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The degree to which a pure quantum state is entangled can be characterized by the distance or angle to the
nearest unentangled state. This geometric measure of entanglement, already present in a number [gh settings
Shimony, Ann. NY. Acad. Sci755 675(1999; H. Barnum and N. Linden, J. Phys. A: Math. G&4, 6787
(2001)], is explored for bipartite and multipartite pure and mixed states. The measure is determined analytically
for arbitrary two-qubit mixed states and for generalized Werner and isotropic states, and is also applied to
certain multipartite mixed states. In particular, a detailed analysis is given for arbitrary mixtures of three-qubit
Greenberger-Horne-ZeilingeYy, and inverted/ states. Along the way, we point out connections of the
geometric measure of entanglement with entanglement witnesses and with the Hartree approximation method.
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I. INTRODUCTION number rather than characterizing it.
The structure of the paper is as follows. In Sec. Il we

Only recently, after more than half a century of existence describe the basic geometric ideas on quantifying entangle-
has the notion of entanglement become recognized as centr@ent geometrically in the setting of pure quantum states and
to quantum information processifd]. As a result, the task establish a connection with the Hartree approximation
of characterizing and quantifying entanglement has emerge@iethod and entanglement witnesses. In Sec. lll we extend
as one of the prominent themes of quantum informatiorihe definition of the GME to mixed states and show that it is
theory. There have been many achievements in this directio@n entanglement monotone. In Sec. IV we examine the GME
primarily in the setting ofbipartite systems[2]. Among for several families of mixed states of bipartite systefis:
these, one highlight is Wootters’ formu[la] for the entangle- ~ arbitrary two-qubit mixed(ii) generalized Wernexjii ) iso-
ment of formation for two-qubit mixed states; others includetropic states in bipartite systems, as well(&s certain mix-
corresponding results for highly symmetrical states oftures of multipartite symmetric states. In Sec. V we give a
higher-dimensional systenfid,5]. The issue of entanglement detailed application of the GME to arbitrary mixtures of
for multipartite states poses an even greater challenge, andiree-qubit GHZW, and inverted#/ states. In Sec. VI we
there have been correspondingly fewer achievements: ngliscuss some open questions and further directions. In the
table examples include applications of the relative entropyAppendix we briefly review the Vollbrecht-Werner technique
[6], negativity[7], and Schmidt measuf&]. used in the present paper.

In this paper, we present an attempt to face this challenge

by developing and investigating a certain geometric measure ||. BASIC GEOMETRIC IDEAS AND APPLICATION

of entanglementGME), first introduced by ShimonjQ] in TO PURE STATES
the setting of bipartite pure states and generalized to the mul- o o
tipartite setting\via projection operators of various ranksy We begin with an examination of entangledre states

Barnum and Lindei10]. We begin by examining this geo- @nd of how one might quantify their entanglement by making
metric measure in pure-state settings and establishing a coHse of simple ideas of Hilbert space geometry. Let us start by
nection with entanglement witnesses and then extend th@eveloping a quite general formulation, appropriate for mul-
measure to mixed states, showing that it satisfies certain crfipartite systems comprising parts, in which each part can
teria required of good entanglement measures. We demohave a distinct Hilbert space. Consider a generpirtite
strate that this geometric measure is no harder to computeUre state

than the entanglement of formatid, and exemplify this

fact by giving formulas corresponding & for (i) arbitrary |y = S leMel@. .. gy (1)
two-qubit mixed, (i) generalized Werner, an(i) isotropic prpy PP PalTPL TR, Pn /"

states. We conclude by applying the geometric entanglement

measure to certain families of multipartite mixed states, forOne can envisage a geometric definition of its entanglement
which we provide a practical method for computing en-content via the distance

tanglement and illustrate this method via several examples.

In particular, a detailed analysis is given for arbitrary mixture d=min||)—| )|l 2

of three-qubit Greenberger-Horne-ZeilingggHz), W, and [¢)

invertedW states.

