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Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible
entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures,
the form of the corresponding maximally entangled mixed states is determined primarily analytically. As
measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and
negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms
of the maximally entangled mixed states can vary with the combination of ~entanglement and mixedness!
measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can
change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a
given value of entropy, achieve maximal violation of Bell’s inequality.
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I. INTRODUCTION

Over the last decade, the physical characteristics of the
entanglement of quantum-mechanical states, both pure and
mixed, has been recognized as a central resource in various
aspects of quantum information processing. Significant set-
tings include quantum communication @1#, cryptography @2#,
teleportation @3#, and, to an extent that is not quite so clear,
quantum computation @4#. Given the central status of en-
tanglement, the task of quantifying the degree to which a
state is entangled is important for quantum information pro-
cessing and, correspondingly, several measures of it have
been proposed. These include entanglement of formation
@5,6#, entanglement of distillation @7#, relative entropy of en-
tanglement @8#, negativity @9,10#, and so on. It is worth re-
marking that even for the smallest Hilbert space capable of
exhibiting entanglement, i.e., the two-qubit system ~for
which Wootters has determined the entanglement of forma-
tion @6#!, there are aspects of entanglement which remain to
be explored.

Among the family of mixed quantum-mechanical states,
special status should be accorded to those that, for a given
value of the entropy @11#, have the largest possible degree of
entanglement @12#. The reason for this is that such states can
be regarded as mixed-state generalizations of the Bell states,
the latter being known to be the maximally entangled two-
qubit pure states. The notion of maximally entangled mixed
states was introduced by Ishizaka and Hiroshima @13# in a
closely related setting, i.e., that of two-qubit mixed states
whose entanglement is maximized at fixed eigenvalues of the
density matrix ~rather than at fixed entropy of the density
matrix!. Evidently, the entanglement of the maximally en-
tangled mixed states of Ishizaka and Hiroshima cannot be
increased by any global unitary transformation. For these
states, it was shown by Verstraete et al. @14# that the maxi-
mality property continues to hold if any of the following
three measures of entanglement—entanglement of forma-
tion, negativity, and relative entropy of entanglement—is re-

placed by one of the other two.
The question of the ordering of entanglement measures

was raised by Eisert and Plenio @15#, and investigated nu-
merically by them and by Życzkowski @16# and analytically
by Verstraete et al. @17#. It was proved by Virmani and Ple-
nio @18# that all good asymptotic entanglement measures are
either identical or fail to uniformly give consistent orderings
of density matrices. This implies that the resulting maximally
entangled mixed states ~MEMS! may depend on the mea-
sures one uses to quantify entanglement. Moreover, in find-
ing the form of MEMS, one needs to quantify the mixedness
of a state, and there can also be ordering problems for mix-
edness. This implies that the MEMS may depend on the
measures of mixedness as well.

This paper is organized as follows. We begin, in Secs. II
and III, by reviewing several measures of entanglement and
mixedness. In the main part of the paper, Sec. IV, we con-
sider various entanglement-versus-mixedness planes, in
which entanglement and mixedness are quantified in several
ways. Our primary objective, then, is to determine the fron-
tiers, i.e., the boundaries of the regions occupied by the
physically allowed states in these planes, and to identify the
structure of these maximally entangled mixed states. In Sec.
V, as well as making some concluding remarks, we deter-
mine the states that ~for a given value of entropy! achieve
maximal violation of Bell’s inequality.

II. ENTANGLEMENT CRITERIA AND THEIR MEASURES

It is well known that there are a large number of entangle-
ment measures E. For a state described by the density matrix
r , a good entanglement measure must satisfy, at least, the
following conditions @19,20#.

(C1) ~a! E(r)>0; ~b! E(r)50 if r is not entangled
@21#; ~c! E(Bell states)51.

(C2) For any state r and any local unitary transforma-
tion, i.e., a unitary transformation of the form UA ^ UB , the
entanglement remains unchanged.
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(C3) Local operations and classical communication can-
not increase the expectation value of entanglement.

(C4) Entanglement is convex under discarding informa-
tion: ( ip i E(r i)>E(( ip i r i).

The entanglement quantities chosen by us satisfy the
properties C1 –C4. Here, we do not impose the condition
that any good entanglement measure should reduce to the
entropy of entanglement ~to be defined in the following! for
pure states.

A. Entanglement of formation and entanglement cost

The first measure we shall consider is the entanglement of
formation, EF @5#; it quantifies the amount of entanglement
necessary to create the entangled state. It is defined by

EF~r ![ min
$p i ,c i%

(
i

p iE~ uc i&^c iu!, ~2.1!

where the minimization is taken over those probabilities $p i%
and pure states $c i% that, taken together, reproduce the den-
sity matrix r5( ip iuc i&^c iu. Furthermore, the quantity
E(uc i&^c iu) ~usually called the entropy of entanglement!
measures the entanglement of the pure state uc i& and is de-
fined to be the von Neumann entropy of the reduced density
matrix r i

(A)[TrBuc i&^c iu, i.e.,

E~ uc i&^c iu!52Trr i
(A) log2r i

(A) . ~2.2!

