RAPID COMMUNICATIONS

Density of states ind-wave superconductors disordered by extended impurities

PHYSICAL REVIEW B 66, 140512R) (2002

InancAdagidelil* Daniel E. Sheeh$,” and Paul M. Goldbaftt
nstituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, Leiden, NL-2333 CA, The Netherlands
Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T1Z1
3Department of Physics, University of lllinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801
(Received 12 July 2002; published 31 October 2002

The low-energy quasiparticle states of a disordatedave superconductor are investigated theoretically. A
class of such states, formed via tunneling between the Andreev bound states that are localized around extended
impurities (and result from scattering between pair-potential lobes that differ in,sigdentified. Its(diver-
gend contribution to the total density of states is determined by taking advantage of connections with certain
one-dimensional random tight-binding models. The states under discussion should be distinguished from those
associated with nodes in the pair potential.
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. INTRODUCTION pair potentiaf In the case of a single impurifythis mecha-
nism has already been shown to produce low-energy states
In recent years, considerable attention has been focusdHbat are localized near the impurity. These states can be as-
on the low-energy electron-hole quasiparticle spectral propsociated with the classical trajectories scattering from the
erties of the cuprate superconductors in the presence of inimpurity, and have been observed via scanning-tunneling
purity scattering. Much of impetus for this effort has its ori- spectroscopy®
gin in the fact that many cuprate superconductors are Here we build upon this single-impurity physics to iden-
randomly chemically doped insulators, and are therefore distify a singular(and potentially dominaicontribution to the
ordered. Moreover, as they are pair breakers for them, thlw-energy DOS. This contribution, which conventional
role of impurities is especially important fa-wave super- techniques fail to capture, arises from tunneling along the
conductors. Of particular interest is the behavior of theclassical trajectories that connect the individual impurities
single-particle density of statéBOS) p(E) as the energf  and, hence, connect the low-energy states localized near
tends to zero, i.e., its low-energy behavior. these impurities. The underlying physics was formulated
In recent work on the DOS of disorderedwave super- some time ago in the context of tunnelling corrections to
conductors, Rgn and Leé invoked at-matrix approxima-  ground-state energies in in models of supersymmetric quan-
tion to infer thatp(E)~ 1/E|InE?? at low energies. More tum mechanic!
recently, Yashenkiret al? and Altland argued that the diver- The picture we have in mintsee Fig. 1 of the processes
gence found in Ref. 1 is present only for the case of a vanthat lead to low-energy states involves classical trajectories
ishing chemical potentiali.e., for a half-filled bang and that each visit many extended impurities. As a quasiparticle
thus does not apply to a doped cuprdf® be precise, uni- progresses along such a trajectory, its momentum is repeat-
tarity of the impurity scattering is also requirgdt was fur-  edly altered via scattering from the extended impurities, so
ther argued in Refs. 2 and 3 that, instead of divergin(d;) that the effective pair potentidFig. 1(b)] undergoes sign
should vanish atE=0 (unless certain very specific fine- changes. Localized near each such sign change would be a
tuning requirements are me#\n important feature shared by zero-energy quasiparticle state; quasiparticle tunneling
Refs. 1-3 is the hypothesis that the disorder potential may béhrough the pair potentialconnects these states, raising
adequately modeled by a random collectiopointlikescat-  their energies from zero, and thus forming a low-energy band
terers. However, for aingleimpurity in ad-wave supercon- that exhibits a Dyson-like singularity at zero energy:
ductor, the low-energy DOS is qualitatively different for p(E)~ 1/E|In E?%. This picture loses its precision for se-
point-like* and extendet (i.e., impurities of a size much quences of impurities between which the pair potential is
larger than the Fermi wavelengtimpurities: the states that predominantly smalli.e., for nodal directionsand, conse-
reside at zero energy for extended impurities reside at norguently, the states are not well localized near the impurities.
zero energies for pointlike impuritie§The underlying rea- However, the contribution on which we are focusing., the
son for this difference is that, for pointlike impurities, the non-nodal contributionis expected to be substantial, and
guasiparticle scattering is essentially diffractive, whereas foquite likely dominant, in the low-energy limit.
the extended impurities it is essentially semiclassicEthis Based on previous work on low-energy quasiparticle
observation raises the possibility that such differences wilktates,* we identify three classes of processes that can effect
continue to manifest themselves in the many-impurity setthe low-energy DOS of a disorderéewvave superconductor:
ting. (i) purely semiclassical scattering between states with differ-
The purpose of the present paper is to identify a mechaing signs of the pair-potentidl.e., scattering due to random
nism for producing low-energy quasiparticle states. Thisextended scatterers in tllewave superconductorswhich
mechanism is based on impurity-scattering processes thate shall focus on in the present papgi) purely diffractive
connect states associated with differing signs ofdhveave  scattering between states near the nodal directions of the
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(a) potential (integra) operator; how it acts is specified by
C the nonlocal pair-potential kerneh(r,r’) via [Av,](r)
(b) = A2 A(r,r)ua(r').