It is not our intention to cast aspersions on existing ap-between|y) and the nearest separable stat¢ (or equiva-
proaches to entanglement; rather we simply wish to add ontently the angle between thenHere,| )= ;| $") is an
further element to the discussion. Our discussion focuses oarbitrary separablé.e., Hartre¢ n-partite pure state, the in-
quantifying multipartite entanglement in terms of a singledexi=1, ... n labels the parts, and
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. . tanglement of| ) is equivalent to finding the Hartree ap-
|pD)y=2 cb)lel). (3 proximation to the ground state of the auxiliary Hamiltonian
" HE=lopyl . o
It seems natural to assert that the more entangled a state is, In bipartite _applllca}nons, e|genpro.ble(ﬁ) IS In _fac.tlln-
the further away it will be from its best unentangled approx-ear' %“d solving It is actually equivalent to finding th_e
imant (and the wider will be the angle between them Schmidt decompositiof@]. Moreover, the entanglement ei-

To actually find the nearest separable state, it is convedeNvalue is equal to the maximal Schmidt coefficient. By
nient to minimize, instead d, the quantity contrast, for the case of three or more parts, the eigenprob-

lem is anonlinear one. As such, one can in general only
_ 2 4 address it directly, i.e., by determining the eigenvalues and
Iy =1 )7, @ @ ; .
eigenvectors simultaneously and numerically. Yet, as we
shall illustrate shortly, there do exist certain families of pure

subject to the constrairtg|¢)=1. In fact, in solving the h | ) : be d ined
resulting stationarity condition one may restrict one’s attenStales whose entanglement eigenvalues can be determine

tion to the subset of solutiorjgb) that obey the further con- analytically.
dition that for each factot¢V) one has(¢®|¢)=1. .
Thus, one arrives at theonlinear eigenproblenfor the sta- A- lllustrative examples
tionary | ¢): Suppose we are already in possession of the Schmidt de-
composition of some two-qubit pure state
: % p Xpopy - p Co¥ o ch* e = A cf)* |)=/p|00)+ y1—p|11). ®
1" "Fit""Mn
(58  Then we can read off the entanglement eigenvalue
—_ ) Amax= max{ \/Bi V1= p}- 9
> CD* L clx L omx g oli)x
by p-py  TiP2 PPy Pi P Pi Now, recall [3] that the concurrence& for this state is
(5b) 2\p(1—p). Hence, one has
where the eigenvalu# is associated with the Lagrange mul- AZo=3(1+1-C?), (10
tiplier enforcing the constrainté|¢)=1, and the symbol  \hich holds for arbitrary two-qubit pure states.
denotes exclusion. In basis-independent form, Esjsread The possession of symmetry by a state can alleviate the
N difficulty associated with solving the nonlinear eigenprob-
<l/,|( ® |¢(J)>) =A{pW), (6a)  lem. To see this, consider a state
i(#0)
— 1)4(2
n _ : |¢>_p 2p Xplpz"pn|e§31)e§)2)' ' 'eg:w)> (1D
( & (0] |[1)=A]40). (60 o
i(#0) that obeys the symmetry that the nonzero amplitudese

invariant under permutations. What we mean by this is that,
From Egs.(5) or (6) one readily sees that the eigenvaldes regardless of the dimensions of the factor Hilbert spaces, the
are real, in[—1,1], and independent of the choice of the amplitudes are only nonzero when the indices take on the
local basis{|e}))}. Hence, the spectrum is the cosine of first v values(or can be arranged to do so by appropriate
the angle betweehy) and|¢); the largestA ., which we  relabeling of the basis in each factaand, moreover, that
call the entanglement eigenvalueorresponds to the closest these amplitudes are invariant under permutations of the par-

separable state and is equal to the maximal overlap ties, i.€. X0 0, -0, = Xpyp,---p,» Where theo’s are any per-
mutation of thep’s. (This symmetry may be obscured by
A max=maX [( ] )], (7)  arbitrary local unitary transformationsFor such states, it
¢

seems reasonable to anticipate that the closest Hartree ap-
, , proximant retains this permutation symmetry. Assuming this

where| ) is an arbitrary separable pure state. to be the case—and numerical experiments of ours support
Although, in determining the closest separable state, Weis assumption—in the task of determining the entangle-

have used the squared distance between the states, there gien; eigenvalue one can start with the ansatz that the closest
alternative (basis-independentandidates for entanglement separable state has the form

measures which are related to it in an elementary way: the

distance, the sine, or the sine squared of the aédletween "
them (with cosé=Re(y|#)). We shall adoptEge=1 |¢>=i§l
—A2_, as our entanglement measure because, as we shall

see, when generalizinBg;» to mixed states we have been i.e., is expressed in terms of copies of a single-factor state,
able to show that it satisfies a set of criteria demanded ofor which cj(')=cj . To obtain the entanglement eigenvalue it
entanglement measures. We remark that determining the eis thus only necessary to maximize Q# ) with respect to

