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A Landau theory is constructed for the gelation transition in cross-linked polymer systems pos-
sessing spontaneous nematic ordering, based on symmetry principles and the concept of an order
parameter for the amorphous solid state. This theory is substantiated with help of a simple mi-
croscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence
of nematic order yields the neo-classical theory of the elasticity of nematic elastomers and, in the
isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elas-
ticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they
are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

PACS numbers: 61.30.Vx, 82.70.Gg, 62.20.de

I. INTRODUCTION

The classical theory of rubber elasticity [1] has been
remarkably successful in describing the behavior of elas-
tomeric systems in which there is no long-ranged nematic
order. A blend of phenomenology and molecular-level
reasoning, it is based on a few simple assumptions and
bears great predictive and descriptive power. It mod-
els rubbery materials (i.e. elastomers) as incompressible
networks of entropic Gaussian polymer chains and, fur-
ther, assumes that the cross-links (i.e. the junctions of the
polymer network) are fixed in space (for any given macro-
scopic deformation) but nevertheless deform affinely un-
der macroscopic deformation. The classical theory gives
their elastic free energy density f as

f =
µ

2
TrΛTΛ, (1.1)

for a spatially uniform deformation r → Λ · r that con-
serves the volume (i.e. obeys det Λ = 1). For most rub-
bery materials the assumption of volume conservation
(i.e. incompressibility) is well satisfied. The shear mod-
ulus µ is given by nc kBT , where T is the temperature
and kB is Boltzmann’s constant. (Henceforth, we choose
units in which kBT is unity.) The parameter nc is usu-
ally referred to as “the density of effective chains in the
network.” The classical theory [i.e. Eq. (1.1) and the as-
sociated arguments supporting it] explains many essen-
tial features of rubbery materials, such as their stress-
strain curves (at least for deformations that are not too
large), and the striking temperature-dependence of their
shear moduli, as well as their strain-induced birefringence
(i.e. the stress-optical effect).

There are several important issues left unresolved by
the classical theory. First, for a given cross-link density,
“the effective chain density,” is not calculated within the
theory. A correct theoretical understanding of this issue

is an important mission of the percolation/vulcanization
theory [2–4]. Second, in the intermediate range of strains
there is a universal and significant downward deviation
of the experimental stress-strain curve, compared with
the theoretical prediction of the classical theory. This
deviation has traditionally been attributed to entangle-
ment effects [5–7]. However, it has recently been pointed
out [8] that the classical theory has an important internal
inconsistency, in that it ignores the entropy associated
with thermal fluctuations of the positions of the cross-
linkers. It was further shown [8] that the entropy asso-
ciated with these fluctuations is comparable to the en-
tropy of polymer chains that is included by the classical
theory, and that this entropy depends sensitively on the
macroscopic deformation. The inclusion of this missing
entropy leads to a qualitatively and quantitatively better
fit to the stress-strain relation. Entanglement effects are
known to play an important role in the dynamical prop-
erties of polymer solutions and melts. Nevertheless, we
believe that their importance (or relevance) to the static
properties of rubbery materials needs to be critically re-
examined. A resolution of this issue may be achieved via
the comparison of materials possessing various levels of
entanglement.

Recently, an elegant anisotropic generalization of the
classical model [9, 10], known as the neo-classical model,
was constructed to describe the highly unusual elasticity
of nematically ordered elastomers, i.e. rubbery materials
having (spontaneously) broken rotational symmetry, and
has done so with considerable success. According to the
neo-classical model, in the presence of nematic order the
elastic free energy of a nematic elastomer under a volume-
conserving deformation Λ is given by

f =
µ

2
Tr l0 ΛT l−1 Λ , (1.2)

where l0 and l are the (in general, anisotropic) step-
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length tensors in the initial (i.e. Λ = I) and the de-
formed (i.e. Λ 6= I) states that characterize the confor-
mations of the polymer chains. The step-length tensors
l0 and l have the symmetry of the nematic order param-
eters, viz. Q0 in the initial state and Q in the deformed
state, respectively. A remarkable feature of Eq. (1.2) is
that in the nematic phase, for which l0 and l are both
anisotropic and differ only by a rotation, there exists a
continuous manifold of deformations that cost zero elas-
tic free energy [11–14]. This so-called soft elasticity has
not been observed in experiment [15, 16]. Several ex-
planations have been invoked to account for the discrep-
ancy between the predictions of the neo-classical theory
and the experimental findings. Nematic elastomers usu-
ally condense into a multi-domain structure, unless an
external field is applied, thus introducing an external
anisotropy, in particular, if the sample is cross-linked in
the stretched state [17]. Alternatively, approximations
of the neo-classical theory, e.g. the assumption of affine
deformations, could be responsible for the observed “non-
soft” elasticity. The effects of thermal and quenched fluc-
tuations on the soft modes of the neo-classical theory are
the focus of of intensive study [14, 18, 19]. For recent
reviews, see Refs. [9, 10, 14, 20, 21].

In a classic paper, Deam and Edward [2] initiated a
fully statistical-mechanical approach to the study of rub-
ber elasticity that incorporates both thermal fluctuations
and quenched disorder along with repulsive interactions.
This replica-based approach has been explored in de-
tail [3] and has been applied to a variety of microscopic
models. The long-lengthscale physics was shown to be
universal, applying to gels as well as vulcanized mat-
ter. Consequently, the associated Landau theory [22]
provides the natural framework for a discussion of the
long-lengthscale physics of elastomers, especially in the
vicinity of the gelation/vulcanization critical point.

