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Density of states ind-wave superconductors disordered by extended impurities

İnançAdagideli,1,* Daniel E. Sheehy,2,† and Paul M. Goldbart3,‡

1Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, Leiden, NL-2333 CA, The Netherlands
2Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T1Z

3Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
~Received 12 July 2002; published 31 October 2002!

The low-energy quasiparticle states of a disorderedd-wave superconductor are investigated theoretically. A
class of such states, formed via tunneling between the Andreev bound states that are localized around extended
impurities ~and result from scattering between pair-potential lobes that differ in sign!, is identified. Its~diver-
gent! contribution to the total density of states is determined by taking advantage of connections with certain
one-dimensional random tight-binding models. The states under discussion should be distinguished from those
associated with nodes in the pair potential.
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I. INTRODUCTION

In recent years, considerable attention has been focu
on the low-energy electron-hole quasiparticle spectral pr
erties of the cuprate superconductors in the presence of
purity scattering. Much of impetus for this effort has its o
gin in the fact that many cuprate superconductors
randomly chemically doped insulators, and are therefore
ordered. Moreover, as they are pair breakers for them,
role of impurities is especially important ford-wave super-
conductors. Of particular interest is the behavior of t
single-particle density of states~DOS! r(E) as the energyE
tends to zero, i.e., its low-energy behavior.

In recent work on the DOS of disorderedd-wave super-
conductors, Pe´pin and Lee1 invoked at-matrix approxima-
tion to infer thatr(E);1/Eu ln E2u2 at low energies. More
recently, Yashenkinet al.2 and Altland3 argued that the diver
gence found in Ref. 1 is present only for the case of a v
ishing chemical potential~i.e., for a half-filled band!, and
thus does not apply to a doped cuprate.~To be precise, uni-
tarity of the impurity scattering is also required.! It was fur-
ther argued in Refs. 2 and 3 that, instead of diverging,r(E)
should vanish atE50 ~unless certain very specific fine
tuning requirements are met!. An important feature shared b
Refs. 1–3 is the hypothesis that the disorder potential ma
adequately modeled by a random collection ofpointlikescat-
terers. However, for asingle impurity in ad-wave supercon-
ductor, the low-energy DOS is qualitatively different fo
point-like4 and extended5 ~i.e., impurities of a size much
larger than the Fermi wavelength! impurities: the states tha
reside at zero energy for extended impurities reside at n
zero energies for pointlike impurities.~The underlying rea-
son for this difference is that, for pointlike impurities, th
quasiparticle scattering is essentially diffractive, whereas
the extended impurities it is essentially semiclassical.! This
observation raises the possibility that such differences
continue to manifest themselves in the many-impurity s
ting.

The purpose of the present paper is to identify a mec
nism for producing low-energy quasiparticle states. T
mechanism is based on impurity-scattering processes
connect states associated with differing signs of thed-wave
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pair potential.6 In the case of a single impurity,5 this mecha-
nism has already been shown to produce low-energy st
that are localized near the impurity. These states can be
sociated with the classical trajectories scattering from
impurity, and have been observed via scanning-tunne
spectroscopy.7,8

Here we build upon this single-impurity physics to ide
tify a singular~and potentially dominant! contribution to the
low-energy DOS. This contribution, which convention
techniques fail to capture, arises from tunneling along
classical trajectories that connect the individual impurit
and, hence, connect the low-energy states localized
these impurities. The underlying physics was formula
some time ago in the context of tunnelling corrections
ground-state energies in in models of supersymmetric qu
tum mechanics.9–11

The picture we have in mind~see Fig. 1! of the processes
that lead to low-energy states involves classical trajecto
that each visit many extended impurities. As a quasipart
progresses along such a trajectory, its momentum is rep
edly altered via scattering from the extended impurities,
that the effective pair potential@Fig. 1~b!# undergoes sign
changes. Localized near each such sign change would
zero-energy quasiparticle state; quasiparticle tunne
~through the pair potential! connects these states, raisin
their energies from zero, and thus forming a low-energy ba
that exhibits a Dyson-like singularity12 at zero energy:
r(E);1/Eu ln E2u3. This picture loses its precision for se
quences of impurities between which the pair potential
predominantly small~i.e., for nodal directions! and, conse-
quently, the states are not well localized near the impurit
However, the contribution on which we are focusing~i.e., the
non-nodal contribution! is expected to be substantial, an
quite likely dominant, in the low-energy limit.