2 c,-le}”>), (12)
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{c;}{_1, a simpler task than maximization over tR¢_,d;
amplitudes of a generic product state. 0.55
To illustrate this symmetry-induced simplification, we
consider several examples involving permutation-invariant
states, first restricting our attention to the case2. The 0.45}
most natural realizations arequbit systems. One can label w .4}
these symmetric states according to the number of 0's, a

follows [12]: 0.33¢
k' (n—k)! 0.3
S(ni)y=\——— > [0---01---1). (13 o 25l
. permutations o ———
k n—k
As the amplitudes are all positive, one can assume that thi 0 0.2 0.4 0.6 0.8 1
closest Hartree state is of the form s
FIG. 1. Entanglement of the pure stafs|W)+ y1—s|W) vss.
_ 1 _ ®n
|¢> =( \/B|O> V1 p| )" (14) This also turns out to be the entanglement curve for the mixed state

S|W)(W|+ (1—s)|[W)(W].

J1-st+2{stt—2\1—st—/s=0 (19

for which the maximal overlapwith respect tp) gives the
entanglement eigenvalue f(8(n,k)):

\/T K|¥2( n—k| ("-K2
Amad k)= m(ﬁ ( )

! n
For fixed n, the minimumA .., (and hence the maximum
entanglementamong theg S(n,k))’s occurs fork=n/2 (for n
even andk=(n=1)/2 (for n odd. In fact, for fixedn the A .(S)=3[ \/§cosa(s)+ V1—ssiné(s)]sin 26(s). (20
general permutation-invariant state can be expressed as

S S(n,k)) with =,|a,|?=1. The entanglement of such _ -

states can be addressed via the strategy that we have be8nf19- 1, we ShOWE 2| WWS, $))) Vs s. In fact, A ax for
discussing, i.e., via the maximization of a function @ the more general superposition

mos) three real parameters. The simplest example is pro-

vided by thenGHZ state: 1SSk, (1)) =VrIS(nky)+VI-re|S(n,kp))  (21)
INGHZ)=(|S(n,0))+S(n,n)))/\2. (16)

(19
that lies in the rangee [ 1/2,4/2]. Via 6(s), A max (and thus
Esirg=1—A2may) can be expressed as

(with k;#k,) turns out to be independent ef, as in the

It is easy to show thatfor all n) An({nNGHZ)=1/y2 and  case of WW(s,¢)), and can be computed in the same way.

Esie=1/2. We note that although the curve in Fig. 1 is convex, convex-
We now focus our attention on three-qubit settings. Ofity does not hold uniformly ovek; andk,.

these, the statd$§(3,0))=[000 and|S(3,3))=|111) are not As our last pure-state example in the qubit setting, we

entangled and are, respectively, the components of theonsider superpositions ® and GHZ states:

3-GHz state: |GHZ)=(|000)+|111))/y2. The states

|S(3,2)) and|S(3,1)), denoted as

IW)=(S(3,2))=(|001)+|010 +|100)/\3, (17

W grzew(S, @) =VS|GHZ)+ V1—sé?|W). (22

N For these, the phasg cannot be “gauged” away and, hence,
[W)=[S(3,1)=(|110+|10D +|01D)/V3, (17b  Egp depends onp.
In Fig. 2 we showEgz vssat =0 and¢= (i.e., the

are equally entangled, having,,,=2/3 andEg;z=5/9. bounding curves as well asEg;z for randomly generated
Next, consider a superposition of théandW states: values ofse[0,1] and ¢ €[0,27] (dots. It is interesting to
observe that the #” state has higher entanglement than the
IWW(s, b)) = /s|W)+ 1 —s€¢|W). (189 ‘0" does. As the numerical results suggest, thé param-

etrized Eg2 Vs s curves of the statelV gy, w(s, ¢)) lie

It is easy to see that its entanglement is independert:of between ther and O curves. .
the transformation {|0),|]1)}—{|0),e"¢|1)} induces We remark that, more generally, systems comprising

|WW(s, ¢))—>e’i‘/’|WW(s,O)). To calculateA gy, We as- parts, each a@-level system, the symmetric state
sume that the separable state is (66%+sin¢1)®® and

maximize its overlap withwW(s,0)). Thus we find that the 1S (n;{k}))= kaf!z 0.0 1.1...(d=1)...(d—1))
; a4 10011 ,
ko Ky

tangentt=tané is the particular root of the polynomial

equation fa-t (23
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Tr(Wp)<0. Here, we wish to establish a correspondence
betweenA ., for the entangled pure staté) and the opti-
mal element of the set of entanglement witnesdefor | )

that have the specific form

W=N21=[y) (], (27)

this set being parametrized by the real, non-negative number
\2. By optimal we mean that, for this specific form of wit-
nesses, the value of the “ detector” T «){|) is as nega-
tive as can be.
0 T2 02 G 0B 1 In order to satisfy conditiorti) we must ensure that, for

s any separablestates, we have TriVa)=0. As the density
matrix for any separable state can be decomposed into a
mixture of separable purestatedi.e., o="23;|¢;){ ¢i|, where
{|#i)} are separable pure stalesondition (i) will be satis-
fied as long as TiV| ¢){ ¢|)=0 for all separabl@ure states
|#). This condition is equivalent to

