
PHYSICAL REVIEW E, VOLUME 64, 031105
Connecting the vulcanization transition to percolation
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The vulcanization transition is addressed via a minimal replica-field-theoretic model. The appropriate long-
wavelength behavior of the two- and three-point vertex functions is considered diagrammatically, to all orders
in perturbation theory, and identified with the corresponding quantities in the Houghton-Reeve-Wallace field-
theoretic approach to the percolation critical phenomenon. Hence, it is shown that percolation theory correctly
captures the critical phenomenology of the vulcanization transition associated with the liquid and critical states.
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I. INTRODUCTION AND OVERVIEW

The vulcanization transition~henceforth denoted VT! is
the generic equilibrium phase transition from a parent liq
state of matter to an amorphous solid state, driven by
imposition of a sufficient density of permanent random co
straints between the constituents of the liquid. In the m
common setting of the VT, the constituents of the liquid a
macromolecules, the locations of which provide the annea
random ~i.e., thermally equilibrating! variables. The con-
straints are commonly provided by covalent chemical bo
~i.e., cross-links!, and impart quenched randomness upon
system. Over the past few years, a rather detailed descrip
of the VT has been developed, ranging from a mean-fi
theory of the emergent amorphous solid state~including its
structural@1,2# and elastic properties@3#, and its stability@4#;
for reviews, see Refs.@5,6#! to the critical properties of the
VT itself @7#.

The present paper aims to extend the description of
critical properties of the VT by exploring its relationsh
with the percolation transition~henceforth denoted PT; for
review, see Ref.@8#!. This relationship, which has long bee
anticipated on physical grounds@9,10#, has recently found
support both at the mean-field level@1,5#, and beyond, via a
renormalization-group approach@7#. Specifically, it was re-
cently shown that the order-parameter correlator near the
~which probes for relative localization of particles! and its
physical analog in the PT~viz., the connectedness function!
are governed by the same critical exponents, at least to
order in an expansion about the upper critical dimensio
@7#.

The central result of the present paper is the explicit
duction of certain basic critical properties of the VT
equivalent basic critical properties of the PT@11#. As we
shall see, this reduction can be accomplished via an e
diagrammatic analysis of the complete perturbative exp
sion of the appropriate vertex functions of the VT. These
shown to furnish, in the replica limit, precisely the fiel
theoretic formulation of the PT due to Houghton, Reeve, a
Wallace@12# ~which henceforth we shall refer to as HRW!.
Hence, we establish that the critical properties of the VT a
the PT are identical, not just to first order but to all orders
the departure of the spatial dimensiond from the upper criti-
cal dimension.
1063-651X/2001/64~3!/031105~7!/$20.00 64 0311
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It is worth observing that the VT and the PT do, neve
theless, represent distinct physical phenomena. This is ex
plified, e.g., by the amorphous solid state that emerges a
VT, which does not have an evident counterpart in PT. A
other point of distinction is revealed by the role of fluctu
tions in low-dimensional systems, which are expected
have qualitatively different impacts on the states emergin
the VT and the PT@13#. Yet another point of distinction
concerns the nature of the degrees of freedom involved in
description of the VT and the PT. The former arises in s
tems having both quenched and equilibrating randomn
whereas the latter takes place in systems involving just
type of randomness~typically taken to be the quenched ra
domness!; see Ref.@13#.

After completion of the present work we learned of t
elegant work of Janssen and Stenull@14#, conducted inde-
pendently of and simultaneously with the present wo
which builds on earlier work on random resistor networ
and percolation to arrive at,inter alia, essentially the same
results as those contained in the present paper via a re
approach.

II. MINIMAL MODEL OF THE VULCANIZATION
TRANSITION

Our analysis is based upon a minimal model of the V
that accounts for thermal fluctuations in the positions of
constituents of the parent liquid, short-range repulsions
tween these constituents, and permanent random constr
~e.g., resulting from cross-linking! that explicitly reduce the
collection of configurations accessible to the constituen
This minimal model yields a rich mean-field picture of th
structure and elastic response of the amorphous solid s
the former aspect having been verified by the compu
simulations of Barsky and Plischke@15#.

