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Statistical mechanics of permanent random atomic and molecular networks:
Structure and heterogeneity of the amorphous solid state

Konstantin A. Shakhnovich* and Paul M. Goldbart†

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080
~Received 19 January 1999!

Under sufficient permanent random covalent bonding, a fluid of atoms or small molecules is transformed
into an amorphous solid network. Being amorphous, local structural properties in such networks vary across
the sample. A natural order parameter, resulting from a statistical-mechanical approach, captures information
concerning this heterogeneity via a certain joint probability distribution. This joint probability distribution
describes the variations in the positional and orientational localization of the particles, reflecting the random
environments experienced by them, as well as further information characterizing the thermal motion of par-
ticles. A complete solution, valid in the vicinity of the amorphous solidification transition, is constructed
essentially analytically for the amorphous solid order parameter, in the context of the random network model
and approach introduced by Goldbart and Zippelius@Europhys. Lett.27, 599~1994!#. Knowledge of this order
parameter allows us to draw certain conclusions about the stucture and heterogeneity of randomly covalently
bonded atomic or molecular network solids in the vicinity of the amorphous solidification transition.Inter alia,
the positional aspects of particle localization are established to have precisely the structure obtained previously
in the context of vulcanized media, and results are found for the analog of the spin glass order parameter
describing the orientational freezing of the bonds between particles.@S0163-1829~99!12229-X#
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I. INTRODUCTION AND OVERVIEW

The purpose of this paper is to address the statist
structure of the amorphous solid state via a simple mode
a three-dimensional vitreous medium consisting of
valently bonded atoms ~or low-molecular-weight
molecules!.1 We shall do so essentially analytically by ma
ing use of techniques drawn from the field of the statisti
mechanics of systems having quenched randomness.2 The
model of vitreous media on which we shall focus is th
introduced by Goldbart and Zippelius,3 which takes as ingre
dients a thermodynamically large number of particles
tween which some large number of permanent random co
lent bonds are introduced. The quenched randomnes
encoded in the information describing which pairs of p
ticles are covalently bonded; the remaining~annealed! de-
grees of freedom correspond to the unconstrained posit
of the particles and the orientations of the orbitals. T
model exhibits a continuous equilibrium phase transit
from the liquid state to the amorphous solid state when
density of introduced bonds exceeds a certain critical va
It is on the structure and heterogeneity of this state that
hope to shed some light.

As an example of the type of medium we have in min
consider networks formed by the polycondensation
Si(OH)4 molecules, during which H2O is eliminated be-
tween pairs of hydroxyl~OH! groups on certain randoml
selected pairs of Si(OH)4 molecules so as to form Si-O-S
bonds. The amorphous solidification of such media has b
studied in many experiments; we cite as an example thos
Gauthier-Manuelet al.4 As it is our intention to develop a
rather general model of random networks, and to focus
universal properties, it is not necessary for us to incorpo
the specific details of the medium. For example, we shall
PRB 600163-1829/99/60~6!/3862~23!/$15.00
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be accounting for the bond geometry associated with
so-called bridging oxygen atoms between the silicon ato
In the model, both types of Si orbitals, those connected
hydroxyl groups and those connected to bridging oxygen
oms, will simply be referred to as ‘‘orbitals.’’ A second ex
ample of the type of media we have in mind is provided
amorphous silicon networks,1 especially those in which hy
drogen passivates bonds unconnected to other silicon at

The structural characterization of the vitreous state t
we shall construct will be statistical in nature, reflecting t
intrinsic heterogeneity of the environments that the const
ent particles in vitreous media inhabit. It will take the for
of a joint probability distributioncharacterizing the fraction
of particles that are localized in the vitreous state, and w
describe the spatial extent of the thermal fluctuations in th
positions, the degree and character of the thermal fluc
tions in the orientations of the orbitals that are capable
participating in covalent bonds, and the strength and na
of the correlations between the thermal fluctuations in
particle positions and the orbital orientations. Moreov
rather than dealing with media having a specific architect
~i.e., a specific realization of introduced bonds!, we shall
consider an ensemble of architectures, all characterized
common parameter governing the probability that a perm
nent chemical bond was formed between any pair of nea
orbitals.

A statistical description of an amorphous solid state h
previously been developed and explored in the contex
vulcanized~i.e., randomly permanently crosslinked! macro-
molecular media.5,6 This description, which addresses th
distribution of spatial extents of thermal position fluctuatio
~i.e., localization lengths! has been confirmed by compute
simulations,7 and rather general, model-nonspecific arg
ments in favor of the broad applicability of the descriptio
have also been presented.8 For any particular version of ran
3862 ©1999 The American Physical Society
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dom media~e.g., the macromolecular media of Refs. 5,6
the vitreous media considered in the present paper!, what
determines the specific content of the statistical descrip
of the amorphous solid state is the form of the random c
straints that the permanent covalent bonding imposes,
the resultant form taken by the amorphous solid order par
eter. In the present context of vitreous media, the constra
as we shall see below, are more intricate than they are in
macromolecular vulcanization context and, accordingly,
order parameter is more intricate and the statistical con
more elaborate: it accounts not only for the heterogen
~i.e., the distribution over the sample! of positional localiza-
tion lengths but also for the distribution of orbital-orientatio
thermal fluctuations, the strengths of the position-angle th
mal fluctuation correlations, and the statistical correlatio
between these physical characteristics.9

In Ref. 3, in addition to introducing the model of rando
network forming media considered here, and formulating
question of the phase transition to~and structure of! the
amorphous solid state via statistical-mechanical techniq
Goldbart and Zippelius made a simple variational mean-fi
theory for the amorphous solid state in which all partic
shared a common localization length and all orbitals share
common extent of their angular localization. The position
and angular localization parameters were then solved
self-consistently, and it was found that, at a certain criti
value of the density of formed bonds, a continuous transit
to an amorphous solid state occurs, beyond which the inv
of the positional localization parameter grows continuou
from zero. It was also found that, in response to the onse
positional localization, orientational localization of the orb
als sets in. Owing to the restricted form of the variation
hypothesis for the order parameter adopted in Ref. 3, spe
cally that it did not allow for the possibility that only a frac
tion of the particles would become localized at the transiti
the critical bond density was overestimated in Ref. 3.~The
correct critical density was, however, known from the line
stability analysis of the fluid state.! Later work by Theissen
et al.,10 in addition to allowing for networks comprising pa
ticles of various valencies, cured the difficulty of the critic
bond density, by broadening the variational hypothesis
allow for a localized fraction~although it still only allowed
for a single value for the positional and orientation localiz
tion parameters, and did not account for correlations betw
the thermal fluctuations of positions and orientations!.

What, then, is the nature of the amorphous solid state
the number of permanent random covalent bonds introdu
between particles is smaller than a certain critical value t
the effect of these bonds is to bind at least some of
particles into random permanent molecules of a variety
types~varying in size and architecture!, each of which, given
sufficient time, will wander ergodically through the volum
of the container, i.e., the equilibrium state of the system
fluid. If, however, the number of bonds introduced is grea
than the critical value then their effect is to bind a nonze
fraction of the particles into amacroscopically large disor-
dered moleculethat extends throughout the container, t
remaining fraction of particles remaining disconnected fr
the macroscopic molecule and capable of wandering ac
the container, given sufficient time. By contrast, the partic
that constitute the extensive molecule will be localized in
r
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vicinity of random preferred spatial positions, about whi
their positions will undergo thermal fluctuations extendi
only over a limited spatial regime~which will vary randomly
in magnitude from particle to particle, reflecting the rando
architecture of the network!, and these particles will confer
rigidity on the entire system, so that the equilibrium state
the system will no longer be fluid and will, instead, be sol
Moreover, the orbitals attached to localized particles will e
hibit most probable orientations, about which they will flu
tuate thermally, the extent and nature of these fluctuati
also varying randomly from orbital to orbital. In addition, th
thermal fluctuations in the positions of the particles and
orientations of the bonds connecting them will be correlat
to an extent that varies randomly from particle to partic
The unconventional nature of this the amorphous solid s
is worth emphasizing:~i! only a fraction of the particles will
be localized;~ii ! the mean positions of the localized particl
will be random, as will be~iii ! the spatial extent of the po
sitional fluctuations of the particles,~iv! the orientational
fluctuations of the orbitals, and~v! the correlations between
these fluctuations~these parameters being characterized b
joint probability distribution!; and ~vi! there will be no hint
of crystallinity beyond the shortest of lengthscales~i.e., the
bond length!, beyond these length scales the symmetries
the amorphous solid state being those of the liquid state

Our principal aims are to construct a statistical charac
ization of the structure and heterogeneity of the amorph
solid state exhibited by a model of permanently random
bonded vitreous media in the vicinity of the solidificatio
transition, and to provide a physical interpretation of th
characterization. We shall do this by constructing the s
consistency equation for the amorphous solid order par
eter, valid in the vicinity of the solidification transition, an
obtaining an exact solution of this self-consistent equatio

This paper is organized as follows. In Secs. II and III w
shall proceed kinematically, describing the model that
shall be considering, and analyzing a suitable order par
eter defined in terms of the positions of the constituent p
ticles and the orientations of their orbitals. Continuing kin
matically, we shall explore the structure of this ord
parameter, and elucidate the physical information that it
codes. Then, in Secs. IV and V, we shall address the mo
regarding the formed bonds as quenched random varia
that vary from realization to realization. By using equilib
rium statistical mechanics, invoking the replica technique
deal with the quenched randomness, and making a m
field hypothesis, we shall develop a self-consistent equa
for the order parameter. By making a natural physical h
pothesis for the form of the solution we shall, in Sec. V
solve exactly for this order parameter in the regime in wh
the thermal fluctuations of the particle positions and orb
orientations are strong~i.e., near the solidification transition!.
Finally, in Sec. VII we shall extract from our solution a wid
array of physical diagnostics characterizing the amorph
solid state and, in Sec. VIII we shall make some conclud
remarks. We emphasize that throughout this work we s
be proceeding analytically, except that we shall make us
the numerically-obtained scaling function~of a single vari-
able! central to the characterization of vulcanized macrom
lecular matter described in Refs. 5,6.



is
s

or

n

-
ity
fo

e
rn
f
a

hi
c

er
f
in

e
e

it
o

or
e
r
ta
r,

n-

m-

its
om
e to
on-

the
lly,

n-
tro-
ding
xist
as-

sys-
o-
lline,
.

o-
rder
ntity

ions
ent
-

rder
gle
vec-

cer-
of

l in-

it

3864 PRB 60KONSTANTIN A. SHAKHNOVICH AND PAUL M. GOLDBART
II. ELEMENTS OF THE MODEL

The model of vitreous media which we shall focus on
that introduced in Ref. 3, which takes as its ingredient
thermodynamically large numberN of particles, moving in a
large three-dimensional cube of volumeV ~on which we im-
pose periodic boundary conditions!, at least some of which
particles are permanently randomly bonded together to f
a random network. At the kinematic level, the particles~la-
beled by j 51, . . . ,N) are characterized by their positio
vectors$cj% j 51

N , along with theNA unit vectors$sj ,a%a51
A

j 51
N

describing the spatial orientations of theA orbitals that radi-
ate from each of the particlesj. Note that we shall be mea
suring lengths in units such that orbitals have length un
Figure 1 illustrates the structure of the particles and the
mation of a continuous random network out of them.

The orbitals radiating from a given particle tend to rep
one another. For example, in the absence of any exte
perturbing forces, all things being equal, the orbitals o
four-orbital particle would point towards the vertices of
regular tetrahedron, as shown in Fig. 1~a!. Rather than give a
detailed specification of the interactions that embody t
orbital-orbital repulsion, we shall encode the effects of su
interactions into a sequence of parameters that charact
the correlations between the orientations of the orbitals o
single particle. For example, we shall find ourselves need
the correlator of the orientations of twodistinct orbitals (a1
anda2) of a single particle~in the fluid state!, say thej th:

^Yl 1m1
* ~sj ,a1

!Yl 2m2
~sj ,a2

!&1,15
1

4p
d l 1 ,l 2

dm1 ,m2
Cl ,

~2.1!

which we have parametrized in terms of the real numb
$Cl% l 50

` ~with C0[1) that reflect the extent to which th
orbitals interact.11 The angle bracketŝ•••&1,1, which we
discuss below in Sec. IV A, denote thermal averaging w
respect to a the single-particle Hamiltonian, which incorp
rates the intra particle interactions. The form of this c
relator follows from the isotropy of the distribution of th
orbital orientations in the fluid state. We shall not find ou
selves making explicit use of the correlator of the orien
tions of threedistinct orbitals of a single particle. Howeve

FIG. 1. Particle structure, bond, and network formation.~a! A
single particle with the near-tetrahedral equilibrium structure of
orbitals. In this example the number of orbitals per atomA is 4 ~as
would be the case, e.g., for networks of Si atoms!. ~b! Formation of
a covalent bond between two particles~the participating orbitals are
slightly separated, for clarity!. ~c! A collection of three particles
bonded together, forming the beginnings of a random network.
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a simple symmetry-dictated form for it can readily be co
structed, by making use of Wigner 3-j technology, if one
wishes to compute explicitly components of the order para
eter that depend on it.

Having described the issue of a single particle and
orbitals, we now turn to the issue of the permanent rand
covalent bonds between pairs of particles, and how we ar
describe them. We regard such bonding as introducing c
straints on the relative location and relative orientation of
particles and orbitals participating in the bond. Specifica
we model the situation in which particlesj and j 8 are bonded
via orbitalsa anda8 by the constraints

cj1
1

2
sj ,a5cj 81

1

2
sj 8,a8 , ~2.2a!

sj ,a52sj 8,a8 , ~2.2b!

as shown in Fig. 1~b!. We denote by the numberM and the
collection $ j e , j e8 ;ae ,ae8%e51

M a specific realization ofM
bonds~i.e., a specific architecture!.