= 0.4}

FIG. 2. Entanglement df¥ .7, w(S, ¢)) vss. The upper curve
is for ¢=m whereas the lower one is fap=0. Dots represent
states with randomly generatednd ¢.

with 2;k;=n, has entanglement eigenvalue

T k2 N2—||{¢] ¢)||>=0 for all separablg ¢), (29
AmaxNi{k}) = m iI:[O ( ) (24

I
n which leads to

One can also consider other symmetries. For example, for N2=max (] p)||>= A2 (| 4)). (29)
the totally antisymmetrigviz., determinantstate ofn parts, | )
each withn levels,

Condition(ii) requires that T/ /) ]) <0, in order for
W to be a valid entanglement witness fop); this gives
A2—1<0. Thus, we have established the rangeofor
which N21—|#)(¢| is a valid entanglement witness fop):

| Dety)= (29

1 . .
ﬁil _____ =1 PP in||1,...,|n>,

it has been shown by Bravyl 3] that the maximal squared ) 5
overlap isA2.,=1/n!. Bravyi also generalized the antisym- Afal[9))<N<1. (30)

metric state to the= pdP-partite determinant state via _ o .
With these preliminaries in place, we can now establish

#(1)=(0,0, ...,0,0), the connection we are seeking. Of the specific far(@ly) of
entanglement witnesses fog), the one of the formVyp
#(2)=(0,0,...,0,1), =A2_(l¥)1—|¢)(4| is optimal, in the sense that it achieves

the most negative value for the detector Viif{ ¢/)(#|):

myiVnTr(W| WD) =TrWopd )(9) = — Esire(| 1)),
(31)

H(dP—1)=(d—1d—1,... d—14d-2),

$(dP)=(d-1d-1,... d-1d-1), |
whereW runs over clas$27) of witnesses.

and We now look at some examples. For the GHZ state the
optimal witness is
1

(dP1) g, " ige JEONE

|Det, g)= igpl #(11), . b(ign)). Wenz= 31— |GHZ)(GHZ| (32
@8 and TrVeud GHZ)(GHZ|) = — Eq2(|GHZ)) = — 1/2. Simi-

In this case, one can show thaf,,=[(d")!]* larly, for the W and inverted#/ states we have
' ax : .

—41_ =47 N
B. Connection with entanglement witnesses Wiw=351= W)W and Wg=31-[W)(W| (33
We now digress to discuss the relationship between thand Tr(/\V\|W){(W|) = — Eg2(W))=—5/9, and similarly for
geometric measure of entanglement and another entanglw\,)_ For the four-qubit state
ment property—entanglement witnesses. The entanglement

witness)V for an entangled state is defined to be an op- |W)=(]0011)+]0101) + 0110 +|1002) +]1010
erator that iga) Hermitian and(b) obeys the following con-
ditions[14]: (i) Tr(Wa) =0 for all separable statesand(ii) +(1100)/6, (34)
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the optimal witness is

(91— 2 VeIV, (37)
Wy =31 W )(P| (35
and TrWy | )W) = — Eq2([ W) = —5/8. we aim to show that
Although the observations we have made in this section
are, from a technical standpoint, elementary, we nevertheless EK PEsir2(Vid 1)/ Vpi) <Esire(| ¥)), (38)

find it intriguing that two distinct aspects of entanglement—

the geometric measure of entanglement and entanglement

witnesses—are so closely related. Furthermore, this connetthere p=Tr Vi ) (4| Vi=(#V]Vi|p), regardless of
tion sheds light on the content of the geometric measure otvhether the operatioflV,} is state to state or state to en-
entanglement. In particular, as entanglement witnesses agemble. Let us, respectively, denote yand A, the en-
Hermitian operators, they can, at least in principle, be realtanglement eigenvalues corresponding #9 and the(nor-
ized and measured locallji5]. Their connection with the malized pure state/k|¢//)/\/ﬁ. Then our task is to show that
geometric measure of entanglement ensures that the geom&gp, A= A?, of which the left-hand side is, by the defini-
ric measure of entanglement can, at least in principle, b&on of A,, equivalent to

verified experimentally.

