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Geometric measure of entanglement and applications to bipartite and multipartite quantum states
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The degree to which a pure quantum state is entangled can be characterized by the distance or angle to the
nearest unentangled state. This geometric measure of entanglement, already present in a number of settings@A.
Shimony, Ann. NY. Acad. Sci.755, 675 ~1995!; H. Barnum and N. Linden, J. Phys. A: Math. Gen.34, 6787
~2001!#, is explored for bipartite and multipartite pure and mixed states. The measure is determined analytically
for arbitrary two-qubit mixed states and for generalized Werner and isotropic states, and is also applied to
certain multipartite mixed states. In particular, a detailed analysis is given for arbitrary mixtures of three-qubit
Greenberger-Horne-Zeilinger,W, and inverted-W states. Along the way, we point out connections of the
geometric measure of entanglement with entanglement witnesses and with the Hartree approximation method.

DOI: 10.1103/PhysRevA.68.042307 PACS number~s!: 03.67.Mn, 03.65.Ud
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I. INTRODUCTION

Only recently, after more than half a century of existen
has the notion of entanglement become recognized as ce
to quantum information processing@1#. As a result, the task
of characterizing and quantifying entanglement has emer
as one of the prominent themes of quantum informat
theory. There have been many achievements in this direc
primarily in the setting ofbipartite systems@2#. Among
these, one highlight is Wootters’ formula@3# for the entangle-
ment of formation for two-qubit mixed states; others inclu
corresponding results for highly symmetrical states
higher-dimensional systems@4,5#. The issue of entanglemen
for multipartite states poses an even greater challenge,
there have been correspondingly fewer achievements:
table examples include applications of the relative entro
@6#, negativity@7#, and Schmidt measure@8#.

In this paper, we present an attempt to face this challe
by developing and investigating a certain geometric meas
of entanglement~GME!, first introduced by Shimony@9# in
the setting of bipartite pure states and generalized to the m
tipartite setting~via projection operators of various ranks! by
Barnum and Linden@10#. We begin by examining this geo
metric measure in pure-state settings and establishing a
nection with entanglement witnesses and then extend
measure to mixed states, showing that it satisfies certain
teria required of good entanglement measures. We dem
strate that this geometric measure is no harder to com
than the entanglement of formationEF , and exemplify this
fact by giving formulas corresponding toEF for ~i! arbitrary
two-qubit mixed,~ii ! generalized Werner, and~iii ! isotropic
states. We conclude by applying the geometric entanglem
measure to certain families of multipartite mixed states,
which we provide a practical method for computing e
tanglement and illustrate this method via several examp
In particular, a detailed analysis is given for arbitrary mixtu
of three-qubit Greenberger-Horne-Zeilinger~GHZ!, W, and
inverted-W states.

It is not our intention to cast aspersions on existing
proaches to entanglement; rather we simply wish to add
further element to the discussion. Our discussion focuse
quantifying multipartite entanglement in terms of a sing
1050-2947/2003/68~4!/042307~12!/$20.00 68 0423
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number rather than characterizing it.
The structure of the paper is as follows. In Sec. II w

describe the basic geometric ideas on quantifying entan
ment geometrically in the setting of pure quantum states
establish a connection with the Hartree approximat
method and entanglement witnesses. In Sec. III we ext
the definition of the GME to mixed states and show that i
an entanglement monotone. In Sec. IV we examine the G
for several families of mixed states of bipartite systems:~i!
arbitrary two-qubit mixed,~ii ! generalized Werner,~iii ! iso-
tropic states in bipartite systems, as well as~iv! certain mix-
tures of multipartite symmetric states. In Sec. V we give
detailed application of the GME to arbitrary mixtures
three-qubit GHZ,W, and inverted-W states. In Sec. VI we
discuss some open questions and further directions. In
Appendix we briefly review the Vollbrecht-Werner techniqu
used in the present paper.

II. BASIC GEOMETRIC IDEAS AND APPLICATION
TO PURE STATES

We begin with an examination of entangledpure states
and of how one might quantify their entanglement by mak
use of simple ideas of Hilbert space geometry. Let us star
developing a quite general formulation, appropriate for m
tipartite systems comprisingn parts, in which each part ca
have a distinct Hilbert space. Consider a generaln-partite
pure state

uc&5 (
p1•••pn

xp1p2•••pn
uep1

(1)ep2

(2)
•••epn

(n)&. ~1!

One can envisage a geometric definition of its entanglem
content via the distance

d5min
uf&

iuc&2uf&i ~2!

betweenuc& and the nearest separable stateuf& ~or equiva-
lently the angle between them!. Here,uf&[ ^ i 51

n uf ( i )& is an
arbitrary separable~i.e., Hartree! n-partite pure state, the in
dex i 51, . . . ,n labels the parts, and
©2003 The American Physical Society07-1
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uf ( i )&[(
pi

cpi

( i )uepi

( i )&. ~3!

It seems natural to assert that the more entangled a sta
the further away it will be from its best unentangled appro
imant ~and the wider will be the angle between them!.

To actually find the nearest separable state, it is con
nient to minimize, instead ofd, the quantity

iuc&2uf&i2, ~4!

subject to the constraint̂fuf&51. In fact, in solving the
resulting stationarity condition one may restrict one’s att
tion to the subset of solutionsuf& that obey the further con
dition that for each factoruf ( i )& one has^f ( i )uf ( i )&51.
Thus, one arrives at thenonlinear eigenproblemfor the sta-
tionary uf&:

(
p1•••pî•••pn

xp1p2•••pn
* cp1

(1)* •••cpi

( i )*̂ •••cpn

(n)* 5L cpi

( i )* ,

~5a!

(
p1•••pî•••pn

xp1p2•••pn
cp1

(1)* •••cpi

( i )*̂ •••cpn

(n)* 5L cpi

( i )* ,

~5b!

where the eigenvalueL is associated with the Lagrange mu
tiplier enforcing the constraint̂fuf&51, and the symbol̂
denotes exclusion. In basis-independent form, Eqs.~5! read

^cuS ^

j (Þ i )

n
uf ( j )& D 5L^f ( i )u, ~6a!

S ^

j (Þ i )

n

^f ( j )u D uc&5Luf ( i )&. ~6b!