Of course, the particles in the fluid interact with one a
other, regardless of whether or not bonds have been in
duced. We shall assume that pairwise interactions, depen
on the relative separation and orientation of the orbitals, e
between all particles. The crucial consequence that we
sume these interactions to have is that they stabilize the
tem with respect to the formation of macroscopically inh
mogeneous or anisotropic states, such as regular crysta
liquid crystalline, molecular crystalline, or globular states

III. AMORPHOUS SOLID ORDER PARAMETER:
RANDOM POSITIONAL AND ORIENTATIONAL

LOCALIZATION

Following the ideas of Ref. 3, which represent an elab
ration of ideas discussed in Ref. 12, we adopt as the o
parameter characterizing the amorphous solid state the e

F 1

N (
j 51

N
1

A (
a51

A

)
a51

n

^e2 ika
•cjYl ama* ~sj ,a!&G , ~3.1!

where the angle brackets~with no subscripts! indicate a
statistical-mechanical ensemble average over configurat
of the particles, subject to a given collection of perman
random constraints~i.e., bonds!, and the square brackets in
dicate an average over realizations of the bonds. This o
parameter, which involves products of replicas of a sin
ensemble average, depends on the collections of wave
tors $ka%a51

n and angular momentum indices$ l a,ma%a51
n .

Let us examine this order parameter, first, in order to as
tain the nature of the physical states that it is capable
diagnosing, and then to understand the type of statistica
formation that it encodes.

A. Detection of random positional and orientational
localization

Consider the order parameter given by Eq.~3.1!, and sup-
pose that we elect to setl a50 ~for a51, . . . ,n). Then the
order parameter becomes, up to irrelevant factors of 4p:

s
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F 1

N (
j 51

N

)
a51

n

^exp~2 ika
•cj !&G . ~3.2!

As discussed in detail, e.g., in Ref. 6, and also below in S
VI D, these components of the order parameter are cap
of detecting the spontaneous random freezing of particle
sitions~without regard to the behavior of the orbital orient
tions!. More specifically, via the wave vector dependen
these order parameter components yield information ab
the fraction of particles that are positionally localized,
well as the statistical distribution of their positional localiz
tion lengths.

Suppose, instead, that we setka50 ~for a51, . . . ,n) in
Eq. ~3.1!. Then the order parameter becomes

F 1

N (
j 51

N
1

A (
a51

A

)
a51

n

^Yl ama* ~sj ,a!&G . ~3.3!

As discussed, e.g., in Refs. 3,10, and also below in S
VI E 2, this component of the order parameter is capable
detecting the spontaneous random freezing of orbital or
tations ~without regard to the behavior of the particle po
tions!. More specifically, via its dependence on the angu
indices$ l a,ma%a51

n , this order parameter yields informatio
about the extent and character of the orientational local
tion of the orbitals. It is via this component of the ord
parameter that the most direct contact is made with
Edwards-Anderson order parameter for Heisenberg s
glasses, which detects the random orientational freezin
magnetic moments. For example, choosing$ l 1, . . . ,l n%
5$1,1,0, . . . ,0%, and contracting appropriately onm1 and
m2 we obtain

(
m1,m2521

1

~21!m1
dm11m2,0F 1

N (
j 51

N
1

A (
a51

A

^Y1m1* ~sj ,a!&

3^Y1m2* ~sj ,a!&G5
3

4p F 1

N (
j 51

N
1

A (
a51

A

^sj ,a&•^sj ,a&G ,

~3.4!

thus recovering the familiar Edwards-Anderson form. Mo
generally, the order parameter for random networks exhi
the unconventional features that the indexl can be greater
than unity~so that higher multipole moments of the distrib
tion of orientations can be accessed!, as well as that a full
characterization of the orientational freezing requires inf
mation from components with more than the familiar pair
thermal expectation values.

The third category of information results from examinin
the components of the order parameter corresponding to
zero values of both$ka%a51

n and$ l a%a51
n . First, consider the

subcase for which in every replicaa at most one ofl a and
ka is nonzero. An example of such an order parameter c
ponent is

F 1

N (
j 51

N
1

A (
a51

A

^exp~2 ik1
•cj !&

3^exp~2 ik2
•cj !&^Yl 3m3* ~sj ,a!&^Yl 4m4* ~sj ,a!&G . ~3.5!
c.
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Such components measure the statistical correlations
tween the strengths of positional and angular localizat
across the sample.Inter alia, such components address th
question: if a certain particle is strongly localized positio
ally, how likely are the attached orbitals to be strongly loc
ized orientationally.

Next, consider the general case in which some replicaa
have nonzero values for bothka and l a. Such components
provide information on the extent to which positional a
orientational thermal fluctuations are correlated. For ex
ample, as is discussed in more detail below, by settingka

50 in all replicasa except replicas 1 and 2, and by als
settingl 15 l 251,m15m250, andl a5ma50 in the remain-
ing replicasa, we would obtain access to the disorder av
age of the quantity

^~cj2^cj&!~sj ,a2^sj ,a&!z& • ^~cj2^cj&!~sj ,a2^sj ,a&!z&,

~3.6!

which is a direct measure of the extent of the abo
mentioned position-angle fluctuation correlations.

Let us pause to emphasize the three levels of random
presented by random network forming media. There isther-
mal randomness, by which we mean the familiar therm
motion of the particles and orbitals. Then there isarchitec-
tural randomness, resulting from the random manner
which covalent bonds are formed. Finally, there ismicro-
structural randomness, i.e., the heterogeneity of the em
gent solid state. This last level of randomness we cap
statistically in a joint probability distribution that characte
izes the nature of the thermal motions.

B. Isolating the fraction of positionally localized particles

The most basic piece of information describing the am
phous solid state concerns the value of the fractionq of theN
particles that are localized positionally, regardless of
value of their localization lengths and the angular localiz
tion of the orbitals attached to them. As shown in Refs. 3
this fractionq can be accessed via the order parameter~3.1!
in the following way: setl a5ma50 for a51, . . . ,n, and
then pass to the limitk̂˜0̂ via a sequence for which
(a51

n ka50. The resulting quantityis the fraction q. The
reason for this is that whereas the value of^exp(2ik•cj )& at
k50 is strictly unity, the limiting value of̂ exp(2ik•cj )& ~as
k˜0) is unity for positionally localized particles, but zer
for delocalized particles. For the sake of convenience,
shall refer to the localized fractionq as the solid fraction, and
the delocalized fraction 12q as the liquid fraction.

C. Distribution of positional
and angular localization characteristics

To further elucidate the physical information regardi
the positional and orientational localization of the partic
and orbitals contained in the order parameter, we now c
struct a physically motivated form for the order parame
~3.1! in terms of certainlocalizational characteristics—
quantities that describe the positional and orientational lo
ization of particles and orbitals. We begin by considering
contribution from a single particlej and a single orbitala
attached to it, i.e., the expectation value
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^e2 ik•cjYlm* ~sj ,a!&. ~3.7!

This function is thecharacteristic functionof the joint ther-
mal probability distribution describing the equilibrium loca
ization of the position of the particle and the localization
the orientation of the orbital, as well as correlations betwe
the thermal fluctuations between this position and orien
tion. First, we consider the (12q)N particles in the delocal-
ized fraction. For such particles we have^e2 ik•cj Ylm* (sj ,a)&
5(4p)21/2dk,0 d l ,0 dm,0 . For the remainingqN localized
particles we first extract from the expectation value~3.7! the
phase factor associated with the mean positionmj[^cj& of
the particle, to obtaine2 ik•mj^e2 ik•(cj 2mj ) Ylm* (sj ,a)&, and
then express the resulting quantity in terms of disconnec
and connected pieces:

^e2 ik•cj Ylm* ~sj ,a!&5e2 ik•mj$^e2 ik•(cj 2mj )& ^Ylm* ~sj ,a!&

1 ^~e2 ik•(cj 2mj )

2^e2 ik•(cj 2mj )&!„Ylm* ~sj ,a!

2^Ylm* ~sj ,a!&…&%. ~3.8!

On the right hand side of this expression, the disconnec
~i.e., the first! piece contains two factors:~i! ^exp@2ik•(cj
2mj )#&, which describes the positional localization of th
particle~see Fig. 2! and~ii ! ^Ylm* (sj ,a)&, which describes the

FIG. 2. Positional localization of particles. The characteris
extent of the thermal fluctuations of the position of the particle
represented by the gray circle and measured by the localiza
lengthj.

FIG. 3. Orientational localization of orbitals. The orientation
the orbital fluctuates thermally about its most probable value~bro-
ken line!, the characteristic scale of these fluctuations being re
sented by the gray cone.
f
n
-

d

d

orientional localization of the orbital~see Fig. 3!. If we ap-
proximate the first factor in the connected piece by mak
use of the standard cumulant expansion, by letting 3j j

2 de-
note the ~finite! mean square fluctuationŝ(cj2^cj&)•(cj
2^cj&)& in the position of the particle, and by following thi
strategy to second order, then we arrive at the approxima

^exp„2 ik•~cj2mj !…&'exp~2k2j j
2/2!. ~3.9!

As for the connected~i.e., the second! term on the right-hand
side of Eq.~3.8!, it describes correlations between the flu
tuations in the particle position and the orbital orientati
~see Fig. 4!. In the same way that we have introduced t
diagnosticj to characterize positional localization, we no
introduce two further diagnostics:

S lm; j ,a[^Ylm* ~sj ,a!&, ~3.10a!

e2uku2j j
2/2G lm; j ,a~k![^~e2 ik•(cj 2mj )2^e2 ik•(cj 2mj )&!

3„Ylm* ~sj ,a!2^Ylm* ~sj ,a!&…&. ~3.10b!

The collection of complex-valued numbers$S lm; j ,a% charac-
terizes the orientational localization of orbitala on particlej;
the collection of complex-valued functions$G lm; j ,a(k)%
characterizes the correlations between the thermal fluc
tions in the position of particlej and the orientation of orbita
a attached to it. For example, considerG10;j ,a(k). By ex-
panding the exponential to first order~as we shall establish
later, typical values ofk are small near the transition!, and
recalling, that up to numerical factorsY10(s) is sz , we see,
that

e2uku2j j
2/2 G10;j ,a~k!52 iA 3

4p
k•^~~cj2mj !2^cj2mj&!

3„~sj ,a!z2^~sj ,a!z&…&1O~ k̂2!, ~3.11!

which does indeed measure correlations between the p
tional and orientational thermal fluctuations, in accordan
with the discussion of this component of the orde
parameter, given at the end of Sec. III A.

By rewriting Eq. ~3.8! in terms of these diagnostics, an
making use of the approximation~3.9!, we arrive at the form

^e2 ik•cj Ylm* ~sj ,a!&'e2 ik•mj e2uku2j j
2/2$S lm; j ,a1G lm; j ,a~k!%.

~3.12!

s
on

e-

FIG. 4. Orientational-positional thermal fluctuation correlation
Imagine that the particle is connected to a rather immobile part
by the top left orbital. As the particle moves to the shaded posit
its orbitals reorient accordingly.
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By inserting this form, appropriate for particlesj that com-
prise the localized fraction, into Eq.~3.1!, and incorporating
the contribution from the delocalized fraction, we arrive
the form

F 1

N (
j 51

N
1

A (
a51

A

)
a51

n

^e2 ika
•cjYl ama* ~sj ,a!&G

'~12q! )
a51

n

dka,01F 1

N (
j loc.

1

A (
a51

A

)
a51

n

3e2 ika
•mje2ukau2j j

2/2$S l ama; j ,a1G l ama; j ,a~ka!%G .

~3.13!

5~12q! )
a51

n

dka,0

1qE d3m E dt d$S% D$G% P~m,t,$S%,$G%!

3exp2 i m• (
a51

n

kaexp2
1

2t (
a51

n

ukau2

3 )
a51

n

$S l ama; j ,a1G l ama; j ,a~ka!%, ~3.14!

where we have made the definitiont[1/j2. The integration
measuresd$S% andD$G%, respectively denote the multipl
measure ) lmdS lm and the multiple functional measur
) lmDG lm . We have also introduced the joint probability di
tribution P, central to our characterization of the localize
particles in amorphous solid state, defined via

P~m,t,$S%,$G%![F 1

N (
j

1

A (
a51

A

d~m2mj ! d~t2j j
22!

3)
l 50

`

)
m52 l

l

d~S lm2S lm; j ,a!

3D~G lm2G lm; j ,a!G , ~3.15!

in which the final factorD(•) is a functional delta function
The next step in our construction of a physically mo

vated form for the order parameter involves the identificat
of specific symmetries that we anticipate the amorph
solid state to possess, viz., macroscopic translational inv
ance ~MTI ! and macroscopic rotational invariance~MRI!.
MTI reflects the notion that although in the amorphous so
state translational invariance is spontaneously broken at
microscopic level~in any particular realization of the disor
der!, this invariance is restored at the macroscopic level
the sense that no quantity computed by averaging over
macroscopic subvolume of the system exhibits any dep
dence on the particular subvolume chosen. Similarly, M
reflects the notion that although rotational invariance is sp
taneously broken at the microscopic level, it is restored at
macroscopic level in the sense that no quantity computed
t

n
s
ri-

d
he

n
ny
n-
I
-
e
y

averaging over any macroscopic subvolume of the sys
exhibits any orientational preference. As for MTI, it amoun
to the hypotheses:~i! that the disorder-averaged distributio
P exhibits no correlation between the mean location o
particle and its other statistical characteristics; and~ii ! that
the distribution is translationally invariant~i.e., is indepen-
dent ofm).

