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Quantal Andreev billiards: Density of states oscillations and the spectrum-geometry relationship

İnançAdagideli and Paul M. Goldbart
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080

~Received 12 March 2002; published 10 May 2002!

Andreev billiards are finite, arbitrarily shaped, normal-state regions, surrounded by superconductor. At
energies below the superconducting energy gap, single-quasiparticle excitations are confined to the normal
region and its vicinity, the mechanism for confinement being Andreev reflection. Short-wave quantal properties
of these excitations, such as the connection between the density of states and the geometrical shape of the
billiard, are addressed via a multiple scattering approach. It is shown that one can,inter alia, ‘‘hear’’ the
stationary chords of Andreev billiards.
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The aim of this Rapid Communication is to explore ce
tain quantal aspects of quasiparticle motion arising in a c
of mesoscopic structures known as Andreev billiards~ABs!.
By the term Andreev billiard1 we mean a connected, norma
state region~N! completely surrounded by a convention
superconducting region (S), as sketched for the two
dimensional~2D! case in Fig. 1~a!. The S region is respon-
sible for confining quasiparticles that have energies less
the superconducting energy gap to the normal region an
neighborhood.1,2 The terminology AB reflects the centralit
of the role played by quasiparticle reflection from the s
rounding pair-potential.3 Our focus here will be on the th
density of energy levels of the quasiparticle states locali
near a generically shaped AB, and its relationship to the g
metrical shape of the AB. The main features that our
proach is able to capture are the oscillations in the lev
density caused by the spatial confinement of
quasiparticles. This structure is inaccessible via conventio
quasiclassical methods.

Our central results concern the density of states~DOS! for
billiards of arbitrary shape and dimensionality. They inclu
an explicit formula for the coarse DOS, as well as a gene
method for obtaining the~previously inaccessible! oscilla-
tions about this coarse DOS, both valid in the short-wa
limit. This DOS decomposition is feasible because, unl
for conventional billiards, the classical trajectories of AB
fall into two well-separated classes:~i! tracings of stationary
chords@see Fig. 1~b!#, and~ii ! certain extremely long trajec
tories with many reflections@see Fig. 1~c!#, which contribute
to the level density only at fine energy resolutions.

Our strategy for exploring the quantal properties of ABs
as follows. First, we express the Green function for the
propriate ~i.e., Bogoliubov-de Gennes;4 henceforth BdG!
single-quasiparticle energy eigenproblem as an expansio
terms of various scattering processes from theN-S interface.
Next, we identify which of these scattering processes do
nate, by effectively integrating out processes that invo
propagation inside theSregion, thus arriving at an expansio
involving only reflections~i.e., scattering processes that ke
the quasiparticlesinside the billiard!. The processes assoc
ated with these reflections can be classified as those
interconvert electrons and holes~which we refer to as An-
dreev reflections, and which typically dominate! and those
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that do not~which we refer to as ordinary reflections!. We
then compute theoscillatorypart of the DOS via two distinct
asymptotic schemes.

The first scheme amounts to an elaboration of t
adopted by Andreev, and is what is conventionally und
stood when the terms semiclassical or quasiclassical are
in the subject of superconductivity. Its physical content
perfect retro-reflection~i.e., velocity reversal! of quasiparti-
cle excitations from theN-S boundary and perfecte/h ~i.e.,
electron/hole! interconversion~i.e., the neglect of ordinary
reflection processes!. It yields a smooth~i.e., low energy-
resolution! DOS, as well as singular features that arise fro
stationary-length chords. However, it is incapable of capt
ing other features in the DOS caused by the spatial confi
ment of quasiparticles.

The second scheme incorporates the effect of the im
fectness of retro-reflection which results from differences
tween, say, incidenteand reflectedh wave vectors, as well as
the effect of ordinary reflection processes. It yields the D
with higher energy resolution, thus revealing the oscillatio
caused by spatial confinement. In order to distinguish
effect of imperfecte/h interconversion from higher-orde
quantum effects, we introduce and study a model that f
tures perfecte/h interconversion but still includes all quanta

FIG. 1. ~a! Andreev billiard, showing a generic retro-reflectin
orbit. ~b! Orbit corresponding to a stationary chord. The length
this orbit should be contrasted with that in~c!, which shows a
generic ‘‘creeping’’ orbit due to imperfect retro-reflection; electro
~holes! follow full ~shaded! lines. ~d! Generic term in the multiple
scattering expansion; internal~external! lines represent Green func
tions GN(GS).
©2002 The American Physical Society06-1
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effects. This model is also useful when the pair poten
varies smoothly~so that ordinary reflection is even mo
strongly suppressed!.