The aim of the present work is to establish the con-
nection between the statistical-mechanical approach and
the neo-classical elasticity of nematic elastomers at the
level of mean-field theory. As we shall work at the level
of coarse-grained effective field-theory descriptions, with
the original polymer degrees of freedom having been com-
pletely integrated out, the issue of entanglement does not
concern us. For the sake of simplicity, our focus will be on
incompressible systems, although our approach can read-
ily be extended to allow for compressibility. We begin
our task in Sec. II by generalizing the Landau theory for
the gelation/vulcanization transition to allow for systems
that have spontaneous nematic order. Our construction
makes use only of the transformation properties of the
order parameters for random solidification and nematic
ordering, and the symmetry properties of the free energy,
and hence should apply completely generally to nematic
elastomers. In Sec. III we study the statistical mechanics
of a microscopic model of cross-linked dimers coupled via
Maier-Saupe interactions, and use it to derive the Lan-
dau theory discussed in Sec. II. We return to the Landau
theory in Sec. IV to show that the neo-classical theory of

the elasticity of nematic elastomers, Eq. (1.2), emerges
via the stationary point of the Landau free energy. As
one would expect, we recover the classical theory of rub-
ber elasticity, Eq. (1.1), in the limit of isotropic states.

II. LANDAU THEORY OF NEMATIC

ELASTOMERS

We begin with the real-space version of the order pa-
rameter field Ω(x̂) for the replica field-theory of vulcan-
ization [4] in d dimensions, which is a function of the
(1 + n)-fold replicated d-vectors x̂ = (x0, . . . ,xn). Its
expectation value is given by

〈Ω(x̂)〉 = 〈Ω(x0, . . . ,xn)〉

=
N
∑

j=1

〈
n
∏

α=0

δ(xα − cα
j )
〉

1+n
−

N

V0 V n
. (2.1)

Here, cα
j (with α = 0, 1, . . . , n) are the 1 + n replicas

of the position d-vectors of the N particles (indexed by
j = 1, . . . , N ) that comprise the system. Of these, c0

j de-

scribes the position of the jth particle right before cross-
linking (i.e. in the preparation state), and {c1

j , . . . , c
n
j }

(n-fold replicated) describes its positions in a state after
cross-linking (i.e. in the measurement state). V0 is the
volume of the system in the preparation state, and V is
its volume in the measurement state (which may in prin-
ciple differ from V0). The brackets 〈· · · 〉1+n denote an
average over the replicated positions of the monomers cα

j .
One can readily see that the first term in Eq. (2.1) gives
the joint probability density that a particle is found at
x0 at the time of cross-linking and that the same particle
is later found at {x1, . . . ,xn}, respectively, in n indepen-
dent measurements performed at widely separated times
after cross-linking [23], averaged over the N particles con-
stituting the system. In the liquid state, all particles are
delocalized, and therefore this joint probability density
is independent of the positions {x0,x1, . . . ,xn}, and is
simply given by the constant N/V0V

n. The order pa-
rameter therefore vanishes in the liquid state. In the gel
state, however, a nonzero fraction of the particles belong
to the infinite cluster and are localized: their positions
after cross-linking are now strongly correlated with their
positions right before cross-linking. As we shall discuss
in much more detail in Sec. IV, this correlation, as well as
the fraction of particles that have gelled, is captured by
the non-vanishing value exhibited by the order parame-
ter, Eq. (2.1), in the gel phase.

The order parameter expectation value in the one-
replica sector is given by

δρα(xα) ≡ 〈Ωα(xα)〉 =

∫

〈Ω(x̂)〉
∏

β(6=α)

dxβ

=

N
∑

j=1

〈

δ(xα − cα
j )
〉

1+n
−

N

Vα
(2.2)
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for α = 0, . . . , n, where Vα ≡ (V0, V, . . . , V ). Defined this
way, it is clear that δρ0(x0) is the density fluctuation in
the preparation ensemble, i.e. in the liquid state, whereas
δρα(xα) (for α = 1, . . . , n) are the density fluctuations in
the measurement ensemble, i.e. after cross-linking. In

the following, we shall treat the component of the order
parameter Ω that lies in the one-replica sector (i.e. δρα)
explicitly, so that Ω now has components only in the
higher-replica sector.

The Landau free energy for vulcanization/gelation for isotropic systems is given by

FV [Ω] =

∫

dx̂

{

K0

2
(∇0Ω)2 +

K

2

n
∑

α=1

(∇αΩ)2 +
r

2
Ω2 −

v

3!
Ω3

}

+
B0

2

∫

dx0 δρ0(x0)2 +
B

2

n
∑

α=1

∫

dxα δρα(xα)2,(2.3)

where ∇α ≡ ∂/∂xα (for α = 0, . . . , n). The parame-
ter r triggers the transition to the solid state when it
becomes negative (i.e. when the density of cross-links ex-
ceeds some critical value). B0 and K0 are, respectively,
the inverse susceptibility for density fluctuations and the
chain stretchability, both in the preparation ensemble,
and B and K are the corresponding quantities in the
measurement ensemble [4]. A larger value of K (or K0)
corresponds to floppier polymer chains that are easier to
stretch.

In the original version of this Landau theory for vul-
canization/gelation [22], the one-replica-sector (i.e. den-
sity) fluctuations δρα(xα) were simply excluded, which
corresponds to the incompressible limit B0 = B = ∞,
i.e. the repulsive interactions were taken to be infinitely
strong, so that the particle-density could not fluctuate at
all. To avoid unnecessary complications our focus here
will similarly be on incompressible systems although, as
mentioned above, our approach can readily be extended
to allow for compressibility. Furthermore, it was origi-
nally assumed that the parameters K0 and K are equal
to one another. However, it should be noted that nei-
ther K0 and K, nor B0 and B, need be identical, as
they describe systems at two potentially differing states,
one right before the cross-linking and the other after the
cross-linking.