The minimal model for the VT can be built~in the spirit
of the Landau-Wilson scheme for continuous phase tra
tions! on the general basis of symmetry considerations an
gradient expansion@2#. The appropriate order parameterV,
whose expectation value detects the emergence of the a
phous solid state, has been discussed elsewhere@16#. The
quenched random constraints are accounted for via the
lica technique, which incorporates the Deam-Edwards mo
@17# for their statistics~viz., the statistics of the random con
©2001 The American Physical Society05-1
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straints are determined by the instantaneous correlation
the unconstrained system!. The additional replica associate
with the Deam-Edwards model leads to a situation in wh
one considers then→0 limit of a system of notn but n11
replicas.

The resulting Landau-Wilson effective Hamiltonian tak
the form of a cubic field theory involving the fieldV, the
argument of this field lying in (n11)-fold replicated
d-dimensional space:

S~V!5
1

Vn11

1

2 (
k̂PHRS

~r 01 k̂• k̂!uV~ k̂!u21
1

V2(n11)

g

3!

3 (
k̂1 ,k̂2 ,k̂3PHRS

V~ k̂1!V~ k̂2!V~ k̂3!d k̂11 k̂21 k̂3 ,0̂ .

~2.1!

The free-energy densityf is ~up to uninteresting factors tha
we shall ignore! related to this Hamiltonian via f
} limn→0n21ln$*DV exp(2S)%; the functional integral is
taken over the independent components ofV that feature in
S. In S, the quantityr 0 is the VT control parameterwhich,
near the VT, is linearly related to the density of rando
constraints.~To ease comparison with the HRW field theo
of the PT, the coefficients and fields featuring inS are not
defined exactly as they have been in our earlier work@18#.!
The symbol k̂ denotes the replicated wave vect

$k0,k1, . . . ,kn%; the extended scalar productk̂• ĉ is denoted
k0
•c01k1

•c11•••1kn
•cn. The specification HRS arise

from the following considerations. Consider the space of r
licated wave vectorsk̂. We decompose this space into thr
disjoint sets:~i! the higher-replica sectorHRS, which con-
sists of thosek̂ containing at least two nonzero-compone
vectorska; ~ii ! the one-replica sector1RS, which consists o
those k̂ containing exactly one nonzero-component vec
ka; and ~iii ! the zero-replica sector0RS, which consists o
the vectork̂50̂. This decomposition is illustrated schema
cally in Fig. 1 for the case of two replicas. It is especia
straightforward to visualize this decomposition if the volum
of the system is kept finite~and periodic boundary condition
are imposed! so that replicated plane waves with discre
equally spaced, replicated wave vectors provide the nat
complete set of functions.

The symbol( k̂PHRS indicates a summation over the re
licated wave vectork̂, subject to the restriction thatk̂ lies in
HRS. This condition on the summation overk̂ is essential.
Physically, it reflects the fact that no macroscopically inh
mogeneous modes~such as crystalline modes! order or fluc-
tuate critically in the vicinity of the VT, such modes bein
stabilized by the excluded-volume interactions. Mathem
cally, this condition reduces the symmetry of the theory fro
one that contains the rotation group in replicat
(n11)d-dimensional space to one that contains only ro
tions within each individual replica, along with the permut
tion of the replicas.
03110
of

h

-

t

r

,
al

-

i-

-

III. DEMONSTRATING THE EQUIVALENCE OF THE
CRITICAL PROPERTIES OF THE VULCANIZATION AND

PERCOLATION TRANSITIONS

A. Overall strategy

We now explain the strategy that we shall use to relate
VT and the PT. We shall focus on the replica limit of th
long-wavelength behavior of the two- and three-point ver
functionsGn

(2)( k̂) andGn
(3)( k̂1 ,k̂2) in the VT field theory. The

physical significance ofGn
(2)( k̂) as a probe of connectedne

has been elucidated in Ref.@7#. Now, the symmetry of the
VT field theory dictates that the only suitably invariant ter
quadratic in the wave vectork̂ is k̂• k̂. Thus, in a long-
wavelength expansion forGn

(2)( k̂), we have

Gn
(2)~ k̂!5Gn

(2)~ 0̂!

