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Universality and its origins at the amorphous solidification transition
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Systems undergoing an equilibrium phase transition from a liquid state to an amorphous solid state exhibit
certain universal characteristics. Chief among these are the fraction of particles that are randomly localized and
the scaling functions that describe the order parameter and~equivalently! the statistical distribution of local-
ization lengths for these localized particles. The purpose of this paper is to discuss the origins and conse-
quences of this universality, and in doing so, three themes are explored. First, a replica-Landau-type approach
is formulated for the universality class of systems that are composed of extended objects connected by
permanent random constraints and undergo amorphous solidification at a critical density of constraints. This
formulation generalizes the cases of randomly cross-linked and end-linked macromolecular systems, discussed
previously. The universal replica free energy is constructed, in terms of the replica order parameter appropriate
to amorphous solidification, the value of the order parameter is obtained in the liquid and amorphous solid
states, and the chief universal characteristics are determined. Second, the theory is reformulated in terms of the
distribution of local static density fluctuations rather than the replica order parameter. It is shown that a suitable
free energy can be constructed, depending on the distribution of static density fluctuations, and that this
formulation yields precisely the same conclusions as the replica approach. Third, the universal predictions of
the theory are compared with the results of extensive numerical simulations of randomly cross-linked macro-
molecular systems, due to Barsky and Plischke, and excellent agreement is found.@S0163-1829~98!04102-2#
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I. INTRODUCTION

During the last decade there has been an ongoing effo
obtain an ever more detailed understanding of the beha
of randomly cross-linked macromolecular systems near
vulcanization transition.1–4 This effort has been built from
two ingredients:~i! the Deam-Edwards formulation of th
statistical mechanics of polymer networks;5 and~ii ! concepts
and techniques employed in the study of spin glasses.6 As a
result, a detailed mean-field theory for the vulcanizat
transition—an example of an amorphous solidificati
transition—has emerged, which makes the following pred
tions: ~i! For densities of cross links smaller than a cert
critical value~on the order of one cross-link per macromo
ecule! the system exhibits a liquid state in which all particl
~in the context of macromolecules, monomers! are delocal-
ized. ~ii ! At the critical cross-link density there is a contin
ous thermodynamic phase transition to an amorphous s
state, this state being characterized by the emergence of
dom static density fluctuations.~iii ! In this state, a nonzero
fraction of the particles have become localized around r
dom positions and with random localization lengths~i.e.,
rms, displacements!. ~iv! The fraction of localized particles
grows linearly with the excess cross-link density, as does
characteristic inverse square localization length.~v! When
scaled by their mean value, the statistical distribution of
calization lengths is universal for all near-critical cross-li
densities, the form of this scaled distribution being uniqu
determined by a certain integrodifferential equation. Fo
detailed review of these results, see Ref. 4; for an inform
discussion, see Ref. 7.
570163-1829/98/57~2!/839~9!/$15.00
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In the course of the effort to understand the vulcanizat
transition for randomly cross-linked macromolecular sy
tems, it has become clear that one can also employ sim
approaches to study randomlyend-linkedmacromolecular
systems,8 and also randomly cross-linkedmanifolds ~i.e.,
higher dimensional objects!;9 in each case, a specific mod
has been studied. For example, in the original case of
domly cross-linked macromolecular systems, the macrom
ecules were modeled as flexible, with a short-rang
excluded-volume interaction, and the cross links were
posed at random arc-length locations. On the other hand
the case ofend-linked systems, although the excluded
volume interaction remained the same, the macromolec
were now modeled as either flexible or stiff, and the rand
linking was restricted to the ends of the macromolecul
Despite the differences between the unlinked systems
the styles of linking, in all cases identical critical behavi
has been obtained in mean-field theory, right down to
precise form of the statistical distribution of scaled localiz
tion lengths.

Perhaps even more strikingly, in extensive numeri
simulations of randomly cross-linked macromolecular s
tems, Barsky and Plischke10,11 have employed an off-lattice
model of macromolecules interacting via a Lennard-Jo
potential. Yet again, an essentially identical picture h
emerged for the transition to and properties of the amorph
solid state, despite the substantial differences between ph
cal ingredients incorporated in the simulation and in the a
lytical theory.

In light of these observations, it is reasonable to a
whether one can find a common theoretical formulation
839 © 1998 The American Physical Society
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840 57PENG, CASTILLO, GOLDBART, AND ZIPPELIUS
the amorphous solidification transition~of which the vulca-
nization transition is a prime example! that brings to the fore
the emergent collective properties of all these systems
are model independent, and therefore provide useful pre
tions for a broad class of experimentally realizable syste
The purpose of this paper is to explain how this can be do
In fact, we approach the issue in two distinct~but related!
ways, in terms of a replica order parameter and in terms
the distribution of random static density fluctuations, eith
of which can be invoked to characterize the emergent am
phous solid state.