We note that the order parameter field Ω(x̂), Eq. (2.1),
of this Landau theory is a single-particle quantity (albeit
replicated). The original polymer degrees of freedom are
integrated out in deriving the Landau theory, and con-
sequently the issue of topological entanglement becomes
irrelevant in this theory. The inclusion of entanglement
effects in the original theory would simply lead to a quan-
titative modification of the parameters in the Landau the-
ory, Eq. (2.3), not an invalidation of the theory itself .

A variety of rubbery solids in which there are meso-
genic chemical groups can display nematic order [10],
which is characterized by a symmetric, traceless order-
parameter field Q = {Qab}, irrespectively of the underly-
ing microscopic constitution of the system. The simplest
way to incorporate the possibility of nematic ordering
into our Landau theory is to couple the gel order param-
eter field Ω to replicas of the symmetric traceless tensor
fields, i.e. Qα(xα) (with α = 0, 1, . . . , n). Of these fields,

Q0 describes nematic order in the preparation ensemble,
whereas the Qα (for α = 1, · · · , n) describe nematic order
in the (n-fold replicated) measurement ensemble. The re-
sulting free energy must be invariant under the simulta-
neous rotation of Qα and the spatial position-vectors xα,
independently for each replica α. The lowest-order cou-
pling between Ω and a uniform nematic order parameter
field allowed by symmetry is

FV N =

∫

dx̂

(

η0

2
Q0

ab ∇
0
aΩ∇0

bΩ +
η

2

n
∑

α=1

Qα
ab ∇

α
aΩ∇α

b Ω

)

,

(2.4)
where ∇α

a indicates a derivative with respect to the
ath cartesian component of the αth replicated position-
vector. The signs of the coupling constants η0 and η
depend on details of the chemical structure of the ne-
matic entities under consideration. An example will be
given in the next section, where we compute the coupling
constants for a particular model: cross-linked dimers.

Other terms are allowed by symmetry as well, such as
∫

dx̂ Ω(x̂) (∇α
a ∇α

b Qα
ab) (∇β

c ∇β
d Qβ

cd) , (2.5a)

∫

dx̂ Ω(x̂)2 ∇α
a ∇α

b Qα
ab , (2.5b)

which are of the same (or lower) order in Ω as those kept
in Eq. (2.4). However these terms vanish for conditions
of uniform nematic order, and therefore they can be ig-
nored in our discussion of macroscopic elasticity at the
mean-field level. Even restricting ourselves to uniform
nematic order, there will be additional terms of higher
order in Q in Eq. (2.4). We ignore these terms here, even
though the magnitude of the nematic order parameter is
not necessarily small. However, our main results will not
be affected by these terms. In particular, the symme-
try of the step-length tensor is captured correctly, and
only its magnitude will be affected by these higher order
terms.

The total free energy

F [Ω, Q] = FV [Ω] + FN [Q] + FV N [Ω, Q] (2.6)

also contains a part, FN , that depends only on the
replicated nematic order parameter {Q0, Q1, . . . , Qn}
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FIG. 1: Model of dimers cross-linked by harmonic springs.

and accounts for the interactions between neighboring
(anisotropic) particles that favor nematic order. In the
next section, we shall give FN explicitly (3.8) for a par-
ticular microscopic model — cross-linked dimers.

The above Landau free energy is completely general,
as it is based on symmetry and lengthscale arguments.
However, it is useful to substantiate it with help of a
microscopic model. This will be done in the following
section, in which we consider the simplest model of a ne-
matic elastomer: a system of cross-linked dimers. As we
shall see, the microscopic model gives rise to precisely the
above free energy, with the additional benefit of yield-
ing explicit expressions of the expansion coefficients in
terms of the parameters of the microscopic model. After
re-deriving the Landau theory, in Sec. IV we work out
its implications for the elasticity of nematic elastomers.
Thereby, we derive the previously phenomenological neo-
classical theory from a microscopic model.

III. MICROSOPIC MODEL

A simple microscopic model for a nematic elastomer
consists of N rigid dimers that interact with one another
via a Maier-Saupe type of interaction. Dimer j consists of
two particles having d-dimensional position-vectors cj,1

and cj,2. The relative separation of the two particles is
fixed to be l, and the orientation of the dimer is specified
by the unit vector

nj =
cj,1 − cj,2

|cj,1 − cj,2|
. (3.1)

Parallel or anti-parallel alignment of the dimers is ener-
getically favored, as described by the following interac-
tion potential:

Hnem = −
1

2

N
∑

i,j=1

Ji,j

(

(ni · nj)
2 − d−1

)

. (3.2)

Here, Ji,j specifies the strength and range of the interac-
tion.

The system of N dimers is cross-linked via Hookean
springs (see Fig. 1). We randomly choose M pairs of
particles C = {ie, se; je, te}

M
e=1, with the first (ie) and

third (je) indices indicating which dimers (1, . . . , N ) are
linked by cross-link e (= 1, . . . , M ) and the second (se)
and fourth (te) indices indicating which of the particles
(1 or 2) in the dimers are connected by the cross-links.
Each cross-linked pair is connected via a Hookean spring
of typical extent b:

Hxlink =
1

2b2

M
∑

e=1

|cie,se − cje,te |
2 . (3.3)

All particles are taken to repel one another at short dis-
tances, as described by the excluded-volume interaction

Hev =
λ

2

N
∑

i,j=1

∑

s,t=1,2

δ(ci,s − cj,t). (3.4)

We shall focus on the situation in which the excluded-
volume parameter λ is very large, so that the density
fluctuations are fully suppressed. The total Hamiltonian
is thus given by H = Hnem + Hxlink + Hev, and we aim
to address the randomly constrained partition function

Z(C) =

∫

∏

i,s

dci,s e−H
N
∏

j=1

δ(|cj,1 − cj,2| − l) (3.5)

associated with the configuration C of quenched disorder
(i.e. the random cross-linking).

