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Andreev billiards are finite, arbitrarily shaped, normal-state regions, surrounded by superconductor. At
energies below the superconducting energy gap, single-quasiparticle excitations are confined to the normal
region and its vicinity, the mechanism for confinement being Andreev reflection. Short-wave quantal properties
of these excitations, such as the connection between the density of states and the geometrical shape of the
billiard, are addressed via a multiple scattering approach. It is shown that onént&nalia, “hear” the
stationary chords of Andreev billiards.
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The aim of this Rapid Communication is to explore cer-that do not(which we refer to as ordinary reflectionVe
tain quantal aspects of quasiparticle motion arising in a clasthen compute thescillatory part of the DOS via two distinct
of mesoscopic structures known as Andreev billia@iBs). asympto'gic schemes. _
By the term Andreev billiartiwe mean a connected, normal- ~ The first scheme amounts to an elaboration of that
state region(N) completely surrounded by a conventional @dopted by Andreev, and is what is conventionally under-
superconducting regionSj, as sketched for the two- stood when the terms semiclassical or quasiclassical are used
dimensional(2D) case in Fig. a). The S region is respon- 1IN the subject of su_,lpe_rconductl_vlty. Its physical content is
sible for confining quasiparticles that have energies less thaRgrfect retro-reflectiorti.e., velocity reversalof quasiparti-
the superconducting energy gap to the normal region and itS/® excitations from thél-S boundary and perfeat/h (i.e.,
neighborhood:? The terminology AB reflects the centrality electro_n/holae |nterconve_r5|on(|.e., the ngglect of ordinary
of the role played by quasiparticle reflection from the sur-reﬂeCt'?n processgsit ylelds_ a smooth(i.e., low energy-
rounding pair-potential.Our focus here will be on the the resolution DOS, as well as singular features that arise from

) ‘ N .~ _stationary-length chords. However, it is incapable of captur-

density of energy levels of the qua.S|part|c.Ie sta_tes localize g other features in the DOS caused by the spatial confine-
near a generically shaped AB, and its relationship to the geqs,

. . ent of quasiparticles.
metrical shape of the AB. The main features that our ap- pg gecond scheme incorporates the effect of the imper-

proach is able to capture are the oscillations in the levelgo iness of retro-reflection which results from differences be-
density caused by the spatial confinement of theyeen, say, incidersand reflectedh wave vectors, as well as

quasiparticles. This structure is inaccessible via conventionahe effect of ordinary reflection processes. It yields the DOS
quasiclassical methods. with higher energy resolution, thus revealing the oscillations

Our central results concern the density of staBSS) for  caused by spatial confinement. In order to distinguish the
billiards of arbitrary shape and dimensionality. They includeeffect of imperfecte/h interconversion from higher-order
an explicit formula for the coarse DOS, as well as a generaguantum effects, we introduce and study a model that fea-
method for obtaining thépreviously inaccessibjeoscilla-  tures perfece/h interconversion but still includes all quantal
tions about this coarse DOS, both valid in the short-wave
limit. This DOS decomposition is feasible because, unlike et

. - . . . region (S)
for conventional billiards, the classical trajectories of ABs
fall into two well-separated classe$) tracings of stationary
chords[see Fig. )], and(ii) certain extremely long trajec-
tories with many reflectionfsee Fig. 1c)], which contribute
to the level density only at fine energy resolutions.

Our strategy for exploring the quantal properties of ABs is
as follows. First, we express the Green function for the ap-
propriate (i.e., Bogoliubov-de Gennés;henceforth BdG
single-quasiparticle energy eigenproblem as an expansion in
terms of various scattering processes fromRh8 interface.
Next, we identify which of these scattering processes domi-
nate, by effectively integrating out processes that involve g 1. (a) Andreev billiard, showing a generic retro-reflecting
propagation inside thBregion, thus arriving at an expansion gpit. (b) Orbit corresponding to a stationary chord. The length of
involving only reflectiongi.e., scattering processes that keepthis orbit should be contrasted with that {g), which shows a
the quasiparticlesnside the billiard). The processes associ- generic “creeping” orbit due to imperfect retro-reflection; electrons
ated with these reflections can be classified as those th@ioles follow full (shaded lines. (d) Generic term in the multiple
interconvert electrons and holéshich we refer to as An-  scattering expansion; intern@xterna) lines represent Green func-
dreev reflections, and which typically dominptnd those tions GN(GS).

normal
region (N)