From Eqs.~5! or ~6! one readily sees that the eigenvaluesL
are real, in@21,1#, and independent of the choice of th
local basis$uepi

( i )&%. Hence, the spectrumL is the cosine of

the angle betweenuc& anduf&; the largest,Lmax, which we
call theentanglement eigenvalue, corresponds to the close
separable state and is equal to the maximal overlap

Lmax5max
f

uu^fuc&uu, ~7!

whereuf& is an arbitrary separable pure state.
Although, in determining the closest separable state,

have used the squared distance between the states, the
alternative~basis-independent! candidates for entanglemen
measures which are related to it in an elementary way:
distance, the sine, or the sine squared of the angleu between
them ~with cosu[Rê cuf&). We shall adopt Esin2[1
2Lmax

2 as our entanglement measure because, as we
see, when generalizingEsin2 to mixed states we have bee
able to show that it satisfies a set of criteria demanded
entanglement measures. We remark that determining the
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tanglement ofuc& is equivalent to finding the Hartree ap
proximation to the ground state of the auxiliary Hamiltoni
H[2uc&^cu @11#.

In bipartite applications, eigenproblem~5! is in fact lin-
ear, and solving it is actually equivalent to finding th
Schmidt decomposition@9#. Moreover, the entanglement e
genvalue is equal to the maximal Schmidt coefficient.
contrast, for the case of three or more parts, the eigenp
lem is a nonlinear one. As such, one can in general on
address it directly, i.e., by determining the eigenvalues
eigenvectors simultaneously and numerically. Yet, as
shall illustrate shortly, there do exist certain families of pu
states whose entanglement eigenvalues can be determ
analytically.

A. Illustrative examples

Suppose we are already in possession of the Schmidt
composition of some two-qubit pure state

uc&5Apu00&1A12pu11&. ~8!

Then we can read off the entanglement eigenvalue

Lmax5max$Ap,A12p%. ~9!

Now, recall @3# that the concurrenceC for this state is
2Ap(12p). Hence, one has

Lmax
2 5 1

2 ~11A12C2!, ~10!

which holds for arbitrary two-qubit pure states.
The possession of symmetry by a state can alleviate

difficulty associated with solving the nonlinear eigenpro
lem. To see this, consider a state

uc&5 (
p1•••pn

xp1p2•••pn
uep1

(1)ep2

(2)
•••epn

(n)& ~11!

that obeys the symmetry that the nonzero amplitudesx are
invariant under permutations. What we mean by this is th
regardless of the dimensions of the factor Hilbert spaces,
amplitudes are only nonzero when the indices take on
first n values~or can be arranged to do so by appropria
relabeling of the basis in each factor! and, moreover, tha
these amplitudes are invariant under permutations of the
ties, i.e.,xs1s2•••sn

5xp1p2•••pn
, where thes ’s are any per-

mutation of thep’s. ~This symmetry may be obscured b
arbitrary local unitary transformations.! For such states, it
seems reasonable to anticipate that the closest Hartree
proximant retains this permutation symmetry. Assuming t
to be the case—and numerical experiments of ours sup
this assumption—in the task of determining the entang
ment eigenvalue one can start with the ansatz that the clo
separable state has the form

uf&[ ^

i 51

n S (
j

cj uej
( i )& D , ~12!

i.e., is expressed in terms of copies of a single-factor st
for which cj

( i )5cj . To obtain the entanglement eigenvalue
is thus only necessary to maximize Re^fuc& with respect to
7-2
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GEOMETRIC MEASURE OF ENTANGLEMENT AND . . . PHYSICAL REVIEW A68, 042307 ~2003!
$cj% j 51
n , a simpler task than maximization over the( i 51

n di

amplitudes of a generic product state.
To illustrate this symmetry-induced simplification, w

consider several examples involving permutation-invari
states, first restricting our attention to the casen52. The
most natural realizations aren-qubit systems. One can labe
these symmetric states according to the number of 0’s
follows @12#:

~13!

As the amplitudes are all positive, one can assume that
closest Hartree state is of the form

uf&5~Apu0&1A12pu1&) ^ n, ~14!

for which the maximal overlap~with respect top) gives the
entanglement eigenvalue foruS(n,k)&:

Lmax~n,k!5A n!

k! ~n2k!! S k

nD k/2S n2k

n D (n2k)/2

. ~15!

For fixed n, the minimumLmax ~and hence the maximum
entanglement! among theuS(n,k)& ’s occurs fork5n/2 ~for n
even! and k5(n61)/2 ~for n odd!. In fact, for fixedn the
general permutation-invariant state can be expressed
(kakuS(n,k)& with (kuaku251. The entanglement of suc
states can be addressed via the strategy that we have
discussing, i.e., via the maximization of a function of~at
most! three real parameters. The simplest example is p
vided by thenGHZ state:

unGHZ&[~ uS~n,0!&1uS~n,n!&)/A2. ~16!

It is easy to show that~for all n) Lmax(nGHZ)51/A2 and
Esin251/2.

We now focus our attention on three-qubit settings.
these, the statesuS(3,0)&5u000& anduS(3,3)&5u111& are not
entangled and are, respectively, the components of
3-GHZ state: uGHZ&[(u000&1u111&)/A2. The states
uS(3,2)& and uS(3,1)&, denoted as

uW&[uS~3,2!&5~ u001&1u010&1u100&)/A3, ~17a!

uW̃&[uS~3,1!&5~ u110&1u101&1u011&)/A3, ~17b!

are equally entangled, havingLmax52/3 andEsin255/9.
Next, consider a superposition of theW andW̃ states:

uWW̃~s,f!&[AsuW&1A12seifuW̃&. ~18!

It is easy to see that its entanglement is independent of:
the transformation $u0&,u1&%→$u0&,e2 ifu1&% induces
uWW̃(s,f)&→e2 ifuWW̃(s,0)&. To calculateLmax, we as-
sume that the separable state is (cosuu0&1sinuu1&)^3 and
maximize its overlap withuWW̃(s,0)&. Thus we find that the
tangent t[tanu is the particular root of the polynomia
equation
04230
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A12st312Ast222A12st2As50 ~19!

that lies in the rangetP@A1/2,A2#. Via u(s), Lmax ~and thus
Esin2512Lmax

2 ) can be expressed as

Lmax~s!5 1
2 @Ascosu~s!1A12ssinu~s!#sin 2u~s!. ~20!