The above model is able to account for both the gela-
tion transition, which is controlled by the number of
cross-links M , and the nematic ordering transition, which
is controlled by the strength of the Maier-Saupe coupling
Ji,j relative to the temperature. (Recall that we are using
units in which kBT = 1.) As these parameters can be var-
ied independently, the system shows a rich phase diagram
exhibiting nematic and isotropic sol and gel phases [24].
Here, we concentrate on a nematic gel phase in order to
investigate the elasticity of the anisotropic gel.

The distribution of quenched disorder is taken to be of
the Deam-Edwards type:

P (C) ∝
1

M !

(

V

2N

µ2

(2πb2)d/2

)M

Z(C), (3.6)

and the average of the logarithm of the partition func-
tion is achieved with the help of replicas (see the appen-
dices for details). The resulting free energy per dimer,
f ≡ F/N , can be decomposed into three terms: one ac-
counting for the gelation transition, one for the nematic
ordering, and a coupling term:

f [Ω, Q] = fV [Ω] + fN [Q] + fV N [Ω, Q]. (3.7)

The first of these terms is given via Eq. (2.3) but with
particular values for the parameters: r = 1−µ2, v = 1/6,
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FIG. 2: Nematic free energy as a function of Q for various val-
ues of the coupling constant associated with the Maier-Saupe
interaction. The transition point is denoted by J c

0 , whereas
J

sp
0 indicates the limit of local stability of the isotropic phase.

and K0 = K =
(

1
6
l2 +b2

)

/2. Moreover, since we are con-
sidering incompressible systems all terms in the free en-
ergy associated with density fluctuations are suppressed.

The nematic free energy fN has the standard form [25].
We assume that the interaction Ji,j = J(ci − cj) de-
pends only on the distance between the dimer centers of
mass cj = (cj,1 + cj,2)/2. The corresponding Fourier-
transformed function J(k) is expected to be monotoni-
cally decreasing, giving rise to spatially uniform nematic

order at sufficiently low temperatures. We denote by
Jα

0 ≡ Jα(k = 0) the maximum coupling constant, and
we allow for the possibility that the cross-linking and
measurements of the anisotropic elasticity are done at
different temperatures. Mathematically, this is achieved
by allowing the possibility of there being two distinct
coupling constants, one for replica α = 0 (i.e. for the
preparation ensemble) and one for replicas α = 1, 2, . . . , n
(i.e. for the measurement ensemble).

In this Paper, we treat the nematic order within mean-
field theory only, and make the following Ansatz for the
order parameter of a uniform, uniaxial nematic state:
Qα

a,b(k = 0) = Qα
(

na nb − d−1δa,b

)

. When substi-
tuted into the free energy, this yields a first-order tran-
sition, as expected. The nematic part of the free en-
ergy fN decomposes into a sum over uncoupled replicas:
fN =

∑n
α=0 fα

N , with

fα
N =

Jα
0

3
Qα(Qα +1)− ln

(∫ 1

0

dy exp (Jα
0 Qαy2)

)

. (3.8)

The above free energy is shown in Fig. 2. It displays a
discontinuous transition from an isotropic to a nematic
phase at J0 = 6.812, at which the order parameter jumps
from zero to the nonzero value Q = 0.429.

The terms in the free energy that couple the nematic and gel order parameters are, to lowest order, given by

NfV N =

∫

dx̂





n
∑

α=0

ηα Qα
ab (∇α

aΩ) (∇α
b Ω) +

n
∑

α=0

gα
1 Ω2 (∇α

a∇
α
b Qα

ab) +

n
∑

α,β=0

gα,β
2 Ω (∇α

a∇
α
b Qα

ab)(∇
β
c ∇

β
dQβ

cd)



 . (3.9)

The coupling constants are determined by the strength
of the Maier-Saupe interaction Jα

0 , the cross-link concen-
tration µ2, and the length of the rods l:

ηα ∼ gα
1 ∼ Jα

0 l2µ4 and gα,β
2 ∼ Jα

0 Jβ
0 l4µ2.

(Their precise values are given in the appendix.) The
first term in Eq. (3.9) is precisely of the form given in
Eq. (2.4). The second and third terms involve spatial
derivatives of the nematic order parameter ∇a∇bQa,b,
and these vanish in the saddle-point approximation.
Hence, in the mean-field approximation, if we assume
Qα to be constant in space, the microscopic model yields
the Landau free energy given in Sec. II.

IV. ISOTROPIC AND ANISOTROPIC RUBBER

ELASTICITY

We shall only consider the case of uniform nematic
ordering deep in the nematic phase, and hence we may
neglect the feedback of the Ω ordering on the nematic

order. We therefore assume {Q0, Q, . . . , Q} to be con-
stants, characterizing the uniform nematic order in the
preparation and measurement states, respectively. Addi-
tionally, it will be understood that B0 and B have val-
ues that are positive and very large, consistent with the
assumption that the system is incompressible. This ap-
propriately guarantees that the saddle-point value of Ω
vanishes in the one-replica sector. Accordingly, we re-
quire that V0 = V . By varying the total free energy over
the vulcanization/gelation order parameter Ω, we arrive
at the saddle-point equation

K0 l0ab ∇
0
a ∇

0
b Ω̄+K

n
∑

α=1

lab ∇
α
a ∇α

b Ω̄ = r Ω̄−
v

2
Ω̄2 , (4.1)

in which summations over repeated cartesian indices are,
as usual, implied. The tensors l0 and l in this formula
are short-hand for

l0ab ≡ δab +
η0

K0
Q0

ab and lab ≡ δab +
η

K
Qab . (4.2)

As we shall see below, they are in fact the (dimensionless)
effective step-length tensors of the initial and deformed
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states that appear in the neo-classical elastic free energy, Eq. (1.2).