Finally, for the purpose of illustration we examine the t
case of a 2D circular billiard, and compare the predictio
for the DOS obtained via the various asymptotic schem
with those arising from the exact numerical treatment of
full BdG eigenproblem, as well as from the perfecte/h in-
terconverting model. This provides a concrete illustration
the implications of wave phenomena for the quasipart
quantum states of ABs.

Eigenproblem for the Andreev billiard; formulation as
boundary integral equation. To address the BdG eigenprob
lem for ABs we focus on the corresponding (232) Green
function G, which obeys

S 2ĥ1z D~r !

D* ~r ! ĥ1z
D G~r ,r 8;z!52Id~r2r 8!, ~1!

where ĥ[2¹22k2, together with the boundary conditio
that G should vanish in the limit of largeur u. Here,r andr 8
are spatial coordinates,\2k2/2m is the Fermi energy~i.e., k
is the Fermi wave vector!, \2z/2m is the ~complex! energy,
and \2D(r )/2m is the position-dependent superconducti
pair potential. The eigenfunction expansion of the Gre
function leads to the usual representation for the Lorentz
smoothed DOSrG(E) of the corresponding eigenproblem:

rG~E![(
n

1

p

G

~E2«n!21G2
~2a!

5
1

pEr
lim

r8→r

Tr Im G~r ,r 8;E1 iG!, ~2b!

where Tr denotes a trace overe/h components.
We assume that the interface betweenN and S is a geo-

metrical surface constituting the boundary of the AB, i.e.
is perfectly sharp. In other words,D(r ) is a constant,D0,
outside the billiard and zero inside. Thus, we shall not
working self-consistently, but shall benefit from being in
position to develop an approach to the quasiparticle dyn
ics that focuses on interface-scattering.

To construct an expansion for the Green functi
G(r ,r 8;z) that brings to the fore the geometry of the billia
~i.e., the spatial shape of theN-S interface!, we adopt the
spirit of the Balian-Bloch approach to the Lapla
eigenproblem,5 and construct a multiple-scattering expansi
~MSE! in which the Green function is represented in terms
the fundamentalN or SGreen functions~i.e., those appropri-
ate for homogeneousN or S regions!. Although the physical
content of this construction is intuitively clear, its develo
ment involves lengthy technical details which we defer to
forthcoming article.6 The essence of this construction is t
derivation of a system of integral equations ‘‘residing’’ o
the N-S interface, the iterative solution of which yields th
aforementioned MSE for the Green function.7 Within this
MSE approach, the amplitude for propagating from poinr
in N to r 8 in N, viz. G(r ,r 8;z), is expressed as a sum of th
20130
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following processes:~i! the ‘‘free’’ propagation amplitude
GN(r ,r 8;z); ~ii ! the amplitude involving a single reflectio
@i.e., all possible amplitudes for propagating fromr to a ge-
neric interface pointa, reflectingat a, and then propagating
to r 8: 22*a]GN(r ,a)s3GN(a,r 8)#; ~iii ! the amplitude in-
volving two reflections, etc.;~iv! the amplitude that traverse
the interface twice@i.e., all possible amplitudes for propaga
tion from r to the generic interface pointa, transmissioninto
S, propagation inS from a to another generic interface poin
b, transmissioninto N, and propagation inN from b to r 8:
222*a]GN(r ,a)s3GS(a,b)s3dGN(b,r 8)#; ~v! and so on,
where a generic term is specified by an ordered sequenc
reflections and transmissions@see Fig. 1~d!#. Here,s1,2,3 are
the Pauli matrices, and the operators] andd are defined via

]G~r ,a![na•“ r 8G~r ,r 8!ur85a , ~3a!

dG~a,r 8![na•“ rG~r ,r 8!ur5a , ~3b!

wherena is the normal unit vector pointing intoN at a on
the N-S interface.

Semiclassical density of states. So far, our reformulation
of the BdG eigenproblem has been exact, but many of
well-known physical features~such as the dominance o
charge-interconverting reflection processes! lie hidden be-
neath the formalism. They will, however, emerge when
employ either of two distinct semiclassical~i.e., short-wave
asymptotic! approximation schemes, as we shall shortly s
In both schemes, the DOS is calculated via Eq.~2b!, by
using the MSE forG and evaluating the resulting integra
using the stationary-phase approximation, which is appro
ate for largekL and smallD/k2 ~whereL is the characteris-
tic linear size of the AB!. From the technical point of view
the difference between these schemes lies in the nature o
limits that one assumes the parameters to take:

~A! kL→` andD/k2→0 with LD/k constant; versus
~B! kL→` with D/k2 constant. The limit taken deter

mines which stationary phase points~i.e., classical reflection
rules! should be applied.