In Fig. 1, we showEsin2„uWW̃(s,f)&… vs s. In fact, Lmax for
the more general superposition

uSSn;k1k2
~r ,f!&[Ar uS~n,k1!&1A12reifuS~n,k2!& ~21!

~with k1Þk2) turns out to be independent off, as in the
case ofuWW̃(s,f)&, and can be computed in the same wa
We note that although the curve in Fig. 1 is convex, conv
ity does not hold uniformly overk1 andk2.

As our last pure-state example in the qubit setting,
consider superpositions ofW and GHZ states:

uCGHZ1W~s,f!&[AsuGHZ&1A12seifuW&. ~22!

For these, the phasef cannot be ‘‘gauged’’ away and, henc
Esin2 depends onf.

In Fig. 2 we showEsin2 vs s at f50 andf5p ~i.e., the
bounding curves!, as well asEsin2 for randomly generated
values ofsP@0,1# andfP@0,2p# ~dots!. It is interesting to
observe that the ‘‘p ’’ state has higher entanglement than t
‘‘0’’ does. As the numerical results suggest, the (f param-
etrized! Esin2 vs s curves of the statesuCGHZ1W(s,f)& lie
between thep and 0 curves.

We remark that, more generally, systems comprisingn
parts, each ad-level system, the symmetric state

~23!

FIG. 1. Entanglement of the pure stateAsuW&1A12suW̃& vs s.
This also turns out to be the entanglement curve for the mixed s

suW&^Wu1(12s)uW̃&^W̃u.
7-3
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with ( iki5n, has entanglement eigenvalue

Lmax~n;$k%!5A n!

P i~ki ! ! )
i 50

d21 S ki

n D ki /2

. ~24!

One can also consider other symmetries. For example
the totally antisymmetric~viz., determinant! state ofn parts,
each withn levels,

uDetn&[
1

An!
(

i 1 , . . . ,i n51

n

e i 1 , . . . ,i n
u i 1 , . . . ,i n&, ~25!

it has been shown by Bravyi@13# that the maximal square
overlap isLmax

2 51/n!. Bravyi also generalized the antisym
metric state to then5pdp-partite determinant state via

f~1!5~0,0, . . .,0,0!,

f~2!5~0,0, . . .,0,1!,

A

f~dp21!5~d21,d21, . . . ,d21,d22!,

f~dp!5~d21,d21, . . . ,d21,d21!,

and

uDetn,d&[
1

A~dp! !
(

i 1 , . . . ,i dp

e i 1 , . . . ,i dpuf~ i 1!, . . . ,f~ i dp!&.

~26!

In this case, one can show thatLmax
2 5@(dp)!#21.

B. Connection with entanglement witnesses

We now digress to discuss the relationship between
geometric measure of entanglement and another entan
ment property—entanglement witnesses. The entanglem
witnessW for an entangled stater is defined to be an op
erator that is~a! Hermitian and~b! obeys the following con-
ditions@14#: ~i! Tr(Ws)>0 for all separable statess and~ii !

FIG. 2. Entanglement ofuCGHZ1W(s,f)& vs s. The upper curve
is for f5p whereas the lower one is forf50. Dots represent
states with randomly generateds andf.
04230
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Tr(Wr),0. Here, we wish to establish a corresponden
betweenLmax for the entangled pure stateuc& and the opti-
mal element of the set of entanglement witnessesW for uc&
that have the specific form

W5l212uc&^cu, ~27!

this set being parametrized by the real, non-negative num
l2. By optimal we mean that, for this specific form of wit
nesses, the value of the ‘‘ detector’’ Tr(Wuc&^cu) is as nega-
tive as can be.

In order to satisfy condition~i! we must ensure that, fo
any separablestates, we have Tr(Ws)>0. As the density
matrix for any separable state can be decomposed in
mixture ofseparable purestates@i.e., s5( i uf i&^f i u, where
$uf i&% are separable pure states#, condition~i! will be satis-
fied as long as Tr(Wuf&^fu)>0 for all separablepurestates
uf&. This condition is equivalent to

l22uu^cuf&uu2>0 for all separableuf&, ~28!

which leads to

l2>max
uf&

uu^cuf&uu25Lmax
2 ~ uc&). ~29!

Condition~ii ! requires that Tr(Wuc&^cu),0, in order for
W to be a valid entanglement witness foruc&; this gives
l221,0. Thus, we have established the range ofl for
which l212uc&^cu is a valid entanglement witness foruc&:

Lmax
2 ~ uc&)<l2,1. ~30!

With these preliminaries in place, we can now establ
the connection we are seeking. Of the specific family~27! of
entanglement witnesses foruc&, the one of the formWopt

5Lmax
2 (uc&)12uc&^cu is optimal, in the sense that it achieve

the most negative value for the detector Tr(Woptuc&^cu):

min
W

Tr~Wuc&^cu!5Tr~Woptuc&^cu!52Esin2~ uc&),

~31!

whereW runs over class~27! of witnesses.
We now look at some examples. For the GHZ state

optimal witness is

WGHZ5 1
2 12uGHZ&^GHZu ~32!

and Tr(WGHZuGHZ&^GHZu)52Esin2(uGHZ&)521/2. Simi-
larly, for theW and inverted-W states we have

WW5 4
9 12uW&^Wu and WW̃5 4

9 12uW̃&^W̃u ~33!

and Tr(WWuW&^Wu)52Esin2(uW&)525/9, and similarly for
uW̃&. For the four-qubit state

uC&[~ u0011&1u0101&1u0110&1u1001&1u1010&

1u1100&)/A6, ~34!
7-4
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GEOMETRIC MEASURE OF ENTANGLEMENT AND . . . PHYSICAL REVIEW A68, 042307 ~2003!
the optimal witness is

WC5 3
8 12uC&^Cu ~35!

and Tr(WCuC&^Cu)52Esin2(uC&)525/8.
Although the observations we have made in this sec

are, from a technical standpoint, elementary, we neverthe
find it intriguing that two distinct aspects of entanglement
the geometric measure of entanglement and entanglem
witnesses—are so closely related. Furthermore, this con
tion sheds light on the content of the geometric measure
entanglement. In particular, as entanglement witnesses
Hermitian operators, they can, at least in principle, be re
ized and measured locally@15#. Their connection with the
geometric measure of entanglement ensures that the geo
ric measure of entanglement can, at least in principle,
verified experimentally.