The saddle-point equation (4.1) should be solved under the constraint of the vanishing of Ω̄ in the one-replica sector.
Let us first consider the following simple Ansatz [26]:

Ω̄(x̂) = q

∫

dz

{

∫

dτ
p(τ )

N (τ )
exp

[

−
τ

2

(

y0 · l−1
0 · y0 +

n
∑

α=1

yα · l−1 · yα

)]

−
1

V 1+n
0

}

, (4.3a)

y0 ≡ x0 − z, yα ≡ xα − z, N (τ ) ≡ (π/τ )
(1+n)d

2 (det l0)
1
2 (det l)

n
2 , (4.3b)

where the d-dimensional vector z is integrated over the
volume of the (preparation) system V0. Evidently, if
both the preparation state and the measurement state
are isotropic (i.e. Q0 = Q = 0 and l0 = l = I, the
above saddle-point Ansatz reduces to the form appropri-
ate to isotropic gelled systems [3], with p(τ ) being the
distribution of inverse square localization lengths. The
interpretation of the saddle point (4.3) is as follows. A
certain fraction q of the particles belong to the infinite
cluster (i.e. the gel fraction) and are localized in space.
In the preparation ensemble (i.e. replica 0) each local-
ized particle fluctuates around the point z subject to the
Gaussian variance-matrix τ−1l0, and in the measurement
ensemble (i.e. replicas 1 to n) fluctuates around the same
point z but with variance-matrix τ−1l. The state de-
scribed by this saddle point corresponds to a nematic
elastomer that has not been subjected to an elastic de-
formation. From Eq. (4.2) it is straightforward to see
that the role of a non-vanishing nematic order is to confer
spatial anisotropy on the position-fluctuations of the lo-
calized particles. Finally, a continuous distribution p(τ )
of (inverse square) localization scales τ reflects the fact
that in a typical realization of quenched disorder, the
localization length fluctuates from place to place in the
sample, i.e. elastomers are spatially heterogeneous.

In the gel phase (i.e. r < 0), we find that the Anzatz
Eq. (4.3) does indeed solve Eq. (4.1), provided that

q = 2|r| (4.4a)

and that p(τ ) satisfies the following integro-differential
equation:

τ2

2
p′(τ ) =

(

|r|

4 v
− τ

)

p(τ ) −
|r|

4 v

∫ τ

0

p(τ ′) p(τ − τ ′) dτ ′.

(4.4b)
Equations (4.4a) and (4.4b) are identical to those found
for the isotropic case [3], up to trivial re-scaling of pa-
rameters.

We now come to the main point of the present Paper:
obtaining the elastic free energy of performing uniform,
volume-preserving deformations of isotropic and nematic
random solids. To do this, we shall impose a volume-
preserving, but otherwise arbitrary, homogeneous defor-
mation of the boundary of the system after cross-linking ,
which is characterized by the deformation gradient tensor

......α=0 α=1 α=n

FIG. 3: A macroscopic uniform deformation, imposed after
cross-linking, changes affinely the average positions of parti-
cles in the measurement state (i.e. the measurement replicas
α = 1, . . . , n), with respect to their positions in the prepara-
tion state (i.e. preparation replica α = 0).

Λ (the determinant of which is unity). We proceed by
hypothesizing the following geometrical modification [27]
of the original saddle-point solution (4.3):

yα = xα − z →







x0 − z (α = 0),

xα −Λ · z (α 6= 0).
(4.5)

By substituting this modified Ansatz into Eq. (4.1), we
find that it is indeed a solution, provided q and p(τ ) are
respectively given by Eqs. (4.4a) and (4.4b) (in the limit
n → 0).

We now argue that this new saddle point, Ω̄Λ [given
by Eq. (4.3) with the replacement Eq. (4.5)] describes
a uniformly-deformed nematic elastomer: in the prepa-
ration replica a localized particle continues to exhibit
Gaussian fluctuations around the position z, with an un-
changed variance-matrix τ−1l0; however, in the measure-
ment replicas it fluctuates around the new position Λ · z
(i.e. the deformation of the old position) but in a manner
controlled by the same variance-matrix τ−1l as in the
undeformed state. Hence, the average positions of the
particle before and after cross-linking are related to one
another by the linear transformation Λ, as illustrated in
Fig. 3. This is precisely a macroscopic uniform defor-
mation! Also, it now becomes clear that even though the
average positions of particles are deformed by Λ, the fluc-
tuations around the average positions are independent
of deformation [29]. This result is, however, an artifact
of our mean-field approximation, and is not expected to
hold for a real heterogeneous amorphous solid, in which
there are order-parameter fluctuations.

