower than the low-T one, and 7% is chosen to be
appreciably past the intervening potential maximum (in
order to eliminate the possibility of reversion to the super-
conducting state), we can make the identification:
7Ty, I) = 7(T, — T%, T}, I). The number of tick marks
[see the sequence (5)] between T}, and 7™ is nothing but the
number N(T}, I) of phase-slip events required to raise the
temperature of the central segment from 7}, to T in the
absence of cooling. Accordingly, N(T}, I) also provides an
estimate of the number of phase-slip events needed to
overcome the potential barrier if the time span of these
events is insufficient to allow significant cooling to occur.
“Thermal runaway”’—heating by rare sequences of
closely spaced phase slips that overcome the potential
barrier—constitutes the mechanism of superconductive-
to-resistive switching within our model. As N(T}, I) be-
comes large, the total number of phase-slip events taking
place before switching can happen, and, correspondingly,
the value of 7,(T}, I), may indeed be quite large.

Our key findings are summarized in Fig. 3. There is a
region of the I — T, plane for which the occurrence of just
one phase slip (quantum or thermal) is sufficient to cause
the nanowire to switch from the superconductive to the
resistive state; in this case T;l = [". Measurements in this
range can thus provide a way of detecting and probing an
individual phase-slip fluctuation. As, outside this range,
several phase-slip events are required for switching, 7,
deviates from I' [see panel 3(c)]. A graphical repre-
sentation of the contour lines for a few values of 7, ! and
I', chosen in an experimentally accessible range, is pro-
vided in panel 3(a). While the spacing between the I’
contour lines decreases monotonically on lowering 77,
the spacing between the 7, ! lines can be seen to behave
nonmonotonically.

The mean switching time 7, in bistable current-biased
systems can be either directly measured or extracted from
the switching-current statistics generated via the repeated
tracing of the /-V hysteresis loops [22,23]. For this reason,
in Fig. 3(b) we have illustrated the behavior of this distri-
bution of switching currents in superconducting nanowires
based on the theory presented here. Upon raising 7, one
would naively expect the distribution to become broader
for a model involving only thermally activated phase slips.
Such broadening in the distribution width is indeed ob-
tained up to a crossover temperature scale 75'(r) (i.e., the
temperature below which switching is induced by a single
phase slip). However, on continuing to raise 7, but now
through temperatures above T;'(r), the distribution width
shows a seemingly anomalous decrease. This is a manifes-
tation of the now-decreasing spacing between the 7, con-
tour lines. This striking behavior above 77" may be
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FIG. 3 (color online). Switching statistics. (a) Map showing
N(T,, I) (see text) and the contour lines for the mean switching
rates 7, ' = 1, 10°, 10° s™! (solid) and the phase-slip rate I’
(dashed). The depairing critical current (dashed-dotted line) is
plotted for reference. (b) Switching-current distributions Pgy
obtained at various values of 7, and for sweep rate r =
58 wA/s. (c) The logarithms of 7, ' (colored lines) and of I’
(thinner black lines) as a function of /, obtained for the same set
of T, values as used in panel (a). The colors of the 7, ! plots
correspond to different values of N(T), I) [as indicated in the
legend of panel (a)].

understood by the following reasoning: the larger the
number of phase slips in the sequence inducing the
superconductive-to-resistive thermal runaway, the smaller
the stochasticity in the switching process and, hence, the
sharper the distribution of switching currents.

The theory described is indeed found to furnish an
explanation for the counter-intuitive increase of the distri-
bution width obtained in a very recent experimental study
of MoGe wires [23]. To be able to fit the data at low
temperatures, we find that it is essential to incorporate
QPS, and not just TAPS, into our model. At even lower
temperatures, our model suggests that switching is caused
by a single quantum phase slip. The switching current
distribution thus promises to provide a powerful probe
for accessing and thereby understanding the behavior of
individual phase slips, thermal or quantum.
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