max|[( & Vid )/ Vpi 2= Ek: max || &/ Vil )12

ll. EXTENSION TO MIXED STATES Ek: pkgkeD £eeD
S S

The extension of the GME to mixed statesan be made (39)
via the use of theconvex roof(or hull) construction[indi-
cated byC.,.J, as was done for the entanglement of forma-
tion (see, e.g., Ref3]). The essence is a minimization over
all decompositiong = =;p;| i ){ ;| into pure states, i.e.,

Without loss of generality, we may assume that it is the first
party that performs the operation. Recall that conditi6h
for the closest separable state

_ By =la)1®[7)2...n (40)
E(P)Eccon\,Epure(P)E min E piEpure(|¢i>)- (36)
{pi it ! can be recast as
Now, any good entanglement meastEeshould, at least, 2_”n<;,| ¢>1_“n:A|;{>1_ (41)

satisfy the following criteria(cf. Refs.[6,16,17): (C1) (a)
E(p)=0, (b) E(p)=0 if p is not entangled(C2) local uni-  Then, by making the specific choice
tary transformations do not change (C3) local operations
and classical communicatidf. OCC) (as well as postselec- — (Dt ~
tion) do not increase the expectation valueEfand (C4) (& =((al Vi /@)@)Wl’ 42
entanglement is convex under the discarding of information
i.e., ZipiE(p)) =E(Zipipi).

The issue of the desirability of additional features, such as
continuity and additivity, requires further investigation, but > A= max|[(Ed Vil )2
criteria (C1)—(C4) are regarded as the minimal set, if one is K K
to guarantee that one has entanglement monotorj&7].

Does the geometric measure of entanglement obey criteria =AZY ((aVOVO @) Ja)2=A2 (43
(C1)—(C4? From definition(36) it is evident that criteria K
(C1) and(C2) are satisfied, provided thét,, satisfies them,
as it does forEpure being any function ofA ., consistent Hence, the form 1—A2, when generalized to mixed states, is
with criterion (C1). It is straightforward to check that crite- an entanglement monotone. We note that a different ap-
rion (C4) holds by the convex-hull construction. The consid- proach to establishing this result has been used by Barnum
eration of criterion(C3) seems to be more delicate. The rea-and Linden[10]. Moreover, using the result that,p,A?2
son is that our analysis of whether or not it holds depends og= A2, one can further show that for any convex increasing
the explicit form of E. For criterion(C3) to hold, it is  function f (x) with xe[0,1],
sufficient to show that the average entanglement is nonin-
creasing under any trace-preserving, unilocal operation:
—>zkvkpv_l, where the Kraus operator has the foxp=1
®---1eV{’®l.--®1 and=V,V,=1. Furthermore, it suf-
fices to show that criteriofC3) holds for the case of a pure Therefore, the quantity constf,(A2) (where the const is to
initial state, i.e.,p=|¢){y]. ensure the whole expression is non-negatiwien extended

We now prove that for the particuldand by no means to mixed states, is also an entanglement monotone, hence a
unnatural choice Ep,=Egp, criterion (C3) holds. To be good entanglement measure. For the following discussion we
precise, for any quantum operation on a pure initial state, i.esimply takeE=1—A2.

whereq=(a|V{"'V{"| @), we have the sought result

ngDS

g Pife(AD)=Fo(A2). (44)

042307-5



T.-C. WEI AND P. M. GOLDBART PHYSICAL REVIEW A68, 042307 (2003

IV. ANALYTIC RESULTS FOR MIXED STATES 1

Esi f))=-(1—-y1—f%) for f<O, (48
Before moving on to théerra incognitaof mixed multi- si(pw(1)) 2 ) (48)

partite entanglement, we test the geometric approach in the i

setting of mixedbipartite states by computing; for three ~ and 0 otherwise. o _
classes of states for whidg is known. The es§ent|al points of the derlvat|0_n are as follg@bsln
order to find the seM ow (see Appendix Ait is sufficient,
due to the invariance g,y underP,, to consider any pure
state|®) ==, @ y|elV)®[ef?) that has a diagonal reduced
For these we show that density matrix Ts|®)(®| and the value Tib)(P|F) equal

Eqo(p)=4[1— m], (45) E(;;hgepzrr%r\?viti:tssociated with the Werner statg(f). It

A. Arbitrary two-qubit mixed states

whereC(p) is the Wootters concurrence of the stateRe- 1 2

call that in his derivation of the formula fdEg, Wootters Esi2(| QN ®[)= 5[1— \/1—(f—2 Mi) J (49
showed that there exists an optimal decomposition '