For two-qubit systems, EF can be expressed explicitly as
@6#

EF~r !5hS 1

2
@11A12C~r !2# D , ~2.3a!

h~x ![2x log2x2~12x !log2~12x !, ~2.3b!

where C(r), the concurrence of the state r , is defined as

C~r ![max$0,Al12Al22Al32Al4%, ~2.3c!

in which l1 , . . . ,l4 are the eigenvalues of the matrix
r(sy ^ sy)r*(sy ^ sy) in nonincreasing order and sy is a
Pauli spin matrix. EF(r), C(r), and the tangle t(r)
[C(r)2 are equivalent measures of entanglement, inasmuch
as they are monotonic functions of one another.

A measure associated with the entanglement of formation
is the entanglement cost EC @5#, which is defined via

EC~r ![ lim
n→`

EF~r ^ n!

n
. ~2.4!

This is the asymptotic value of the average entanglement of
formation. EC is, in general, difficult to calculate.

B. Entanglement of distillation and relative entropy
of entanglement

Related to the entanglement of formation is the entangle-
ment of distillation, ED @7#, which characterizes the amount

of entanglement of a state r as the fraction of Bell states
which can be distilled using the optimal purification proce-
dure: ED(r)[limn→`m/n , where n is the number of copies
of r used and m is the maximal number of Bell states that
can be distilled from them. The difference EC2ED can be
regarded as undistillable entanglement. ED is a difficult
quantity to calculate, but the relative entropy of entangle-
ment ER @8#, which we shall define shortly, provides an up-
per bound on ED and is more readily calculable than it. For
this reason, it is the second measure that we consider in this
paper. It is defined variationally via

ER~r ![ min
sPD

Tr~r log r2r log s !, ~2.5!

where D represents the ~convex! set of all separable density
operators s . In certain ways, the relative entropy of en-
tanglement can be viewed as a distance D(ruus*) from the
entangled state r to the closest separable state s*. We re-
mark that for pure states, EF5EC5ER5ED ; but in general,
EF>EC>ER>ED .

C. Negativity

The third measure that we shall consider is the negativity.
The concept of the negativity of a state is closely related to
the well-known Peres-Horodecki condition for the separabil-
ity of a state @22#. If a state is separable ~i.e., not entangled!,
then the partial transpose @23# of its density matrix is again a
valid state, i.e., it is positive semidefinite. It turns out that the
partial transpose of a nonseparable state may have one or
more negative eigenvalues. The negativity of a state @9# in-
dicates the extent to which a state violates the positive partial
transpose separability criterion. We will adopt the definition
of negativity as twice the absolute value of the sum of the
negative eigenvalues:

N~r !52 max~0,2lneg!, ~2.6!

where lneg is the sum of the negative eigenvalues of rTB. In
C2

^ C2 ~i.e., two-qubit! systems, it can be shown that the
partial transpose of the density matrix can have at most one
negative eigenvalue @24#. It was proved by Vidal and Werner
@10# that negativity is an entanglement monotone, i.e., it sat-
isfies criteria C1 –C4 and, hence, is a good entanglement
measure. We remark that for two-qubit pure states the nega-
tivity gives the same value as the concurrence does.

D. Ordering difficulties with entanglement measures

We now pause to touch on certain difficulties posed by the
task of ordering physical states using entanglement. As first
discussed and explored numerically by Eisert and Plenio @15#
and by Życzkowski @16#, and subsequently investigated ana-
lytically by Verstraete et al. @17#, different entanglement
measures can give different orderings for pairs of mixed
states. Verstraete et al. showed that, instead, the negativity
of the two-qubit states of a given concurrence C, rather
than having a single value, ranges between
A2@C2(1/2)#2

1(1/2)1(C21) and C. Thus, there is an or-
dering difficulty: pairs of states, A and B, exist for which
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C(A)2C(B) and N(A)2N(B) differ in sign. Hence, when
one wishes to explore maximally entangled mixed states, one
must be explicit about the measure of entanglement ~and also
the measure of mixedness; see the following section! consid-
ered. Different measures have the potential to lead to differ-
ent classes of MEMS.

III. MEASURES OF MIXEDNESS

In the entanglement-measure literature, two measures of
mixedness have basically been used: 12Tr(r2) and the von
Neumann entropy. Whereas the latter has a natural signifi-
cance stemming from its connections with statistical physics
and information theory, the former is substantially easier to
calculate. Of course, for density matrices that are almost
completely mixed, the two measures show the same trend.

A. The von Neumann entropy

The von Neumann entropy, the standard measure of ran-
domness of a statistical ensemble described by a density ma-
trix, is defined by

SV~r ![2Tr~r log r !52(
i

l ilog l i , ~3.1!

where l i are the eigenvalues of the density matrix r and the
log is taken to base N, the dimension of the Hilbert space in
question. It is straightforward to show that the extremal val-
ues of SV are zero ~for pure states! and unity ~for completely
mixed states!. To compute the von Neumann entropy, it is
necessary to have the full knowledge of the eigenvalue spec-
trum.

As we shall mention in the following section, there is a
linear entropy threshold above which all states are separable.
Qualitatively identical behavior is encountered for the von
Neumann entropy. In particular, as we shall see in Sec.
IV C 1, for two-qubit systems all states are separable for
SV>2(1/2)log4(1/12)'0.896.