1
1

~n11!d (
a50

n S ]

]ka •
]

]kaDGn
(2)~ k̂!u k̂50̂k̂• k̂1•••

~3.1a!

5An1Bnk̂• k̂1•••. ~3.1b!

As the upper critical dimension for the VT is 6, and this
the dimension about which one may imagine expandi
general renormalizability considerations demand that
these two vertex functions (Gn

(2) andGn
(3)) contain the primi-

tive divergences, and do so via the constantsAn , Bn , and
Cn[Gn

(3)(0̂,0̂) ~see Ref.@19#!.
Having identified the quantities central to

renormalization-group analysis of the VT, we shall establ
that these quantities are identical, in the replica limit, to
corresponding quantities in percolation theory. To do this
shall make use of a convenient representation of the crit
properties of percolation theory, viz., the HRW field-theo
representation@12#. So that we know what we need to mak

FIG. 1. Decomposition of the space of replicated wave vecto
Off-axis wave vectors lie in the HRS; on-axis~but off-origin! wave
vectors lie in the 1RS; the wave vector at the origin is the 0RS
5-2
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CONNECTING THE VULCANIZATION TRANSITION TO . . . PHYSICAL REVIEW E64 031105
contact with, we pause to give a brief account of this HR
representation, the Landau-Wilson Hamiltonian for which
given by

H5E ddxH 1

2
~“f!22

1

2
~“c!21

1

2
r 0~f22c2!

1
g

3!
~f1c!3J , ~3.2!

wheref is an ordinary field butc is a ghost field. As HRW
have shown, provided one enforces the rule thatonly graphs
that are connected byf lines are included, the two- and
three-pointf vertex functions are identical~order by order in
perturbation theory in the coupling constantg) to those of
the one-state~i.e., percolation! limit of the Potts model. We
mention, in passing, that this HRW representation consist
fields residing ond-dimensional space, and does not nec
sitate the taking of a replica~or Potts! limit. However, it does
require the additional rule by which certain diagrams
excluded by hand.

Our strategy is as follows. Consider the standard Fe
man diagram expansion for the two- and three-point ver
functions of the VT field theory in powers of the couplin
constantg in the Hamiltonian~2.1!.

~i! To deal with the constraint that the internal wave ve
tors in the resulting diagrams reside in the HRS, we re
this constraint on summations over internal wave vectors
compensate for this by making appropriate subtractions
terms.

~ii ! Next, we observe that all diagrams for the two- a
three-point vertex functions can be organized into two c
egories: those in which there is at least one route betw
every pair of external points via propagators having unc
strained wave vectors~which we call freely connected dia-
grams!; and the remaining diagrams, in which there is
least one pair of external points between which no pa
exist consisting solely of propagators having unconstrai
wave vectors~which we call freely unconnected diagrams!.
Having made this categorization, we show that the appro
ate version of wave-vector conservation renders the fre
unconnected diagrams negligible in the thermodyna
limit, leaving us with a representation that is already rem
niscent of the HRW approach.

~iii ! At this stage we have reduced the construction of
two- and three-point vertex functions to the computation
freely connected diagrams only. Next, via a straightforw
combinatorial analysis, we show that, in the replica lim
only a small class of diagrams survive.

~iv! Finally, we explain how, again in the replica limit, th
values of the remaining diagrams are precisely those oc
ring in the HRW prescription for percolation.

We now set about implementing this strategy.

B. Relaxing the constraint to higher replica sector
wave vectors

In the VT field theory the internal wave vectors occurri
in the Feynman diagrams are constrained to lie in the H
In order to perform summations over these wave vectors,
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convenient to work with the continuum of wave vectors~i.e.,
to take the thermodynamic limit! rather than the discrete lat
tice of them. In order to be able to take this limit, we ree
press summations over HRS wave vectors in terms of
constrained summations over (n11)d-dimensional wave
vectors, together with further unconstrained summatio
over d-dimensional wave vectors~and certain trivial addi-
tional terms!. To do this, we note that for a generic functio
F( k̂) we have

(
k̂PHRS

F~ k̂!5(
k̂

F12S (
a50

n

(
qÞ0

dka,q )
b(Þa)

dkb,0D
2d k̂,0̂GF~ k̂! ~3.3a!