Although MRI also imposes conditions on the joint pro
ability distributionP we do not need to impose these cond
tions explicitly. The reason for that is that MRI for the com
ponent V( k̂;0̂,0̂) is assured by the fact thatS00;j ,a and
G00;j ,a are constants~in fact, one is zero!, and the assump
tion that the localization clouds of the particles are spher
and, accordingly, described by the single rms value of
fluctuation in the particle’s position 3j j

2 . MRI for the aniso-

tropic components ofV( k̂; l̂ ,m̂) is a consequence of the fac
that they, as we shall see below, are perturbed away f
their zero values by MRI-satisfying couplings to th
V( k̂;0̂,0̂) component. Thus MRI is assured by the theo
itself, and does not need to be explicitly incorporated into
proposed form of the order parameter.

By making use of the MTI hypotheses we arrive at t
form

P~m,t,$S%,$G%!5
P~t,$S%,$G%!

V
, ~3.16!

which, when inserted into Eq.~3.14!, leads to the expressio

~4p!n/2 V~ k̂; l̂ ,m̂!uk050,l 05m050

5~12q! )
a51

n

dka,0 d l a,0 dma,0

1qd(
a51

n

ka,0E
0

`

dtE d$S% D$G% P~t,$S%,$G%!

3exp2
1

2t (
a50

n

ukau2 )
a50

n

$S l ama; j ,a1G l ama; j ,a~ka!%,

~3.17!

where we have introduced the notatio
V( k̂; l̂ ,m̂)uk050,l 05m050 to denote the order parameter~3.1!,
and where hats indicate (n11)-fold replicated versions o
quantities. By extending the result of this approach to
clude the dependence on the zero-replica variab
(k0,l 0,m0) in a permutation-symmetry–dictated way we a
rive at the form

~4p!(n11)/2V~ k̂; l̂ ,m̂!

5~12q! )
a50

n

dka,0 d l a,0dma,0

1qd k̃,0E
0

`

dtE d$S% D$G% p~t,$S%,$G%!

3e2 k̂2/2t )
a50

n

$S l ama; j ,a1G l ama; j ,a~ka!%. ~3.18!
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As we shall see below, for our solution we shall need
assumption for the form of the order-parameter compon
V( k̂;0̂,0̂). To motivate this assumption, we setl̂ 5m̂50̂ in
Eq. ~3.18!. As is easy to see from the definitions~3.10a! and
~3.10b!, S00;j ,a51/A4p andG00;j ,a50, leaving us with the
form

~4p!(n11)/2V~ k̂;0̂,0̂!5~12q! )
a50

n

dka,0

1q d k̃,0E
0

`

dt p~t! e2 k̂2/2t,

~3.19!

where p(t) is a reduced form of the full joint probability
distributionP(t,$S%,$G%), and describes only the position
localization of the particles:

p~t![E d$S% D$G% P~t,$S%,$G%!. ~3.20!

We note that, up to trivial factors of 4p, the expression
~3.19! is identical to the ansatz used in Refs. 6,5 in the c
text of vulcanized macromolecular media.

IV. DISORDER-AVERAGING; REPLICA STATISTICAL
MECHANICS

Having described the relevant ‘‘kinematics,’’ i.e., the d
grees of freedom and the constraints that characterize
model of randomly covalently bonded particles, we now f
mulate the statistical mechanics of the system, paying
ticular attention to the quenched~i.e., nonequilibrating! na-
ture of the random constraints. At this stage we shall
following the method sketched in Ref. 3 which itself build
upon the general approach to macromolecular networks
troduced in Ref. 13.

A. Partition function

The partition function of the system, subject to the co
straints$ j e , j e8 ;ae ,ae8%e51

M , which we collectively denote by
C, relative to the partition function of the unconstrained s
tem, is given by

Z̃~C!5K )
e51

M

d (3)S cj e
1

1

2
sj e ,ae

2cj
e8
2

1

2
sj

e8 ,a
e8D

3D (2)~sj e ,ae
1sj

e8 ,a
e8
!L

N,1

. ~4.1!

The angle brackets denote equilibrium averaging with
spect to a Hamiltonian that incorporates interactions betw
distinct particles, as well as between the orbitals of a sin
particle. The subscript indicates that this average is ta
over one copy of a system ofN particles, and anticipates th
introduction of replicas that we shall make shortly. The tw
types of delta function,d (3) andD (2), serve to eliminate con
figurations that fail to satisfy the constraints, and are app
priately defined in the following way:
n
nt

-

he
-
r-

e

n-

-

-

-
n

le
n

-

d (3)~c12c2!5d (3)~c22c1![(
k

S expik•c1

AV
D

3S expik•c2

AV
D *

, ~4.2a!

D (2)~s1 ,s2!5D (2)~s2 ,s1![(
l 50

`

(
m52 l

l

Ylm~s1! Ylm* ~s2!,

~4.2b!

where ~corresponding to the periodic boundary conditio
imposed on the system! the sum overk is taken over the
Cartesian componentskn52pnn /V1/3, with nn being inte-
gers~both positive and negative!, and theYlm are the usual
spherical harmonic functions, the arguments of which
unit vectors.

Strictly speaking, the partition functionZ̃ is correct only
up to the appropriate Gibbs factorial factor, and would n
as it stands, give rise to an extensive free energy hence
tilde. As we shall be focusing on the order-parameter s
consistency equation, in which~as is well known! the Gibbs
factor plays no role it can be safely omitted here. For
detailed discussion of this issue, see Sec. 2.4 of Ref. 6.

B. Deam-Edwards distribution

At this stage, we introduce a statistical distribution ch
acterizing the realization of the random bonds, following t
elegant strategy of Deam and Edwards.13 We take for the
probability density that the collection of bondsC is formed
the quantity

PM~C!} ~2pVm2/NA2!M

M !
Z̃~C!, ~4.3!

which is analogous to the probability density chosen
Deam and Edwards for the case of vulcanized macromole
lar networks.13 Instead of working with a fixed number o
bonds, we allow their number to vary in a quasi-Poisson
way, and control the mean number of bonds by the con
parameterm2. For a given value ofM, the Deam-Edwards
distribution is proportional to the probability density fo
finding the set of pairs of orbitals$ j m , j m8 ;am ,am8 %m51

M to be
overlapping. The factorm2M represents the probability that
bond is formed between each of theseM overlapping pairs.
Thus, the Deam-Edwards distribution provides a statist
characterization of a process of forming permanent bond
which constraints are instantaneously introduced into the
uid state at equilibrium. As such, it is an idealization of t
random-network-forming process, which generally tak
place on a time scale during which at least some relaxa
of the structure can occur. To handle the complication
relaxation would require the introduction of kinetics into th
description, rather than purely equilibrium notions. Said a
other way, one can view the Deam-Edwards distribution a
strategy for freezing in liquid-state correlations, as proc
that is regarded as happening spontaneously in glass-form
systems, but here is introduced externally. The distribut
encodes the physically attractive feature that the network
gives appreciable weight to exhibit the macroscopic symm
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tries of the liquid state, inasmuch as the bond collections
which it gives appreciable weight correspond to likely co
figurations of the liquid state. With this distribution of bond
some of the correlations of the liquid state arequenched in,
to a degree controlled by the mean number of bonds form

C. Replica representation of the disorder-averaged free energy

We now set about constructing the disorder-averaged
energy per particle~relative to that of the system prior t
random covalent bonding! f, which is defined via

Nb f [@ ln Z̃~C!#, ~4.4!

where b([1/kBT) measures the inverse temperature.
mentioned in the previous subsection, the Gibbs factor
been omitted, but this will have no consequences for
order-parameter self-consistent equation. By making us
the replica technique~see, e.g., Ref. 2!, f can be obtained via

f 5 lim
n˜0

f n , ~4.5a!

2nbN fn[@ Z̃n#215~Zn112Z1!/Z1 , ~4.5b!

Zn11[K expS 2pVm2

NA2 (
j , j 851

N

(
a,a851

A

)
a50

n

d (3)~cj
a1 1

2 sj ,a
a 2cj 8

a

2 1
2 sj 8,a8

a
! D (2)~sj ,a

a ,2sj 8,a8
a

!D L
N,n11

. ~4.5c!

Here,Zn11 is the replicated partition function, arising from
the averaging ofZ̃n over the Deam-Edwards–type distrib
tion ~4.3!, and the denominatorZ1 arises from the normal
ization of the Deam-Edwards distribution~see Ref. 10 for
details!. Notice the striking occurence of a theory involvin
n11, rather than the usualn, replicas, a feature, arising from
the presence in the partition function in the Deam-Edwa
distribution. ~The extra replica ‘‘computes’’ the distributio
of quenched random bonds.! The angle bracketŝ•••&n11
indicate an (n11)-fold replicated normalized average ov
the positions of the particles and the orientations of the
bitals, weighted suitably by a Hamiltonian that does n
couple the replicas.

As one can see from the exponent in Eq.~4.5c!, the rep-
licated theory possesses the symmetries of indepen
translations and rotations of the replicas, i.e.,

ca
˜R a

•ca1aa, ~4.6a!

sa
a
˜R a

•sa
a , ~4.6b!

where$aa% aren11 independent arbitrary translation thre
vectors, and$R a% are n11 independent arbitrary 3-by-3
rotation matrices. As we shall see, the transition to the am
phous solid state is marked by the spontaneous breakin
the symmetries of the relative translations and rotations
the replicas; the common translations and rotations remai
residual symmetries. These residual symmetries corresp
to the macroscopic translational and rotational symmetry
the amorphous solid state discussed in Sec. III C. The the
to
-
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also possesses the symmetry of the permutation of thn
11 replicas, which remains intact in the amorphous so
state.

For the sake of convenience, we introduce the replica
delta functions, defined by

d̂~ ĉ12 ĉ2![ )
a50

n

d (3)~c2
a2c3

a!, ~4.7a!

D̂~ ŝ1 ,ŝ2![ )
a50

n

D (2)~s1
a ,s2

a!, ~4.7b!

where ĉ denotes $c0,c1, . . . ,cn% and ŝ denotes
$s0,s1, . . . ,sn%, and also the replicated spherical harmon
Ŷ, defined by

Ŷl̂ m̂~ ŝ![ )
a50

n

Yl ama~sa!, ~4.8!

where l̂ and m̂, respectively, denote$ l 0,l 1, . . . ,l n% and
$m0,m1, . . . ,mn%.

V. MEAN-FIELD APPROXIMATION

A. Self-consistency condition for the order parameter

We now develop a mean-field approximation for the re
lica partition function, Eq.~4.5c!. To do this, we rewrite the
partition function as follows:

Zn115K expS 2pNVm2E
V
dĉ E

S
dŝ

1

NA

3(
j 51

N

(
a51

A

d̂„~ ĉj1
1
2 ŝj ,a!2 ĉ… D̂~ ŝj ,a ,ŝ!

1

NA

3 (
j 851

N

(
a851

A

d̂„ĉ2~ ĉj 81
1
2 ŝj 8,a8!…

3D̂~ ŝ,2 ŝj 8,a8!D L
N,n11

~5.1a!

5K expS 2pNVm2E
V
dĉ E

S
dŝ

1

NA

3(
j 51

N

(
a51

A

d̂„ĉ2~ ĉj1
1
2 ŝj ,a!… D̂~ ŝ,ŝj ,a!

3
1

NA (
j 851

N

(
a851

A

d̂„ĉ2~ ĉj 81
1
2 ŝj 8,a8!…

3D̂~2 ŝ,ŝj 8,a8!D L
N,n11

, ~5.1b!

where *Vdĉ denotes )a50
n *Vd3ca, and *Sdŝ denotes

)a50
n *Sd2sa, and where, to obtain the last form, we ha

used the symmetry properties of the delta functions.
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Next, we introduce the~real-space version of the! amor-
phous solid order parameter,

V~ ĉ; ŝ![K 1

NA (
j 51

N

(
a51

A

d̂@ ĉ2~ ĉj1
1
2 ŝj ,a!# D̂~ ŝ,ŝj ,a!L .

~5.2!

Then, upon setting

1

NA (
j 51

N

(
a51

A

d̂„ĉ2~ ĉj1
1
2 ŝj ,a!… D̂~ ŝ,ŝj ,a!

5V~ ĉ; ŝ!1dV~ ĉ; ŝ!, ~5.3!

i.e., the order parameterV( ĉ; ŝ) plus the fluctuationdV( ĉ; ŝ),
expanding the exponent in powers ofdV( ĉ; ŝ), and omitting
terms quadratic indV( ĉ; ŝ), we obtain

Zn11'expF22pNVm2E
V
dĉ E

S
dŝV~ ĉ; ŝ! V~ ĉ;2 ŝ!

1N lnK expS 4pVm2E
V
dĉE

S
dŝV~ ĉ;2 ŝ!

1

A

3 (
a51

A

d̂„ĉ2~ ĉ11 1
2 ŝ1,a!… D̂~ ŝ,ŝ1,a!D L

1,n11
G , ~5.4!

where the resulting expectation value involves only the
sition and orbital-orientations of a single particle.

The reader will have observed that the mean-field
proximation strategy has yielded a one-particle problem,
~5.4!, as desired. However, there is a subtlety associated
the manner in which the various interactions present in
~5.1b! are treated, which we now address. The angle brac
in Eq. ~5.1b! denote averaging overn11 ~coupled! replicas
of theN ~coupled! particle system. The intrareplica couplin
originates in the interactions between particles present in
-

-
q.
ith
q.
ts

e

liquid state; on the other hand, the inter-replica coupli
originates in the random constraints. As discussed in deta
Sec. 5.1 of Ref. 6, it is useful to transfer the so-called o
replica sector contribution to the inter-replica coupling to t
intrareplica coupling~which is thereby renormalized!. ~The
intrareplica and inter-replica couplings both contain triv
contributions in the zero-replica sector, as does the or
parameter; we ignore these contributions.! The subtlety is
that the structure of the theory in the one-replica secto
quite different from that in the higher-replica sector
whereas the constraints tend to destabilizeall sectors, this
tendency is counteracted in only the one-replica sector by
original intrareplica interactions. Consequently, at the am
phous solidification transition the one-replica sector com
nent of the order parameter remains zero, whilst the high
replica sector components become nonzero. Indeed,
competition between these two processes can be regard
a form of frustration, which resolves itself by the formatio
of a state possessing MTI and MRI~see Sec. III C!.