0163-1829/2002/620)/2013064)/$20.00 65201306-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

iNANQ ADAGIDELI AND PAUL M. GOLDBART PHYSICAL REVIEW B 65 201306&R)

effects. This model is also useful when the pair potentiafollowing processes{i) the “free” propagation amplitude
varies smoothly(so that ordinary reflection is even more GN(r,r’;z); (ii) the amplitude involving a single reflection
strongly suppressed [i.e., all possible amplitudes for propagating fronto a ge-

Finally, for the purpose of illustration we examine the theneric interface point, reflectingat &, and then propagating
case of a 2D circular billiard, and compare the predictiongo r’: —2f,dGN(r, @) o3GN(a,r")]; (iii) the amplitude in-
for the DOS obtained via the various asymptotic schemesolving two reflections, etc(jv) the amplitude that traverses
with those arising from the exact numerical treatment of thethe interface twicgi.e., all possible amplitudes for propaga-
full BAG eigenproblem, as well as from the perfeth in-  tion fromr to the generic interface point, transmissiorinto
terconverting model. This provides a concrete illustration ofS, propagation irSfrom a to another generic interface point
the implications of wave phenomena for the quasiparticleg, transmissioninto N, and propagation itN from gtor’:
quantum states of ABs. —221,0GN(r,a) 3G, B) 03 5GN(B,r")]; (v) and so on,

Eigenproblem for the Andreev billiard; formulation as a where a generic term is specified by an ordered sequence of
boundary integral equatianTo address the BdG eigenprob- reflections and transmissiofisee Fig. 1d)]. Here, o , 5 are
lem for ABs we focus on the correspondingX2) Green the Pauli matrices, and the operatdrand § are defined via
function G, which obeys

) IG(r,a@)=n,- V. G(r,r'")|; 4, (3a)

—h+z A(r)

G(r,r';z)=—16(r—r"), 1 "= '

A () Reg) SCTRTTIO @ 5G(a ) =0, V,G(r,1 -, (30
where h=— V2— «2, together with the boundary condition wheren,, is the normal unit vector pointing inthl at @ on
thatG should vanish in the limit of largr|. Here,r andr’  theN-Sinterface. _
are spatial coordinates2«2/2m is the Fermi energyi.e., Semiclassical density of stateSo far, our reformulation

is the Fermi wave vectdr#2z/2m is the (complex energy, of the BdG eigenproblem has been exact, but many of its
and #2A(r)/2m is the position-dependent superconductingVe!l-known physical featuregsuch as the dominance of
pair potential. The eigenfunction expansion of the Greerfharge-interconverting reflection procegsés hidden be-
function leads to the usual representation for the Lorentzian?€ath the formalism. They will, however, emerge when we

smoothed DOS-(E) of the corresponding eigenproblem: employ either of two distinct semiclassicale., short-wave
asymptotig approximation schemes, as we shall shortly see.

1 r In both schemes, the DOS is calculated via Ezp), by
pr(E)=2, = — (2a)  using the MSE forG and evaluating the resulting integrals
T (E—ey)°+ T using the stationary-phase approximation, which is appropri-

ate for largexL and smallA/«? (whereL is the characteris-

10 R tic linear size of the AB. From the technical point of view,
_Ef, I’|m TrimG(r,r;E+il), (2b) the difference between these schemes lies in the nature of the
et limits that one assumes the parameters to take:
where Tr denotes a trace oveth components. (A) kL—o andA/«x>—0 with LA/x constant; versus
We assume that the interface betwd¢mnd S is a geo- (B) kL—o with A/x? constant. The limit taken deter-

metrical surface constituting the boundary of the AB, i.e., itmines which stationary phase poirii®., classical reflection
is perfectly sharp. In other wordg\(r) is a constantA,,  rules should be applied.
outside the billiard and zero inside. Thus, we shall not be In both schemes, however, it is possible to integrate out
working self-consistently, but shall benefit from being in aprocesses involving propagation insifieto leading order in
position to develop an approach to the quasiparticle dynamixL) ~* andA/«?. This is done by separating each factor of
ics that focuses on interface-scattering. GN and G® in every kernel in the MSE into short-ranged
To construct an expansion for the Green functionpieces and their complements. By doing this we are distin-
G(r,r';z) that brings to the fore the geometry of the billiard guishing betweerocal processedi.e., those in which all
(i.e., the spatial shape of tHé-S interface, we adopt the scatterings take place within a boundary region of linear size
spirit of the Balian-Bloch approach to the Laplace of orderx™?, so that particles ultimately leave the boundary
eigenproblent,and construct a multiple-scattering expansionregion from a point very close to where they first reachgd it
(MSE) in which the Green function is represented in terms ofandnonlocal processe@.e., the remaining—or long-range—
the fundamentalN or S Green functionsi.e., those appropri- propagation Then, we approximate the boundary by the tan-
ate for homogeneous or Sregiong. Although the physical gent plane at the reflection point, and evaluate integrals in-
content of this construction is intuitively clear, its develop- volving short-ranged kernels on this plane. Moreover,
ment involves lengthy technical details which we defer to acontributions involving the long-ranged part &S are
forthcoming articleé’. The essence of this construction is the smaller, by a factor of L) %, and thus we may neglect
derivation of a system of integral equations “residing” on them® This procedure leads to an asymptotic expansion for
the N-S interface, the iterative solution of which yields the G, which can be used in either of the two semiclassical
aforementioned MSE for the Green functibWithin this ~ schemes, and which includes only interface reflectamop-
MSE approach, the amplitude for propagating from point posed to transmissipnand, correspondingly, involves the
inNtor’inN, viz. G(r,r’;z), is expressed as a sum of the renormalized Green functioB":
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N NmR L a2 N o ~RR length chords(Such chords have both ends perpendicular to