5(
k̂

F12S (
a50

n

(
q

dka,q )
b(Þa)

dkb,0D
1nd k̂,0̂GF~ k̂! ~3.3b!

5(
k̂

F~ k̂!2 (
a50

n

(
qa

F~0, . . . ,0,qa,0, . . . !

1nF~ 0̂!, ~3.3c!

which effects the reexpression of the summations just
scribed. Note that, as it always comes with the factorn, the
d k̂,0̂ term will vanish in the replica limit, and can therefore b
safely ignored. We shall refer to the wave vectors included
the term(a(q as lower-replica-sector~LRS! wave vectors.
Via these steps one can relax a constrained summation
HRS wave vectors, instead freely summing over all rep
cated wave vectors, provided one compensates by augm
ing the summand with the factor

12 (
a50

n

(
q

dka,q )
b(Þa)

dkb,0 . ~3.4!

How does this constraint relaxation manifest itself in t
setting of Feynman diagram computations? One simply a
ments every internal propagatorVn11G0( k̂) with a factor
~3.4!:

G0~ k̂![
1

r 01 k̂• k̂
→

12(
a

(
q

dka,q )
b(Þa)

dkb,0

r 01 k̂• k̂
~3.5a!

5
1

r 01 k̂• k̂
2

1

r 01 k̂• k̂
(
a50

n

(
q

dka,q )
b(Þa)

dkb,0 .

~3.5b!

How this decomposition is expressed diagrammatically
shown in Fig. 2.
5-3
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WEIQUN PENG, PAUL M. GOLDBART, AND ALAN J. McKANE PHYSICAL REVIEW E64 031105
In this manner, each HRS internal line in a Feynman d
gram can be decomposed into an unconstrained internal
less a LRS internal line. Thus, the various vertex functio
can be expressed in terms of Feynman diagrams comp
of unconstrained lines together with LRS internal line
Note, for future reference, that physically meaningful ver
functions have external wave vectors in the HRS.

We illustrate this decomposition for the case of a sim
diagram in Fig. 3. More generally, we arrive at the followin
modified Feynman rules for the VT field theory.

~i! Write down all diagrams arising from the origina
theory. In these diagrams all wave vectors are constraine
the HRS.

~ii ! Replace each diagram with the collection of diagra
obtained by allowing each internal line to carry either
unconstrained replicated wave vector or a LRS wave vec
~Thus, a diagram withL internal lines spawns a total of 2L

diagrams.! Identically valued diagrams can be represented
a single diagram, together with a suitable combinatorial f
tor ~see, e.g., the factor of 2 in Fig. 3!.

~iii ! Provide a factor of21 for each LRS internal line.
At this stage we observe that the combinatorics of

diagrammatic expansion coincides with those of the HR
expansion, provided one identifies the internal unconstrai
and LRS lines of the VT theory with, respectively, the co
responding internalf and c lines of the HRW representa
tion.

We have, however, yet to show that the diagrams remo
by hand in the HRW theory can be safely omitted from t
VT theory, and that the numerical values of the~replica lim-
its of! the VT diagrams are identical to those of the HR
diagrams. We shall establish these facts in the following s
sections.

FIG. 2. Decomposition of a HRS propagator~indicated byH)
into an unconstrained propagator~the unadorned line!, less a
LRS propagator~indicated byL).

FIG. 3. Decomposition of the one-loop diagram for the tw
point vertex function. On the right-hand side of this equation,
first and second diagrams are freely connected diagrams, an
third is a freely unconnected diagram.
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C. Elimination of freely unconnected diagrams

We remind the reader that in the HRW theory for the tw
and three-pointf field ~i.e., the physical! vertex functions,
one is instructed to remove, by hand, those diagrams
which there is at least one pair of external points betwe
which no paths exist consisting solely off field propagators.
The corresponding diagrams in the VT theory are those
which there is at least one pair of external points betwe
which no paths exist consisting solely of propagators hav
unconstrained wave vectors, i.e., freely unconnected
grams. We now show that these freely unconnected diagr
of the VT theory automatically vanish in the thermodynam
limit.