B. Purity and linear entropy

The second measure that we shall consider is called the
linear entropy and is based on the purity of a state, P

[Tr(r2), which ranges from 1 ~for a pure state! to 1/N for a
completely mixed state with dimension N. The linear en-
tropy SL is defined via

SL~r ![
N

N21
@12Tr~r2!# , ~3.2!

which ranges from 0 ~for a pure state! to 1 ~for a maximally
mixed state!. The linear entropy is generally a simpler quan-
tity to calculate than the von Neumann entropy as there is no
need for diagonalization. For C2

^ C2 systems, the linear en-
tropy can be written explicity as

SL~r ![
4

3
@12Tr~r2!# . ~3.3!

A related measure, which we shall not use in this paper
~but mention for the sake of completeness!, is the inverse
participation ratio. Defined via R[1/Tr(r2), it ranges from
1 ~for a pure state! to N ~for the maximally mixed state!. An
attractive property of the inverse participation ratio is that all
states with R>N21 are separable @9#, which implies all
states with a linear entropy SL(r)>N(N22)/(N21)2

~which is 8/9 when N54) are separable.

C. Comparing linear and von Neumann entropies

The aim of this section is to illustrate the difference be-
tween the linear and von Neumann entropies. We shall do
this by considering the N54 Hilbert space, and seeking the
highest and lowest von Neumann entropies consistent with a
given value of linear entropy. Before restricting N to 4, the
corresponding stationarity problem reads

dS SV~r !1b
N21

2N
SL~r !2~n21 !Trr D50, ~3.4!

where b and n are, respectively, Langrange multipliers that
enforce the constraints that linear entropy should be fixed
and that r should be normalized. Thus, we arrive at the en-
gaging self-consistency condition

r5exp~2n2br !, ~3.5!

in which n and b can be fixed upon implementing the con-
straints. By working with the eigenvalues of density matri-
ces, the stationarity problem becomes straightforward: maxi-
mize or minimize the von Neumann entropy 2( il iln li

subject to the constraints ( il i
2
5const ~fixed linear entropy!

and ( il i51 ~normalization!. The maximal SV versus SL cor-
responds to eigenvalues of the form

~3.6a!

The minimal SV versus SL consists of N21 segments, of
which the kth segment corresponds to eigenvalues of the
form

~3.6b!

where k51, . . . ,N21. For the case of N54, the boundary
of the physical region in the SL versus SV plane ~see Fig. 1!,
when given in terms of eigenvalues, reads

H l ,
12l

3
,
12l

3
,
12l

3 J for
1

4
<l<1, ~3.7a!

$l ,12l ,0,0% for
1

2
<l<1, ~3.7b!
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$l ,l ,122l ,0% for
1

3
<l<

1

2
, ~3.7c!

$l ,l ,l ,123l% for
1

4
<l<

1

3
. ~3.7d!

These segments, respectively, correspond to the upper
boundary, and the lowest, middle, and highest pieces of the
lower boundary. Note that the lower boundary comprises
three ~in general, N21) segments that meet at cusps. We
remark, parenthetically, that the solutions with zero eigenval-
ues correspond to extrema within some subspace spanned by
those eigenvectors with nonzero eigenvalues, and therefore
only obey the stationarity condition ~3.5! within the sub-
space.

Is there any significance to the boundary states? Boundary
segment ~a! includes the Werner states defined in Eq. ~4.7!.
Boundary segment ~b! includes the first branch of the MEMS
for EF and SL specified below in Eq. ~4.6!. The segment ~c!
includes the states

rc5ruf1&^f1u1
12r

2
~ u01&^01u1u10&^10u!. ~3.8!

States on segment ~d! are all unentangled. Of course, the
boundary segments include not only the specified states but
also all states derivable from them by global unitary trans-
formation.

As for the interior, we have obtained this numerically by
constructing a large number of random sets @25# of eigenval-
ues of legitimate density matrices, and computing the two
entropies for each. As Fig. 1 shows, no points lie outside the
boundary curve, providing confirmatory evidence for the
forms given in Eq. ~3.7!.

The fact that the bounded region is two-dimensional indi-
cates the lack of precision with which the linear entropy
characterizes the von Neumann entropy ~and vice versa, if
one wishes!. In particular, the figure reveals an ordering dif-

ficulty: pairs of states, A and B, exist for which SL
A
2SL

B and
SV

A
2SV

B differ in sign. Worse still, states having a common
value of SV have a continuum of values of SL , and vice
versa.

IV. ENTANGLEMENT-VERSUS-MIXEDNESS FRONTIERS

We now attempt to identify regions in the plane spanned
by entanglement and mixedness that are occupied by physi-
cal states ~i.e., characterized by legitimate density matrices!.
We shall consider the various measures of entanglement and
mixedness discussed in the preceding section. Of particular
interest will be the structure of the states that occupy the
frontier, i.e., the boundary delimiting the region of physical
states. Frontier states are maximal in the following sense: for
a given value of mixedness, they are maximally entangled;
for a given value of entanglement, they are maximally
mixed.