=3ipil i ){ | in which every|¢;) has the concurrence pf wherex; =|®; |2.

itself. (More explicitly, every| ;) has the identical concur- (i) If £>0, we can set the only nonzero element$dj
rence, the concurrence being the infimum over all decompog, bed,;, ®ipy ..., Dy, ..., D, such thald;|2=f, this
sitions) By using Eq.(10) one can, via Eq45), relateEqy  state obviously being separable. Hence, for0 we have
to C for any two-qubitpure state. AsE;z is @ monotonically E.2(pw(f))=0. On the other hand, if<0, then any non-
increasing convex function & [ 0,1], the optimal decom- zeroh;; would increase {— =;)\;;)2 and, hence, increase the
positio_n for Eg; is identical to that for the entanglement of |,5/,e of E(|®)(®|), not conforming with the convex hull.
formationEg. Thus, we see that EG45) holds forany two-  Thys, for a fixed value of, the lowest possible value of the
qubit mixed state entanglemenE(|®)(®|) that can be achieved occurs when

The fact thaEg;z is related tcEg via the concurrenc€ is \ii=0 and there are only two nonzero elemedts andd;;
inevitable for two-qubit systems, as both are fully deter-(iij)_ This leads to

mined by the one independent Schmidt coefficient. We note
that Vidal[18] had derived this expression when he had con- 1
sidered the probability of success for converting a single min E(|‘I’><‘I’|)=§(1—Vl—f2)- (50
copy of some pure state into the desired mixed state, which |} atfixed

gives a physical interpretation of the geometric measure thus, as a function of (f) is given by

entanglement. Unfortunately, this connection only holds for
two-qubit states.

1
—(1-y1-f2) for <0,
e(f)=4 2

B. Generalized Werner states 0

(52)
for =0,
Any statep,, of a C4@ CH system is called a generalized
Werner state if it is invariant under which, being convex fof e[ —1,1], gives the entanglement
function (48) for Werner states.

Pl:pﬁf dU(U@UM(UT@UT)' (48 C. Isotropic states

. _ _ These are states invariant under
whereU is any element of the unitary grodf{d) anddU is
the corresponding normalized Haar measure. Such states can . A
be expressed as a linear combination of two operators: the P23P_’f dU(UeU*)p(U'aUu*), (52)
identity I and theswap F=3;]ij)(jil, i.e., py=al+bF,
wherea andb are real parameters related via the constrainend can be expressed as
Tr pw=1. This one-parameter family of states can be neatly

expressed in terms of the single paraméterTr(pyF): pied F)= 1-F (A= DD )+F|d N D], (53
1SO ’
d’-1

d?—fd fd?—d. N d L
pW(f):d4_ 101+ dZF' 47y where|®*)=1/Jd=_|ii) andFe[0,1]. For F[0,14]

d? d*— this state is known to be separalpl9]. By following argu-
ments similar to those applied by Terhal and Vollbreldit
By applying toEg; the technique developed by Vollbrecht for Ex(pis)) one arrives at
and Werner forEx(py,) (see Ref[4] or Appendix A), one

ggtveej at the geometric entanglement function for Werner Eqo(piag F))=1— a(\/E+ (1-F)(d-1))% (59
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for F=1/d. The essential point of the derivation is the fol-
lowing Lemma(cf. Ref.[5]).

Lemma The entanglemenEg for isotropic states in
CYeCH for Fe[1/d,1] is given by

Esire(piso(F))=CcondR(F)),

whereC.on(R(F)) is the convex hull of the functioR and

(55

2

(56)

F:(iEleE

R(F)=1—max{ Mi
{mit

Straightforward extremization shows that

F [F+d-1 _\?
R(F):l—(\[a+ \/T—F) . (57

which is convex, and hencé.,,(R(F))=R(F). Thus we

PHYSICAL REVIEW A8, 042307 (2003
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FIG. 3. Entanglement curve for the mixed state, {r) (full
line) constructed as the convex hull of the curve for the pure state
|SS..4r,¢)) (dashed in the middle; full at the edges

V. APPLICATION TO ARBITRARY MIXTURE OF GHZ,
AND INVERTED- W STATES

w,

arrive at the entanglement result for isotropic states given in

Eq. (54).

D. Mixtures of multipartite symmetric states

Before exploring more general mixed states, it is useful to
first examine states with high symmetry. With this in mind,

Having warmed up in Sec. IV D by analyzing mixtures of
multipartite symmetric states, we now turn our attention to
mixtures of three-qubit GHAV, and inverted# states.