To do this, consider a generic VT theory diagram for t
two- or three-point vertex functions. Observe that freely u
connected diagrams have the following property: as th
exists a pair of external points not connected by a path
unconstrained internal lines, there must exist at least
scheme of cutting solely LRS internal lines that causes
diagram to separate into disconnected pieces with the ex
nal points shared among the pieces. As we are conside
only two- and three-point vertex functions, at least one
these pieces involves only a single HRS external point, al
with a number of cut LRS lines. A schematic illustration
such a piece is shown in Fig. 4.

Let us examine the consequences of applying wave-ve
conservation to this piece, noting that the wave vectok̂
flowing in through the external point must lie in the HR
whereas the wave vectors flowing out through the remain
~i.e., cut! lines lie in the LRS. Now, according to the VT fiel
theory, wave-vector conservation requires that the incom
HRS wave vectork̂ be equal, replica by replica, to the su
of the outgoing (m52,3, . . . ) LRSwave vectors flowing in
a given replica, i.e., that

ka5(
j 51

m

da,a jpj ~ for a50,1,2, . . . ,n! ~3.6!

wherea1 ,a2 , . . . indicate the replicas through which wav

e
the

FIG. 4. Schematic illustration of a piece of a diagram in the V
field theory obtained by cutting LRS lines in a freely unconnec

diagram. Note that the wave vectork̂ flowing through the externa
point lies in the HRS. The shaded circle represents any way
connect the exhibited lines using the cubic interaction vertex,
constrained propagators, and LRS propagators.
5-4
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CONNECTING THE VULCANIZATION TRANSITION TO . . . PHYSICAL REVIEW E64 031105
vectorsp1 ,p2 , . . . flow. As a consequence, because the
coming wave vector lies in the HRS, the outgoing LRS wa
vectors must flow out through more than one replica. Thi
the key observation, as the following example, depicted
Fig. 4 reveals. Here, there are six outgoing LRS lines, t
with wave vectors flowing in replica 0, one with wave vect
flowing in replica 1, and three with wave vectors flowing
replica 2. For replica 0, wave-vector conservation readsk0

5p11p2, so that, e.g.,p1 determinesp2. Similarly, for rep-
lica 1, wave-vector conservation readsk15p3, so thatp3 is
determined. More generally, as this special case exempli
the number of independent outgoing LRS wave vectors
reduced by at leasttwo ~rather thanone that total wave-
vector conservation demands! simply because of the fact tha
the outgoing LRS wave vectors must flow out through m
than one replica. This, in turn, means that in the uncut d
gram there are fewer independent wave vectors to
summed over than the number of loop wave vectors s
gested by simple topological counting. As a result, additio
denominators ofVn11 remain, even after the summation
over independent wave vectors in the uncut diagram are
placed by their thermodynamic-limit integrals, which rende
the corresponding freely unconnected diagram negligible

As a concrete example of the foregoing argument,
compute the third diagram on the right-hand side of
equation depicted in Fig. 3. In this diagram, both of the
ternal lines lie in the LRS, and the diagram does not~by
simple wave-vector conservation! contribute unless the ex
ternal wave vectork̂ has nonzerod-vector components in
precisely two replicas~e.g., replicas 1 and 2!. In this case, the
diagram makes the contribution

2Vn11G0~k1!Vn11G0~k2!~gV22(n11)!2

52g2V22(n11)G0~k1!G0~k2!. ~3.7!

On the right-hand side, one denominator ofVn11 will com-
bine with the Kroneckerd function to maintain overall wave
vector conservation~via a Diracd function in the thermody-
namic limit!; the otherVn11 denominator~which, in usual
cases, would combine with the summation over a loop w
vector to produce an integral! makes this diagram vanish
This special case exemplifies the general emergence, in
VT setting, of the central aspect of the HRW formulatio
viz., the removal of thef unconnected diagrams.