A. Parametrization of maximal states

The aim of this section is to derive the general form of the
maximal states given in Eq. ~4.4!, which is what we will use
to parametrize maximal states. In Ref. @14#, it is shown that,
given a fixed set of eigenvalues, all states that maximize one
of the three entanglement measures ~entanglement of forma-
tion, negativity, or relative entropy! automatically maximize
the other two. It was further shown that the global unitary
transformation that takes arbitrary states into maximal ones
has the form

U5~U1 ^ U2!TDfF†, ~4.1!

where U1 and U2 are arbitary local unitary transformations

T[S 0 0 0 1

1/A2 0 1/A2 0

1/A2 0 21/A2 0

0 1 0 0

D . ~4.2!

Df is a unitary diagonal matrix and F is the unitary matrix
that diagonalizes the density matrix r , i.e., r5FLF†,
where L is a diagonal matrix, the diagonal elements of
which are the four eigenvalues of r listed in the order l1
>l2>l3>l4. Hence, the general form of a density matrix
that is maximal, given a set of eigenvalues, is ~up to local
unitary transformations!

TS l1 0 0 0

0 l2 0 0

0 0 l3 0

0 0 0 l4

D
T†

5S l4 0 0 0

0 ~l11l3!/2 ~l12l3!/2 0

0 ~l12l3!/2 ~l11l3!/2 0

0 0 0 l2

D . ~4.3!

FIG. 1. Comparison of linear entropy and von Neumann en-
tropy. 6000 dots ~2000 each for the rank-2, -3, and -4 cases! repre-
sent randomly generated states ~see Ref. @25#!; pure ~rank-1! states
lie at the origin; rank-2 states lie on segment b; the lighter dots in
the interior are rank-3 states; the darker ones are rank-4 states. The
lower boundary comprises three segments meeting at cusps,
whereas the upper boundary is a smooth curve. The two dashed
lines represent thresholds of entropies beyond which no states con-
tain entanglement.
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This matrix is locally equivalent to the form

S x1~r/2! 0 0 r/2

0 a 0 0

0 0 b 0

r/2 0 0 x1~r/2!
D , ~4.4!

with x1(r/2)5(l11l3)/2, r5l12l3 , a5l2, and b
5l4. The above derivation justifies the ansatz form ~4.5!
used in Ref. @12# to derive the entanglement of formation
versus linear-entropy MEMS. We remark that one may as
well use the four eigenvalues (l i’s! as the parametrization.
Nevertheless, the form ~4.4!, as well as ~4.5!, can be nicely
viewed as a mixture of a Bell state uf1& with some diagonal
separable mixed state.

B. Entanglement-versus-linear-entropy frontiers

We begin by measuring mixedness in terms of the linear
entropy, and comparing the frontier states for various mea-
sures of entanglement.

1. Entanglement of formation

The characterization of physical states in terms of their
entanglement of formation and linear entropy was introduced
by Munro et al. in Ref. @12#. ~Strictly speaking, they consid-
ered the tangle rather than the equivalent entanglement of
formation.! Here, we shall consider yet another equivalent
quantity: concurrence ~see Sec. II A!. In order to find the
frontier, Munro et al. proposed ansatz states of the form

ransatz5S x1~r/2! 0 0 r/2

0 a 0 0

0 0 b 0

r/2 0 0 y1~r/2!

D , ~4.5!

where x ,y ,a ,b ,r>0 and x1y1a1b1r51. They found
that, of these, the subset

rMEMS:EF ,SL
5H r I~r ! for

2

3
<r<1

r I~r ! for 0<r<
2

3
,

~4.6a!

r I ~r !5S r/2 0 0 r/2

0 12r 0 0

0 0 0 0

r/2 0 0 r/2

D , ~4.6b!

r II~r !5S
1

3
0 0 r/2

0
1

3
0 0

0 0 0 0

r/2 0 0
1

3

D ,

lies on the boundary in the tangle-versus-linear-entropy
plane and, accordingly, named these MEMS, in the sense that
these states have maximal tangle for a given linear entropy.
We remark that at the crossing point of the two branches, r
52/3, the density matrices on either side coincide.

In Fig. 2 we plot the entanglement of formation/
concurrence versus linear entropy for the family of MEMS
~4.6!; this gives the frontier curve. For the sake of compari-
son, we also give the curve associated with the family of
Werner states of the form

rW[ruf1&^f1u1
12r

4
1

5S ~11r !/4 0 0 r/2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r/2 0 0 ~11r !/4

D .

~4.7!

FIG. 2. Entanglement frontier. Upper panel: entanglement of
formation versus linear entropy. Lower panel: concurrence versus
linear entropy. The states on the boundary ~solid curve! are
rMEMS :EF ,SL

. A dot indicates a transition from one branch of
MEMS to another. The dashed curve below the boundary contains
Werner states.
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Evidently, for a given value of linear entropy these MEMS
~which we shall denote by $MEMS:EF ,SL%) achieve the
highest concurrence. As the tangle t and entanglement of
formation, EF , are monotonic functions of the concurrence,
Eq. ~4.6! also gives the boundary curve for these measures.
This raises an interesting question: Is Eq. ~4.6! optimal for
other measures of entanglement?