On a technical level, this discussion amounts to the f
lowing dictum: in all subsequent equations, e.g., E
~5.4!,~5.5!,~5.7!, the component of the order parameter lyin
in the one-replica sector is to be set to zero. Accordingly,
self-consistent equations that follow pertain to all sectorsex-
ceptthe zero and one replica sectors. This notion is straig
forward when the order parameter is expressed in the~plane
and spherical! harmonic representation@as it is, e.g., in Eq.
~5.7!#. In this representation, setting the one-replica sec
contribution to zero refers to setting to zero the contribut
in which nonzero entries in$k̂; l̂ ,m̂% appear in precisely one
replica.~By the zero-replica sector we mean the sector w
k̂5 l̂ 5m̂50̂.!

We now return to the task of obtaining a self-consiste
equation for the order parameter. By making the partit
function ~5.4! stationary with respect toV( ĉ; ŝ) we arrive at
self-consistent equation~SCE! for the order-parameter:
c coordi-

ter
V~ ĉ0 ; ŝ0!5

K 1

A(
a51

A

d̂$ĉ02~ ĉ11 1
2 ŝ1,a!%D̂~ ŝ0,ŝ1,a!expS 4pVm2E

V
dĉE

S
dŝV~ ĉ;2 ŝ!

1

A (
a51

A

d̂$ĉ2~ ĉ11 1
2 ŝ1,a!%D̂~ ŝ,ŝ1,a!D L

1,n11

K expS 4pVm2E
V
dĉE

S
dŝV~ ĉ;2 ŝ!

1

A(
a51

A

d̂$ĉ2~ ĉ111/2ŝ1,a!%D̂~ ŝ,ŝ1,a!D L
1,n11

.

~5.5!

The presence ofD̂-function factors provides the option of replacing the dynamical variableŝ1,a in the argument of thed
functions by the parametric variableŝ, which replacement we sometimes make.

The transformation of the order parameter to a representation in terms of the plane wave and spherical harmoni
nates, and the inverse transformation, are effected as follows:

V~ k̂; l̂ ,m̂!5E
S
dŝŶl̂ m̂

* ~ ŝ! exp~ 1
2 i k̂• ŝ!E

V
dĉ exp~2 i k̂• ĉ! V~ ĉ; ŝ!, ~5.6a!

V~ ĉ; ŝ!5
1

Vn11 (
k̂

exp~ i k̂• ĉ!exp~2 1
2 i k̂• ŝ!(

l̂ m̂

Ŷl̂ m̂~ ŝ! V~ k̂; l̂ ,m̂!. ~5.6b!

This choice of transformation has the effect of keeping the physical interpretation of the order parameterV( k̂; l̂ ,m̂) free of any

complicating factors of exp(1
2ik̂• ŝ), leaving the full factor exp(ik̂• ŝ) in the fluctuating variable to which the order parame

couples. Via this transformation, one arrives at a transformed self-consistent equation for the order parameter:
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V~ k̂0 ; l̂ 0 ,m̂0!5

K ~1/A! (
a51

A

e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa!expF ~4pm2/Vn! (

k̂, l̂ ,m̂

V~ k̂; l̂ ,m̂! ei k̂• ĉ ~1/A! (
a51

A

ei k̂• ŝa Ŷl̂ m̂~2 ŝa!G L
1,n11

K expF ~4pm2!/Vn (
k̂, l̂ ,m̂

V~ k̂; l̂ ,m̂! ei k̂• ĉ ~1/A! (
a51

A

ei k̂• ŝa Ŷl̂ m̂~2 ŝa!G L
1,n11

.

~5.7!
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We shall often refer to the triple (k̂0 ; l̂ 0 ,m̂0) as the ‘‘external
variables.’’

B. Instability of the fluid state

We now demonstrate that upon increasing the density
formed bonds the fluid state is rendered linearly unstable
do this we follow Ref. 10, and expand the replica free e
ergy, nbN fn in Eq. ~4.5b!, to second order in the order pa
rameterV, thus obtaining

nbN fn~V!'2pm2NV(
k̂

(
l̂ 1 ,m̂1

(
l̂ 2 ,m̂2

3V~ k̂; l̂ 1 ,m̂1! V~2 k̂; l̂ 2 ,m̂2! M l̂ 1m̂1 , l̂ 2m̂2
~ k̂!

2S 4pm2

A D 2 NV

2Vn (
k̂, l̂ ,m̂

uV~ k̂; l̂ ,m̂!u2~21! l̃

3 (
a1 ,a2

)
a50

n S da1 ,a2
1~12da1 ,a2

!Cl a

4p
D , ~5.8!

where, as discussed in Sec. II, the coefficientsCl represent
the effects of the interactions between the orbitals of a sin
particle~and are all less than 1 forl>1), and the kernelM is
given by

M l̂ 1m̂1 , l̂ 2m̂2
~ k̂!5E

S
dŝŶl̂ 1m̂1

~ ŝ! Ŷl̂ 2m̂2
~2 ŝ!exp~ i k̂• ŝ!.

~5.9!

We remind the reader that this linear stability analysis
plies only to the higher replica sectors of the order para
eter, as per the discussion in Sec. V A. The correspond
analysis applied to the one-replica sector reveals the f
anticipated in Sec. V A, that the one-relica sector rema
stable at the transition, owing to the stabilizing effect of t
interparticle interactions.

We expect the liquid state to become unstable first
long wavelengths, corresponding tok̂˜0̂. In this limit,
M l̂ 1m̂1 , l̂ 2m̂2

( k̂)˜d l̂ 1 , l̂ 2
dm̂1 ,m̂2

(21) l̃ 1m̃. By examining the
coefficients of the quadratic terms in Eq.~5.8!, and specifi-
cally their signs, we see that form2,mc

2[1 the coefficients
are positive for all components of the order parameter@i.e.,
for all values of (k̂, l̂ ,m̂)# and, therefore, that the free energ
has a local minimum atV50. Thus, form2<mc

2 the fluid
state is~at least locally! thermodynamically stable. On th
other hand, form2.mc

2 , certain coefficients become neg
tive, starting with the longest length scale~and isotropic,
corresponding tol̂ 50̂) modes. This sign change indicate
of
o
-

le

-
-
g

ct,
s

r

the loss of the~linear! stability of the fluid, and the concomi
tant acquisition of a nonzero value of the order parameter
usual, the linear instability of one state does not shar
specify the nature of the stable state that replaces it, altho
the directions of instability do provide hints. In the prese
setting, the residual stability of the one-replica sector s
gests that the primary characteristic of the new state is m
roscopic translational and rotational invariance, which is
mechanism by which the induction of energetically cos
order in the one-replica sector is avoided. Thus, it is reas
able to anticipate that the state that replaces the fluid s
upon the formation of a sufficiently large density of bonds
the amorphous solid state. Furthermore, as the coefficientCl
are smaller than unity forl>1, and become progressivel
smaller with increasingl, we may conclude that all aniso
tropic sectors remain stable, at least for bond densities in
vicinity of the amorphous solidification transition. Thus, it
reasonable to anticipate that anisotropic ordering~i.e., orien-
tational localization! will arise only as aresponseto posi-
tional ordering, via nonlinear coupling between isotropic a
anisotropic order-parameter components. Thus, as will
borne out below, we should anticipate that the form and
tent of the anisotropic ordering will be computable algorit
mically, as a perturbative correction to the nonperturbat
result for the ordering in the isotropic sector.14

VI. SOLUTION OF THE ORDER-PARAMETER
SELF-CONSISTENT EQUATION

A. General strategy

Having obtained the self-consistency equation~SCE! for
the order parameter, Eq.~5.7!, we now turn to the issue o
solving it. We shall begin by extracting from the full SCE
transcendental self-consistency equation for the fraction
localized particlesq by considering the SCE at external var
ables l̂ 05m̂050̂ and taking the limitk̂0˜0̂. Solving this
equation in the vicinity of the amorphous solidification tra
sition ~i.e., for small excess crosslink densities! we will find
that q tends to 0 near the transition, allowing us to expa
the SCE for the order-parameter in powers ofq and truncate
the expansion, retaining terms of orderq2.

We will then solve the SCE for individual order param
eter components, starting with the only component with
unstable band, the isotropic componentV( k̂;0̂,0̂) ~the un-
stable band being those long wavelength modes for wh
k̂2,2e), which we shall obtain by utilizing the form of the
solution, due to Refs. 5,6, and discussed in Sec. III C. T
remaining~anisotropic! components are linearly stable an
thus we can solve for their leading-order values pertur
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tively, by considering their couplings toV( k̂;0̂,0̂). We shall
obtain these anisotropic components by first solving for
leading-order contribution to the two lowest angula
momentum components, and then obtaining the solution
the general case by induction. The structure of the or
parameter is illustrated in Fig. 5, showing the different co
ponents and bands.

Throughout the entire calculation we shall only be co
cerned with finding the leading-order contributions to t
components ofV. This will generally imply ~i! truncating
the expansion in powers ofq ~typically at second order!, ~ii !
ignoring the coupling of the components of the order para
eter to higher angular-momentum components, and~iii ! trun-
cating expansions in powers ofk̂ ~typically at linear order!,
as we expect typical values ofk̂2 to be of ordere. Many
technical details of the calculations have been relegate
the appendixes.

B. Fraction of positionally localized particles

The first step in our solution of the order-parameter S
is to determine the fraction of localized particlesq. Follow-
ing the discussion in Sec. III B, we first separate the delo
ized and localized fractions in the full order parameterV by
writing
e

in
er
-

-

-

to

E

l-

V~ k̂; l̂ ,m̂![~12q! )
a50

n S dka,0 d l a,0 dma,0

A4p
D 1qW~ k̂; l̂ ,m̂!,

~6.1!

whereq W( k̂; l̂ ,m̂) is the part of the order parameter descr
ing the localized particles and is analytic at the origin, w
W(0̂;0̂,0̂)51/A4p The delocalized contribution cance
from the numerator and denominator of the SCE, so we m
rewrite Eq. ~5.7!, replacingV( k̂; l̂ ,m̂) with qW( k̂; l̂ ,m̂) in
both the numerator and the denominator, obtaining

FIG. 5. Component and band structure of the order param
~see text for explanation!.
nt

of the

r

V~ k̂0 ; l̂ 0 ,m̂0!5

K ~1/A! (
a51

A

e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa!expF ~4pm2/Vn! (

k̂, l̂ ,m̂

q W~ k̂; l̂ ,m̂! ei k̂• ĉ ~1/A! (
a51

A

ei k̂• ŝa Ŷl̂ m̂~2 ŝa!G L
1,n11

K expF ~4pm2/Vn! (
k̂, l̂ ,m̂

q W~ k̂; l̂ ,m̂! ei k̂• ĉ ~1/A! (
a51

A

ei k̂• ŝa Ŷl̂ m̂~2 ŝa!G L
1,n11

.

~6.2!

Following the ideas of Refs. 6,5, to obtain a SCE forq we consider the SCE~6.2! for the order-parameter compone
V( k̂0 ;0̂,0̂) in the limit k̂0˜0̂. We start with the SCE forV( k̂0 ;0̂,0̂):

V~ k̂0 ;0̂,0̂!5e2m2q K e2 i k̂0• ĉ
1

A4p
n11expS 4pm2

Vn (
k̂, l̂ ,m̂

q W~ k̂; l̂ ,m̂! ei k̂• ĉ
1

A (
a51

A

ei k̂• ŝa Ŷl̂ m̂~2 ŝa!D L
1,n11

. ~6.3!

Note that the denominator of the right-hand side of Eq.~6.2! has been replaced by exp(m2q) ~see Appendix A for details!. We
now consider the limitk̂˜0̂ via a sequence for whichk̃50. The left-hand side, as can be easily seen from Eq.~6.1!, becomes
q/A4p. To evaluate the right-hand side we follow the procedure used in Appendix A to obtain the denominator
right-hand side of the SCE.

We expand the exponential in a power series inq and consider ther-th order term, and pass to the replica limitn˜0:

K 1

r !
~4pm2!rqr (

k1l 1m1

••• (
kr l rmr

W~k1 ; l 1 ,m1! •••W~kr ; l r ,mr ! eik0•c eik1•c
•••eikr•c

3
1

Ar (
a1 , . . . ,ar

eik1•sa1•••eikr•sarYl 1m1
~2sa1

!•••Yl rmr
~2sar

!L
1,1

. ~6.4!

By MTI of W( k̂; l̂ ,m̂) we know thatk̃ i50, which means thatk i50. Also, using MRI ofW( k̂; l̂ ,m̂) we see that ifk̂50̂ then
Eq. ~A3! can only be nonzero ifl̂ 50̂ also. Knowing thatW(0̂;0̂,0̂)51/A4p, for ther th order contribution~with r>1) we get
(1/r !)(m2) rqr . For r 50, however, we get 0, because the limit of^exp(2ik0•c)& as k0˜0 is zero. Resumming the powe
series we finally obtain
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K ei k̂0• ĉ expS 4pm2

Vn (
k̂ l̂ m̂

q W~ k̂; l̂ ,m̂! ei k̂• ĉ
1

A (
a51

A

ei k̂• ŝaŶl̂ m̂~ ŝa!D L
1,n11

5(
r .1

1

r !
~m2!rqr5exp~m2q!21. ~6.5!