A. Symmetry and entanglement preliminaries

we consider states formed by mixing two distinct symmetric  These states are important, in the sense that all pure states

states(i.e., ky #ky):
Ptk (1) =T|S(N k) (SN k) [+(1=1)[S(n k)
X(S(n,ky)|.

From the independence Esin2(|SS1;k1k2(ru¢)>) on ¢ and
the fact that the mixed stam;klkz(r) is invariant under the
projection

(58)

do
o | —Zy®n t®n
Ps:p f 27TU pU (59
with  U:{|0),|1)}—{|0),e"'?|1)}, we have that
Esire(pn;kk, (1)) VST can be constructed from the convex hull
of the entanglement function ¢8 S, «,(r,0)) vsr. An ex-
ample, f,kq,k;)=(7,2,5), is shown in Fig. 3. If the depen-

can, under stochastic LOCC, be transformed either to GHZ
or W (equivalently invertedd) states. It is thus interesting to
determine the entanglement conténsing any measure of
entanglementfor mixed states of the form

p(x,Y)=x|GHZ)(GHZ| +y|W)(W] + (1 —x—y)|W)(W],

(61)
wherex,y=0 andx+y=<1. This family of mixed states is
not contained in family (60), as |GHZ)=(|S(3,0))
+|S(3,3)>)/\/§. The property ofp(x,y) that facilitates the
computation of its entanglement is a certain invariance,

which we now describe. Consider the local unitary transfor-
mation on a single qubit:
|0)—0), (629

11)—g"1), (62b)

dence ofEg2 onr is already convex for the pure state, its
mixed-state counterpart has precisely the same dependensgiereg=exp(27i/3), i.e., a relative phase shift. This trans-
Figure 1, for which ,k;,k,)=(3,1,2), exemplifies such formation, when applied simultaneously to all three qubits, is

behavior. More generally, one can consider mixed states alenoted byU,. It is straightforward to see thai(x,y) is

the form

p({p}>=2k Pl S(n,K))(S(n, k). (60)

The entanglemenE,{{pP}) can then be obtained as a
function of the mixture{p} from the convex hull of the en-
tanglement function Ep,{{q}) for the pure state

Ek\/a| S(n,k)}. That is, Eni({p}) :Ccon\,Epure({Q}:{p})-

invariant under the mapping

1 3

Pyip—3 > UgpUl. (63)
k=1

Thus, we can apply Vollbrecht-Werner technidyé to the
computation of the entanglement pfXx,y).

Now, the Vollbrecht-Werner procedure requires one to
characterize the s&,, of all pure states that are invariant

Therefore, the entanglement for a mixture of symmetricunder the projectiorP,. Then, the convex hull oEg;2(p)

states|S(n,k)) is known, up to some convexification.

need only be taken oves,,,, instead of the set ddll pure
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states. However, as the staiéx,y) is a mixture of three
orthogonal pure state$GHZ), |W), and|W)) that are them-
selves invariant undd?,, the pure states that can enter any
possible decomposition gf must be of the restricted form
a|GHZ) + B|W) + y|W), (64)

with |a|?+|B|%+]|y|?=1. Thus, there is no need to charac- .
terize Sy,,, but rather to characterize the pure states that,y
underP,, are projected tep(x,y). These states are readily
seen to be of the form

Vx€%1|GHZ)+ \Jye %2|W) + \1—x—ye %3|W). (65)

Of these, the least entangled state, feyy] given, has all
coefficients non-negativaup to a global phasei.e.,

lp(x,y))=VX|GHZ) + \y|W) + V1—x—y[W). (66)

The entanglement eigenvalue|gi(x,y)) can then be readily FIG. 4. (Color onling Entanglement vs the composition of the
calculated, and one obtains pure statd#(x,y)). This entanglement surface is not convex near

(x,y)=(1,0), although not obvious from the plot.
A = \[ 51+t3 + 3yt

py1t(1-p)y.=y. (70b)
+ \/3(1—x—y)t2], (67)  Now, if it should happen that
wheret is the (unique non-negative real root of the follow- PEu(X1,Y1) +(1—p)Ey(X2,Y2) <E,Xy), (71
ing third-order polynomial equation:
X then the entanglement, averaged over the end points, would
3 \ﬁ(—t+t2)+ \/@(—2'[24— 1)++3(1—x—vy) give a value lower than that at the interior pointy); this
2 conforms with the convex-hull construction.
X (—t3+2t)=0. (69) It should be pointed out that the convex hull should be

taken with respect to parameters on which the density matrix
Hence, the entanglement function fdrs(x,y)), i.e., dependdinearly, such ascandy in the example op(x,y).
E,(x,y)=1-A(x,y)? is determinedup to the straightfor- ~Furthermore, in order to obtain the convex hull of a function,

ward task of root finding one needs to know thglobal structure of the function—in
the present casg,(x,y). We note that numerical algorithms
B. Finding the convex hull have been developed for constructing convex HaE.