2. Relative entropy as the entanglement measure

To find the frontier states for the relative entropy of en-
tanglement, we again turn our attention to the maximal den-
sity matrix ~4.4!. For this form of density matrix, the linear
entropy is given ~with x expressed in terms of a ,b ,r) by

SL5

2

3
@23a2

12a~12b !1~12b !~113b !2r2# .

~4.8!

To calculate the relative entropy of entanglement, we need to
determine the closest separable state to Eq. ~4.4!. It is sim-
pler to do this analysis via several cases. We begin by con-
sidering the rank-2 and rank-3 cases of Eq. ~4.4!. We set b
50 (l450) and express x in terms of a and r in the density
matrix, obtaining

r5S ~12a !/2 0 0 r/2

0 a 0 0

0 0 0 0

r/2 0 0 ~12a !/2

D , ~4.9!

and the corresponding closest separable density matrix s*
was found by Vedral and Plenio @19#:

s*5S C 0 0 D

0 E 0 0

0 0 122C2E 0

D 0 0 C

D , ~4.10a!

C[
~11a !~12a2

2r2!

2~11a2r !~11a1r !
, ~4.10b!

D[
a~11a !r

~11a2r !~11a1r !
, ~4.10c!

E[
a~11a !2

~11a2r !~11a1r !
. ~4.10d!

The relative entropy is now simply given by

ER~r !5

11a

2
log2

~11a !2
2r2

~11a !2
1

r

2
log2

11a1r

11a2r
,

~4.11!

with the linear entropy being given by

SL5

2

3
~112a23a2

2r2!, ~4.12!

subject to the constraint (a1r)<1. For the rank-2 case, a
512r (b5x50), and the resulting solution is the rank-2
matrix r I(r) given in Eq. ~4.6! with 1/2<r<1. We remark
that this rank-2 solution is always a candidate MEMS for the
three entanglement measures that we consider in this paper.
In order to determine whether or in what range the rank-2
solution achieves the global maximum, we need to compare
it with the rank-3 and rank-4 solutions.

By maximizing ER(r) for a given value of SL , we find
the following stationary condition:

r ln
~11a !2

2r2

~11a !2
5~3a21 !ln

11a1r

11a2r
. ~4.13!

Given a value of SL , we can solve Eqs. ~4.12! and ~4.13! at
least numerically to obtain the parameters a and r, and
hence, from Eq. ~4.9!, the rank-3 MEMS. However, if the
constraint inequality a1r<1 turns out to be violated, the
solution is invalid.

We now turn to the rank-4 case. It is straightforward, if
tedious, to show that the Werner states, Eq. ~4.7!, obey the
stationarity conditions appropriate for rank 4. However, it
turns out that this solution is not maximal.

To summarize, the frontier states, which we denote by
$MEMS:ER ,SL%, are states of the form ~4.9!; the depen-
dence of the parameters a and r on SL is shown in Fig. 3. In
Fig. 4, we show the resulting frontier, as well as curves cor-
responding to nonmaximal stationary states. The frontier
states have the following structure: ~i! for SL&0.5054 they
are the rank-2 MEMS of Eq. ~4.6! but with r restricted to the
range from 1 ~at SL50) to '0.7459 ~at SL'0.5054); ~ii! for
SL*0.5054 the MEMS are rank 3, with parameters a and r
satisfying Eqs. ~4.13! and ~4.12! at each value of SL , and
(a ,r) ranging between '(0.3056,0.7459) ~at SL'0.5054)
and (1/3,0) ~at SL58/9). As noted previously, beyond SL
58/9, there are no entangled states. As the inset of Fig. 3
shows, the parameter a can be regarded as a continous func-
tion of parameter rP@0,1# . The two branches of the solution,
~i! and ~ii!, cross at (SL* ,ER*)'(0.5054,0.3422); at this
point, the states on the two branches coincide,

FIG. 3. Dependence of a and r of the frontier states on linear
entropy. The upper curve is a versus SL whereas the lower is r
versus SL . The dotted line indicates the transition between two
branches of MEMS. The inset shows the dependence of a on r for
the frontier states.
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r*.S 0.372 947 0 0 0.372 947

0 0.254 106 0 0

0 0 0 0

0.372 947 0 0 0.372 947

D .

~4.14!

Just as in the case of entanglement of formation versus linear
entropy, the density matrix is continuous at the transition
between branches.

We remark that the curve generated by the states
$MEMS:EF ,SL%, when plotted on the ER versus SL plane,
falls just slightly below that generated by the states
$MEMS:ER ,SL% for SL*0.5054 ~and coincides for smaller
values of SL). We also remark that the parameter r turns out
to be the concurrence C of the states, so that Fig. 3 can be
interpreted as a plot of the concurrence of the frontier states
versus their linear entropy. By comparing this concurrence
versus linear-entropy curve to that in Fig. 2, we find that the
former lies just slightly below the latter for SL*0.5054 ~and
the two coincide for smaller values of SL), the maximal dif-
ference between the two being less than 1022.