G=G +2J’Wf96 G"+2 LV@G IG"G"+ ..., the billiard boundary. However, to sum overll chords
would be superfluous, as the strongest features in the DOS
R—(—ie 1¢g + L)"2 A/k2GN can be captured simply from the neighborhoods of the sta-
Cr=(=ie oyt Ol (kL) % AIDGT, tionary chords. Moreover, for finite values of the parameters

g.(r—r") 0 (i.e., kL large but not infinite, and\/«? small but nonvan-

GN(r,r')E< , ) (4 ishing Scheme A produces lacally averagedDOS, which
0 —g-(r=r’) becomes numerically accurate only around the DOS singu-

where p=cos YE/A), . (r)=Hg (k+|r|)/4 in two dimen- larities that it predicts. Thus, it fails to capture this DOS
sions andg+(r)Eexp(t_ik+|r|)/477|r|_in three dimensions, oscillations dge to the c_:onflnement of the quaS|part|cIes. The
K, = \/;Zi_E_ are thee/h wave vectors. the integrals are reason for th|s. falll.Jr.e is the fa}ct that by summing over all
taken over the the interface) and, ’e.g.,fd LIGVGR chords one is implicitly assuming the absence of transverse

= [ ,,dadGN(r,@)GR(a,r"). Observe that the leading term gquantization/confinement. To capture such oscillations is the

in GR includ v ch int " ) d.main motivation for semiclassical Scheme B.
n Includes only charge-interconverting processes, ordl- , gcheme B we first take into account the imperfectness

nary reflection appears only at subleadlng order. In physlcqh retro-reflection arising from the the previously-neglected
terms, the approximation that we have _myoked takes NiQitference between the wave vectors of incident and reflected
account tt]e fac} _that an eIeptron wave incident onNBB  gactrons and holes, whilst neglecting all amplitudes involv-
|_nterface Ieaks. into thesS side and,'consequently, IS par- ing ordinary reflection. The corresponding classical dynam-
t'a”Y converte;d Into a holg and acquires a phase, much as is is no longera priori integrable; on the contrary, it is
particle acquires a phas(ee._, a MaSIO\_/ indek when re- chaotic for generic shapédn this scheme, the closed peri-
flected by a fmqe smgle_-_parﬂcle p(_)tentlal. odic orbits fall into two classes, quite distinct from one an-
We are now in a position to define what we shall call theother: one consists of multiple tracings of each stationary
P(_erfectly Chargg-lnterconve_rtlng MOdéP(;glM)' We start o org (we refer to such chords aks); the other of much
with the expan5|.or(4) for G n term; ofG", and takeRthe longer trajectories that “creep” around the billiard boundary
Iat_te[_ to bNe given by its _Iead|r_1g-ord(_ar formG ~  [see Fig. 1c)]. Correspondingly, the DOS is the sum(dfan
—lie "o, G". .Then the PCIM is defined via the following average term,(E), which depends in 3D on the volunger
integral equation foG: in 2D on the arepof the billiard (i.e., the leading Weyl
term); together with an oscillatory term,s{E) consisting of
G=GN- 2ie""’f dGNe,G. (5) (i) a finer-resolution term, having a universal line-shape that
vV depends solely on the length and endpoint-curvatures of the
The off-diagonal matrixr; ensures that, upon each reflection As,” and(iii) very fine resolution terms, which depend on the
from the boundary, electrons are fully converted into holestlassical dynamics of the billiard in question:
(and vice versp Moreover, this model does retain wave
propagation effects, as implied by the surface integral. Posd E)=Re>, Z &M ALj 1 o(1—elke k) —2ie)
Let us now focus on semiclassical Scheme A, which is, in IA
spirit, the one introduced by Andre&in this scheme, exci-
tations undergo perfect retro-reflecti@re., perfect velocity- + > Apo €XPiSy,. (6)
reversal, as well as perfect charge-interconversion, so that periodic orbits

the dynamics is confined to the geometrical chords of the A G ojgin . . .
and, thus, is trivially integrable, whatever the shape of th%ere’ Lh(2)=2,;_,2/j" is the polylogarithm functiond is