The outline of this paper is as follows. In Sec. II w
construct the universal replica Landau free energy of
amorphous solidification transition. In doing this, we revie
the replica order parameter for the amorphous solid state
discuss the constraints imposed on the replica Landau
energy by~a! symmetry considerations,~b! the smallness of
the fraction of particles that are localized near the transiti
and ~c! the weakness of the localization near the transiti
In Sec. III we invoke a physical hypothesis to solve the s
tionarity condition for the replica order parameter, there
obtaining a mean-field theory of the transition. We exhi
the universal properties of this solution and, in particular,
scaling behavior of certain central physical quantities.
Sec. IV we describe an alternative approach to the am
phous solidification transition, in which we construct a
analyze the Landau free energy expressed in terms of
distribution of static density fluctuations. Although we sh
invoke the replica approach in the construction of this La
dau free energy, its ultimate form does not refer to replic
As we show, however, the physical content of this Land
theory is identical to that of the replica Landau theory a
dressed in Secs. II and III. In Sec. V we exhibit the predic
universality by examining the results of extensive numeri
simulations of randomly cross-linked macromolecular n
works, due to Barsky and Plischke. In Sec. VI we give so
concluding remarks.

II. UNIVERSAL REPLICA FREE ENERGY FOR THE
AMORPHOUS SOLIDIFICATION TRANSITION

We are concerned, then, with systems of extended
jects, such as macromolecules, that undergo a transition
state characterized by the presence of random static fluc
tions in the particle density when subjected to a suffici
density of permanent random constraints~the character and
statistics of which constraints preserve translational and
tational invariance!. In such states, translational and rot
tional symmetry are spontaneously broken, but in a way
is hidden at the macroscopic level. We focus on the lo
wavelength physics in the vicinity of this transition.

In the spirit of the standard Landau approach, we envis
that the replica technique has been invoked to incorporate
consequences of the permanent random constraints, and
pose a phenomenological mean-field replica free energy
n→0 limit of which gives the disorder-averaged free ener
in the form of a power series in the replica order parame
We invoke symmetry arguments, along with the recognit
that near to the transition the fraction of particles that
localized is small and their localization is weak. The cont
parametere is proportional to the amount by which the co
at
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straint density exceeds its value at the transition. As we s
see, the stationarity condition for this general, symmet
inspired Landau free energy is satisfied by precisely
order-parameter hypothesis that exactly solves the statio
ity conditions derived from semimicroscopic models
cross-linked and end-linked macromolecules. From the pr
erties of this solution we recover the primary features of
liquid-amorphous solid transition.

In a system characterized by static random density fl
tuations, one might naı¨vely be inclined to use the particl
density as the order parameter. However, the disord
averaged particle density cannot detect the transition
tween the liquid and the amorphous solid states, because
uniform ~and has the same value! in both states: a subtle
order parameter is needed. As shown earlier, for the spe
cases of randomly cross-linked1,3,4 and end-linked8 macro-
molecular systems, the appropriate order parameter is
stead:

Vk1,k2,...,kg[F 1

N (
i 51

N

^eik1
•ci&x^eik2

•ci&x•••^eikg
•ci&xG , ~1!

whereN is the total number of particles,ci ~with i 51,...,N!
is the position of particlei , the wave vectorsk1,k2,...,kg are
arbitrary, ^•••&x denotes a thermal average for a particu
realizationx of the disorder, and@•••# represents averagin
over the disorder.

We make the Deam-Edwards assumption5 that the statis-
tics of the disorder is determined by the instantaneous co
lations of the unconstrained system.~It is as if one took a
snapshot of the system and, with some nonzero probab
added constraints only at those locations where two parti
are in near contact.! This assumption leads to the need
work with then→0 limit of systems ofn11, as opposed to
n, replicas. The additional replica, labeled bya50, repre-
sents the degrees of freedom of the original system be
adding the constraints, or, equivalently, describes the c
straint distribution.

We assume, for the most part, that the free energy is
variant under the groupSn11 of permutations of then11
replicas. In this replica formalism, the replica order para
eter turns out to be

V k̂[K 1

N (
i 51

N

exp~ i k̂• ĉi !L
n11

P

. ~2!

Here, hatted vectors denote replicated collections of vect
viz., v̂[$v0,v1,...,vn%, their scalar product being
v̂•ŵ[(a50

n va
•wa, and^•••&n11

P denotes an average for a
effective pure~i.e., disorder-free! system ofn11 coupled
replicas of the original system. We use the termsone-replica
sectorandhigher-replica sectorto refer to replicated vectors
with, respectively, exactly one and more than one replicaa
for which the corresponding vectorka is nonzero. In particu-
lar, the order parameter in the one-replica sector reduce
the disorder-averaged mean particle density, and plays on
minor role in what follows. The appearance ofn11 replicas
in the order parameter allows one to probe the correlati
between the density fluctuations in the constrained sys
and the density fluctuations in the unconstrained one.
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57 841UNIVERSALITY AND ITS ORIGINS AT THE . . .
We first study the transformation properties of the ord
parameter under translations and rotations, and then m
use of the resulting information to determine the possi
terms appearing in the replica free energy. Under indep
dent translations of all the replicas, i.e.,ci

a→ci
a1aa, the rep-

lica order parameter, Eq.~2!, transforms as

V k̂→V k̂
85ei (a50

n ka
•aa

V k̂ . ~3!