We now calculate the elastic free-energy density of ne-
matic elastomers fel(Λ) at the mean-field level. To do
this, we insert the deformed saddle point (4.3), modi-
fied according to Eqs. (4.5), into the total free-energy
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density (2.6), and subtract the value corresponding to
the undeformed (i.e. Λ = I and Q0 = Q) saddle point.
Then, dividing appropriately by nV (recall that there are
n replicas of the measurement ensemble) and taking the
replica limit (i.e. n → 0), we find the elastic free-energy
density of an incompressible nematic elastomer:

fel(Λ) = lim
n→0

1

n V

(

F [Ω̄Λ]− F [Ω̄]
)

=
µ

2
Tr l0 ΛT l−1Λ−

µ

2
d, (4.6a)

where µ ≡
4

3

K0

K

|r|3

v2
. (4.6b)

Equation (4.6a) coincides with the free-energy density of
the neo-classical theory of nematic elastomers, Eq. (1.2),
up to a trivial additive constant. If Q0 = Q = 0 then,
by Eqs. (4.2), we have l0 = l = I, and our result triv-
ially reduces to the classical theory of isotropic rubber
elasticity, Eq. (1.1). Finally, that the shear modulus,
Eq. (4.6b), scales as |r|3 is a mean-field result which has
been derived via other methods [28, 30]. We emphasize
that Eqs. (4.6a) are derived from the Landau theory of
gelation, generalized to include nematic ordering. This
Landau theory provides the effective field-theory for the
long lengthscale physics of gelation. Consequently, it is
independent of short-distance details, and thus provides
a universal mean-field description for the elasticity of all
forms of vulcanized matter near the vulcanization point ,
provided that the corresponding transition is described
by the Landau theory. This observation explains, in part,
the tremendous success of the classical theory of rubber
elasticity, Eq. (1.1), and its anisotropic generalization,
the neo-classical theory, Eq. (1.2).

V. CONCLUSIONS AND OUTLOOK

We have extended the Landau theory for isotropic elas-
tomers to the setting of nematic ordering, focusing on
incompressible systems. Symmetry and lengthscale prin-
ciples dictate the coupling between the order parameters
for amorphous solidification and for nematic ordering.
The neo-classical theory of nematic elastomers was thus
shown to be derivable from the saddle-point approxima-
tion of the resulting Landau theory. Our approach can
readily be extended to allow for compressibility.

In addition, a simple microscopic model of nematic
elastomers was introduced. In it, rigid dimers with a
Maier-Saupe interaction are randomly cross-linked, giv-
ing rise to a gel phase exhibiting nematic ordering. This
microscopic model was shown to reproduce the Lan-
dau theory, generalized to non-uniform nematic order-
ing. Thereby, the macroscopic elasticity of nematic
elastomers is connected to a microscopic, statistical-
mechanical model.

What is perhaps most valuable about our approach
is that it provides a platform for the systematic study

of quenched spatial fluctuations in various forms of vul-
canized matter. Until recently, there has been very lit-
tle quantitative or phenomenological modeling of fluctu-
ations such as these [31], although a heuristic discussion
can be found in Ref. [32]. As a first step in this di-
rection, we have analyzed the fluctuations of the elastic
constants and the random residual stress for isotropic
elastomers [33]. In the context of nematic elastomers it
is of particular interest to understand whether or not the
well-known soft mode of nematic elastomers [11–14] sur-
vives in the presence of non-affine deformations. More
generally, the interplay of nematic distortions and inter-
nal as well as externally applied stresses is of great in-
terest. The present work constitutes a starting point for
such studies.
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APPENDIX A: AVERAGING OVER CROSS-LINK

CONFIGURATIONS USING REPLICAS

In this appendix we present elements of our analysis of
the microscopic model. The first step is to eliminate the
quenched disorder, so as to obtain the disorder average,
denoted by F , of the free energy. This is achieved with
the help of replicas:

−F = [lnZM (C)] = lim
n→0

n−1 ([ZM (C)n]− 1) . (A1)

Here, [· · · ] denotes the disorder average, i.e. the average
over all cross-link configurations, weighted by the Deam-
Edwards distribution (3.6). As this distribution is pro-
portional to the randomly constrained partition function
itself, we can write [ZM (C)n] = Zn+1/Z1. The disorder
average can be worked out explicitly, by analogy with the
case of flexible chains [3] or hard rods, and yields

Zn+1 =

〈

exp





µ2V

2N

N
∑

i,j=1

2
∑

s,t=1

e−
Pn

α=0(cα
i,s−cα

j,t)
2/2b2





〉H0

n+1

.

The thermal average, denoted by 〈· · · 〉, is taken with
the Boltzmann weight exp(−H0), where H0 ≡ Hev +
Hnem is the Hamiltonian of the uncross-linked melt. The
subscript n+1 refers to the (n+1)-fold replication of the
system. The normalization of the disorder distribution
is given by: Z1 = limn→0 Zn+1, so that the disorder-
averaged free energy follows from

−F = lim
n→0

Zn+1 − Z1

nZ1
. (A2)
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APPENDIX B: DECOUPLING AND

COLLECTIVE FIELDS

The next step in the analysis is the decoupling of the
different (replicated) dimers in the Maier-Saupe inter-
action, as well as in the interactions arising from cross-
linking. To decouple the interactions due to cross-linking,
we note that the exponent in Zn+1 can be written as a
quadratic form

Zn+1 =

〈

exp

(

2Nµ2

V n

∑

k̂
uk̂|ρk̂|

2

)〉H0

n+1

(B1)

by introducing the n + 1-fold replicated density:

ρk̂ ≡
1

2N

N
∑

i=1

2
∑

s=1

eik̂·ĉi,s . (B2)

The sum over replicated wave-vectors
∑

k̂ runs over all

vectors k̂ with kα
µ ∈ 2π

V 1/d Z for µ = 1, . . . , d and α =
0, . . . , n. The coefficient uk̂ is simply the Fourier trans-
form of the cross-link constraint. For harmonic springs
it is explicitly given by

uk̂ =

n
∏

α=0

∫

dx e−ikα·xe−|x|2/2b2

= (2πb2)d(n+1)/2e−k̂2b2/2,

where the limit V → R
d has been taken.