III. EXTENSION TO MIXED STATES

The extension of the GME to mixed statesr can be made
via the use of theconvex roof~or hull! construction@indi-
cated byCconv], as was done for the entanglement of form
tion ~see, e.g., Ref.@3#!. The essence is a minimization ov
all decompositionsr5( i pi uc i&^c i u into pure states, i.e.,

E~r![CconvEpure~r![ min
$pi ,c i %

(
i

piEpure~ uc i&). ~36!

Now, any good entanglement measureE should, at least,
satisfy the following criteria~cf. Refs. @6,16,17#!: ~C1! ~a!
E(r)>0, ~b! E(r)50 if r is not entangled;~C2! local uni-
tary transformations do not changeE; ~C3! local operations
and classical communication~LOCC! ~as well as postselec
tion! do not increase the expectation value ofE; and ~C4!
entanglement is convex under the discarding of informati
i.e., ( i piE(r i)>E(( i pir i).

The issue of the desirability of additional features, such
continuity and additivity, requires further investigation, b
criteria ~C1!–~C4! are regarded as the minimal set, if one
to guarantee that one has anentanglement monotone@17#.

Does the geometric measure of entanglement obey cri
~C1!–~C4!? From definition~36! it is evident that criteria
~C1! and~C2! are satisfied, provided thatEpuresatisfies them,
as it does forEpure being any function ofLmax consistent
with criterion ~C1!. It is straightforward to check that crite
rion ~C4! holds by the convex-hull construction. The cons
eration of criterion~C3! seems to be more delicate. The re
son is that our analysis of whether or not it holds depends
the explicit form ofEpure. For criterion ~C3! to hold, it is
sufficient to show that the average entanglement is no
creasing under any trace-preserving, unilocal operationr
→(kVkrVk

† , where the Kraus operator has the formVk51
^ •••1^ Vk

( i )
^ 1•••^ 1 and (kVk

†Vk51. Furthermore, it suf-
fices to show that criterion~C3! holds for the case of a pur
initial state, i.e.,r5uc&^cu.

We now prove that for the particular~and by no means
unnatural! choice Epure5Esin2, criterion ~C3! holds. To be
precise, for any quantum operation on a pure initial state,
04230
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uc&^cu→(
k

Vkuc&^cuVk
† , ~37!

we aim to show that

(
k

pkEsin2~Vkuc&/Apk)<Esin2~ uc&), ~38!

where pk[Tr Vkuc&^cuVk
†5^cuVk

†Vkuc&, regardless of
whether the operation$Vk% is state to state or state to en
semble. Let us, respectively, denote byL and Lk the en-
tanglement eigenvalues corresponding touc& and the~nor-
malized! pure stateVkuc&/Apk. Then our task is to show tha
(kpkLk

2>L2, of which the left-hand side is, by the defin
tion of Lk , equivalent to

(
k

pk max
jkPDs

i^jkuVkuc&/Apki25(
k

max
jkPDs

i^jkuVkuc&i2.

~39!

Without loss of generality, we may assume that it is the fi
party that performs the operation. Recall that condition~6!
for the closest separable state

uf&[uã&1^ ug̃&2•••n ~40!

can be recast as

2•••n^g̃uc&1•••n5Luã&1 . ~41!

Then, by making the specific choice

^jku5~^ãuVk
(1)†/Aqk! ^ ^g̃u, ~42!

whereqk[^ãuVk
(1)†Vk

(1)uã&, we have the sought result

(
k

pkLk
25(

k
max

jkPDs

i^jkuVkuc&i2

>L2(
k

~^ãuVk
(1)†Vk

(1)uã&/Aqk!
25L2. ~43!

Hence, the form 12L2, when generalized to mixed states,
an entanglement monotone. We note that a different
proach to establishing this result has been used by Bar
and Linden@10#. Moreover, using the result that(kpkLk

2

>L2, one can further show that for any convex increas
function f c(x) with xP@0,1#,

(
k

pkf c~Lk
2!> f c~L2!. ~44!

Therefore, the quantity const2 f c(L
2) ~where the const is to

ensure the whole expression is non-negative!, when extended
to mixed states, is also an entanglement monotone, hen
good entanglement measure. For the following discussion
simply takeE512L2.
7-5
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IV. ANALYTIC RESULTS FOR MIXED STATES

Before moving on to theterra incognitaof mixed multi-
partite entanglement, we test the geometric approach in
setting of mixedbipartite states by computingEsin2 for three
classes of states for whichEF is known.

A. Arbitrary two-qubit mixed states

For these we show that

Esin2~r!5 1
2 @12A12C~r!2#, ~45!

whereC(r) is the Wootters concurrence of the stater. Re-
call that in his derivation of the formula forEF , Wootters
showed that there exists an optimal decompositionr
5( i pi uc i&^c i u in which everyuc i& has the concurrence ofr
itself. ~More explicitly, everyuc i& has the identical concur
rence, the concurrence being the infimum over all decom
sitions.! By using Eq.~10! one can, via Eq.~45!, relateEsin2

to C for any two-qubitpurestate. AsEsin2 is a monotonically
increasing convex function ofCP@0,1#, the optimal decom-
position forEsin2 is identical to that for the entanglement
formationEF . Thus, we see that Eq.~45! holds forany two-
qubit mixed state.

The fact thatEsin2 is related toEF via the concurrenceC is
inevitable for two-qubit systems, as both are fully det
mined by the one independent Schmidt coefficient. We n
that Vidal @18# had derived this expression when he had c
sidered the probability of success for converting a sin
copy of some pure state into the desired mixed state, wh
gives a physical interpretation of the geometric measure
entanglement. Unfortunately, this connection only holds
two-qubit states.

B. Generalized Werner states

Any staterW of a Cd
^ Cd system is called a generalize

Werner state if it is invariant under

P1 :r→E dU~U ^ U !r~U†
^ U†!, ~46!

whereU is any element of the unitary groupU(d) anddU is
the corresponding normalized Haar measure. Such state
be expressed as a linear combination of two operators:
identity 1̂ and theswap F̂[( i j u i j &^ j i u, i.e., rW[a1̂1bF̂,
wherea andb are real parameters related via the constra
Tr rW51. This one-parameter family of states can be nea
expressed in terms of the single parameterf [Tr(rWF̂):

rW~ f !5
d22 f d

d42d2
1^ 11

f d22d

d42d2
F̂. ~47!