Under independent rotations of the replicas, defined
R̂v̂[$R0v0, . . . ,Rnvn% andci

a→Raci
a , the order paramete

transforms as

V k̂→V k̂
85V R̂21k̂ . ~4!

As discussed in detail in Ref. 4, because we are conce
with the transition between liquid and amorphous so
states, both of which have uniform macroscopic density,
one-replica sector order parameter is zero on both side
the transition. This means that the sought free energy ca
expressed in terms of contributions referring to the high
replica sector order parameter, alone.

We express the free energy as an expansion in~integral!
powers of the replica order parameterV k̂ , retaining the two
lowest possible powers ofV k̂ , which in this case are the
square and the cube. We consider the case in which no
ternal potential couples to the order parameter. Hence, t
is no term linear in the order parameter. We make expl
use of translational symmetry, Eq.~3!, and thus obtain the
following expression for the replica free energy~per particle
per space dimension! Fn($V k̂%):

12

ndFn~$V k̂%!5 (
k̂

¯
g2~ k̂!uV k̂u2

2 (
¯

k̂1k̂2k̂3

g3~ k̂1 ,k̂2 ,k̂3!

3V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ . ~5!

Here, the symbol(̄ denotes a sum over replicated vectorsk̂
lying in the higher-replica sector, and we have made exp
the fact that the right-hand side is linear inn ~in the n→0
limit ! by factoringn on the left-hand side. In a microscop
approach, the functionsg2( k̂) and g3( k̂1 ,k̂2 ,k̂3) would be
obtained in terms of the control parametere, together with
density correlators of an uncross-linked liquid having int
actions renormalized by the cross linking. Here, however,
will ignore the microscopic origins ofg2 andg3 , and instead
use symmetry considerations and a long-wavelength ex
sion to determine only their general forms. In the sadd
point approximation, then, the disorder-averaged free ene
f ~per particle and space dimension! is given by6

f 5 lim
n→0

min
$V k̂%

Fn~$V k̂%!. ~6!

Bearing in mind the physical notion that near the tran
tion any localization should occur only on long length scal
we examine the long-wavelength limit by also performing
low-order gradient expansion. In the term quadratic in
order parameter we keep only the leading and next
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leading order terms ink̂; in the cubic term in the order pa
rameter we keep only the leading term ink̂. Thus, the func-
tion g3 in Eq. ~5! is replaced by a constant and the functi
g2 is expanded to quadratic order ink̂. By analyticity and
rotational invariance,g2 can only depend on$k0,...,kn% via
$uk0u2,...,uknu2%, and, in particular, terms linear ink̂ are ex-
cluded. In addition, by the permutation symmetry among
replicas, each termukau2 must enter the expression forg2
with a common prefactor, so that the dependence is in
on k̂2. Thus, the replica free energy for long-waveleng
density fluctuations has the general form:

ndFn~$V k̂%!5 (
¯

k̂
S 2ae1

b

2
uk̂u2D uV k̂u2

2c (
¯

k̂1k̂2k̂3

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ . ~7!

To streamline the presentation, we take advantage of
freedom to rescaleFn , e, and k̂, thus setting to unity the
parametersa, b, andc. Thus, the free energy becomes

ndFn~$V k̂%!5(
¯

k̂
S 2e1

uk̂u2

2
D uV k̂u2

2(
¯

k̂1k̂2k̂3

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ . ~8!

By taking the first variation with respect toV2 k̂ we ob-
tain the stationarity condition for the replica order parame

05nd
dFn

dV2 k̂
52S 2e1

uk̂u2

2
DV k̂23(

k̂1k̂2

¯
Vk̂1

Vk̂2
dk̂11k̂2,k̂ .

~9!

This self-consistency condition applies for all values ofk̂
lying in the higher-replica sector.