It is evident that, for a given linear entropy, the relative
entropies of entanglement for both $MEMS:ER ,SL% and
$MEMS:EF ,SL% are significantly less than the correspond-
ing entanglements of formation. In fact, for small degrees of
impurity, the entanglements of formation for the two MEMS
states are quite flat; however, the relative entropies of en-
tanglement fall quite rapidly. More specifically, for a change
in linear entropy of DSL50.1 near SL50, we have DEF
'0.05 ~see Fig. 2! and DER'0.2 ~see Fig. 4!. As the curves
of the states $MEMS:EF ,SL% and $MEMS:ER ,SL% are very
close on the two planes, EF versus SL and ER versus SL , we
show in Fig. 5 the entanglement difference EF2ER for the
states $MEMS:EF ,SL%, and compare it with the correspond-
ing difference for the Werner states. While it is clear that
ER(r)<EF(r), for certain values of the linear entropy the
difference turns out to be quite large, this difference being
uniformly larger for $MEMS:EF ,SL% than for the Werner
state; see Fig. 5.

As we have seen, Werner states are not frontier states
either in the case of entanglement of formation or in the case
of relative entropy of entanglement. By contrast, as we shall

see in the following section, if we measure entanglement via
negativity, then for a given amount of linear entropy, the
Werner states ~as well as another rank-3 class of states!
achieve the largest value of entanglement. Said equivalently,
the Werner states belong to $MEMS:N ,SL%.

3. Negativity

In order to derive the form of the MEMS in the case of
negativity, we again consider the density matrix of the form
~4.4!, for which it is straightforward to show that the nega-
tivity N is given by

N5max$0,A~a2b !2
1r2

2~a1b !%. ~4.15!

Furthermore, because we aim to find the entanglement fron-
tier, we can simply restrict our attention to states satisfying
N.0, i.e., to states that are entangled @22#. Then, by making
N stationary at fixed SL and with the constraint 2x1a1b
1r51, we find two one-parameter families of stationary
states ~in addition to the rank-2 MEMS, which are common
to all three entanglement measures!. The parameters of the
first family obey

a5b5x ,r5124x . ~4.16!

When expressed in terms of parameter r, the density matrix
takes the form

r
MEMS:N ,SL

(1)
5S ~11r !/4 0 0 r/2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r/2 0 0 ~11r !/4

D ,

~4.17!

which are precisely the Werner states in Eq. ~4.7!. For the
second solution, the parameters obey

a5

422A3r2
11

6
,b50,x5

11A3r2
11

6
2

r

2
.

~4.18!

When expressed in terms of parameter r, the density matrix
takes the form

FIG. 4. Entanglement frontier: relative entropy of entanglement
versus linear entropy. The frontier states are rMEMS:ER ,SL

. The dot
indicates the transition between branches of MEMS.

FIG. 5. Difference in entanglement (EF2ER) versus SL for the
MEMS in Eq. ~4.6! and Werner states. The solid curve shows states
from rMEMS :EF ,SL

; the dashed curve shows the Werner states.
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r
MEMS:N ,SL

(2)
5S ~11A3r2

11 !/6 0 0 r/2

0 ~422A3r2
11 !/6 0 0

0 0 0 0

r/2 0 0 ~11A3r2
11 !/6

D . ~4.19!

We remark that the two solutions give the same bound on the
negativity for a given value of linear entropy. The resulting
frontier in the negativity-versus-linear-entropy plane is
shown in Fig. 6.

Thus, the states $MEMS:N ,SL% on the boundary include,
up to local unitary transformations, both Werner states in Eq.
~4.17! and states in Eq. ~4.19!. We also plot in Fig. 6 the
curve belonging to $MEMS:EF ,SL%; note that it falls
slightly below the curve associated with $MEMS:N ,SL% and
that it has a cusp, due to the structure of the states, at the
value 2/3 for the parameter r in Eq. ~4.6!. Here, we see that
maximally entangled mixed states change their form when
we adopt a different entanglement measure.

C. Entanglement versus von Neumann entropy frontiers

We continue this section by choosing to measure mixed-
ness in terms of the von Neumann entropy, and comparing
the frontier states for various measures of entanglement.

1. Entanglement of formation

To find this frontier, we consider states of the form ~4.4!,
and compute for them the concurrence and the von Neumann
entropy:

C5r22Aab , ~4.20a!

SV52a log4a2b log4b2x log4x2~x1r !log4~x1r !.
~4.20b!

Note that the parameters obey the normalization constraint
2x1a1b1r51.

As we remarked previously, the rank-2 MEMS is always a
candidate. For the rank-3 case, we can set b50 in Eq. ~4.20!.
By maximizing C at fixed SV , we find a stationary solution:
~i! r5C , x5(423C2A423C2)/6, and a5(A423C2

21)/3; the resulting density matrix is

r i5S ~42A423C2!/6 0 0 C/2

0 ~A423C2
21 !/3 0 0

0 0 0 0

C/2 0 0 ~42A423C2!/6

D . ~4.21!

For the rank-4 case (bÞ0), the stationarity condition can be
shown to be

u ln~u !5w ln~w !, ~4.22a!