By applying toEsin2 the technique developed by Vollbrec
and Werner forEF(rW) ~see Ref.@4# or Appendix A!, one
arrives at the geometric entanglement function for Wer
states:
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Esin2„rW~ f !…5
1

2
~12A12 f 2! for f <0, ~48!

and 0 otherwise.
The essential points of the derivation are as follows.~i! In

order to find the setM rW
~see Appendix A! it is sufficient,

due to the invariance ofrW underP1, to consider any pure
stateuF&5( jkF jkuej

(1)& ^ uek
(2)& that has a diagonal reduce

density matrix Tr2uF&^Fu and the value Tr(uF&^FuF̂) equal
to the parameterf associated with the Werner staterW( f ). It
can be shown that

Esin2~ uF&^Fu!>
1

2 F12A12S f 2(
i

l i i D 2G , ~49!

wherel i i [uF i i u2.
~ii ! If f .0, we can set the only nonzero elements ofuF&

to beF i1 , F i2 , . . . , F i i , . . . , F id such thatuF i i u25 f , this
state obviously being separable. Hence, forf .0 we have
Esin2„rW( f )…50. On the other hand, iff ,0, then any non-
zerol i i would increase (f 2( il i i )

2 and, hence, increase th
value of E(uF&^Fu), not conforming with the convex hull
Thus, for a fixed value off, the lowest possible value of th
entanglementE(uF&^Fu) that can be achieved occurs whe
l i i 50 and there are only two nonzero elementsF i j andF j i
( iÞ j ). This leads to

min
uF& at fixed f

E~ uF&^Fu!5
1

2
~12A12 f 2!. ~50!

Thus, as a function off, e( f ) is given by

e~ f !5H 1

2
~12A12 f 2! for f <0,

0 for f >0,

~51!

which, being convex forf P@21,1#, gives the entanglemen
function ~48! for Werner states.

C. Isotropic states

These are states invariant under

P2 :r→E dU~U ^ U* !r~U†
^ U* †!, ~52!

and can be expressed as

r iso~F ![
12F

d221
~ 1̂2uF1&^F1u!1FuF1&^F1u, ~53!

where uF1&[1/Ad( i 51
d u i i & and FP@0,1#. For FP@0,1/d#

this state is known to be separable@19#. By following argu-
ments similar to those applied by Terhal and Vollbrecht@5#
for EF(r iso) one arrives at

Esin2„r iso~F !…512
1

d
„AF1A~12F !~d21!…2, ~54!
7-6
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GEOMETRIC MEASURE OF ENTANGLEMENT AND . . . PHYSICAL REVIEW A68, 042307 ~2003!
for F>1/d. The essential point of the derivation is the fo
lowing Lemma~cf. Ref. @5#!.

Lemma. The entanglementEsin2 for isotropic states in
Cd

^ Cd for FP@1/d,1# is given by

Esin2„r iso~F !…5Cconv„R~F !…, ~55!

whereCconv„R(F)… is the convex hull of the functionR and

R~F !512max
$m i %

H m iUF5S (
i 51

d

Am i D 2Y d; (
i 51

d

m i51J .

~56!

Straightforward extremization shows that

R~F !512SAF

d
1AF1d21

d
2F D 2

, ~57!

which is convex, and henceCconv„R(F)…5R(F). Thus we
arrive at the entanglement result for isotropic states give
Eq. ~54!.

D. Mixtures of multipartite symmetric states

Before exploring more general mixed states, it is usefu
first examine states with high symmetry. With this in min
we consider states formed by mixing two distinct symme
states~i.e., k1Þk2):

rn;k1k2
~r ![r uS~n,k1!&^S~n,k1!u1~12r !uS~n,k2!&

3^S~n,k2!u. ~58!

From the independence ofEsin2„uSSn;k1k2
(r ,f)&… on f and

the fact that the mixed statern;k1k2
(r ) is invariant under the

projection

P3 :r→E df

2p
U ^ nrU†^ n ~59!

with U:$u0&,u1&%→$u0&,e2 ifu1&%, we have that
Esin2„rn;k1k2

(r )… vs r can be constructed from the convex hu

of the entanglement function ofuSSn;k1k2
(r ,0)& vs r. An ex-

ample, (n,k1 ,k2)5(7,2,5), is shown in Fig. 3. If the depen
dence ofEsin2 on r is already convex for the pure state, i
mixed-state counterpart has precisely the same depend
Figure 1, for which (n,k1 ,k2)5(3,1,2), exemplifies such
behavior. More generally, one can consider mixed state
the form

r~$p%!5(
k

pkuS~n,k!&^S~n,k!u. ~60!

The entanglementEmixed($p%) can then be obtained as
function of the mixture$p% from the convex hull of the en
tanglement function Epure($q%) for the pure state
(kAqkuS(n,k)&. That is, Emix($p%)5CconvEpure($q%5$p%).
Therefore, the entanglement for a mixture of symme
statesuS(n,k)& is known, up to some convexification.
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V. APPLICATION TO ARBITRARY MIXTURE OF GHZ, W,
AND INVERTED- W STATES

Having warmed up in Sec. IV D by analyzing mixtures
multipartite symmetric states, we now turn our attention
mixtures of three-qubit GHZ,W, and inverted-W states.

A. Symmetry and entanglement preliminaries

These states are important, in the sense that all pure s
can, under stochastic LOCC, be transformed either to G
or W ~equivalently inverted-W) states. It is thus interesting t
determine the entanglement content~using any measure o
entanglement! for mixed states of the form

r~x,y![xuGHZ&^GHZu1yuW&^Wu1~12x2y!uW̃&^W̃u,
~61!

wherex,y>0 andx1y<1. This family of mixed states is
not contained in family ~60!, as uGHZ&5„uS(3,0)&
1uS(3,3)&…/A2. The property ofr(x,y) that facilitates the
computation of its entanglement is a certain invarian
which we now describe. Consider the local unitary transf
mation on a single qubit:

u0&→u0&, ~62a!

u1&→gku1&, ~62b!

whereg5exp(2pi/3), i.e., a relative phase shift. This tran
formation, when applied simultaneously to all three qubits
denoted byUk . It is straightforward to see thatr(x,y) is
invariant under the mapping

P4 :r→ 1

3 (
k51

3

UkrUk
† . ~63!