III. UNIVERSAL PROPERTIES OF THE ORDER
PARAMETER IN THE AMORPHOUS SOLID STATE

Generalizing what was done for cross-linked and e
linked macromolecular systems, we hypothesize that the
ticles have a probabilityq of being localized~also called the
‘‘gel fraction’’ in the context of vulcanization! and 12q of
being delocalized, and that the localized particles are cha
terized by a probability distribution 2j23p(j22) for their
localization lengthsj. Such a characterization weaves in t
physical notion that amorphous systems should show a s
trum of possibilities for the behavior of their constituen
and adopts the perspective that it is this spectrum that
should aim to calculate. This hypothesis translates into
following expression for the replica order parameter:3,4

V k̂5~12q!d k̂,0̂1qd k̃,0
~d!E

0

`

dt p~t!e2 k̂2/2t, ~10!

where we have used the notationk̃[(a50
n ka. The first term

on the right-hand side term represents delocalized partic
and is invariant under independent translations of each
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842 57PENG, CASTILLO, GOLDBART, AND ZIPPELIUS
lica @cf. Eq. ~3!#. In more physical terms, this corresponds
the fact that not only the average particle density but
individual particle densities are translationally invariant. T
second term represents particles that are localized, an
only invariant under common translations of the replic
~i.e., translations in whichaa5a for all a!. This corresponds
to the fact that the individual particle density for localize
particles is not translationally invariant, so that translatio
invariance is broken microscopically, but the average den
remains translationally invariant, i.e., the system still is m
roscopically translationally invariant.

By inserting the hypothesis~10! into the stationarity con-
dition ~9!, and taking then→0 limit, we obtain

05d k̃,0
~d!H 2~3q22eq1qk̂2/2!E

0

`

dt p~t!e2 k̂2/2t

23q2E
0

`

dt1p~t1!E
0

`

dt2p~t2!e2 k̂2/2~t11t2!J . ~11!

In the limit k̂2→0, the equation reduces to a condition for t
localized fractionq, viz.,

0522qe13q2. ~12!

For negative or zeroe, corresponding to a constraint densi
less than or equal to its critical value, the only physical
lution is q50, corresponding to the liquid state. In this sta
all particles are delocalized. For positivee, corresponding to
a constraint density in excess of the critical value, there
two solutions. One, unstable, is the continuation of the liq
stateq50; the other, stable, corresponds to a nonzero fr
tion,

q5
2

3
e ~13!

being localized. We identify this second state as the am
phous solid state. From the dependence of the localized f
tion q on the control parametere and the form of the orde
parameter Eq.~10! we conclude that there is a continuo
phase transition between the liquid and the amorphous s
states ate50, with localized fraction exponentb51 ~i.e.,
the classical exponent13!. It is worth mentioning that micro-
scopic approaches go beyond this linear behavior near
transition, yielding a transcendental equation forq(e), valid
for all values of the control parametere ; see Refs. 3, 4.

From Eq.~8! it is evident that the liquid state is locall
stable~unstable! for negative~positive! e : the eigenvalues o
the resulting quadratic form are given byl( k̂)52e1 k̂2/2.

Now concentrating on the amorphous solid state, by
serting the value of the localized fraction into Eq.~11!, we
obtain the following integrodifferential equation for th
probability distribution for the localization lengths:

t2

2

dp

dt
5S e

2
2t D p~t!2

e

2 E
0

t

dt1p~t1!p~t2t1!. ~14!
e

is
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All parameters can be seen to play an elementary role in
equation by expressingp(t) in terms of a scaling function:

p~t!5~2/e!p~u!; t5~e/2!u. ~15!

Thus, the universal functionp~u! satisfies

u2

2

dp

du
5~12u!p~u!2E

0

u

du8p~u8!p~u2u8!. ~16!

Solving this equation, together with the normalization con
tion 15*0

`dup(u), one finds the scaling function shown i
Refs. 3,4. The functionp~u! has a peak atu.1 of width of
order unity, and decays rapidly both asu→0 andu→`. By
combining these features ofp~u! with the scaling transfor-
mation ~15! we conclude that the typical localization leng
scales ase21/2 near the transition. The order parameter a
has a scaling form near the transition:

V k̂5@12~2e/3!#d k̂,0̂1~2e/3!d k̃,0
~d!

v~A2k̂2/e!,

v~k!5E
0

`

dup~u!e2k2/2u. ~17!

Equation~16! and the normalization condition onp~u! are
precisely the conditions that determine the scaling funct
for the cross-linked and end-linked cases; they are discu
extensively, together with the properties of the resulting d
tribution of localization lengths and order parameter, in Re
3, 4, and 8.

As discussed in this section, the localized fractionq(e)
and the scaled distribution of inverse square localizat
lengthsp~u! are universal near the transition. We now d
cuss this issue in more detail.