To define this model fully, we need an assumption about
the form of A(r,r"). It is convenient to exchange the coor-
dinatesr andr’ for the relative and center-of-mass coordi-
natesp andR:

K(p,R)EA(r,I”), p=r—r', 2R=r+r’". 3

Then, via Fourier transformation with respectgoviz.,

. SR K(k,R)EJ d?pe ' PA(p,R), 4)

P A
A—/ we obtain the pair potentiar(k,R) at the center-of-mass

) ) position R and relative momenturk. As our aim is to de-
FIG. 1. (a) Sketch of a classical trajectory that encounters sev- ibe th t duct {Ake.R) to h
eral impurities and, hence, several sign changes.imhe shaded scribe the cuprate superconductors, we takk,R) to have

regions on the trajectory denote the sections of the trajectory wherd-wave symmetryA(k, R)“(ki_ ks), wherek, andk, de-
approximate zero-energy states resit®. Momentum-space pair note the Cartesian componentskofHowever, we allow for
potential of ad-wave superconductofc) Schematic depiction ok the possibility of position-dependent amplitude variations of
andA? along the trajectory. the d-wave pair potential due, say, to pair-breaking effects
near the extended scatterers.

pair-potential(i.e. the scattering of nodal quasiparticles by
pointlike impuritie, which was considered in, e.g., Refs.
3,2, and 13; andii) the mixing of the low-energy states that
arise from processg$) and (ii). Throughout the rest of this
paper we shall ignore processes in cl@ss In consequence, We now invoke a semiclassical approximation under
the low-energy DOS of a disordergewave superconductor which p(E) is expressed in terms of the solution of a family
can be expressed as a sum of contributions arising from clagg one-dimensional eigenproblems, each associated with a
(i) processesviz. po) and clasgii) processesviz. ppoda) classical scattering trajectory in the presence of the single-
the latter, as discussed in Refs. 2 and 3, being nondivergeptarticle impurity potentiaM(r). We restrict ourselves to a
and therefore subdominant. Thus, we shall focupgpland  brief discussion of this approach; for details, see Refs. 5 and

I1l. SEMICLASSICAL APPROACH TO THE
BOGOLIUBOV —DE GENNES EIGENPROBLEM

denote this by (E)]. 14. The approximation amounts to oui} regarding the ki-
netic and potential energies as being comparable and being
Il. QUASIPARTICLE MOTION IN A d-WAVE the largest energies in the problef) turning off the pair
SUPERCONDUCTOR WITH MANY EXTENDED potential, (iii) semiclassically treating the quasiparticle mo-
IMPURITIES tion in the presence of the kinetic and potential energies, and
(iv) reinstating the pair potential. Via this approach, we re-
Our focus will be on the DOS per unit area, i.e., duce the two-dimensional Bogoliubov—de Gennes eigen-

problem to a family of one-dimensional Andreev eigenprob-
1 lems residing on trajectories, each trajectory being a
p(B)=7% > SE—Ep), (1) particular classical scattering trajectory in the presence of the
" many-impurity potential. This scheme applies under the fol-

whereA is the area of the sample and the energy eigenvaludewing conditions:(i) the amplitudes ol andV should vary

{E} follow from the Bogoliubov—de Gennes eigenproblem,slowly, relative to the Fermi wavelengthe; and (i) the

viz., Fermi energykZ should be large compared with the energy
scale of interest, vizE, as well as with the typical pair-

(ﬁ A ) u, u, potential scale.

R R ( ): En( ) (2 Let us now turn to the family of one-dimensional eigen-
problems arising from this semiclassical scheme. Following

~ Ref. 5, these trajectory-dependent eigenproblems take the

Here h=—V2?—kZ+V(r), in which kZ is the chemical form

potential[i.e., ke (=2#/\g) is the Fermi wave vectdrV

is the single-particle impurity potential, and we have adopted — -

units in which#2/2m=1, m being the commorieffective A( ) — n( )

mass of the electrons and holes. The operAtds the pair-

(5a)
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—2ikgd, Ao(o) degenerate states yield a continuum of states, extending up-
H= (5b)  ward in energy from zero. Our task is to shed some light on

Bo(0)  2iked, this band formation. We proceed to set up a tight-binding

— model along the trajectory, in which we retain only the zero-
Ag(0)=A[KpdgXc(0) ()], (509 energy impurity state§n)} (i.e., the local ground states at
i.e., an Andreev eigenprobletiHere, the parameter mea-  each of the{s,}) and allow only nearest-neighbor tunneling
sures the position along a particular classical trajectorjpetween them??! To complete the model, we need the ma-
x.(o), the latter obeying Newton’s equation in the many-trix elements ofd connecting these states, i.e.,
impurity potential, viz.,
k2%, )= — TV xe(0)]. ©) tn=(nlRin+ D). ©
The DOS is then obtained by assembling the eigenvalu
spectraE,(n,b) of all the classical trajectories, the latter i
being labeled in terms of an asymptotic momentum directiorfulation produces
n and impact parametd.