Based on previous work on low-energy quasiparti
states,5,4 we identify three classes of processes that can ef
the low-energy DOS of a disorderedd-wave superconductor
~i! purely semiclassical scattering between states with dif
ing signs of the pair-potential~i.e., scattering due to random
extended scatterers in thed-wave superconductors!, which
we shall focus on in the present paper;~ii ! purely diffractive
scattering between states near the nodal directions of
©2002 The American Physical Society12-1
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pair-potential~i.e. the scattering of nodal quasiparticles
pointlike impurities!, which was considered in, e.g., Ref
3,2, and 13; and~iii ! the mixing of the low-energy states th
arise from processes~i! and ~ii !. Throughout the rest of this
paper we shall ignore processes in class~iii !. In consequence
the low-energy DOS of a disorderedd-wave superconducto
can be expressed as a sum of contributions arising from c
~i! processes~viz. rext) and class~ii ! processes~viz. rnodal),
the latter, as discussed in Refs. 2 and 3, being nondiver
and therefore subdominant. Thus, we shall focus onrext @and
denote this byr(E)].

II. QUASIPARTICLE MOTION IN A d-WAVE
SUPERCONDUCTOR WITH MANY EXTENDED

IMPURITIES

Our focus will be on the DOS per unit area, i.e.,

r~E![
1

A (
m

d~E2Em!, ~1!

whereA is the area of the sample and the energy eigenva
$Em% follow from the Bogoliubov–de Gennes eigenproble
viz.,

S ĥ D̂

D̂ 2ĥ
D S un

vn
D 5EnS un

vn
D . ~2!

Here ĥ[2¹22kF
21V(r ), in which kF

2 is the chemical
potential @i.e., kF ([2p/lF) is the Fermi wave vector#, V
is the single-particle impurity potential, and we have adop
units in which\2/2m51, m being the common~effective!
mass of the electrons and holes. The operatorD̂ is the pair-

FIG. 1. ~a! Sketch of a classical trajectory that encounters s
eral impurities and, hence, several sign changes inD. The shaded
regions on the trajectory denote the sections of the trajectory w
approximate zero-energy states reside.~b! Momentum-space pai
potential of ad-wave superconductor.~c! Schematic depiction ofD
andD2 along the trajectory.
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potential ~integral! operator; how it acts is specified b
the nonlocal pair-potential kernelD(r ,r 8) via @D̂vn#(r )
5*d2r 8D(r ,r 8)vn(r 8).

To define this model fully, we need an assumption ab
the form ofD(r ,r 8). It is convenient to exchange the coo
dinatesr and r 8 for the relative and center-of-mass coord
natesr andR:

D̄~r,R![D~r ,r 8!, r[r2r 8, 2R[r1r 8. ~3!

Then, via Fourier transformation with respect tor, viz.,

D̄~k,R![E d2re2 ik•rD̄~r,R!, ~4!

we obtain the pair potentialD̄(k,R) at the center-of-mass
position R and relative momentumk. As our aim is to de-
scribe the cuprate superconductors, we takeD̄(k,R) to have
d-wave symmetry,D̄(k,R)}(kx

22ky
2), wherekx and ky de-

note the Cartesian components ofk. However, we allow for
the possibility of position-dependent amplitude variations
the d-wave pair potential due, say, to pair-breaking effe
near the extended scatterers.