First, let us focus at the mean-field level. Recall the me
field theory of ferromagnetism14 and, in particular, the expo
nentb, which characterizes the vanishing of the magneti
tion density order parameter~from the ferromagnetic state!
as a function of the temperature at zero applied magn
field. The exponentb takes on the value of 1/2, regardless
the details of the mean-field theory used to compute it. T
functions q(e), p~u!, and v(k) are universal in the sam
sense. The case ofq(e) is on essentially the same, standa
footing as that of the magnetization density. What is n
standard, however, is that describing the~equilibrium! order
parameter is a universal scalingfunction, v(k) @or, equiva-
lently, p~u!# that is not a simple power law. This featur
arises because the usual presence of fields carryinginternal
indices, such as Cartesian vector indices in the case of
romagnetism, is replaced here by the external continu
replicated wave-vector variablek̂. There are two facets to
this universal scaling behavior of the order parameter. F
for systems differing in their microscopic details and th
constraint densities there is the possibility of collapsing
distribution of localization lengths on to a single functio
solely by rescaling the independent variable. Second, the
a definite prediction for the dependence of this rescaling
the control parametere.
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Now, going beyond the mean-field level, in the context
vulcanization de Gennes15 has shown that the width of th
critical region, in which fluctuations dominate and mea
field theory fails, vanishes in the limit of very long macr
molecules in space dimensiond53 or higher. Thus, one ma
anticipate that for extended objects the mean-field theory
cussed here will be valid, except in an exceedingly narr
region around the transition. Nevertheless, if—as is usu
the case—the effective Hamiltonian governing the fluct
tions is the Landau free energy then the universality d
cussed here is expected to extend,mutatis mutandis, into the
critical regime.

That the amorphous solid state given by Eq.~17! is stable
with respect to small perturbations~i.e., is locally stable! can
be shown by detailed analysis. Moreover, as we shall se
Sec. V, it yields predictions that are in excellent agreem
with subsequent computer simulations. However, there is
principle, no guarantee that this state is globally stable~i.e.,
that no states with lower free energy exist!.

Up to this point we have assumed that the free energ
invariant under interchange of all replicas, including the o
representing the constraint distribution (a50), with any of
the remainingn, i.e., that the free energy is symmetric und
the groupSn11 of permutations of alln11 replicas. This
need not be the case, in general, as the system ca
changed,~e.g., by changing the temperature! after the con-
straints have been imposed. In this latter case, the free en
retains the usualSn symmetry under permutations of replica
a51,...,n. The argument we have developed can be rep
duced for this more general case with only a minor chan
in the free energy, we can no longer invokeSn11 symmetry
to argue that all of theukau2 must enter the expression forg2
with a common prefactor. Instead, we only have permuta
symmetry among replicasa51,...,n and, therefore, the pref
actor b for all of these replicas must be the same, but n
the prefactorb0 for replica a50 can be different. This
amounts to making the replacement

k̂2→ k̄ 2[b0b21uk0u21 (
a51

n

ukau2 ~18!

in the free energy. Both the rest of the derivation and
results are unchanged, except thatk̂2 needs to be replaced b
k̄ 2, throughout. We mention, in passing, that no sad
points exhibiting the spontaneous breaking of replica perm
tation symmetry have been found, to date, either for syst
with Sn11 or Sn symmetry.

IV. FREE ENERGY IN TERMS OF THE DISTRIBUTION
OF STATIC DENSITY FLUCTUATIONS

The aim of this section is to construct an expression
the disorder-averaged Landau free energy for the amorph
solidification transition,F, in terms of the distribution of
static density fluctuations. We present this approach as
alternative to the strategy of constructing a replica free
ergy Fn in terms of the replica order parameterV. In the
familiar way, the equilibrium state will be determined via
variational principle:dF50 andd2F.0. What may be less
f
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familiar, however, is that in the present setting theindepen-
dentvariables for the variation~i.e., the distribution of static
density fluctuations! themselves constitute a functional.

Our aim, then, is to work not with the replica order p
rameterV k̂ , but instead with the disorder-averaged probab
ity density functional for the random static densi
fluctuations,16,4N($rk%), which is defined via

N~$rk%![F 1

N (
i 51

N

)
k

dc„rk2^exp~ ik•ci !&x…G . ~19!

Here,Pk denotes the product over alld vectorsk, and the
Dirac d function of complex argumentdc(z) is defined by
dc(z)[d(Rez)d(Im z), where Rez and Imz, respectively,
denote the real and imaginary parts of the complex num
z. From the definition ofN($rk%), we see thatr2k5rk* and
r051. Thus we can take as independent variablesrk for all
d vectorsk in the half-space given by the conditionk•n.0
for a suitable unitd vectorn. In addition,N($rk%) obeys the
normalization condition

E DrN~$rk%!51. ~20!

It is straightforward to check that, for any particular positi
integerg, the replica order parameterV k̂ is agth moment of
N($rk%):

E DrN~$rk%!rk1rk2•••rkg5Vk1,k2,...,kg. ~21!