In both schemes, however, it is possible to integrate
processes involving propagation insideS, to leading order in
(kL)21 andD/k2. This is done by separating each factor
GN and GS in every kernel in the MSE into short-range
pieces and their complements. By doing this we are dis
guishing betweenlocal processes~i.e., those in which all
scatterings take place within a boundary region of linear s
of orderk21, so that particles ultimately leave the bounda
region from a point very close to where they first reached!,
andnonlocal processes~i.e., the remaining—or long-range—
propagation!. Then, we approximate the boundary by the ta
gent plane at the reflection point, and evaluate integrals
volving short-ranged kernels on this plane. Moreov
contributions involving the long-ranged part ofGS are
smaller, by a factor of (kL)21, and thus we may neglec
them.8 This procedure leads to an asymptotic expansion
G, which can be used in either of the two semiclassi
schemes, and which includes only interface reflection~as op-
posed to transmission! and, correspondingly, involves th
renormalized Green functionGR:
6-2
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G.GN12E
]V

]GNGR122E
]V

]GN]GRGR1 . . . ,

GR[„2 ie2 iws11O@~kL !22,D/k2#…GN,

GN~r ,r 8![S g1~r2r 8! 0

0 2g2~r2r 8!
D , ~4!

wherew[cos21(E/D), g6(r )[H0
6(k6ur u)/4 in two dimen-

sions andg6(r )[exp(6ik6ur u)/4pur u in three dimensions
k65Ak26E are thee/h wave vectors, the integrals ar
taken over the the interface]V and, e.g., *] V]GNGR

[*] Vda]GN(r ,a)GR(a,r 8). Observe that the leading term
in GR includes only charge-interconverting processes; o
nary reflection appears only at subleading order. In phys
terms, the approximation that we have invoked takes i
account the fact that an electron wave incident on anN-S
interface ‘‘leaks’’ into theS side and, consequently, is pa
tially converted into a hole and acquires a phase, much
particle acquires a phase~i.e., a Maslov index! when re-
flected by a finite single-particle potential.

We are now in a position to define what we shall call t
Perfectly Charge-Interconverting Model~PCIM!. We start
with the expansion~4! for G in terms ofGR, and take the
latter to be given by its leading-order form:GR'
2 ie2 iws1GN. Then the PCIM is defined via the followin
integral equation forG:

G5GN22ie2 iwE
]V

]GNs1G. ~5!

The off-diagonal matrixs1 ensures that, upon each reflectio
from the boundary, electrons are fully converted into ho
~and vice versa!. Moreover, this model does retain wav
propagation effects, as implied by the surface integral.

Let us now focus on semiclassical Scheme A, which is
spirit, the one introduced by Andreev.3 In this scheme, exci-
tations undergo perfect retro-reflection~i.e., perfect velocity-
reversal!, as well as perfect charge-interconversion, so t
the dynamics is confined to the geometrical chords of the
and, thus, is trivially integrable, whatever the shape of
AB.1 Via this scheme, we arrive at the following form for th
DOS:

rG~E!.E
]V

Re
cosuab cosuba

12exp@ i ~E/k!ua2bu22iw#
U

E→E1 iG

.

Here, the integral is taken over the surface pointsa and b,
anduab denotes the angle between the normal ata and the
chord leading tob. This equation forrG can be understood
as follows: a chord of lengthua2bu contributes eigenvalue
weight at energies given by the well-known semiclassi
quantization condition Ek21ua2bu22 cos21(E/D)52np
~for n integral!. However, in order to obtainrG we must sum
over all chords with the proper weighting, which is acco
plished by the double integral in over the boundary. T
most prominent features emerging this Scheme A expres
for rG are singularities, representing the strong bunching
exact eigenenergies at energies corresponding to station
20130
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length chords.~Such chords have both ends perpendicular
the billiard boundary.! However, to sum overall chords
would be superfluous, as the strongest features in the D
can be captured simply from the neighborhoods of the
tionary chords. Moreover, for finite values of the paramet
~i.e., kL large but not infinite, andD/k2 small but nonvan-
ishing! Scheme A produces alocally averagedDOS, which
becomes numerically accurate only around the DOS sin
larities that it predicts. Thus, it fails to capture this DO
oscillations due to the confinement of the quasiparticles. T
reason for this failure is the fact that by summing over
chords one is implicitly assuming the absence of transve
quantization/confinement. To capture such oscillations is
main motivation for semiclassical Scheme B.