We thus find the following self-consistency equation for the fraction of localized atoms:

12q5exp~2m2q!. ~6.6!

This self-consistency condition is precisely that obtained in the case of vulcanized macromolecules,5,6 and earlier, in the
context of random graph theory, by Erdo¨s and Re´nyi ~see Ref. 6!.

We will find it convenient to exchanging the control parameterm2 for e, defined viam2[11e/3, so thate vanishes as the
transition is approached. The self-consistent equation forq is transcendental, but it is easy to analyze it graphically. Then,
e,0 we find that there is only one solutionq50, corresponding to the liquid state of the system~no localized particles!, and
for e.0 we find that fore smallq is small also, indicating that the fractionq of particles comprising the amorphous solid sta
tends to zero in the vicinity of the amorphous solidification transition. We can thus expand the exponential on the rig
side of Eq.~6.6! obtaining the fractionq to first order ine:

q'
2

3
e. ~6.7!

C. Perturbation expansion for the self-consistency equation

Having found the fractionq of localized particles to be small in the vicinity of the transition, we may expand
self-consistency equation for the order parameter, Eq.~6.2!, in powers ofq, to second order, obtaining

q W~ k̂0 ; l̂ 0 ,m̂0!1~12q! )
a50

n S dka,0 d l a,0 dma,0

A4p
D

'e2m2q K 1

A (
a051

A

e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

!L
1,n11

1e2m2q K 1

A (
a051

A

e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

!
4pm2

Vn

3 (
k̂1 , l̂ 1 ,m̂1

q W~ k̂1 ; l̂ 1 ,m̂1! ei k̂1• ĉ
1

A (
a151

A

ei k̂1• ŝa1 Ŷl̂ m̂~2 ŝa1
!L

1,n11

1
e2m2q

2 K 1

A (
a051

A

e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

!
4pm2

Vn (
k̂1 , l̂ 1 ,m̂1

q W~ k̂1 ; l̂ 1 ,m̂1!ei k̂1• ĉ
1

A (
a151

A

ei k̂1• ŝa1 Ŷl̂ m̂~2 ŝa1
!

3
4pm2

Vn (
k̂2 , l̂ 2 ,m̂2

q W~ k̂2 ; l̂ 2 ,m̂2! ei k̂2• ĉ
1

A (
a251

A

ei k̂2• ŝa2 Ŷl̂ m̂~2 ŝa2
!L

1,n11

. ~6.8!

Cancelling the liquid contribution toV on the left-hand side with the 0 th order contribution on the right-hand side, rearran
terms, and replacing exp(2m2q) with 12q we arrive at the form of the SCE that we shall focus on

q W~ k̂0 ; l̂ 0 ,m̂0!'~12q!
4pm2

Vn q (
k̂1 , l̂ 1 ,m̂1

W~ k̂1 ; l̂ 1 ,m̂1!
1

A2 (
a0 ,a151

A

^e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

! ei k̂1• ĉ ei k̂1• ŝa1 Ŷl̂ m̂~2 ŝa1
!&1,n11

1
12q

2 S 4pm2

Vn D 2

q2 (
k̂1 , l̂ 1 ,m̂1

(
k̂2 , l̂ 2 ,m̂2

W~ k̂1 ; l̂ 1 ,m̂1! W~ k̂2 ; l̂ 2 ,m̂2!

3
1

A3 (
a0 ,a1 ,a251

A

^e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

! ei k̂1• ĉ ei k̂1• ŝa1 Ŷl̂ m̂~2 ŝa1
! ei k̂2• ĉ ei k̂2• ŝa2 Ŷl̂ m̂~2 ŝa2

!&1,n11 . ~6.9!
th
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D. Self-consistency equation: Isotropic sector

Having obtained the localized fractionq and verified the
consistency of the expansion of the SCE, we now turn to
issue of solving the SCE for individual components of t
order-parameter. As discussed in Sec. V B, near to the am
phous solidification transition the only linearly unstable ba
e

r-
d

of W is the long-wavelength band of the isotropic compon
W( k̂) @i.e., W( k̂; l̂ ,m̂)u l̂ 5m̂50̂ having sufficiently small~rep-
licated! wave vectors, specifically,k̂2,2e#. Thus, the basic
process occurring at the transition is the acquisition of a n
zero value by the unstable components of the order par
eter, which in turn perturb the stable components away fr
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their zero values. The stable components include both
band of the isotropic component fork̂2.2e and the aniso-
tropic components for all values ofk̂. As our aim is to cal-
culate the leading contributions to each of the component
W at small positivee, we may, as a first step, proceed b
computing the self-consistent value ofW( k̂), neglecting the
feedback on its value coming from the nonzero values th
induces in the ~stable! anisotropic components@i.e.,
W( k̂; l̂ ,m̂)u l̂ Þ0̂#. Although thek̂2.2e band of the isotropic
componentW( k̂) is linearly stable, it is necessary to treat
self-consistently together with the unstable band, owing
the fact that they constitute a continuum~see Fig. 5!, and
therefore the stable band includes elements with an a
trarily large ‘‘susceptibility’’ to perturbations caused by the
couplings to the elements of the linearly unstable band@i.e.,
W( k̂) for k̂2,2e#.

We therefore consider the SCE forW( k̂; l̂ ,m̂), Eq. ~6.9!,
for isotropic external arguments~i.e., l̂ 5m̂50̂), and ignore
the effects of all anisotropic components on the right ha
side. We thus arrive at the closed, nonlinear SCE forW( k̂0):

W~ k̂0!5S 12
e

3
2

k̂2

6
DW~ k̂0!1

e

3

A4p

Vn

3(
k̂1

W~ k̂1!W~ k̂02 k̂1!. ~6.10!

Precisely this equation emerges in the context of rando
crosslinked macromolecular networks, from both sem
microscopic and Landau-type approaches.5,6 In that context,
the order parameter has only isotropic components, in c
trast with the present context. To solve Eq.~6.10! we invoke
the hypothesis forW( k̂0) discussed in Sec. III C, viz., a pa
rametrization in terms of the normalized probability distrib
tion of localization lengthsp(t), along with thed k̃,0 factor,
enforcing MTI of the solution

W~ k̂0!5
d k̃,0

A4p
E

0

`

dt p~t! e2 k̂2/2t. ~6.11!

As is shown in Ref. 6, this leads to the following nonline
integrodifferential SCE forp(t):

t2

2

dp

dt
5S e

2
2t D p~t!2

e

2E0

t

dt8 p~t8! p~t2t8!,

~6.12!

i.e., precisely the equation found in Refs. 5,6. By making
rescalings

t˜u[2t/e, ~6.13a!

p~t!˜p~u![
e

2
p~t!, ~6.13b!

as in Refs. 5,6, we determine that the universal scaling fu
tion p(u) satisfies the nonlinear integrodifferential equati
e

of

it

o

i-

d

ly
i-

n-

e

c-

u2

2

dp

du
5~12u!p~u!2E

0

u

du8 p~u8! p~u2u8!,

~6.14!

together with the normalization condition*0
`du p(u)51.

The resulting scaled distributionp(u) can be obtained nu
merically, and the result is given in Refs. 5,6.~The predic-
tion for this universal scaling function is compared with r
sults from numerical simulations in Ref. 8.! Thus we have
obtained the isotropic componentW( k̂) of the order param-
eterW( k̂; l̂ ,m̂) in the vicinity of the transition. As we have
discussed in Sec. III A, we are thus in possession of stat
cal information concerning the spatial localization of pa
ticles, regardless of the angular localization of the orbital

E. Self-consistency equation: Anisotropic sectors

We now turn to the task of calculating the leading-ord
contributions to theanisotropic components ofW( k̂; l̂ ,m̂)
@i.e., W( k̂; l̂ ,m̂)u l̂ Þ0̂#. We remind the reader that the anis
tropic components are all linearly stable near the transiti
and not merely infinitesimally so~i.e., linear stability analy-
sis indicates that none of these anisotropic components e
become marginally stable at the transition!. Note the contrast
with the stable band of the isotropic component@W( k̂) for
k̂2.2e#, which, though stable, do include marginally stab
components~i.e., components of arbitrarily small ‘‘mass’’!.
Unlike the stable band of the isotropic component the~also
stable! anisotropic components are separated by a ‘‘ga
from the unstable components, owing to the discretenes
the external variablel̂ , the components of which take o
integer values only, in contrast with the components ofk̂,
which are continuous~in the thermodynamic limit!. It is this
‘‘gap’’ that allows us to obtain the stable anisotropic com
ponents by means of perturbation theory, which we could
use to solve for the stable band of the isotropic compon
~see Fig. 5!.

1. Anisotropic sector: Angular momentum 1
in one replica channel

Rather than begin with generalities, we first consider
lowest angular momentum sector$W( k̂; l̂ ,m̂)% l̂ 252 @i.e., the
collection of order-parameter componentsW( k̂; l̂ ,m̂) such
that l̂ 2[(al a( l a11)52#. In this casel̂ is some permutation
of the form (0,1,0,0, . . . ,0). Wetherefore consider the SCE
for W1m1

a1 ( k̂), i.e., Eq.~6.9! for the anisotropic external argu

ment

replica

l̂
m̂

0 1 ••• a1 a111 ••• n

S 0, 0, •••, 1, 0, •••, 0

0, 0, . . . , m1 , 0, •••, 0,D
~6.15!

and arbitraryk̂, which, as we establish in Appendix C, rea
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W1m1

a1 ~ k̂!5C (0)S 2W1m1

a1 ~ k̂!1
i

A3
W~ k̂1! km1

a1 *

2q
A4p

Vn (
k̂1

W~ k̂2 k̂1! W1m1

a1 ~ k̂1!D .

~6.16!

The symbolkm
a * denotes the complex conjugate of themth

spherical tensor component of the vectorka spherical com-
ponent of the vectorka and is defined via

km* [A4p

3
k Y1m* ~k/k!. ~6.17!

The parameterC (0) encodes physical information arisin
from orbital-orbital correlations of a single particle and
defined in Appendix B. Specifically,C (0) depends on thel
51 value of the free-particle two-orbital orientation co
relator ^Ylm* (sa) Yl 8m8(sa8)&1,1. The permutation symmetry
among theA orbitals and rotational invariance of the join
probability distribution of their orientations restrict this co
relator to have the form

^Ylm* ~sa! Yl 8m8~sa8!&1,15
1

4p
d l ,l 8 dm,m8

3„da,a81~12da,a8! Cl…,

~6.18!

characterized by the parameters$Cl% l 51
` ~with C051, by

normalization!, introduced in Sec. II. As for the issue of wh
terms have been omitted in arriving at Eq.~6.16!, we are
concerned only with the leading-order values of the com
nents ofW, and therefore, here and elsewhere, shall o
terms that do not alter leading-order values. In particular
arriving at Eq.~6.16! from Eq. ~6.9! we have neglected al
components ofW having l̂ 2>2. Such terms are sufficientl
small that feedback from them would not alter the leadin
order value ofW1m1

a1 ( k̂). We shall verify the internal consis

tency of this assumption below. In addition, we have o
kept terms carrying sufficiently few powers of compone
of k̂. As the characteristic value ofk̂2 is of ordere, higher
powers render terms subdominant. The steps leading f
Eq. ~6.9! to Eq.~6.16! are explained in detail in Appendix C

To solve Eq.~6.16! we rewrite it in the form of a~type II
inhomogeneous! integral equation by moving the first term
on the right hand side to the left, regarding the second t
as a known inhomogeneity, and the third term as a pertu
tion. We then solve this equation iteratively, thus obtainin

W1m1

a1 ~ k̂!5
i

A3
C (1) W~ k̂! km1

a1 * , ~6.19!

where the parameterC (1) depends onA andC1 ~see Appen-
dix B!. In fact, for this particular component ofW our pro-
cedure merely amounts to truncating the Born series after
zerothorder ~i.e., effectively ignoring the perturbation alto
gether!, and solving the resulting algebraic equation. Ho
-
it
n

-

s

m

m
a-

he

-

ever, for certain other components it turns out to be nec
sary to retain the first-order term, for reasons that we s
explain below.

As we have discussed in Sec. III A, the result that
have just obtained about the value of the order-param
componentW1m1

a1 ( k̂) yields statistical information concern

ing the variations, across the system, of the strength of
correlations between the thermal fluctuations of the positi
of the localized particles and the thermal fluctuations of
orientations of their orbitals. We will discuss this inform
tion in more detail in Sec. VII C

2. Anisotropic sector: Angular momentum 1
in two replica channels

Having obtained the leading-order contributions to t
order-parameter componentsW( k̂) and W1m1

a1 ( k̂) @i.e., the

isotropic ~largest! and anisotropic~next largest! compo-
nents#, we now address the component ofW corresponding
to

replica

l̂

m̂

0 1 ••• a1 a111 ••• n

S 0, 0, •••, 1, 0, •••, 0

0, 0, . . . , m1 , 0, •••, 0,D .

~6.20!

which we denote byW1m1

a1
1m2

a2 ( k̂). The motivation for exam-

ining this component is that, in contrast to the compone
W( k̂) and W1m1

a1 ( k̂), the limit k̂˜0̂ of this component pro-

vides information purely about the orientational localizati
of the orbitals, independent of the positional localizati
properties, as we shall discuss in more detail in Sec. VII

As shown in Appendix D, the retention of all terms th
give rise to leading-order contributions toW1m1

a1
1m2

a2 ( k̂) leads

to the following SCE for this component:

W1m1

a1
1m2

a2 ~ k̂!5C (2)W1m1

a1
1m2

a2 ~ k̂!2
1

3
C (3)km1

a1 * km2

a2 * W~ k̂!