Thus, we can apply Vollbrecht-Werner technique@4# to the
computation of the entanglement ofr(x,y).

Now, the Vollbrecht-Werner procedure requires one
characterize the setSinv of all pure states that are invarian
under the projectionP4. Then, the convex hull ofEsin2(r)
need only be taken overSinv , instead of the set ofall pure

FIG. 3. Entanglement curve for the mixed stater7;2,5(r ) ~full
line! constructed as the convex hull of the curve for the pure s
uSS7;2,5(r ,f)& ~dashed in the middle; full at the edges!.
7-7
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states. However, as the stater(x,y) is a mixture of three
orthogonal pure states (uGHZ&, uW&, anduW̃&) that are them-
selves invariant underP4, the pure states that can enter a
possible decomposition ofr must be of the restricted form

auGHZ&1buW&1guW̃&, ~64!

with uau21ubu21ugu251. Thus, there is no need to chara
terize Sinv , but rather to characterize the pure states th
underP4, are projected tor(x,y). These states are readi
seen to be of the form

Axeif1uGHZ&1Ayeif2uW&1A12x2yeif3uW̃&. ~65!

Of these, the least entangled state, for (x,y) given, has all
coefficients non-negative~up to a global phase!, i.e.,

uc~x,y!&[AxuGHZ&1AyuW&1A12x2yuW̃&. ~66!

The entanglement eigenvalue ofuc(x,y)& can then be readily
calculated, and one obtains

L~x,y!5
1

~11t2!3/2HAx

2
~11t3!1A3yt

1A3~12x2y!t2J , ~67!

wheret is the ~unique! non-negative real root of the follow
ing third-order polynomial equation:

3Ax

2
~2t1t2!1A3y~22t211!1A3~12x2y!

3~2t312t !50. ~68!

Hence, the entanglement function foruc(x,y)&, i.e.,
Ec(x,y)[12L(x,y)2, is determined~up to the straightfor-
ward task of root finding!.

B. Finding the convex hull

Recall that our aim is to determine the entanglemen
the mixed stater(x,y). As we already know the entangle
ment of the corresponding pure stateuc(x,y)&, we may ac-
complish our aim by the Vollbrecht-Werner technique@4#,
which gives the entanglement ofr(x,y) in terms of that
of uc(x,y)& via the convex-hull construction:Er(x,y)
5CconvEc(x,y). Put in words, the entanglement surfacez
5Er(x,y) is the convex surface constructed from the surfa
z5Ec(x,y).

The idea underlying the use of the convex hull is this. D
to its linearity inx andy, stater(x,y) ~61! can@except when
(x,y) lies on the boundary# be decomposed into two parts

r~x,y!5pr~x1 ,y1!1~12p!r~x2 ,y2!, ~69!

with the weightp and end points (x1 ,y1) and (x2 ,y2) related
by

px11~12p!x25x, ~70a!
04230
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py11~12p!y25y. ~70b!

Now, if it should happen that

pEc~x1 ,y1!1~12p!Ec~x2 ,y2!,Ec~x,y!, ~71!

then the entanglement, averaged over the end points, w
give a value lower than that at the interior point (x,y); this
conforms with the convex-hull construction.

It should be pointed out that the convex hull should
taken with respect to parameters on which the density ma
dependslinearly, such asx andy in the example ofr(x,y).
Furthermore, in order to obtain the convex hull of a functio
one needs to know theglobal structure of the function—in
the present case,Ec(x,y). We note that numerical algorithm
have been developed for constructing convex hulls@20#.

As we have discussed, our route to establishing the
tanglement ofr(x,y) involves the analysis of the entangle
ment of uc(x,y)&, which we show in Fig. 4. Although it is
not obvious, the corresponding surface fails to be con
near the point (x,y)5(1,0), and, therefore, in this region w
must suitably convexify in order to obtain the entanglem
of r(x,y). To illustrate the properties of the entanglement
uc(x,y)& we show, in Fig. 1, the entanglement ofuc(x,y)&
along the line (x,y)5(0,s); evidently this is convex. By
contrast, along the linex12y51 there is a region in which
the entanglement is not convex, as Fig. 5 shows. The n
convexity of the entanglement ofuc(x,y)& complicates the
calculation of the entanglement ofr(x,y), as it necessitates
a procedure for constructing the convex hull in the~as it
happens, small! nonconvex region. Elsewhere in thexy
plane the entanglement ofr(x,y) is given directly by the
entanglement ofuc(x,y)&.

At worst, convexification would have to be undertak
numerically. However, in the present setting it turns out t

FIG. 4. ~Color online! Entanglement vs the composition of th
pure stateuc(x,y)&. This entanglement surface is not convex ne
(x,y)5(1,0), although not obvious from the plot.
7-8
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one can determine the convex surface essentially analytic
by performing the necessary surgery on surfacez
5Ec(x,y). To do this, we make use of the fact that if w
parametrizey via (12x)r , i.e., we consider

r~x,~12x!r !5xuGHZ&^GHZu1~12x!r uW&^Wu1~12x!

3~12r !uW̃&^W̃u, ~72!

where 0<r<1 @and similarly foruc(x,y)&], then, as a func-
tion of (x,r ), the entanglement will be symmetric with re
spect tor 51/2, as Fig. 6 makes evident. With this param
etrization, the nonconvex region of the entanglement ofuc&
can more clearly be identified.

To convexify this surface we adopt the following conv
nient strategy. First, we reparametrize the coordinates,
changingy by (12x)r . Now, owing to the linearity, inr at
fixed x and vice versa, of the coefficientsx, (12x)r , and
(12x)(12r ) in Eq. ~72!, it is certainly necessary for th

FIG. 5. Entanglement of the pure stateuc(x,y5(12x)/2)&
5AxuGHZ&1A(12x)/2uW&1A(12x)/2uW̃& vs x. This shows the
entanglement along the diagonal boundaryx12y51. Note the ab-
sence of convexity nearx51; this region is repeated in the inset

FIG. 6. ~Color online! Entanglement of the pure stateuc(x,(1

2x)r )&5AxuGHZ&1A(12x)r uW&1A(12x)(12r )uW̃& vs x and
r. Note the symmetry of the surface with respect withr 51/2.
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entanglement ofr to be a convex function ofr at fixedx and
vice versa. Convexity is, however, not necessary in ot
directions in the (x,r ) plane, owing to the nonlinearity of the
the coefficients under simultaneous variations ofx andr. Put
more simply: convexity is not necessary throughout the (x,r )
plane because straight lines in the (x,r ) plane do not corre-
spond to straight lines in the (x,y) plane~except along lines
parallel either to ther or thex axis!. Thus, our strategy will
be to convexify in a restricted sense: first along lines para
to ther axis and then along lines parallel to thex axis. Hav-
ing done this, we shall check to see that no further conve
fication is necessary.