AB.! Via this scheme, we arrive at the following form for the%he dimensionality of the billiardy is the dimensional!ty of
DOS: the degengracy of tha (e.g.,w=1 for a CII’C@,.ZA is a
slowly-varying real function of energy, determining the size
C0S6,,5 COSHg,, of the DOS oscillations, andl, is a measure of the stability
pF(E)zf Rel_e (Bl a2 o] . of the A, which determines whether the “tail” goes towards
w Xdi(El)la= B Plleg+ir higher or lower energies. For example, ianlated A in 2D

Here, the integral is taken over the surface poitand g,  Would yield Ay =sgn®R;+R,~1,)—1 and
and 6,5 denotes the angle between the normakatnd the
chord leading tg8. This equation fop can be understood \/ (ks +k_)2,RRy

" Var2k k(K —k )2l —R—Ry|

)

as follows: a chord of lengtha— g| contributes eigenvalue AT
weight at energies given by the well-known semiclassical
quantization condition Ex~!|a— B|—2 cos Y(E/A)=2nw  whereR; andR, are the radii of curvature of the endpoints
(for nintegra). However, in order to obtaip; we must sum  of the A.2° The second term in Eq6) is the contribution
over all chords with the proper weighting, which is accom-from “creeping” orbits [see Fig. 10)]. In it, Ay, is deter-
plished by the double integral in over the boundary. Themined by the stability of the orbit, an8,, is the action
most prominent features emerging this Scheme A expressiatorresponding to the orbit. For a typical ABy,>N[ (k.
for pr are singularities, representing the strong bunching of-k_)I,—2¢], where N=0O(«?/A) and, thus, “creeping”
exact eigenenergies at energies corresponding to stationaryebits contribute only to the very fine details of the DOS.
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FIG. 2. Density of states oscillations for a circular ABR FIG. 3. Density of states for a circular AB¢R=150; A/«?
=150; A/k*=0.08; smoothing widtH/«x?=1.1x10"*. =0.08; smoothing widtH'/ x2=1.1x 10~*.

. . N - ary. These considerations allow us to perform an “adiabatic”

For illustration, in Fig. 2 we compare the predictions of approximation to the expansion in E@), in which we as-
Schemes A and B with those of the PCIM. The Scheme-Ay e that the curvature of the boundary varies slowly, rela-
result(dashed linpapproximates the average behavior of theyjye g the rate at which creeping orbits sample the boundary.
exact DOS for the PCIM(full line). In contrast, the |, Fig 3 we compare this adiabatic method with teeach
th.eme—B resuldotted ling captures the_DOS oscillations oq it obtained by solving the full BdG eigenproblem.
arising from'transverse' quantlzatlon/conflnement. ) We conclude by emphasizing one particular feature of the

Thus_far in our se_mlclasslcal treatme_znt, we have Ignpreqlirst term in Eq.(6): this term gives the coarse DOS directly,
all amplitudes involving ordinary reflection. For nongrazing ,o,gh simple geometrical information in the form of the
incidenceli.e., 60— (/2)~1] the amplitude for ordinary re- ongihs and endpoint-curvatures of the. This feature al-
flection is very small {-A/«?cos'6). However, for orbits  |qys the design of an AB shape that leads to a DOS having
that contribute dominantly to the oscillatory structure of the, predetermined coarse form. Moreover, as the stationary-
DOS, |§—(w/2)|<1 and, therefore, ordinary reflection am- o4 terms are well separatdéh time-spack from the
plitudes are not negligible and must be incorporated. Th'%reeping orbits, it possible to “hear” not only the volume of

can be done by returning to E@4) and re-evaluating the 4 andreev billiard but also its stationary chords.
trace formula using the full expression f&® (i.e., not just

the leading, off-diagonal termHowever, these dominating We gratefully acknowledge useful discussions with Eric
orbits are the ones that are close to the boundary and, fakkkermanns, Michael Stone, and especially Dmitrii Maslov.
these, consecutive reflections take place very near to eadrhis work was supported by DOE DEFG02-96ER45439 and
other, and thus “see” only the local curvature of the bound-NSF-DMR-99-75187.
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