We useDr to denote the measurePk dRerk dIm rk .
The merit of the distribution functionalN($rk%) over the

replica order parameterV k̂ is that, as we shall soon see,
allows us to formulate a Landau free energy for the am
phous solidification transition, depending onN($rk%), in
which replicated quantities do not appear, while maintain
the physical content of the theory. At the present time, t
approach is not truly independent of the replica approach
the following sense: we employ the replica approach to
rive the free energy, Eq.~8!, and only then do we transform
from the language of order parameters to the language o
distribution of static density fluctuations. We are not yet
possession of either an analytical scheme or a set of phy
arguments that would allow us to construct the Landau f
energy directly. Nevertheless, we are able, by this indir
method, to propose a~replica-free! free energy, and also to
hypothesize~and verify the correctness of! a stationary value
of N($rk%). It would, however, be very attractive to find
scheme that would allow us to eschew the replica appro
and work with the distribution of static density fluctuation
from the outset.

To proceed, we take the replica Landau free energyFn ,
Eq. ~8!, in terms of the replica order parameterV k̂ , and
replaceV k̂ by its expression in terms of the (n11)th mo-
ment ofN($rk%). Thus, we arrive at the replica Landau fre
energy:
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ndFn5e221~32e!E Dr1N~$r1,k%!Dr2N~$r2,k%!S (
k

r1,kr2,2kD n11

1
1

2
~n11!E Dr1N~$r1,k%!Dr2N~$r2,k%!

3S (
k

k2r1,kr2,2kD S (
k

r1,kr2,2kD n

2E Dr1N~$r1,k%!Dr2N~$r2,k%!Dr3N~$r3,k%!

3S (
k1 ,k2

r1,k1
r2,k2

r3,2k12k2D n11

. ~22!

In order to obtain the desired~replica-independent! free energy, we take the limitn→0 of Eq. ~22!:

dF5d lim
n→0
Fn5~32e!E Dr1N~$r1,k%!Dr2N~$r2,k%!S (

k
r1,kr2,2kD lnS (

k
r1,kr2,2kD 1

1

2 E Dr1N~$r1,k%!Dr2N~$r2,k%!

3S (
k

k2r1,kr2,2kD lnS (
k

r1,kr2,2kD 2E Dr1N~$r1,k%!Dr2N~$r2,k%!Dr3N~$r3,k%!

3S (
k1 ,k2

r1,k1
r2,k2

r3,2k12k2D lnS (
k1 ,k2

r1,k1
r2,k2

r3,2k12k2D . ~23!
th
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In deriving the above free energy we have employed
physical fact that the average particle density is uniform.
other words, the replica order parameter is zero if all but o
of the replicated wave vectors is nonzero which, translate
the language of the distribution of static density fluctuatio
means that the first moment of the static density distribut
equalsdk,0 . It is worth noting that, within this formalism, the
replica limit can already be taken at the level of the fr
energy, prior to the hypothesizing of an explicit form for th
stationary value of the order parameter. On the one hand,
is attractive, as it leads to a Landau theory in which repli
play no role. On the other hand, the approach is, at pres
restricted to replica-symmetric states.

We now construct the self-consistency condition that f
lows from the stationarity of the replica-independent free
ergy. We then proceed to solve the resulting functional eq
tion exactly, by hypothesizing a solution having precisely
same physical content as the exact solution of the rep
self-consistency condition discussed in Sec. III.

To construct the self-consistency condition forN($rk%) it
is useful to make two observations. First,N($rk%) obeys the
normalization condition~20!. This introduces a constraint o
the variations ofN($rk%) which is readily accounted for via
Lagrange’s method of undetermined multipliers. Second
mentioned above, not all the variables$rk% are independent
we have the relationsr051 andr2k5rk* . In principle, one
could proceed by defining a new distribution that only d
pends on the independent elements of$rk%, and re-express
the free energy in terms of this new distribution. Howev
for convenience we will retainN($rk%) as the basic quantity
to be varied, and bear in mind the fact thatr051 and
r2k5rk* . By performing the constrained variation ofdF
with respect to the functional,N($rk%)

05
d

dN~$rk%!
SF1lE Dr1N~$r1,k%! D , ~24!

wherel is the undetermined multiplier, we obtain the se
consistency condition obeyed byN($rk%):
e
n
e
in
,
n

is
s
nt,

-
-

a-
e
a

s

-

,

05ld12~32e!E Dr1N~$r1,k%!

3S (
k

rkr1,2kD lnS (
k

rkr1,2kD 1E Dr1N~$r1,k%!

3S (
k

k2rkr1,2kD lnS (
k

rkr1,2kD
23E Dr1N~$r1,k%!Dr2N~$r2,k%!

3S (
k,k8

rkr1,k8r2,2k2k8D lnS (
k,k8

rkr1,k8r2,2k2k8D .

~25!

To solve this self-consistency condition forN($rk%) we
import our experience with the replica approach, there
constructing the normalized hypothesis

N~$rk%!5~12q!dc~r021!)
kÞ0

dc~rk!