1qC (2)
A4p

2Vn (
k̂1

W~ k̂2 k̂1! W1m1

a1
1m2

a2 ~ k̂1!

1qC (2)
A4p

Vn (
k̂1

W1m1

a1 ~ k̂2 k̂1! W1m2

a2 ~ k̂1!,

~6.21!

where the parametersC (2) andC (3) depend onA andC1 ~see
Appendix B!. On the basis of the transformation properti
of this equation under common rotations of the replicas~and
bearing in mind the coupling between positional and orie
tational degrees of freedom!, we propose that the solutio
has the form

W1m1

a1
1m2

a2 ~ k̂!5~21!m1 dm11m2,0 w(1)~ k̂2!

1km1

a1 * km2

a2 * w(2)~ k̂2!, ~6.22!
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parametrized in terms of the two as-yet unknown functio
w(1) andw(2), which each depend only onk̂2. By inserting
this proposed form into Eq.~6.21!, contracting~on the indi-
cesm1 and m2), first with (21)m1 dm11m2,0 and then with

km1

a1 * km2

a2 * , and considering the limitka1
5ka2

˜0 ~with k̂2

fixed and arbitrary!, and retaining only terms that contribu
to the leading-order value ofW1m1

a1
1m2

a2 ( k̂), we arrive at the

pair of coupled~type II inhomogeneous! integral equations

C (4) w(2)~ k̂2!52
1

3

C (3)

C (2) W~ k̂!, ~6.23a!

C (4) w(1)~ k̂2!5
q A4p

Vn (
k̂1

W~ k̂2 k̂1! w(1)~ k̂1
2!

1q
A4p

Vn H(
k̂1

W1m1

a1 ~ k̂2 k̂1! W1m2

a2 ~ k̂1!J
d

1q
A4p

Vn H(
k̂1

k1 m1

a1 * k1 m2

a2 * w(2)~ k̂1
2!

3W~ k̂2 k̂1!J
d

, ~6.23b!

where the parameterC (4) depends onA andC1 ~see Appen-
dix B!. The symbol$•••%d denotes the result of extractin
from the quantity inside the braces the coefficient of the te
proportional to the isotropic rank-2 spherical tens
(21)m1dm11m2,0 . @To extract this part, we take the lim

ka1
5ka2

˜0 with k̂2 fixed and arbitrary, and contract wit
(21)m1dm11m2,0/3.# To find the leading contributions tow(1)

and w(2) we first read off the value of the latter from Eq
~6.23a!. We then use this result to eliminatew(2) from Eq.
~6.23b!, observing that we can omit the first term on the rig
hand side of Eq.~6.23b!, and perform the remaining summa
tions to arrive at the results

w(2)~ k̂2!52
1

3
C (5)

1

A4p
E

0

`

du p~u! e2 k̂2/eu,

~6.24a!

w(1)~ k̂2!5
C (6)

A4p

e2

4
E

0

`

du k~u! e2 k̂2/eu, ~6.24b!

where

uk~u![E
0

`

du1 p~u1! du2 p~u2! u1u2d@u2~u11u2!#

5$„u p~u!…* „u p~u!…%~u!, ~6.24c!

where the symbol * represents Laplace convolution. N
that, as can be anticipated from our perturbative approac
obtaining the anisotropic components, the results forw(1)

andw(2) are constructed from the universal scaling functi
p(u).
s

r

t

e
to

3. Self-consistency equation: General case

Having obtained the isotropic component ofW, as well as
the two lowest angular momentum anisotropic compone
we now address the task of establishing the general form
W, along with an algorithm for obtaining the leading-ord
contributions toW for arbitrary values of its arguments. W
begin by proposing the following structure for the gene

form of the leading-order contribution toW( k̂; l̂ ,m̂):

W~ k̂; l̂ ,m̂!'Pl̂ ,m̂~ k̂! W~ k̂!

1e11(1/2)l̃ Tl̂ ,m̂ E
0

`

du p l̂ ,m̂~u! e2 k̂2/eu.

~6.25!

HerePl̂ ,m̂( k̂) is a certain homogeneous polynomial inkm
( l ) in

which all terms are of orderl̃ in k. @We remind the reade
that km

( l ) stands forA(2l 11)/4p kl Ylm(k/k), and is thus of
order l in k.# In addition,Tl̂ ,m̂ is a certain rotationally invari-
ant tensor depending only onl̂ and m̂, and p l̂ ,m̂(u) is a
distribution. All the unknown ingredients@Pl̂ ,m̂( k̂),Tl̂ ,m̂ , and
p l̂ ,m̂(u)# will be obtained below.

To illustrate these notions with a concrete example
note thatW1m1

a1
1m2

a2 ( k̂), constructed in Sec. VI E 2 has such

form, with

Pl̂ ,m̂~ k̂!u l̂ 5(0, . . . ,0,1,1,0, . . . ,0)52
1

3
C (5) km1

a1 * km2

a2 * ,

~6.26a!

Tl̂ ,m̂u l̂ 5(0, . . . ,0,1,1,0, . . . ,0)5~21!m1dm11m2,0 , ~6.26b!

p l̂ ,m̂~u!u l̂ 5(0, . . . ,0,1,1,0, . . . ,0)5
C (6)

4A4p
k~u!, ~6.26c!

where l̂ 5(0, . . .,0,1,1,0, . . . ,0) indicates thatl a15 l a251,
with l a50 in all other replicas. Note tha
Pl̂ ,m̂( k̂)u l̂ 5(0, . . . ,0,1,1,0, . . . ,0)is of order l̃ 52 in components of
k̂.

To show that the leading-order contribution to the gene
componentW( k̂; l̂ ,m̂) in the vicinity of the amorphous so
lidification transition does indeed have the form~6.25!, for
all values of l̂ , m̂, and k̂, we proceed by full mathematica
induction on the multi-indexl̂ 15. We note thatW( k̂) has this
form with P0̂,0̂( k̂)51 andp 0̂,0̂(u)50, thus establishing the
baseof induction. To establish thestepof induction we as-
sume thatW( k̂; l̂ ,m̂) has the form~6.25! for all values l̂

, l̂ 0 ~by which we meanl a< l 0
a for all a, and l a, l 0

a for at

least onea). We then examine the SCE forW( k̂0 ; l̂ 0 ,m̂0):
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W~ k̂0 ; l̂ 0 ,m̂0!5~12q!
4pm2

Vn (
k̂1 , l̂ 1 ,m̂1

W~ k̂1 ; l̂ 1 ,m̂1!
1

A2 (
a0 ,a151

A

^e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

!

3ei k̂1• ĉ ei k̂1• ŝa1 Ŷl̂ 1m̂1
~2 ŝa1

!&1,n111
1

2 S 4pm2

Vn D 2

q (
k̂1 , l̂ 1 ,m̂1

(
k̂2 , l̂ 2 ,m̂2

W~ k̂1 ; l̂ 1 ,m̂1! W~ k̂2 ; l̂ 2 ,m̂2!
1

A3

3 (
a0 ,a1 ,a251

A

^e2 i k̂0• ĉ Ŷl̂ 0m̂0
* ~ ŝa0

! ei k̂1• ĉ ei k̂1• ŝa1 Ŷl̂ 1m̂1
~2 ŝa1

! ei k̂2• ĉ ei k̂2• ŝa2 Ŷl̂ 2m̂2
~2 ŝa2

!&1,n11 . ~6.27!
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As we are are only concerned with leading-order contri
tions to W, we truncate thel̂ sums in Eq.~6.27! so as to
include only terms withl̂ < l̂ 0. We now examine the contri
butions to W( k̂0 , l̂ 0 ,m̂0) coming from linear couplings to
lower-angular momentum components ofW @i.e., the terms
in the right-hand side of Eq.~6.27! that are linear inW#.
Consider the coupling toW( k̂, l̂ ,m̂). By the translational in-
variance of the correlator, performing theĉ average in Eq.
~6.27! we establish thatk̂5 k̂0. The remaining correlator fac
torizes on the replica index, becoming

)
a50

n

^Yl
0
am

0
a* ~sa0

a ! Yl ama~2sa1

a ! eik0
a
• ŝa1

a
&1,n11 . ~6.28!

By introducing the Rayleigh plane-wave expansion for
factor expik0

a
• ŝa1

a in terms of spherical Bessel functions an

harmonics16 we see that this correlator is nonzero only f
the terms of orderl 8a in the Rayleigh expansion for whic
the angular momental 8a,l 0

a , andl a can sum to angular mo
mentum 0. As we are only interested in the leading-or
contributions toW, and thel 8a term in the Rayleigh expan
sion is of order (k0

a) l 8a
, we need only keep the lowes

angular-momentum term~i.e., l 8a5 l 0
a2 l a). Thus, from each

replica we shall pick up the factors (k0
a)

m
0
a2ma

( l 0
a

2 l a)
, provided, of

course, thatum0
a2mau< l 0

a2 l a. Together from all replicas
these factors will give a factor, depending on the$km

( l )%, that

will be of order l 0̃2 l̃ in k. To leading order, the term tha
corresponds to the coupling ofW( k̂0 , l̂ 0 ,m̂0) to W( k̂, l̂ ,m̂)
will thus become

S )
a50

n

~k0
a!

m
0
a2ma

( l 0
a

2 l a)
Cl̂ 0 ,m̂0 ; l̂ ,m̂

a D Pl̂ ,m̂~ k̂0!W~ k̂0!, ~6.29!

where theCl̂ 0 ,m̂0 ; l̂ ,m̂
a are constants, for which we cannot

general provide a closed-form result, but which we can, ho
ever, compute, should we decide to construct some com
nent of the order parameter explicitly, as we have, e.g., d
for W1m1

a1
1m2

a2 .

As )a(k0
a)

m
0
a2ma

( l 0
a

2 l a)
is of orderl 0̃2 l̃ in k0, and asPl̂ ,m̂( k̂0)

is, according to the inductive assumption, of orderl̃ , we see
that this contribution is of orderl 0̃ in k0. Taking the term
-

e

r

-
o-
e

corresponding tol̂ 5 l̂ 0 ,m̂5m̂0 over to the left-hand side
adding all remaining terms, and making the definition

Pl̂ 0 ,m̂0
~ k̂0![ (

l̂ , l̂ 0

(
m̂

S )
a50

n

Cl̂ 0 ,m̂0 ; l̂ ,m̂
a

~k0
a!

m
0
a2ma

( l 0
a

2 l a) DPl̂ ,m̂~ k̂0!,

~6.30!

we see that, to leading order ink0, the linear contribution to
W( k̂0 ; l̂ 0 ,m̂0) is indeed of the form~6.25!, with Pl̂ 0 ,m̂0

( k̂0)

being of the correct order ink0. As, due to the fact thatq is
small near the transition, the linear contribution is of low
order ine than the quadratic terms for values ofk̂2 of order
e, we have thus also established a recursive algorithm
determiningPl̂ 0 ,m̂0

( k̂0). Illustrations of its use can be foun
in Appendixes C and D.

We now examine the quadratic contribution to
W( k̂0 ; l̂ 0 ,m̂0) in Eq. ~6.25!. This term is only the dominan
one fork̂0

2!e and, hence, we need only obtain it in the lim

k̂0
2
˜0, which is equivalent to extracting from it the leadin

order contribution to the part proportional to the (k indepen-
dent! rotationally invariant tensorTl̂ 0 ,m̂0

. As we are only
interested in the leading-order behavior ofW, in the summa-
tions overl̂ in the quadratic term of Eq.~6.27! we need only
include the linear contributions toW( k̂; l̂ ,m̂) @i.e., for the
purposes of computing the quadratic term ofW( k̂0 ; l̂ 0 ,m̂0)
we can setW( k̂; l̂ ,m̂)5Pl̂ ,m̂( k̂) W( k̂) for l̂ < l̂ 0#. We now
study the quadratic coupling ofW( k̂0 ; l̂ 0 ,m̂0) to lower
angular-momentum components. In each replicaa we have
four sources of angular momentum: two (l 1

a and l 2
a) coming

from the two components ofW @i.e., W( k̂1 ; l̂ 1 ,m̂1) and
W( k̂2 ; l̂ 2 ,m̂2)#; and two (l 81

a and l 82
a), one coming from

each of the Rayleigh expansions of the ‘‘shift’’ facto
expik̂1• ŝa1

and expik̂2• ŝa2
. As we are only interested in th

leading-order behavior ofW, we need only consider the cas
when l 1

a1 l 2
a1 l 18

a1 l 82
a5 l 0

a . Each source of angular mo
mentuml brings with it a factor ofkl . Hence, multiplying all
factors from all replicas together and assembling all term
the summations we shall obtain

qV2nH (
k̂1 ,k̂2

F~ k̂1 ,k̂2! W~ k̂1! W~ k̂2! d k̂11 k̂2 ,k̂0
d k̃1 ,0 d k̃2 ,0J

T
,

~6.31!



tr

s,
rd
ive

ic

e
a

th

in

et
u
-
m

m
in
.

c-
o
h
la
rd
a-

ou
n
is
n
e
w
tio
fo

ion
th
r-
w
in
p
r
m
s

n-
ter

he
n-

e
ng
d

e of

on
he
to

en
ter
the
an-
ns.
ins
and

a-
za-
. It

ss
but
we
mi

at,
bil-
al
t is
oint
us

tion

ion
for
der
nd

lar
al
,
r
of
r-
ma-
.