In Scheme B we first take into account the imperfectn
in retro-reflection arising from the the previously-neglect
difference between the wave vectors of incident and reflec
electrons and holes, whilst neglecting all amplitudes invo
ing ordinary reflection. The corresponding classical dyna
ics is no longera priori integrable; on the contrary, it is
chaotic for generic shapes.1 In this scheme, the closed per
odic orbits fall into two classes, quite distinct from one a
other: one consists of multiple tracings of each station
chord ~we refer to such chords asLs); the other of much
longer trajectories that ‘‘creep’’ around the billiard bounda
@see Fig. 1~c!#. Correspondingly, the DOS is the sum of~i! an
average termrav(E), which depends in 3D on the volume~or
in 2D on the area! of the billiard ~i.e., the leading Weyl
term!; together with an oscillatory termrosc(E) consisting of
~ii ! a finer-resolution term, having a universal line-shape t
depends solely on the length and endpoint-curvatures of
Ls,9 and~iii ! very fine resolution terms, which depend on t
classical dynamics of the billiard in question:

rosc~E!.Re(
l L

ZLeilLp/4Lid212w/2~12ei (k12k2) l L22iw!

1 (
periodic orbits

Apo expiSpo. ~6!

Here, Lin(z)[( j 51
` zj / j n is the polylogarithm function,d is

the dimensionality of the billiard,w is the dimensionality of
the degeneracy of theL ~e.g., w51 for a circle!, ZL is a
slowly-varying real function of energy, determining the si
of the DOS oscillations, andlL is a measure of the stability
of the L, which determines whether the ‘‘tail’’ goes toward
higher or lower energies. For example, anisolatedL in 2D
would yield lL5sgn(R11R22 l L)21 and

ZL5A ~k11k2!2l LR1R2

4p2k1k2~k12k2!2u l L2R12R2u
, ~7!

whereR1 andR2 are the radii of curvature of the endpoin
of the L.10 The second term in Eq.~6! is the contribution
from ‘‘creeping’’ orbits @see Fig. 1~c!#. In it, Apo is deter-
mined by the stability of the orbit, andSpo is the action
corresponding to the orbit. For a typical AB,Spo.N@(k1

2k2) l L22w#, where N5O(k2/D) and, thus, ‘‘creeping’’
orbits contribute only to the very fine details of the DOS.
6-3
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For illustration, in Fig. 2 we compare the predictions
Schemes A and B with those of the PCIM. The Scheme
result~dashed line! approximates the average behavior of t
exact DOS for the PCIM~full line!. In contrast, the
Scheme-B result~dotted line! captures the DOS oscillation
arising from transverse quantization/confinement.

Thus far in our semiclassical treatment, we have igno
all amplitudes involving ordinary reflection. For nongrazin
incidence@i.e., u2(p/2);1# the amplitude for ordinary re
flection is very small (;D/k2cos2u). However, for orbits
that contribute dominantly to the oscillatory structure of t
DOS, uu2(p/2)u!1 and, therefore, ordinary reflection am
plitudes are not negligible and must be incorporated. T
can be done by returning to Eq.~4! and re-evaluating the
trace formula using the full expression forGR ~i.e., not just
the leading, off-diagonal term!. However, these dominatin
orbits are the ones that are close to the boundary and
these, consecutive reflections take place very near to e
other, and thus ‘‘see’’ only the local curvature of the boun

FIG. 2. Density of states oscillations for a circular AB:kR
5150; D/k250.08; smoothing widthG/k251.131024.
tin
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ary. These considerations allow us to perform an ‘‘adiabat
approximation to the expansion in Eq.~4!, in which we as-
sume that the curvature of the boundary varies slowly, re
tive to the rate at which creeping orbits sample the bound
In Fig. 3 we compare this adiabatic method with the~exact!
result obtained by solving the full BdG eigenproblem.

We conclude by emphasizing one particular feature of
first term in Eq.~6!: this term gives the coarse DOS directl
through simple geometrical information in the form of th
lengths and endpoint-curvatures of theLs. This feature al-
lows the design of an AB shape that leads to a DOS hav
a predetermined coarse form. Moreover, as the station
chord terms are well separated~in time-space! from the
creeping orbits, it possible to ‘‘hear’’ not only the volume o
an Andreev billiard but also its stationary chords.
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FIG. 3. Density of states for a circular AB:kR5150; D/k2

50.08; smoothing widthG/k251.131024.
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