D. Replica sums and their decomposition in the replica limit

Now that we have demonstrated that only the freely c
nected VT field theory diagrams contribute, we make
closer examination of these diagrams for the relevant ca
of the two- and three-point vertex functions. We begin
noting that each diagram of the original theory~which has
only HRS internal lines! exhibits the full symmetry of the
VT field theory, viz., invariance under separa
d-dimensional rotations in each replica and permutations
the replicas. Therefore, the small-wave-vector expansion
Gn

(2)( k̂) given in Eq.~3.1b! remains valid, diagram by dia
gram.
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Now, the computation of any contributing diagram i
volves summations over a number of independent LRS~but
otherwise unconstrained! wave vectors as well as summa
tions over the replicas through which these wave vect
flow. These latter summations over replicas can be dec
posed as follows:

(
a1 ,a2 , . . . ,a l

Fa1 ,a2 , . . . ,a l

5S (
a1 ,a2 , . . . ,a l

all equal

1 (
a1 ,a2 , . . . ,a l

two distinct

1 (
a1 ,a2 , . . . ,a l

three distinct

1••• (
a1 ,a2 , . . . ,a l

all distinct
D Fa1 ,a2 , . . . ,a l

, ~3.8!

whereFa1 ,a2 , . . . ,a l
is a generic function of thel replica in-

dices. Said equivalently, the summation can be decompo
into: terms in which all wave vectors flow through a com
mon replica; those in which the wave vectors flow throu
two distinct replicas; etc.

Now let us make use of this decomposition. ForAn and
Cn in Eq. ~3.1b! the external wave vector is zero@19#, and
therefore the summandFa1 ,a2 , . . . ,a l

is invariant under per-
mutations of the replicas@20#. Thus, in the first term of the
decomposition,F is constant@i.e. independent of the~com-
mon! value of the replica arguments#, and hence this term
contributes (n11)F0,0, . . . ,0. In the replica limit, this be-
comesF0,0, . . . ,0. As for the second term, let us further d
compose it into partitionings of the set of replica indices in
two subsets, the replica indices in each subset having a c
mon value. In each such partitioningF is constant, and thus
each partitioning contributes (n11)nF, which vanishes in
the replica limit. By continuing with this decomposition ta
tic via tripartitioning, tetrapartitioning, etc., we establish th
all of the terms on the right-hand side of Eq.~3.8! except the
first vanish in the replica limit.

We next consider the coefficientBn . As mentioned above
symmetry considerations dictate that each diagram con
uting to the two-point vertex function has the small-wav
vector expansion

An
(dia)1Bn

(dia)k̂• k̂1•••, ~3.9!

where An
(dia) and Bn

(dia) are the contributions toAn and Bn

from the diagram in question. We exploit the~larger than
mandated! (n11)d-dimensional rotational invariance of th
terms retained in this small-wave-vector expansion by cho
ing k̂ to be rotated into a single replica:$k,0, . . . ,0%. ~Al-
though it has, until this stage, been vital to ensure thatk̂ lies
in the HRS, e.g., in order to eliminate the freely unconnec
diagrams, one is now at liberty to ignore this requiremen!
We repeat the tactic just used for the analysis ofAn andCn ,
with the slight elaboration needed to accommodate the
that the~suitably rotated! external wave vector$k,0, . . . ,0%
5-5



ur

en

th

re
s

n
W
b

m

y-

WEIQUN PENG, PAUL M. GOLDBART, AND ALAN J. McKANE PHYSICAL REVIEW E64 031105
breaks the permutation symmetry group fromPn11 down to
Pn . In this way, we see that the only contributions that s
vive the replica limit are from theall-equal partition and,
furthermore, from the case in which all of the independ
LRS wave vectors lie in replica zero.

E. Feynman integrals and their reduction to HRW integrals
in the replica limit

Having shown that the topology and combinatorics of
VT field-theory diagrams forAn , Bn , andCn coincide with
those of the HRW field-theory diagrams, the task that
mains is to show that, for every diagram contributing to the
coefficients, the actualvalueof the corresponding Feynma
integral reduces, in the replica limit, to the appropriate HR
value. That this is so can most straightforwardly be seen
employing the Schwinger representation@21# of the powers
of the propagator, viz.,
-
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~s21!!