For eachx, we convexify the curvez5Ec„x,(12x)r … as
a function ofr and then generate a new surface by allowi
x to vary. More specifically, the nonconvexity in this dire
tion has the form of a symmetric pair of minima located
either side of a cusp, as shown in Fig. 7. Thus, to correct
it, we simply locate the minima and connect them by
straight line.

What remains is to consider the issue of convexity alo
the x ~i.e., at fixed r ) direction for the surface just con
structed. In this direction, nonconvexity occurs whenx is,
roughly speaking, greater than 0.8, as Fig. 8 suggests
contrast with the case of nonconvexity at fixedr, this non-
convexity is due to an inflection point at which the seco
derivative vanishes. To correct for it, we locate the poinx
5x0 such that the tangent atx5x0 is equal to that of the line
between the point on the curve atx0 and the end point atx
51, and connect them with a straight line. This furnishes
with a surface convexified with respect tox ~at fixed r ) and
vice versa.

Armed with this surface, we return to the (x,y) param-
etrization, and ask whether or not it is fully convex~i.e.,
convex along straight lines connectingany pair of points!.
Equivalently, we ask whether or not any further convexific
tion is required. Although we have not proven it, on the ba
of extensive numerical exploration we are confident that
resulting surface is, indeed, convex. The resulting con
entanglement surface forr(x,y) is shown in Fig. 9. Figure
10 exemplifies this convexity along the line 2y1x51. We

FIG. 7. Entanglement of the pure statesuc(x,(12x)r )&
5AxuGHZ&1A(12x)r uW&1A(12x)(12r )uW̃& vs r for various
values ofx ~from the bottom: 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.9
1!. This reveals the nonconvexity inr for intermediate values ofx.
7-9
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have observed that for the case at hand it is adequat
correct for nonconvexity only in thex direction at fixedr.

C. Comparison with the negativity

This measure of entanglement is defined to be twice
absolute value of the sum of the negative eigenvalues of
partial transpose of the density matrix@7,21#. In the present
setting, viz., the familyr(x,y) of three-qubit states, the pa
tial transpose may equivalently be taken with respect to
one of the three parties, owing to the invariance ofr(x,y)
under all permutations of the parties. Transposing with
spect to the third party, one has

N~r![22 (
l i,0

l i , ~73!

where thel ’s are the eigenvalues of the matrixrT3,

FIG. 8. Entanglement of the pure statesuc(x,(12x)r )&
5AxuGHZ&1A(12x)r uW&1A(12x)(12r )uW̃& vs x for various
values ofr ~from the top: 0, 0.1, 0.2, 0.3, and 0.5!. This reveals the
nonconvexity inx in the ~approximate! interval @0.85,1#.

FIG. 9. ~Color online! Entanglement of the mixed stat
r(x,y).
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It is straightforward to calculate the negativity ofr(x,y);
the results are shown in Fig. 11. Interestingly, for all allow
values of (x,y), the stater(x,y) has nonzero negativity, ex
cept at (x,y)5(1/4,3/8), at which the calculation of th
GME shows that the density matrix is indeed separable. O
also sees thatr(1/4,3/8) is a separable state from the fa
that it can be obtained by applying the projectionP4 to the
~unnormalized! separable pure state (u0&1u1&) ^ 3. The fact
that the only positive-partial-transpose~PPT! state is sepa-
rable implies that there are no entangled PPT states~i.e., no
PPT bound entangled states! within this family of three-qubit
mixed states. The negativity surface, Fig. 11,
qualitatively—but not quantitatively—the same as that
GME. By inspecting the negativity and GME surfaces o
can see that they present ordering difficulties. This me
that one can find pairs of statesr(x1 ,y1) andr(x2 ,y2) that
have respective negativitiesN1 andN2 and GMEsE1 andE2

FIG. 10. Entanglement of the mixed stater„x,y5(12x)/2…

5xuGHZ&^GHZu1(12x)/2(uW&^Wu1uW̃&^W̃u) vs x. Inset: en-
largement of the regionxP@0.2,0.3#. This contains the only point
(x,y)5(1/4,3/8), at whichEr(x,y) vanishes.

FIG. 11. ~Color online! Negativity of the mixed stater(x,y).
7-10
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GEOMETRIC MEASURE OF ENTANGLEMENT AND . . . PHYSICAL REVIEW A68, 042307 ~2003!
such that, say,N1,N2 but E1.E2. Equivalently, the nega
tivity and the GME do not necessarily agree on which of
pair of states is the more entangled. For two-qubit settin
such ordering difficulties do not show up for pure states
can for mixed states@21,22#. On the other hand, for thre
qubits, such ordering difficulties already show up for pu
states, as the following example shows:N(GHZ)51
.N(W)52A2/3, whereas for the GME the order is r
versed. We note, however, that for the relative entropy
entanglement ER , one has ER(GHZ)51 ,ER(W)
5 log2(9/4) @23#, which for this particular case is in accor
with the GME.

VI. CONCLUDING REMARKS

We have considered a rather general, geometrically m
vated, measure of entanglement, applicable to pure
mixed quantum states involving arbitrary numbers and str
tures of parties. In bipartite settings, this approach provi
an alternative—and generally inequivalent—measure to
entanglement of formation. For multipartite settings, there
to date, no explicit generalization of entanglement of form
tion @23#. However, if such a generalization should emer
and if it should be based on the convex-hull construction~as
it is in the bipartite case!, then one may be able to calcula
the entanglement of formation for the families of multipart
mixed states considered in the present paper.