III. SEMICLASSICAL APPROACH TO THE
BOGOLIUBOV –DE GENNES EIGENPROBLEM

We now invoke a semiclassical approximation und
which r(E) is expressed in terms of the solution of a fam
of one-dimensional eigenproblems, each associated wi
classical scattering trajectory in the presence of the sin
particle impurity potentialV(r ). We restrict ourselves to a
brief discussion of this approach; for details, see Refs. 5
14. The approximation amounts to our:~i! regarding the ki-
netic and potential energies as being comparable and b
the largest energies in the problem,~ii ! turning off the pair
potential,~iii ! semiclassically treating the quasiparticle m
tion in the presence of the kinetic and potential energies,
~iv! reinstating the pair potential. Via this approach, we
duce the two-dimensional Bogoliubov–de Gennes eig
problem to a family of one-dimensional Andreev eigenpro
lems residing on trajectories, each trajectory being
particular classical scattering trajectory in the presence of
many-impurity potential. This scheme applies under the f
lowing conditions:~i! the amplitudes ofD̄ andV should vary
slowly, relative to the Fermi wavelengthlF ; and ~ii ! the
Fermi energykF

2 should be large compared with the ener
scale of interest, viz.E, as well as with the typical pair-
potential scale.

Let us now turn to the family of one-dimensional eige
problems arising from this semiclassical scheme. Follow
Ref. 5, these trajectory-dependent eigenproblems take
form

ĤS ūn

v̄n
D 5EnS ūn

v̄n
D , ~5a!

-

re
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Ĥ[S 22ikF]s D0~s!

D0~s! 2ikF]s
D , ~5b!

D0~s!.D̄@kF]sxc~s!,xc~s!#, ~5c!

i.e., an Andreev eigenproblem.15 Here, the parameters mea-
sures the position along a particular classical traject
xc(s), the latter obeying Newton’s equation in the man
impurity potential, viz.,

kF
2]s

2xc~s!52¹V@xc~s!#. ~6!

The DOS is then obtained by assembling the eigenva
spectraEn(n,b) of all the classical trajectories, the latte
being labeled in terms of an asymptotic momentum direct
n and impact parameterb:

r~E!.
kF

A E dn

2pE dbr~n,b,E!, ~7a!

r~n,b,E![(
m

d@E2Em~n,b!#. ~7b!

Thus, in order to obtainr(E) one needs to find each classic
trajectory, obtain the associated effective pair-poten
@given by Eq.~5c!#, solve the resulting one-dimensional e
genvalue equation, and, finally, integrate over all the cla
cal trajectories using Eq.~7a!. We note that if one interpret
the weight of a particular classical trajectory as the proba
ity of finding a pair-potential configuration corresponding
that particular trajectory, then we see that the calculation
r(E) amounts to computing the average density of state
a random pair-potential model. Models of this sort were c
sidered, e.g., in Refs. 16–19.

IV. EIGENVALUE PROBLEM FOR A SINGLE
TRAJECTORY

We now examine the contributionr(n,b,E) to the DOS
for the case of a generic trajectory (n,b). For convenience
we introduce the rescaled trajectory parameters[s/2kF ; the
Hamiltonian then becomes

Ĥ5S 2 i ]s D~s!

D~s! i ]s
D , ~8!

whereD(s)[D0(2kFs).
Our method for calculating the spectrum ofĤ in the

many-impurity case is based on that for a single impurity.5 In
the latter case, low-energy states arose from asymptotic
sign-changing trajectories@i.e. those trajectories for which
lims→6`D(s) differ in sign#. Finding the spectrum amounte
to identifying such sign-changing trajectories. What ab
the case ofmany extended impurities? In this case, for
typical trajectory through the impurity potentialD(s) under-
goes repeated sign changes. On a particular trajectory le
label the the positions of these zeroes ofD(s) by $sn%. Re-
call that we are concerned with the collection of impur
states that would lie at zero energy if the impurities we
isolated. Owing to tunneling between them, these forme
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degenerate states yield a continuum of states, extending
ward in energy from zero. Our task is to shed some light
this band formation. We proceed to set up a tight-bind
model along the trajectory, in which we retain only the ze
energy impurity states$un&% ~i.e., the local ground states a
each of the$sn%) and allow only nearest-neighbor tunnelin
between them.20,21 To complete the model, we need the m
trix elements ofĤ connecting these states, i.e.,

tn[^nuĤun11&. ~9!