Using the analytic expression for the zero energy wave
functionst! (s|n)ecexp—f2 ds'|A(s')], a straightforward cal-

1 Sn+1
ke [ dn tn~—IA’(Sn)A’(SnH)I”“eXP[—f dS’IA(S’)I},
p(E)Z—f —f dbp(n,b,E), (72 Jm 5
b.E _2 SE—E b 75 where A’ (s)=d;A(s). We are now in a position to write
p(n,b,E)= . [ m(M.b)]. (7b) down a low-energy effective approximation i viz.,

Thus, in order to obtaip(E) one needs to find each classical )
trajectory, obtain the associated effective pair-potential A~ to(In){(n+1]+|n+1)n
[given by Eq.(50)], solve the resulting one-dimensional ei- .

genval_ue equatior_1, and, finally, integrate over aI_I the Classil-_e_, for each classical trajectory, one arrives dtapologi-
cal trajectories using Ed7a). er note .that if one interprets cally) one-dimensional hopping model that captures the
the weight of a particular classical trajectory as the pmbab'l'physics of tunneling processes between tleemerly zero-

ity of finding a pair-potential configuration corresponding 10 gnergy states localized near each zero of the pair-potential.
that particular trajectory, then we see that the calculation of

p(E) amounts to computing the average density of states of
a random pair-potential model. Models of this sort were con-

), 11)

V. DENSITY OF STATES

sidered, e.g., in Refs. 16-19. In order to obtain the low-energy DOS, we must obtain
the DOS of the effective HamiltoniafEq. (11)] for each
IV. EIGENVALUE PROBLEM FOR A SINGLE trajectory, and then collect them together. We assume that the
TRAJECTORY collection of trajectories forms an ensemble that is character-

ized by the condition that momentum directions before and
after a collision are uncorrelated. Then, summing over such
an ensemble of trajectories is equivalémp to a constant of
proportionality to averaging the DOS of Hamiltoniafil)
over uncorrelated values df,. To obtain the low-energy
—ig, A(s) DOS of this effective model we appeal to results obtained by
. :( . ) (8)  Eggarter and Riedingéf, who, building on the work of
A(s) ids Dyson? and Theodorou and Cohéh,studied random-
whereA (s)=Ao(2KeS). hopping models of precisely this form. Specifically, in Ref.
22 it was found that, under the condition that #tg} are

Our_ method for _calculatlng the spectrum b'f in the uncorrelate®® and identically distributed, the DOS &
many-impurity case is based on that for a single imprity. .0 is given by

the latter case, low-energy states arose from asymptotically
sign-changing trajectoriefi.e. those trajectories for which
limg_, . ,A(s) differ in sign|. Finding the spectrum amounted p(E)~
to identifying such sign-changing trajectories. What about

the case ofmany extended impurities? In this case, for a

typical trajectory through the impurity potentia(s) under- ~ WhereN denotes the average number of sites along the tra-
goes repeated sign changes. On a particular trajectory let Uctory, Z is the constant of proportionality arising from the
label the the positions of these zeroesAqk) by {s,}. Re- Jacobian of the transform_ation from summing over trajecto-
call that we are concerned with the collection of impurity ries to averaging ovet,}, t is the scale characterizifg,},
states that would lie at zero energy if the impurities wereand the amplituder? is given by the variance of the loga-
isolated. Owing to tunneling between them, these formerlyithm of t, i.e.,

We now examine the contribution(n,b,E) to the DOS
for the case of a generic trajectory,p). For convenience,
we introduce the rescaled trajectory paramester/2kg; the
Hamiltonian then becomes

20°

ZE||n(|5/t_)2|3’ 4

S
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a?={((Int?1A3)%) —(Int?/A3)?, (13
where(- - -) denotes a disorder average. The scalaado?
could be estimated with the help of Ed.0) as

t2ockpA g Zexp(— Ay /ken?),

(143

1/2
[of ’

o2 AgIKen (14b)
where n, is the number of impurities per unit area. What
remains is to determine the coefficiefst we now make an
estimate of this quantity.

Our estimate foiZ follows from considering the integra-

tion overb for a single impurity of sizea. As the impurity
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12
c

E|In(E/t)?3

Agan

p(E)x (19

We remark that the divergence of the low-energy DOS is
ultimately cut off due to physical processes not included in
the present description. These include the dephasing scale
fil 74 and the diffractive scattering scaté 7y ; the cut-off
will occur at the largest of these scales. Thus it is possible
that at extremely low energigs(E) eventually does vanish
asymptotically, in agreement with the results of Refs. 2 and
3. However, the present results would still apply at interme-
diate energies. Finally, we stress that the calculation pre-
sented here does not place any special emphasis on the nodes
of the d-wave order parameter; indeed, the singular contribu-
tion to the density of states of &wave superconductor re-

potential is expected to decay rapidly away from the impu-ported here arises from states in genérather than nodal
rity, the only trajectories that interact appreciably with it areregions on the Fermi surface.

those that directly intersect it, i.&kzf db—kga. Thus, in the

absence of the tunneling corrections between the zero-energy

statesp(E) is approximately given byo(E)~kran.5(E).>
Although the inclusion of tunneling corrections changes th
energy dependence pfE), here we assume that the energy-
integrated density of statggp(E)dE is approximately con-
served for some appropriately chosen cutaffThese con-
siderations lead to the following approximate form fqiE)

valid for E<t:

€
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