3878 PRB 60KONSTANTIN A. SHAKHNOVICH AND PAUL M. GOLDBART
where the operation$•••%T denotes the extraction, from
•••, of the part proportional toTl̂ 0 ,m̂0

, and whereF is a

polynomial function ofk1 and k2 in which all terms are of

order l̃ 0. Provided, thatl̂ 0 andm̂0 satisfy conditions for mac-
roscopic rotational invariance~note, in particular, that MRI

requiresl 0̃ to be even and, hence, that the quadratic con

bution vanishes forl 0̃ odd!, we can perform the summation
indeed obtaining the claimed structure for the second-o
term in Eq. ~6.25!. Thus, we have established a recurs
procedure for obtainingp l̂ 0 ,m̂0

(u). Keeping in mind that

typical values ofk̂0
2 are of ordere, that q52/3e, and that

W( k̂) is of order unity we verify the scaling of the quadrat

term to bee ( l 0
˜ /2)11, thus completing thestepof induction,

viz. the second and final element of our proof.
In conclusion of our discussion of the solution of th

order-parameter SCE we note, in passing, that all the
sumptions that we have made in Sec. VI A regarding
scaling ~with e) of various quantities are verified,a poste-
riori , by the solution that we have obtained, thus establish
the self-consistency of these assumptions.

VII. PHYSICAL INFORMATION ENCODED
IN THE ORDER PARAMETER

A. Introduction

We have constructed the solution of the order-param
self-consistency equation in the vicinity of the amorpho
solidification transition, Eq.~6.25!, and have obtained ex
plicit solutions for the two lowest angular-momentum co
ponents of the order parameter, Eqs.~6.19!,~6.24a!,~6.24b!.
We are thus in possession of a range of statistical infor
tion about the amorphous solid state, this information be
encoded in the order parameter, as discussed in Sec. III A
this section we will extract some of this information expli
itly, from the two lowest angular-momentum components
the order parameter, provide a strategy for obtaining ot
statistical information about the system from higher angu
momentum components, and discuss the scaling of the o
parameter withe near the transition, as well as the implic
tions of this scaling.

Our statistical diagnosis of the structure of the amorph
solid state in the vicinity of the amorphous solidificatio
transition is made in terms of the moments of the joint d
tribution function P that collects together the localizatio
characteristics of all the particles in the sample and th
orbitals, averaged over realizations of the disorder. As
shall see, we are unable to construct the entire distribu
function, or even to construct a closed-form expression
arbitrary moments. However, most of the useful informat
about the system can be obtained from low moments of
distribution, resulting from the two lowest angula
momentum components of the order parameter, which
have obtained explicitly. As for the information encoded
the higher angular-momentum components of the order
rameter, we do not extract it explicitly. We do, howeve
describe the kind of information that could be obtained fro
them, as well as provide the general procedure for doing
i-
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B. Encoded information: Isotropic sector

We begin by discussing the statistical information, e
coded in the isotropic component of the order parame
W( k̂2). In Sec. VI D we have obtained this component in t
vicinity of the amorphous solidification transition and, co
sequently, the reduced distribution of~inverse square! local-
ization lengthsp(t) associated with localized particles. Th
fact thatp(t) takes on a scaling form, and that the scali
function p(u) has a well defined peak with location an
width both of order unity, allows us to establish that~as e
˜0) t scales ase and, accordingly,j scales ase21/2. For
example, any reasonable choice for a characteristic valu
j, say*0

`dt p(t) t21/2, scales ase21/2.
In the present context, while the emergent distributi

p(t) is found to have striking scaling properties, there is t
suspicion that changes in the details of the model will lead
changes at least in the details of the scaling functionp(u) or,
perhaps, in the scaling property itself. However, it has be
found in the context of vulcanized macromolecular mat
that the scaling property, as well as the precise form of
scaling function, are robust, universal features of the me
field theory, verified by independent computer simulatio
Moreover, this universality has been found to have its orig
in the symmetries of the appropriate Landau free energy
the divergence~at the transition! of the characteristic local-
ization length.

Being in possession of the entire distribution of localiz
tion lengths provides us with a surprisingly rich characteri
tion of the positional aspects of the amorphous solid state
is striking that the distribution is universal, not only acro
the macromolecular systems where it was first found,
also in the present setting of vitreous media. Although
have obtained the distribution via analysis of a specific se
microscopic model of vitreous media, we anticipate th
here too, the result will have a broader domain of applica
ity. Moreover, given the emerging picture of orientation
order as order slaved to the underlying positional order, i
not surprising—and indeed we shall demonstrate this p
below—that all other statistical descriptors of the amorpho
solid state are also constructed from the universal func
p(u).

C. Encoded information: Low angular-momentum
anisotropic sectors

1. Angular localization

We now discuss some of the specific physical informat
that can be obtained by examining our explicit solutions
the two lowest angular-momentum components of the or
parameter, which we have obtained in Secs. VI E 1 a
VI E 2. The first piece of information concerns the angu
localization of the orbitals, without regard to the position
localization of the particles. As we recall from Sec. III A
such information is accessed via the order parameter fok̂
50̂, and is described by the distribution of the collection
characteristics$S lm%. The lowest angular-momentum orde
parameter component that provides access to this infor
tion is W1m1

a1
1m2

a2 ( k̂), the solution for which is given by Eq

~6.22!. Evaluating atk̂50̂ gives
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q W1m1

a1
1m2

a2 ~ 0̂!5~21!m1dm11m2 ,0

C (6)

A4p

e3

6
E

0

`

du k~u!.

~7.1!

Now, recalling the interpretation of the order parameter
veloped in Sec. III A, we arrive

q E dt d$S% D$G% P~t,$S%,$G%!S1,m1
S1,m2

5F 1

N
(
j 51

N 1

A
(
a51

A

^Y1m1
* ~sj ,a!& ^Y1m2

* ~sj ,a!&G
5~21!m1dm11m2,0

C (6)

A4p

e3

6
E

0

`

du k~u!. ~7.2!

Notice that this characteristic of the angular localization
the orbitals is essentially the order parameter tradition
used to describe the directional localization of magnetic m
ments in the spin-glass state. In fact, if we recall t
spherical-tensor decomposition of the scalar product of
unit vectors,s1•s25(m(21)mY1m(s1)Y12m(s2), then by ap-
propriately contracting Eq.~7.2! over m1 andm2 we obtain
the familiar characterization of directional localization:

F 1

N
(
j 51

N 1

A
(
a51

A

^sj ,a&•^sj ,a&G5
3 C (6)

A4p

e3

6
E

0

`

du k~u!.

~7.3!

2. Angle-position fluctuation correlations

Further specific physical information concerns the deg
to which the thermal fluctuations in the orbital orientatio
are correlated with the thermal fluctuations of the parti
positions. As discussed in Sec. III A, to extract this inform
tion, which is encoded in the distribution of the collection
functions$G lm( k̂)%, we examine the order-parameter comp
nentW1m1

a1 ( k̂):

q W1m1

a1 ~ k̂!5q E dt d$S%D$G%P~t,$S%,$G%!

3G1,m1
~ka1!e2 k̂2/2t

5F 1

N
(
j 51

N 1

A
(
a51

A

^~e2 ika1•(cj 2mj )

2^e2 ika1•(cj 2mj )&!

3„Y1m1
* ~sj ,a!2^Y1m1

* ~sj ,a!&…&G
5

2e

3

iC (1)

A3
km1

a1 *
d k̃,0

A4p
E

0

`

du p~u!e2 k̂2/eu.

~7.4!

By considering the derivative with respect toka1, taking the
limit k̂˜0̂, and contracting, we obtain
-

f
y
-

o

e

e
-

-

F 1

N
(
j 51

N 1

A
(
a51

A

^~cj2^cj&!•~sj ,a2^sj ,a&!&G'2
e

A3p
C (1)

~7.5!

characterizing the anticorrelation of the thermal orientat
fluctuations of orbitals with the thermal position-fluctuatio
of the particles to which the orbitals are attached.

D. Scaling and its indications

In the previous two subsections we have obtained exp
physical information about the amorphous solid state in
vicinity of the solidification transition from the three lowe
angular-momentum components of the order parameter.
now address in more generality the manner in which vari
physical quantities reflecting the orientational ordering sc
with e. To do this we examine the scaling of various com
ponents of the order parameter, established in Sec. VI
Hence we have the following scaling for various moment17

of the joint probability distributionP associated with local-
ized particles (l̃ Þ0):

E dt d$S% D$G% P~t,$S%,$G%! Ŝ l̂ m̂;e11 l̃ /2, ~7.6a!

E dt d$S% D$G% P~t,$S%,$G%!

3Ĝ l̂ m̂~ k̂!exp~2 k̂2/2t!;kl̃ ;e l̃ /2, ~7.6b!

the latter being valid fork̂2;e. Note the exponent 11 l̃ /2 in
Eq. ~7.6a!.

We now describe a plausible physical scenario that is c
sistent with this scaling ofP. Near to the transition the net
work has many long chains consisting of twice-bonded p
ticles, with only the occasional more highly bonded partic
linking them. Most of the localized particles are on e
tremely mobile segments. Orbitals attached to particles
such segments are likely to be even less localized orie
tionally than orbitals on less mobile segments, such as th
near junctions between chains. Consider, for the sake o
lustration, a dangling chain~i.e., one attached to the networ
only at one end!. The orientational fluctuations of successi
orbitals compound the fluctuations of orbitals further aw
from the junction, causing them to be successively more
localized. This compounding of fluctuations so heavily su
presses orientational localization that it causes the sca
~and not just the numerical value! of the orientational local-
ization characteristicsS lm to vary according to location in
the network. Moreover, because orientational localization
heavily suppressed for such a large fraction of orbitals,
leading-order scaling of the moments ofS lm is dominated by
contributions from the small fraction of better-localized o
bitals ~e.g., those near chain junctions!, and is blind to the
much larger fraction of less well-localized orbitals~e.g.,
those far from chain junctions!. This partitioning of localized
orbitals into better and less well fractions yields a pictu
consistent with our results provided we assume that the
ter localized variety constitute a fraction of ordere of the
localized orbitals. This fraction manifests itself in the exp
nent 11 l̃ /2 in Eq. ~7.6a! as the additional 1. This picture
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allows us to identify the following appealing scaling for th
localization characteristics of the better localized orbitals

S lm;e l /2, ~7.7a!

G lm~ k̂!;kl;e l /2, ~7.7b!

the latter being valid fork̂2;e. Note, in particular, that this
scaling indicates that for a better localized orbital

^~cj2^cj&!•~sj ,a2^sj ,a&!&

A^~cj2^cj&!2&^sj ,a&
2

;1, ~7.8!

implying that the orientational-positional thermal fluctuati
correlations are strong for all bond densities in the vicinity
the amorphous solidification transition. Whilst we cannot
certain that this scenario is a necessary consequence o
results, it is both consistent with them and physically pla
sible.

VIII. CONCLUDING REMARKS

The primary result of this Paper is a statistical charac
ization of the structure and heterogeneity of the equilibri
amorphous solid state that emerges due to the random
manent covalent bonding of the constituent particles. T
statistical characterization takes the form of a joint proba
ity distribution that ascertains the likelihood of finding a pa
ticle: ~i! to be localized,~ii ! to have a certain positional lo
calization length,~iii ! for a bond connected to this particle
have a certain orientational localization characteristics,
~iv! for the correlations between the thermal fluctuations
f
e
our
-

r-

er-
is
l-

d
n

particle position and orbital orientation to have certain ch
acteristics.

We expect the emerging statistical characterization to
valid beyond the context of the model used to determine
The reason for this is that, apart from certain simple dep
dences on physical parameters describing the particles in
network, this characterization is in fact a consequence of
order parameter that we have considered, the symmetrie
the Landau-type free energy associated with this order
rameter, and a limited number of further assumptions.

We have constructed an analytical approach to the e
librium structure of the amorphous solid state of a class
materials, such as silica gels, formed by the permanent
dom covalent bonding of atoms or small molecules. Ho
ever, the accuracy and scope of our results is limited in
following significant ways. We have focused onequilibrium
structural properties, we have workednear to the amorphous
solidification transition, and we have computed within t
framework of amean-fieldapproximation. It would be inter-
esting to have a better understanding of the implications
these limitations, and to be able to obtain results beyo
them.
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APPENDIX A: DENOMINATOR FOR THE SELF-CONSISTENT EQUATION

In this appendix we evaluate the denominator of the right-hand side of the SCE forV( k̂; l̂ ,m̂), Eq. ~6.2!, namely, the
quantity

K expS 4pm2

Vn (
k̂ l̂ m̂

W~ k̂; l̂ ,m̂! ei k̂• ĉ
1

A (
a51

A

ei k̂• ŝaŶl̂ m̂~2 ŝa!D L
1,n11

. ~A1!

To do this, we expand the exponential in a power series and consider ther th order term

K 1

r !
~4pm2!rqrV2nr (

k̂1 l̂ 1m̂1

(
k̂2 l̂ 2m̂2

. . . (
k̂r l̂ r m̂r

W~ k̂1 ; l̂ 1 ,m̂1! W~ k̂2 ; l̂ 2 ,m̂2! •••W~ k̂r ; l̂ r ,m̂r ! ei k̂1• ĉ ei k̂2• ĉ
•••ei k̂r• ĉ

3
1

Ar (
a1 , . . . ,ar

ei k̂1• ŝa1ei k̂2• ŝa2•••ei k̂r• ŝarŶl̂ 1m̂1
~2 ŝa1

!•••Ŷl̂ r m̂r
~2 ŝar

!L
1,n11

. ~A2!

Noticing that the quantity~A2! factorizes over the replicas, and passing to the replica limitn˜0, we rewrite

K 1

r !
~4pm2!rqr (

k1l 1m1
(

k2l 2m2

••• (
kr l rmr

W~k1 ; l 1 ,m1!W~k2 ; l 2 ,m2!•••W~kr ; l r ,mr !e
ik1•ceik2•c

•••eikr•c

3
1

Ar (
a1 , . . . ,ar

eik1•sa1eik2•sa2•••eikr•sarYl 1m1
~2sa1

!•••Yl rmr
~2sar

!L
1,1

. ~A3!