Using the analytic expression for the zero energy wa
functions,11 ^sun&}exp2*sn

s ds8 uD(s8)u, a straightforward cal-

culation produces

tn'
1

Ap
uD8~sn!D8~sn11!u1/4expH 2E

sn

sn11
ds8uD~s8!uJ ,

~10!

where D8(s)[]s D(s). We are now in a position to write
down a low-energy effective approximation toĤ, viz.,

Ĥ'(
n

tn~ un&^n11u1un11&^nu!, ~11!

i.e., for each classical trajectory, one arrives at a~topologi-
cally! one-dimensional hopping model that captures
physics of tunneling processes between the~formerly zero-
energy! states localized near each zero of the pair-potent

V. DENSITY OF STATES

In order to obtain the low-energy DOS, we must obta
the DOS of the effective Hamiltonian@Eq. ~11!# for each
trajectory, and then collect them together. We assume tha
collection of trajectories forms an ensemble that is charac
ized by the condition that momentum directions before a
after a collision are uncorrelated. Then, summing over s
an ensemble of trajectories is equivalent~up to a constant of
proportionality! to averaging the DOS of Hamiltonian~11!
over uncorrelated values oftn . To obtain the low-energy
DOS of this effective model we appeal to results obtained
Eggarter and Riedinger,22 who, building on the work of
Dyson12 and Theodorou and Cohen,23 studied random-
hopping models of precisely this form. Specifically, in Re
22 it was found that, under the condition that the$tn% are
uncorrelated24 and identically distributed, the DOS asE
→0 is given by

r~E!'NsZ
2s2

Eu ln~E/ t̄ !2u3
, ~12!

whereNs denotes the average number of sites along the
jectory, Z is the constant of proportionality arising from th
Jacobian of the transformation from summing over trajec
ries to averaging over$tn%, t̄ is the scale characterizing$tn%,
and the amplitudes2 is given by the variance of the loga
rithm of t, i.e.,
2-3



at

-

u
re

e

th
y

is
in
cale

ible

nd
e-
re-
odes

bu-
-

s
s-
of

the
tch

d

,

s

ke

a

ha

.

d
.C

nd

ys.

the

ith

a-
ors

und
te

on-
ng

RAPID COMMUNICATIONS

ADAGIDELI, SHEEHY, AND GOLDBART PHYSICAL REVIEW B 66, 140512~R! ~2002!
s2[^~ ln t2/D0
2!2&2^ ln t2/D0

2&2, ~13!

where^•••& denotes a disorder average. The scalest̄ ands2

could be estimated with the help of Eq.~10! as

t̄ 2}kFD0nc
1/2exp~2D0 /kFnc

1/2!, ~14a!

s2}D0 /kFnc
1/2, ~14b!

where nc is the number of impurities per unit area. Wh
remains is to determine the coefficientZ; we now make an
estimate of this quantity.

Our estimate forZ follows from considering the integra
tion over b for a single impurity of sizea. As the impurity
potential is expected to decay rapidly away from the imp
rity, the only trajectories that interact appreciably with it a
those that directly intersect it, i.e.,kF*db→kFa. Thus, in the
absence of the tunneling corrections between the zero-en
states,r(E) is approximately given byr0(E)'kFancd(E).5

Although the inclusion of tunneling corrections changes
energy dependence ofr(E), here we assume that the energ
integrated density of states*0

er(E)dE is approximately con-
served for some appropriately chosen cutoffe. These con-
siderations lead to the following approximate form forr(E)
valid for E! t̄ :
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