As for explicit implementations, the geometric measure
entanglement yields analytic results in several bipartite ca
for which the entanglement of formation is already know
These cases include~i! arbitrary two-qubit mixed,~ii ! gener-
alized Werner, and~iii ! isotropic states. Furthermore, w
have obtained the geometric measure of entanglemen
certain multipartite mixed states, such as mixtures of sy
metric states. In addition, by making use of the geome
measure, we have addressed the entanglement of a r
general family of three-qubit mixed states analytically~up to
root finding!. This family consists of arbitrary mixtures o
GHZ, W, and inverted-W states. To the best of our know
edge, corresponding results have not, to date, been obta
for other measures of entanglement, such as entangleme
formation and relative entropy of entanglement. We ha
also obtained corresponding results for the negativity m
sure of entanglement. Among other things, we have fo
that there are no PPT bound entangled states within this
eral family.

A significant issue that we have not discussed is how
use the geometric measure to provide a classification of
tanglement of various multipartite entangled states, eve
the pure-state setting. For example, given a tripartite stat
all the entanglement associated with pairs of parts or is s
attributable only to the system as a whole? More genera
one can envisage all possible partitionings of the parties,
for each compute the geometric measure of entanglem
This would provide a hierarchical characterization of the
tanglement of states, more refined than the global chara
ization discussed here. Another extension would invo
augmenting the set of separable pure states with ce
classes of entangled pure states, such as biseparabl
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tangled,W-type, and GHZ-type states@24#.
Although there is no generally valid analytic procedu

for computing the entanglement eigenvalueLmax, one can
give—and indeed we have given—analytical results for s
eral elementary cases. Harder examples require computa
but often this is~by today’s computational standards! trivial.
We note that in order to findLmax for the stateuc& it is not
necessary to solve the nonlinear eigenproblem~5!; one can
instead appropriately parametrize the family of separa
statesuf& and then directly maximize their overlap with th
entangled stateuc&, i.e., Lmax5maxfuu^fuc&uu. Besides, we
mention that there exist numerical techniques for determ
ing EF ~see, e.g., Ref.@25#!. We believe that numerical tech
niques for solving the geometric measure of entanglem
for general multipartite mixed states can readily be dev
oped.

The motivation for constructing the measure discussed
the present paper is that we wish to address the degre
entanglement from a geometric viewpoint, regardless of
number of parties. Although the construction is purely ge
metric, we have related this measure to entanglement
nesses, which can in principle be measured locally@15#.
Moreover, the geometric measure of entanglement is rela
to the probability of preparing a single copy of a two-qub
mixed state from a certain pure state@18#. Yet it is still de-
sirable to see whether, in general, this measure can be a
ciated with any physical process in quantum information,
are the entanglement of formation and distillation.

There are further issues that remain to be explored, s
as additivity and ordering. The present form of entanglem
for pure states,Esin2[12L2, is not additive. However, one
can consider a related form,Eln[2ln L2, which, e.g., is ad-
ditive for uc&AB^ uc&CD , i.e.,

Eln~ uc1&AB^ uc2&CD)5Eln~ uc1&AB)1Eln~ uc2&CD).
~74!

This suggests that it is more appropriate to use this logar
mic form of entanglement to discuss additivity issues. Ho
ever, it remains to check whether it is an entanglem
monotone when extended to mixed states by convex hul

As regards the ordering issue, we first mention a resul
bipartite entanglement measures, due to Virmani and Ple
@22#, which states that any two measures with continuity t
give the same value as the entanglement of formation
purestates are ‘‘either identical or induce different orderin
in general.’’ This result points out that different entangleme
measures will inevitably induce different orderings if the
are inequivalent. This result might still hold for multipartit
settings, despite their discussion being based on the exist
of entanglement of formation and distillation, which have n
been generalized to multipartite settings. Although the g
metric measure gives the same ordering as the entangle
of formation for two-qubit mixed states@see Eq.~45!#, we
believe that the geometric measure will, in general, give
different ordering. However, it is not our intention to discu
the ordering difficulty in the present paper. Nevertheless,
interesting to point out that for bipartite systems, ev
though the relative entropy of entanglement coincides w
7-11
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T.-C. WEI AND P. M. GOLDBART PHYSICAL REVIEW A68, 042307 ~2003!
entanglement of formation for pure states, they can give
ferent orderings for mixed states, as pointed out by Verstra
et al. @22#.

We conclude by remarking that the measure discusse
the present paper is not included among the infinitely m
different measures proposed by Vedralet al. @26#. These
measures are based on the minimal distance between th
tangled mixed state and the set of separablemixedstates. By
contrast, the measure considered here is based upon
minimal distance between the entangled pure state and
set of separable pure states, and it is extended to mixed s
by a convex-hull construction.
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APPENDIX: THE VOLLBRECHT-WERNER TECHNIQUE

In this appendix, we now briefly review a technique d
veloped by Vollbrecht and Werner@4# for computing the en-
tanglement of formation for the generalized Werner sta
this turns out to be applicable to the computation of
-
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sought quantityEsin2. We start by fixing some notation. Le
~a! K be a compact convex set~e.g., a set of states tha
includes both pure and mixed ones!; ~b! M be a convex sub-
set ofK ~e.g., set of pure states!; ~c! E:M→Rø$1`% be a
function that maps elements ofM to the real numbers~e.g.,
E5Esin2); and ~d! G be a compact group of symmetrie
acting onK ~e.g., the groupU ^ U†) asag :K→K ~whereag
is the representation of the elementgPG) that preserve con-
vex combinations.

We assume thatagM,M ~e.g., pure states are mappe
into pure states!, and thatE(agm)5E(m) for all mPM and
gPG ~e.g., that the entanglement of a pure state is prese
underag). We denote byP the invariant projection operato
defined via

Pk5E dg ag~k!, ~A1!

wherekPK. Examples ofP are the operationsP1 andP2 in
the main text. Vollbrecht and Werner also defined the follo
ing real-valued functione on the invariant subsetPK:

e~x!5 inf$E~m!umPM ,Pm5x%. ~A2!

They then showed that, forxPPK,

CconvE~x!5Cconve~x!, ~A3!

and provided the following recipe for computing the functio
CconvE for G-invariant states:~1! For every invariant stater
~i.e., obeyingr5Pr), find the setM r of pure statess such
that Ps5r; ~2! compute e(r)[ inf$E(s)usPM r%; ~3!
thenCconvE is the convex hull of this functione.
.
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