2u ln~u !5~u1w !ln~v !, ~4.22b!

where u[Aa/(x1r), v[Ax/(x1r), and w[Ab/(x1r).
There are two solutions, due to the two-to-one property of
the function z ln z for zP(0,1). The first one is (u5v

5w). ~ii! a5b5x5(12C)/6, and r5(112C)/3, which
can readily be seen to be a Werner state as in Eq. ~4.7! or,
equivalently,

r ii5S ~21C !/6 0 0 ~112C !/6

0 ~12C !/6 0 0

0 0 ~12C !/6 0

~112C !/6 0 0 ~21C !/6

D .

~4.23!

Being the concurrence, C is restricted to the interval @0,1# .
The second solution is transcendental, but can be solved nu-
merically.

In Fig. 7 we compare the four possible candidate solu-
tions, and find that the global maximum is composed of only
~i! and ~ii!. We summarize the states at the frontier as fol-
lows:

rMEMS:EF ,SV
5H r ii for 0<C<C*,

r i for C*<C<1.
~4.24!

Note the crossing point at (C ,SV)5@C*,SV(C*)# , at which
extremality is exchanged, so the true frontier consists of two
branches. It is readily seen that C* is the solution of the
equation SV@r i(C)#5SV@r ii(C)# , and the approximate nu-
merical values of C* and the corresponding SV* are 0.305
and 0.741, respectively.

The resulting form of MEMS states is peculiar, in that,
even at the crossing point of two branches on the

WEI et al. PHYSICAL REVIEW A 67, 022110 ~2003!

022110-8



entanglement-mixedness plane, the forms of matrices on the
two branches are not equivalent ~one is rank 3, the other rank
4!. This is in contrast to the $MEMS:EF ,SL%. This peculiar-
ity can be partially understood from the plot of the two mix-
edness measures, Fig. 1. As the value of the von Neumann
entropy rises, there are fewer and fewer rank-3 entangled
states, and above some threshold, no more rank-3 states ex-
ist, let alone entangled rank-3 states. There are, however, still
entangled states of rank 4. Hence, if rank-3 states attain
higher entanglement than rank-4 states do when the entropy
is low, a transition must occur between MEMS states of
ranks 3 and 4.

From Fig. 7 it is evident that beyond a certain value of the
von Neumann entropy, no entangled states exist. This value
can be readily obtained by considering the MEMS state
~4.23! at C50,

S
1

3
0 0

1

6

0
1

6
0 0

0 0
1

6
0

1

6
0 0

1

3

D , ~4.25!

for which SV52(1/2)log4(1/12)'0.896.
As an aside, we mention a tantalizing but not yet fully

developed analogy with thermodynamics @26#. In this anal-
ogy, one associates entanglement with energy and von Neu-
mann entropy with entropy, and it is therefore tempting to
regard the MEMS just derived as the analog of thermody-
namic equilibrium states. If we apply the Jaynes principle to
an ensemble in equilibrium with a given amount of entangle-
ment, then the most probable states are those MEMS shown
above.

2. Relative entropy of entanglement

Let us now find the frontier states for the case of relative
entropy of entanglement. To do this, we first consider the

rank-3 states in Eq. ~4.9!, for which the relative entropy is
given by Eq. ~4.11!. For these states, the von Neumann en-
tropy is given by

SV52

12a1r

2
log4

12a1r

2
2alog4 a

2

12a2r

2
log4

12a2r

2
, ~4.26!

where the log function is taken to have base 4. Even though
the log functions in SV and ER use different bases, the sta-
tionary condition for the parameters r and a does not change,
because the difference can be absorbed by a rescaling of the
constraint-enforcing Lagrange multiplier. Thus, in maximiz-
ing ER at fixed SV , we arrive at the stationarity condition

ln
~11a !2

2r2

~11a !2
ln

12a2r

12a1r
5ln

11a1r

11a2r
ln

~12a !2
2r2

4a2
.

~4.27!

We can solve for the parameter a as a function of rP@0,1# ,
at least numerically; the result is shown in Fig. 8, along with
SV and ER .

Turning to the rank-4 case, it is straightforward, if tedious,
to show that the Werner states satisfy the corresponding sta-
tionarity conditions. In order to ascertain which rank gives
the MEMS for a given SV , we compare the stationary states
of ranks 2, 3, and 4 in Fig. 9. Thus, we see that for SV

<SV*.0.672, the frontier states are given by the rank-3
states, whereas for SV>SV* the frontier states are given by

FIG. 6. Entanglement frontier: negativity versus linear entropy.
States on the boundary ~full line! are rMEMS:N ,SL

(1) and rMEMS:N ,SL

(2) .
The dashed line comprises rMEMS:EF ,SL

.

FIG. 7. Entanglement frontiers. Upper panel: entanglement of
formation versus von Neumann entropy. Lower panel: concurrence
versus von Neumann entropy. The branch structure is described in
the text.
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the Werner states ~4.7! with the parameter r ranging from
'0.6059 down to 0. At the crossing point, (SV* ,ER*)
.(0.672,0.124), the MEMS undergo a discontinuous transi-
tion; recall that we encountered a similar phenomenon in the
case of entanglement of formation versus von Neumann en-
tropy.

3. Negativity

We saw in Sec. IV B 3 that there is a pair of families of
MEMS, which differ in rank but give the identical frontier in
the N versus SL plane. It is interesting to see what happens
for the combination of negativity and von Neumann entropy.