The sum over replicated wave-vectors,
∑

k̂ in Eq. (B1),

is decomposed into the 0-replica sector (k̂ = 0̂), the one-

replica sector (k̂ nonzero in only one replica, i.e. k̂ =
(0, . . . ,k, . . . ,0) = k êα), and the higher-replica sector,
abbreviated as HRS. The 0-replica sector is trivial be-
cause ρ0̂ = 2N and does not fluctuate. The 1-replica
sector of the collective coordinate,

ρα
k =

1

2N

N
∑

i=1

2
∑

s=1

eik·cα
i,s, (B3)

accounts for fluctuations in the density. The excluded-
volume interaction is quadratic in the density, i.e.,

e−
Pn

α=0 Hα
ev = exp

(

−
2N2

V

n
∑

α=0

∑

k

λα|ρα
k|

2

)

, (B4)

and can be combined with the 1-replica sector of Eq. (B1)
to obtain the following representation of the partition
function:

Zn+1 ∼
〈

exp



−N

n
∑

α=0

∑′

k

λ̃α
k |ρ

α
k |

2 + Nµ̃2
∑

k̂∈HRS

uk̂|ρk̂|
2





〉nem

n+1

.

Here,
∑′

k denotes a sum over all k’s, excluding k = 0.
The average is taken with respect to the Boltzmann
weight exp(−Hnem), and µ̃2 ≡ 4µ2/V n and

λ̃α
k ≡ 4Nλα/V − µ̃2ukêα .

The last step is to rewrite the Maier-Saupe interaction
as a quadratic form by introducing the nematic order
parameter, which is a symmetric, traceless tensor:

Uα
ab(k) =

1

N

N
∑

i=1

eik·cα
i
(

nα
ia nα

ib − d−1δa,b

)

. (B5)

Here, we denote by ci ≡ (ci,1 + ci,2)/2 the center of
mass of dimer i and assume that the interaction Ji,j in
Eq. (3.2) depends only on the distance between the cen-
ters of mass of the two interacting dimers:

Jα
i,j =

V

N
Jα(cα

i − cα
j ). (B6)

With these definitions the orientational interaction can
be represented as a quadratic form:

exp

(

−

n
∑

α=0

Hα
nem

)

= exp

(

N

2

n
∑

α=0

∑

k

Jα(k) |Uα
ab(k)|2

)

,

with Jα(k) being the Fourier transform of Jα(cα
i − cα

j ),
and summation convention being adopted for repeated
cartesian indices.

It is now straightforward to decouple the different
(replicated) dimers by suitable Hubbard-Stratonovich
transformations, by introducing collective fields for the
density Ωα

k, the gel order parameter Ωk̂, and the ne-
matic order parameter Qα

ab(k). (When introducing the
collective fields, care has to be taken of the symmetries
of the collective fields: Ω−k̂ ≡ Ω∗

k̂
, Ωα

−k ≡ (Ωα
k)∗ and

Qα
ab(−k) ≡ Qα

ab(k)∗, which require us to constrain the
fields to half-spaces. However, in the resulting expres-
sions the fields can be continued to the full space of argu-
ments.) The partition function Zn+1 is then represented
as a functional integral over these collective fields:

Zn+1 ∼

∫

DΩDQ exp
(

−Nfn+1({Ωk̂, Ωα
k, Qα

ab(k)}),
)

(B7)
with a Landau-Wilson free energy per dimer fn+1 given
by
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fn+1({Ωk̂, Ωα
k, Qα

ab(k)}) =
µ̃2

2

∑

k̂∈HRS

uk̂

∣

∣Ωk̂

∣

∣

2
+

1

2

n
∑

α=0

∑′

k

λ̃α
k |Ωα

k|
2

+
1

2

n
∑

α=0

∑

k

Jα(k) |Qα
ab(k)|

2

− ln

〈

exp

(

µ̃2
∑

k̂∈HRS

uk̂ Ωk̂

2
∑

s=1

e−ik̂·ĉs + i

n
∑

α=0

∑′

k

λ̃α
k Ωα

k

2
∑

s=1

e−ik·cα
s

+
n
∑

α=0

∑

k

Jα(k) Qα
ab(k) e−ik·cα (

nα
a nα

b − d−1δa,b

)

)〉dim

n+1

. (B8)

The average 〈· · · 〉dim =
(

4πl2V
)−1 ∫

dc1 dc2 δ(|c1−c2|−
l) · · · refers to a single dimer of fixed length l.

APPENDIX C: LANDAU-WILSON FREE

ENERGY

We only consider phases that exhibit macroscopic
translational invariance. Mathematically, this can be
achieved by requiring the excluded-volume interaction to
be sufficiently strong that it overcomes the effective at-
tractive interaction due to cross-linking:

λ̃α
k = 4Nλα/V − µ̃2 ukêα > 0.

which ensure stability with respect to macroscopically
inhomogeneous states. In fact, to simplify the presen-
tation we shall go further than this by considering sys-
tems that are not just stable with respect to macroscopic
inhomogeneity but, rather, are strictly incompressible,
so that macroscopic density fluctuations are completely
suppressed. This is accomplished by taking the excluded-
volume parameter λ to be very large. Our reason for
doing this is that we are concentrating on the coupling
terms between the nematic and gel order parameters, and
hence we want to keep the analysis as simple as possible.
The free energy, Eq. (B8), then simplifies to

fn+1({Ωk̂, Qα
ab(k)}) =

µ̃2

2

∑

k̂∈HRS

uk̂

∣

∣Ωk̂

∣

∣

2

+

n
∑

α=0

∑

k

Jα(k)

2
|Qα

ab(k)|
2
−ln

〈

exp
(

G1(Ω) + G2(Q)
)〉dim

n+1
.