By the MTI of W( k̂; l̂ ,m̂) we know thatk̃ i50, which means thatk i50. Also, using MRI ofW( k̂; l̂ ,m̂) we see that ifk̂50̂ then
Eq. ~A3! can only be nonzero ifl̂ 50̂ also. Knowing thatW(0̂;0̂,0̂)51/A4p, we get, for ther th order contribution (m2) rqr /r !.
Resumming the power series we obtain, finally
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K expS 4pm2

Vn (
k̂ l̂ m̂

W~ k̂; l̂ ,m̂!ei k̂• ĉ
1

A (
a51

A

ei k̂• ŝaŶl̂ m̂~ ŝa!D L
1,n11

5(
r 50

`
~m2!rqr

r !
5exp~m2q!. ~A4!

APPENDIX B: DEFINITIONS OF THE C „N… CONSTANTS

The C (n) constants are defined as follows:

C (0)[A21
„11~A21!C1…, ~B1a!

C (1)[
1

11C (0) , ~B1b!

C (2)[
1

A
„11~A21!C1

2
…, ~B1c!

C (3)[C (2)22C (2)C (1), ~B1d!

C (4)[
12C (2)

C (2) , ~B1e!

C (5)[
C (3)

3C (2)C (4) , ~B1f!

C (6)[
C (3)

12C (2)C (4)2 1
C (1)2

8C (4) . ~B1g!

They encode information about the strength of the mutual repulsion of orbitals.

APPENDIX C: ANISOTROPIC SELF-CONSISTENT EQUATION: ANGULAR MOMENTUM ONE
IN ONE REPLICA CHANNEL

In this appendix we study in detail the SCE for theW1m1

a1 ( k̂) component. We start with the full form

qW1m1

a1 ~ k̂!5~12q!
4pm2

Vn q (
k̂1 , l̂ 1 ,m̂1

W~ k̂1 ; l̂ 1 ,m̂1!
1

A2

3 (
a0 ,a151

A K e2 i k̂• ĉ )
aÞa1

„Y00~sa0

a !…Y1m1
* ~sa0

a1!ei k̂1• ĉei k̂1• ŝa1Ŷl̂ m̂~2 ŝa1
!L

1,n11

1
1

2 S 4pm2

Vn D 2

q2 (
k̂1 , l̂ 1 ,m̂1

(
k̂2 , l̂ 2 ,m̂2

W~ k̂1 ; l̂ 1 ,m̂1! W~ k̂2 ; l̂ 2 ,m̂2!

3
1

A3 (
a0 ,a1 ,a251

A K e2 i k̂• ĉ )
aÞa1

n

„Y00~sa0

a0!…Y1m1
* ~sa0

a1!ei k̂1• ĉei k̂1• ŝa13Ŷl̂ m̂~ ŝa1
!ei k̂2• ĉei k̂2• ŝa2Ŷl̂ m̂~ ŝa2

!L
1,n11

.

~C1!

We now proceed to study this equation order by order, starting with the linear term. As we are not interested in feed
this component from higher angular momentum components we may truncate the angular momentum sums to incl
terms of l̂ 2<2. Thus we must include couplings to the componentsW1m2

a2 ( k̂) andW( k̂) only. We study the coupling toW( k̂)

first ~i.e., l̂ 15m̂150). Clearly then in replicaa1 we must Rayleigh-expand the shift-factor exp(ik1
a
•sa1

a ) to angular momentum

1 and put this factor equal to unity in all other replicas, obtaining
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~12q!
4pm2

Vn q(
k̂1

W~ k̂1!
1

A2 (
a0 ,a151

A K e2 i k̂• ĉei k̂1• ĉ S 1

A4p
D n

Y1m1
* ~sa0

a1!S 1

A4p
D (n11)

4p i j 1~k1
a1!

3 (
m8521

1

Y1m8~sa1

a1!Y1m8
* S k1

a1

k1
a1 D L

1,n11

5~12q!m2i
A4p

3
W~ k̂!

1

A2 (
a0 ,a151

A

„da,a1
1~12da,a1

! C1…k
a1Y1m1

* S ka1

ka1
D

5
i

A3
C (0)W~ k̂!km1

a1 * . ~C2!

We now study the linear term corresponding to the coupling ofW1m1

a1 ( k̂) to W1m2

a2 ( k̂). Whena1Þa2 this term, being of order

k̂2, is subdominant. Thus we need only consider the term in the angular momentum sum wherel a151, l̂ 1 being 0 in all other
replicas. We examine this term in the sum, making use of the value of the two-orbital correlator, given by Eq.~6.18!:

~12q!
4pm2

Vn q(
k̂1

W1m1

a1 ~ k̂1!
1

A2 (
a0 ,a151

A K e2 i k̂• ĉei k̂1• ĉS 1

A4p
D n

Y1m1
* ~sa0

a1!S 1

A4p
D n

Y1m1
~2sa1

a1!L
1,n11

52~12q!m2W1m1

a1 ~ k̂!
1

A2 (
a0 ,a151

A

„da,a1
1~12da,a1

! C1…

52~12q!C (0)m2W1m1

a1 ~ k̂!. ~C3!

We next proceed to examine the second-order term in Eq.~C1!. Again, we truncate the angular momentum sums. As we
only interested in the leading-order contributions toW1m1

a1 ( k̂) there are only two cases to consider:l̂ 15 l̂ 250̂ and l̂ 1
252,l̂ 2

2

50. The former case, however, results in a term that is subdominant to term~C2!. We thus consider the latter case

1

2
~12q!S 4pm2

Vn D 2

q2 (
k̂1 ,k̂2

W~ k̂1!W1m1

a1 ~ k̂2!
1

A2

3 (
a0 ,a151

A K e2 i k̂• ĉei k̂1• ĉei k̂2• ĉS 1

A4p
D (n11)S 1

A4p
D n

Y1m1
* ~sa0

a1!S 1

A4p
D n

Y1m1
~2sa1

a1!L
1,n11

52
A4p

2
~12q!

m4

Vn (
k̂1

q2W~ k̂1!W1m1

a1 ~ k̂2 k̂1!
1

A2 (
a0 ,a151

A

„da,a1
1~12da,a1

!C1…

52
A4p

2
~12q!C (0)

m4

Vn (
k̂1

q2W~ k̂1!W1m1

a1 ~ k̂2 k̂1!. ~C4!

Keeping in mind that due to the symmetryl̂ 1↔ l̂ 2 we must double the term~C4!, we now assemble all the terms, droppin
subleading contributions

qW1m1

a1 ~ k̂!5C (0)S 2qW1m1

a1 ~ k̂!1
i

A3
qW~ k̂1!km1

a1 * 2q2
A4p

Vn (
k̂1

W~ k̂2 k̂1!W1m1

a1 ~ k̂1!D . ~C5!

Cancelling a factor ofq leaves us with Eq.~6.16!.

APPENDIX D: ANISOTROPIC SELF-CONSISTENT EQUATION:
ANGULAR MOMENTUM ONE IN TWO REPLICA CHANNELS

In this appendix we study in detail the SCE for theW1m1

a1
1m2

a2 ( k̂) component. We start with the full form:
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qW1m1

a1
1m2

a2 ~ k̂!5~12q!
4pm2

Vn q (
k̂1 , l̂ 1 ,m̂1

W~ k̂1 ; l̂ 1 ,m̂1!

3
1

A2 (
a0 ,a151

A K e2 i k̂• ĉ )
aÞa1 ,a2

„Y00~sa0

a !…Y1m1
* ~sa0

a1!Y1m2
* ~sa0

a2!ei k̂1• ĉei k̂1• ŝa1Ŷl̂ m̂~ ŝa1
!L

1,n11

1
1

2 S 4pm2

Vn D 2

q2 (
k̂1 , l̂ 1 ,m̂1

(
k̂2 , l̂ 2 ,m̂2

W~ k̂1 ; l̂ 1 ,m̂1!W~ k̂2 ; l̂ 2 ,m̂2!

3
1

A3 (
a0 ,a1 ,a251

A K e2 i k̂• ĉ )
aÞa1 ,a2

Y00~sa0

a0!Y1m1
* ~sa0

a1!Y1m2
* ~sa0

a2!ei k̂1• ĉ ei k̂1• ŝa1

3Ŷl̂ m̂~ ŝa1
!ei k̂2• ĉei k̂2• ŝa2Ŷl̂ m̂~ ŝa2

!L
1,n11

. ~D1!

As we did before in Appendix C for the SCE forW1m1

a1 ( k̂) we proceed to study the linear terms of this equation. Again

truncate to include only the components ofW of angular momentum smaller than the angular momentum ofW1m1

a1
1m2

a2 ( k̂), i.e.

l a50 for aÞa1 ,a2 and l a1,l a2<1. Thus we find couplings to termsW( k̂), W1m1

a1 ( k̂), W1m2

a2 ( k̂), andW1m1

a1
1m2

a2 ( k̂). Rayleigh

expanding the shift factor exp(ik1
a
•sa1

a ) to angular momentum 0 or 1 as appropriate in each replica, proceeding as in Eqs~C3!

and~C2!, and, finally, inserting the value forW1m1

a1 ( k̂) that we obtained in Sec. VI E 1, we obtain the linear contribution~terms

are in the order listed above!:

~12q!
4pm2

Vn q(
k̂1

1

A2 (
a0 ,a151

A K e2 i k̂• ĉei k̂1• ĉS 1

A4p
D n21

Y1m1
* ~sa0

a1!Y1m2
* ~sa0

a2!3H W~ k̂1!S 1

A4p
D n11

~4p i !2 j 1~k1
a1! j 1~k1

a2!

3 (
m18 ,m28521

1

Y1m
18
~sa1

a1!Y1m
18

* S k1
a1

k1
a1 D Y1m

28
~sa1

a2!Y1m
28

* S k2
a2

k1
a2 D 1W1m1

a1 ~ k̂1!S 1

A4p
D n

Y1m1

3~2sa1

a1!4p i j 1~k1
a2! (

m8521

1

Y1m8~sa1

a2!Y1m8
* S k1

a2

k1
a2 D 1W1m2

a2 ~ k̂1!S 1

A4p
D n

Y1m2
~2sa1

a2!4p i j 1~k1
a1!

3 (
m8521

1

Y1m8~sa1

a1!Y1m8
* S k1

a1

k1
a1 D 1W1m1

a1
1m2

a2 ~ k̂1!S 1

A4p
D n21

Y1m1
~2sa1

a1!Y1m2
~2sa1

a2!J L
1,n11

5qC (2)S 2
1

3
km1

a1 * km2

a2 * W~ k̂!2
i

A3
km2

a2 * W1m1

a1 ~ k̂!2
i

A3
km1

a1 * W1m2

a2 ~ k̂!1W1m1

a1
1m2

a2 ~ k̂!D
5C (2)qW1m1

a1
1m2

a2 ~ k̂!2
q

3
C (3)km1

a1 * km2

a2 * W~ k̂!. ~D2!

We next proceed to study the quadratic contribution toW1m1

a1
1m2

a2 ( k̂) from Eq. ~D1!. Truncating the angular momentum sum

as usual we see that there are the following four cases to consider~i! l̂ 15 l̂ 250, corresponding to the coupling t
W( k̂1)W( k̂2), ~ii ! l̂ 150,l̂ 2

252, corresponding to the coupling toW( k̂1)W1m1

a1 ( k̂2), ~iii ! l̂ 1
25 l̂ 2

252, corresponding to the cou

pling to W1m1

a1 ( k̂1)W1m2

a2 ( k̂2), and~iv! l̂ 150,l̂ 2
254 corresponding to the coupling toW( k̂1)W1m1

a1
1m2

a2 ( k̂2). We study these terms

in more detail, as in Appendix C, Eq.~C4!. Term ~i! is clearly subdominant compared with the second term in Eq.~D2!.
Writing out the remaining terms

term~ ii !:2
i

A3

A4p

2
~12q!C (2)

m4

Vn (
k̂1

q2km2

a2 * W~ k̂1!W1m1

a1 ~ k̂2 k̂1!, ~D3!
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term~ iii !:
A4p

2
~12q!C (2)

m4

Vn (
k̂1

q2W1m1

a1 ~ k̂1!W1m2

a2 ~ k̂2 k̂1!, ~D4!

term~ iv!:
A4p

2
~12q!m4C (2)

m4

Vn (
k̂1

q2W~ k̂1!W1m1

a1
1m2

a2 ~ k̂2 k̂1!. ~D5!

Term ~ii ! does not contribute to the leading-order behavior ofW1m1

a1
1m2

a2 ( k̂) as for k̂2 of ordere or greater all quadratic term

are subleading compared to linear terms, and fork̂2!e it will, because of thekm2

a2 * factor, be subdominant compared to term

~iii ! and~iv!. Keeping in mind that because of the symmetryl̂ 1↔ l̂ 2 we must double the term~iv!, we reassemble the piece
of the SCE forW1m1

a1
1m2

a2 ( k̂), dropping subleading contributions:

qW1m1

a1
1m2

a2 ~ k̂!5C (2)qW1m1

a1
1m2

a2 ~ k̂!2
1

3
C (3)km1

a1 * km2

a2 * qW~ k̂!1q2C (2)
A4p

Vn (
k̂1

W~ k̂2 k̂1!W1m1

a1
1m2

a2 ~ k̂1!

1q2C (2)
A4p

2Vn (
k̂1

W1m1

a1 ~ k̂2 k̂1!W1m2

a2 ~ k̂1!, ~D6!

Cancelling a factor ofq leaves us with Eq.~6.21!.
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