Once again, we begin with states of the form ~4.4!, for
which the negativity and the von Neumann entropy are given
in Eqs. ~4.15! and ~4.20b!, respectively. By making N sta-
tionary at fixed SV , we are able to find only one solution ~in
addition to the rank-2 candidate!: a5b5x . Expressing the
resulting density matrix, as we may, in terms of the single
parameter r, we arrive at the following candidate for the
frontier states:

rMEMS:N ,SV

5S ~11r !/4 0 0 r/2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r/2 0 0 ~11r !/4

D ,

~4.28!

where 0<r<1, i.e., the Werner states.
The resulting frontier in the negativity versus von

Neumann–entropy plane is shown in Fig. 10 that, for com-
parison, also shows the curve for the rank-2 candidate.

V. CONCLUDING REMARKS

In this paper we have determined families of maximally
entangled mixed states ~MEMS!, i.e., frontier states, which
possess the maximum amount of entanglement for a given
degree of mixedness. These states may be useful in quantum
information processing in the presence of noise, as they have
the maximum amount of entanglement possible for a given
mixedness. We considered various measures of entanglement
~entanglement of formation, relative entropy, and negativity!
and mixedness ~linear entropy and von Neumann entropy!.

We found that the form of the MEMS depends heavily on
the measures used. Certain classes of frontier states ~such as
those arising with either entanglement of formation or rela-
tive entropy of entanglement versus the von Neumann en-
tropy! behave discontinuously at a specific point on the
entanglement-mixedness frontier. Under most of the settings
considered, we have been able to explicitly derive analytical
forms for the frontier states.

In the cases of entanglement of formation and relative
entropy, for most values of mixedness, we have found that
the rank-2 and rank-3 MEMS have more entanglement than
Werner states do. On the other hand, at fixed entropy no
states have higher negativity than Werner states do. At small
amounts of mixedness, the $MEMS:EF ,SL% states ‘‘lose’’
entanglement with increasing mixedness at a substantially
lower rate than do the Werner states. However, when the
entanglement is measured by the relative entropy, the differ-
ence in loss rate is significantly smaller.

Having characterized the MEMS for various measures, it
is worthwhile considering them from the perspective of
Bell’s-inequality violations. To quantify the violation of
Bell’s inequality, it is useful to consider the quantity

B[ max
aW ,aW 8,bW ,bW 8

$E~aW ,bW !1E~aW ,bW 8!1E~aW 8,bW !2E~aW 8,bW 8!%,

~5.1!

FIG. 8. Dependence of ER , SV , and a on r for the rank-3
maximal states.

FIG. 9. Entanglement frontier: relative entropy of entanglement
versus von Neumann entropy. The solid curve is the frontier. The
branch structure is described in the text.

FIG. 10. Entanglement frontier: negativity versus von Neumann
entropy. The solid curve is the frontier. The broken curve represents
the rank-2 candidate states.
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where E(aW ,bW )[^sW •aW ^ sW •bW & and the vectors aW and aW 8 (bW

and bW 8) are two different measuring apparatus settings for
observer A ~observer B). If B.2, then the corresponding
state violates Bell’s inequality. For the density matrix of the
form ~4.4!, it is straightforward @27# to show that the quantity
B is given by

B52AF4S x1

r

2 D21G2

1r2. ~5.2!

Now, Theorem 4 of Ref. @28# asserts that for any given spec-
trum (l1>l2>l3>l4) of a density matrix, states that
achieve maximal violation of Bell’s inequality are diagonal
in the Bell basis (uF6&,uC6&), and that the quantity B is
equal to 2A2A(l12l4)2

1(l22l3)2. From this, it is
straightforward to derive states that, for a given value of
mixedness, the maximal Bell’s-inequality violation is
achieved. For the case of linear entropy, we get the state with
eigenvalues

$l ,12l ,0,0% with lPF1

2
,1G , ~5.3a!

H l ,l ,
122l

2
,
122l

2 J with lPF1

4
,
1

2G . ~5.3b!

For the case of von Neumann entropy, the corresponding
eigenvalues are

$~12a !2,a~12a !,a~12a !,a2% with aPF0,
1

2G .

~5.4!

In Fig. 11 we plot B versus linear and von Neumann entro-
pies for several families of frontier states. As a comparison,
we also draw the corresponding maximal violation in each
case.

Another natural application for which entanglement is
known to be a critical resource is quantum teleportation.
How do these frontier MEMS teleport, compared with the
Werner and rank-2 Bell diagonal states? If we restrict our
attention to high-purity situations ~i.e., to states with only a
small amount of mixedness!, then it is straightforward to
show that, e.g., $MEMS:EF ,SL% states teleport average
states better than the Werner states do, but worse than the
rank-2 Bell diagonal state does. Part of the explanation for
this behavior is that standard teleportation is optimized for
using Bell states as its core resource.

It is also interesting to note that for certain combinations
of entanglement and mixedness measures, as well as the

Bell’s inequality violation, the rank-2 candidates fail to fur-
nish MEMS. Thus, these states seem to be less useful than
other MEMS. However, from the perspective of distillation,
these states are exactly quasidistillable @29,30#, and can be
useful in the presence of noise because they can be easily
distilled into Bell states.
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