~r 01 k̂• k̂!s
5E

s
ss21e2s(r 01 k̂• k̂)

5E
s
ss21e2sr 0 )

a50

n

e2ska
•ka

~ for s51,2, . . .!, ~3.10!

where the Schwinger parameters ranges between 0 and̀.
Observe that Eq.~3.10! presents the propagator in a for
that is very conveniently factorized on the replica index.

Let us begin with a concrete example. In the thermod
namic limit, the diagram depicted in Fig. 5 contributes toAn

a term proportional to
g4E d(n11)dk ddpG0~ k̂!2G0~p!2G0~ k̂1p!2

5g4E ddk0 ddpE
s1s2s3

s1s2s3 e2(s11s21s3)r 0e2(s11s3)k0
•k0

e2(s21s3)p•pe22s3k0
•p)

a51

n E ddka e2(s11s3)ka
•ka

5g4E ddk0 ddpE
s1s2s3

s1s2s3 e2(s11s21s3)r 0e2(s11s3)k0
•k0

e2(s21s3)p•pe22s3k0
•pS E ddk e2(s11s3)k•kD n

→
n→0

g4E ddk ddpE
s1s2s3

s1s2s3 e2(s11s21s3)r 0e2(s11s3)k•ke2(s21s3)p•pe22s3k•p

5g4E ddk ddp G0~k!2G0~p!2G0~k1p!2. ~3.11!
rep-
e,

W

ave
ld-
ter

e

of
This limiting value ispreciselythat occurring for the corre
sponding diagram in the HRW field theory for the PT.

The tactic that we have just employed, viz., the use of
Schwinger representation to decouple the replicas from
another, provides easy and explicit access to the replica l
and, hence, to the precise correspondence with the H
prescription. It can straightforwardly be invoked not only f
all diagrams that contribute to the coefficientsAn and~by the
same procedure! Cn , but also for the coefficientBn .

When considering diagrams contributing toAn and Cn ,
we saw that what survived were terms in which all intern
LRS wave vectors flowed in a common~but otherwise
arbitrary! replica. Now, as we considerBn , there is a slight
complication arising from the presence of an external w
vector, which spoils the fullPn11 permutation symmetry
However, this external wave vector has been chosen to li
replica zero and, as we have shown above, the only survi
contribution is the one in which all internal LRS wave ve
tors also flow in replica zero. Then, via the Schwinger re
resentation of the propagators, and via factorization on
e
e
it

W

l

e

in
g

-
e

replica indices, we see that the Feynman integral, in the
lica limit, is identical to that in the HRW approach. Henc
the VT presents not only the same coefficientsA0 andC0 of
the two- and three-point vertex functions as does the HR
representation, but also the same coefficientB0.

IV. CONCLUDING REMARKS

Let us summarize what is presented in this paper. We h
addressed the vulcanization transition via a minimal fie
theoretic model. This model is built from an order parame
whose argument is the (n11)-fold replication of ordinary
d-dimensional space.@The structure of this theory should b

FIG. 5. A two-loop diagram used to exemplify the decoupling
the replicas using the Schwinger representation.
5-6
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contrasted with that of more familiar replica field theories,
which it is the ~internal! componentsof the field that are
replicated rather than the~external! argument.# We have con-
sidered appropriate long-wavelength aspects of the two-
three-point vertex functions for this model, to all orders
perturbation theory in the cubic nonlinearity. Via a detail
analysis of the diagrammatic expansion for these quanti
we have found that, in the replica limit, these vulcanizatio
theory vertex functions precisely coincide with the cor
sponding vertex functions of a certain field-theoretic rep
sentation ~due to Houghton, Reeve, and Wallace! of the
tt.

ys

B

,

,

,

.

03110
nd

s,
-
-
-

percolation transition. Hence, percolation theory correc
captures the critical phenomenology of the liquid and criti
states of vulcanized matter.
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