1qE dc

V E
0

`

dtp~t!)
k

dc~rk2eic•k2k2/2t!,
~26!

in which q ~which satisfies 0<q<1! is the localized fraction
and p(t) ~which is regular and normalized to unity! is the
distribution of localization lengths of localized particles. It
straightforward to show that by taking the (n11)th moment
of N($rk%) we recover the self-consistent form of the repli
order parameter, Eq.~10!.

By inserting the hypothesis~26! into Eq.~25!, making the
replacementr0→1, and performing some algebra, the se
consistency condition takes the form
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05E dc

V E
0

`

dtS 11(
kÞ0

rke
2 ic•k2k2/2tD lnS 11(

kÞ0
rke

2 ic•k2k2/2tD H 2q~2e13q!p~t!2q
d

dt
@2t2p~t!#

23q2E
0

t

dt1p~t1!p~t2t1!J 2
3

2
dq2E

0

`

dt1p~t1!dt2p~t2!ln$V2/dt1t2/2pe~t11t2!%1ld, ~27!
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in terms of the undetermined multiplierl. To determinel
we insert the choicerk5dk,0 , which yields

l5
3

2
q2E

0

`

dt1p~t1!dt2p~t2!ln$V2/dt1t2/2pe~t11t2!%.

~28!

By using this result to eliminatel from the self-consistency
condition, and observing that this condition must be satis
for arbitrary $rk%, we arrive at a condition onq and p(t),
viz.,

052q~2e13q!p~t!2q
d

dt
@2t2p~t!#

23q2E
0

t

dt1p~t1!p~t2t1!. ~29!

We integrate this equation over all values oft and use the
normalization condition onp(t) to arrive at the same equa
tion relatingq ande as was found in Eq.~12! of the previous
section, the appropriate solution of which is given
q52e/3, i.e., Eq.~13!. Finally, we use this result forq to
eliminate it from Eq.~29!, thus arriving at the same sel
consistency condition onp(t) as was found in Eq.~14! of
the previous section. Thus, we see that these conditions,
for q and one forp(t), are precisely the same as tho
arrived at by the replica method discussed in Sec. III.

V. COMPARISON WITH NUMERICAL SIMULATIONS:
UNIVERSALITY EXHIBITED

The purpose of the present section is to examine the c
clusions of the Landau theory, especially those concern
universality and scaling, in the light of the extensi
molecular-dynamics simulations, performed by Barsky a
Plischke.10,11 These simulations address the amorphous
lidification transition in the context of randomly cross-linke
macromolecular systems, by using an off-lattice model
macromolecules interacting via a Lennard-Jones potentia

It should be emphasized that there are substantial dif
ences between ingredients and calculational schemes us
the analytical and simulational approaches. In particular,
analytical approach:~i! invokes the replica technique;~ii !
retains interparticle interactions only to the extent that m
roscopically inhomogeneous states are disfavored~i.e., the
one-replica sector remains stable at the transition!; ~iii ! ne-
glects order-parameter fluctuations, its conclusions there
being independent of the space dimension; and~iv! is solved
via an ansatz, which is not guaranteed to capture the opt
solution.

Nevertheless, and rather strikingly, the simulations yi
an essentially identical picture for the transition to and pr
d

ne

n-
g

d
o-

f

r-
in

e

-

re

al

d
-

erties of the amorphous solid state, inasmuch as they indi
that~i! there exists a~cross-link–density-controlled! continu-
ous phase transition from a liquid state to an amorph
solid state;~ii ! the critical cross-link density is very close t
one cross link per macromolecule;~iii ! q varies linearly with
the density of cross links, at least in the vicinity of this tra
sition ~see Fig. 1!; ~iv! when scaled appropriately~i.e., by the
mean localization length!, the simulation data for the distri
bution of localization lengths exhibit very good collapse
to a universal scaling curve for the several~near-critical!
cross-link densities and macromolecule lengths conside
~see Figs. 2 and 3!; and~v! the form of this universal scaling
curve appears to be in remarkably good agreement with
precise form of the analytical prediction for this distributio

It should not be surprising that by focusing on univers
quantities, one finds agreement between the analytical
computational approaches. This indicates that the propo
Landau theory does indeed contain the essential ingredi
necessary to describe the amorphous solidification transit

Let us now look more critically at the comparison b
tween the results of the simulation and the mean-field the
With respect to the localized fraction, the Landau theory
only capable of showing the linearity of the dependen
near the transition, on the excess cross-link density, leav
undetermined the proportionality factor. The simulation
sults are consistent with this linear dependence, giving
addition, the amplitude. There are two facets to the univ
sality of the distribution of localization lengths, as mention
in Sec. III. First, that the distributions can, for different sy
tems and different cross-link densities, be collapsed on
universal scaling curve, is verified by the simulations,
pointed out above. Second, the question of how the sca
parameter depends on the excess cross-link density is d
cult to address in current simulations, because the dyna
range for the mean localization length accessible in them
limited, so that its predicted divergence at the transition
difficult to verify.