Here, we have introduced the abbreviations

G1(Ω) ≡ µ̃2
∑

k̂∈HRS

uk̂ Ωk̂

∑

s=1,2

e−ik̂·ĉs, (C1)

G2(Q) ≡

n
∑

α=0

∑

k

Jα(k) Qα
ab(k) e−ik·cα

(

nα
a nα

b −
1

3
δa,b

)

,

and specialized to three spatial dimensions (i.e. d = 3).
If the nematic order parameter vanishes, the above free

energy reduces to a special case of the universal gelation
transition free energy discussed, e.g., in Ref. [22]. If the
gel order parameter vanishes, the free energy has only the
nematic contribution. Within mean-field theory, we only
consider uniform nematic order and, furthermore, assume
a uniaxial state, for which Qα

ab(0) = Qα(ta tb − δa,b/d).
Here, t denotes the unit vector along the preferred axis
of the nematic state. With this Ansatz, the free energy
is of the standard mean-field type, given in Eq. (3.8):

fN ({Qα
ab(0)}) =

1

2

n
∑

α=0

Jα
0 Qα

ab(0)2

−ln

〈

exp

(

n
∑

α=0

Jα
0 Qα

ab(0)

(

nα
a nα

b −
1

3
δa,b

)

)

〉dim

n+1

.

We have, furthermore, assumed that the interaction Ji,j

falls off monotonically with distance, so that the Fourier-
transform J(k) is maximal for k = 0: J0 ≡ J(0) ≥ J(k)
for all k.

The interesting terms are the ones that couple the ne-
matic and gel order parameters. At cubic order in Ω and
Q (i.e. ΩQQ or ΩΩQ) there are two such terms:
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〈

G1(Ω) G2(Q)2
〉dim

n+1
= µ̃2

n
∑

α,β=0

∑

p,q

∑

k̂∈HRS

uk̂ Jα(p) Jβ(q) Ωk̂ Qα
ab(p) Qβ

cd(q)

×

2
∑

s=1

〈

e−i(p·cα+q·cβ+k̂·ĉs)
(

nα
a nα

b −
1

3
δa,b

)(

nβ
c nβ

d −
1

3
δc,d

)

〉dim

n+1
, (C2a)

〈

G1(Ω)2 G2(Q)
〉dim

n+1
= µ̃4

n
∑

α=0

∑

q

∑

k̂,p̂∈HRS

uk̂ up̂ Jα(q) Ωk̂ Ωp̂ Qα
ab(q)

2
∑

s,s′=1

〈

e−i(k̂·ĉs+p̂·ĉs′+q·cα)
(

nα
a nα

b −
1

3
δa,b

)

〉dim

n+1
. (C2b)

To proceed further with the computation of these two
cubic terms we need to compute the single dimer corre-
lations.

APPENDIX D: SINGLE-DIMER CORRELATIONS

The simplest such correlation is of the form

〈

e−i
Pm

ν=1 kν ·csν

〉dim

1
=

sin(l|k̃|)

l|k̃|
δPm

ν=1 kν ,0 . (D1)

with k̃ =
∑m

ν=1 δsν ,2kν . We also need the correlation

〈(

na nb −
1

3
δa,b

)

e−i(k·cs+p·(c1+c2)/2)

〉dim

1

= g(l|p|/2)

(

papb

p2
−

1

3
δa,b

)

δk+p,0 , (D2)

in which the function g(a) is given by

g(a) ≡

(

1

a
−

3

a3

)

sin(a) +
3

a2
cos(a)

a→0
−→

a2

10
. (D3)

With help of these correlations we can evaluate the
expression in Eq. (C2a). First, we note that there is no

contribution for α = β, as this implies a k̂ lying in the
1-replica sector, where Ω vanishes. Thus, we arrive at

〈

G1(Ω) G2(Q)2
〉dim

n+1
= µ̃2

∑

α6=β

∑

k,p

Jα(k) Jβ(p)

×

(

kakb

|k|2
−

1

3
δa,b

)

Qα
ab(k)

(

pcpd

|p|2
−

1

3
δc,d

)

Qβ
cd(p)

× ukêα+pêβ Ω−kêα−pêβ g(l|k|/2) g(l|p|/2). (D4)

In the long-wavelength limit the above expression further
simplifies to

〈

G1(Ω) G2(Q)2
〉dim

n+1
∼

µ̃2

800

∑

α6=β

∑

k,p

u0̂ Jα
0 Jβ

0

× Ω−kêα−pêβ ka kb Qα
ab(k) pc pd Qβ

cd(p). (D5)

Similarly, the expression in Eq. (C2b) is computed to be

〈

G1(Ω)2 G2(Q)
〉dim

n+1
=

µ̃4

2

n
∑

α=0

∑

k̂∈HRS

∑

q

uk̂ uk̂+qêα

× Jα(q)



g(l|q|/2)

(

qaqb

q2
−

1

3
δa,b

)

+
∏

β(6=α)

sin(l|kβ|)

l|kβ|

× g(l|kα + q/2|)

(

(kα + q/2)a(kα + q/2)b

|kα + q/2|2
−

1

3
δa,b

)

)

× Ωk̂ Ω−k̂−qêα Qα
ab(q) . (D6)

In the limit of long wavelength the expression simplifies
to

〈

G1(Ω)2 G2(Q)
〉dim

n+1
=

µ̃4l2

5

n
∑

α=0

∑

k̂∈HRS

∑

q

u0̂ u0̂ Jα
0

×
(

qa qb +(kα +q/2)a(kα +q/2)b

)

Ωk̂ Ω−k̂−qêα Qα
ab(q) .

(D7)

Rewriting Eqs. (D5) and (D7) in real space, one recovers
the coupling terms given in Eq. (3.9).
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