VI. SUMMARY AND CONCLUDING REMARKS

To summarize, we have proposed a replica Landau
energy for the amorphous solidification transition. T
theory is applicable to systems of extended objects unde
ing thermal density fluctuations and subject to quenched
dom translationally invariant constraints. The statistics of
quenched randomness are determined by the equilibr
density fluctuations of the unconstrained system. We h
shown that there is, generically, a continuous phase tra
tion between a liquid and an amorphous solid state, a
function of the density of random constraints. Both states
described by exact stationary points of this replica free
ergy, and are replica symmetric and macroscopically tra
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lationally invariant. They differ, however, in that the liquid
translationally invariant at the microscopic level, whereas
amorphous solid breaks this symmetry.

We have also shown how all these results may be rec
ered using an alternative formulation in which we focus le
on the replica order parameter and more on the distribu
of random static density fluctuations. In particular, we co
struct a representation of the free energy in terms of
distribution, and solve the resulting stationarity condition

Lastly, we have examined our results in the light of t
extensive molecular-dynamics simulations of random
cross-linked macromolecular systems, due to Barsky
Plischke. Not only do these simulations support the gen
theoretical scenario of the vulcanization transition, but a
they confirm the detailed analytical results for univer
quantities, including the localized fraction exponent and
distribution of scaled localization lengths.

The ultimate origin of universality is not hard to unde
stand, despite the apparent intricacy of the order param
associated with the amorphous solidification transition.
we saw in Secs. II and III, there are two small emerg

FIG. 1. Localized fractionq as a function of the number of cros
links per macromoleculen, as computed in molecular-dynamic
simulations by Barsky and Plischke~Ref. 11!. L is the number of
monomers in each macromolecule;N is the number of macromol
ecules in the system. The straight line is a linear fit to theN5200
data. Note the apparent existence of a continuous phase tran
nearn51, as well as the apparent linear variation ofq with n, both
features being consistent with the mean-field description.

FIG. 2. Unscaled probability distributionPu of localization
lengths j ~in units of the linear system size!, as computed in
molecular-dynamics simulations by Barsky and Plischke~Ref. 11!.
In the simulations the number of segments per macromolecu
10; and the number of macromolecules is 200.
e
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physical quantities, the fraction of localized particles and
characteristic inverse square localization length of localiz
particles. The smallness of the localized fraction valida
the truncation of the expansion of the free energy in pow
of the order parameter. The smallness of the character
inverse square localization length leads to a very simple
pendence,(a50

n ukau2, on then11 independent wave vec
tors of the replica theory, well beyond the permutation
variance demanded by symmetry considerations alone. A
result, near the transition, the amorphous solid state is c
acterizable in terms of a single universal function of a sin
variable, along with the localized fraction.

Although throughout this paper we have borne in mi
the example of randomly cross-linked macromolecular s
tems, the circle of ideas is by no means restricted to s
systems. To encompass other systems possessing exter
induced quenched random constraints, such as netw
formed by the permanent random covalent bonding of ato
or small molecules~e.g., silica gels!, requires essentially no
further conceptual ingredients~and only modest further tech
nical ones!.17

One may also envisage applications to the glass transit
Although it is generally presumed that externally-induc
quenched random variables are not relevant for describ
the glass transition, it is tempting to view the freezing-out
some degrees of freedom as the crucial consequence o
temperature-quench, with a form of quenched disor
thereby being developed spontaneously. The approach
sented in the present paper becomes of relevance to the
transition if one accepts this view of the temperature quen
and thus models the nonequilibrium state of the quenc
liquid by the equilibrium state of a system in which som
fraction of covalent bonds has been rendered permanent~the
deeper the quench the larger the fraction!.18 This strategy,
viz., the approximating of pure systems by ones with ‘‘se
induced’’ quenched disorder, has also been invoked in v
interesting work on the Bernasconi model for binary s

ion

is

FIG. 3. Probability distribution~symbols! Ps of localization
lengthsj, scaled with the sample average of the localization leng
jav, as computed in molecular-dynamics simulations by Barsky
Plischke~Ref. 11!. Note the apparent collapse of the data on to
single universal scaling distribution, as well as the good quantita
agreement with the mean-field prediction for this distribution~solid
line!. In the simulation the number of segments per macromolec
is 10; and the number of macromolecules is 200. The mean-fi
prediction for Psc(j/jav) is obtained from the universal scalin
function p~u! by Psc(y)5(2s/y3)p(s/y2), where the constan
s.1.224 is fixed by demanding that*0

`dyyPsc(y)51.
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quences of low autocorrelation.19 Interesting connections ar
also apparent with recent effective-potential approache
glassy magnetic systems, in which one retains in the parti
function only those configurations that lie close to the eq
librium state reached at the glass transition temperature.20
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