As we have discussed, our route to establishing the en-
Eanglement ofo(x,y) involves the analysis of the entangle-
ment of | (x,y)), which we show in Fig. 4. Although it is
not obvious, the corresponding surface fails to be convex
near the pointX,y)=(1,0), and, therefore, in this region we
must suitably convexify in order to obtain the entanglement
of p(x,y). To illustrate the properties of the entanglement of

#(x,y)) we show, in Fig. 1, the entanglement |@f(X,y))
long the line X,y)=(0,s); evidently this is convex. By
z= E%”().(’y)' . L contrast, along the ling+2y=1 there is a region in which
€he entanglement is not convex, as Fig. 5 shows. The non-
convexity of the entanglement ¢0§(x,y)) complicates the
calculation of the entanglement p{x,y), as it necessitates
_ _ a procedure for constructing the convex hull in ttas it
P(XY)=pp(x1,y1) +(1=P)p(X2.Y2), 9 happens, smallnonconvex region. Elsewhere in they
with the weightp and end pointsx;,y;) and (x,,y,) related  plane the entanglement g@f(x,y) is given directly by the
by entanglement ofy(x,y)).
At worst, convexification would have to be undertaken
px;+(1—p)X,=X, (708  numerically. However, in the present setting it turns out that

Recall that our aim is to determine the entanglement o
the mixed statep(x,y). As we already know the entangle-
ment of the corresponding pure statgx,y)), we may ac-
complish our aim by the \Wollbrecht-Werner technigjug,
which gives the entanglement @f(x,y) in terms of that
of |¢(x,y)) via the convex-hull constructionE (x,y)
=CeonEy(X,y). Put in words, the entanglement surfare
=E,(X,y) is the convex surface constructed from the surfac

to its linearity inx andy, statep(x,y) (61) can[except when
(x,y) lies on the boundainybe decomposed into two parts:
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0.5 0.45
0.4
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0.25
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% 0.2

FIG. 5. Entanglement of the pure stalté(x,y=(1—x)/2))
= JX|GHZ) + (1—x)/2|W) + V(1—x)/2|W) vs x. This shows the

entanglement along the diagonal boundeafty2y=1. Note the ab-
sence of convexity near=1; this region is repeated in the inset.
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FIG. 7. Entanglement of the pure statég(x,(1—x)r))
= X|GHZ) + J(IT—X)r|W)+ (1—x)(1—r)|W) vs r for various
values ofx (from the bottom: 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.98,
1). This reveals the nonconvexity infor intermediate values of.

one can determine the convex surface essentially analyticalgntanglement of to be a convex function af at fixedx and

by performing the necessary surgery on surfaze

vice versa. Convexity is, however, not necessary in other

=E,(x,y). To do this, we make use of the fact that if we gjrections in the X,r) plane, owing to the nonlinearity of the

parametrizey via (1—X)r, i.e., we consider
p(X,(1—=x)r)=x|GHZ)(GHZ|+ (1= x)r [W)(W| + (1 —x)
X(1—r)|W)(W[, (72)

where O<r=<1 [and similarly for|(x,y))], then, as a func-

the coefficients under simultaneous variations ahdr. Put
more simply: convexity is not necessary throughout the)(
plane because straight lines in ther() plane do not corre-
spond to straight lines in thex(y) plane(except along lines
parallel either to the or thex axis). Thus, our strategy will
be to convexify in a restricted sense: first along lines parallel
to ther axis and then along lines parallel to tkaxis. Hav-

tion of (x,r), the entanglement will be symmetric with re- i gone this, we shall check to see that no further convexi-
spect tor=1/2, as Fig. 6 makes evident. With this param-fication is necessary.

etrization, the nonconvex region of the entanglemerjt/of
can more clearly be identified.

For eachx, we convexify the curve=E ,(x,(1—x)r) as
a function ofr and then generate a new surface by allowing

~ To convexify this surface we adopt the following conve-y 1o vary. More specifically, the nonconvexity in this direc-
nient strategy. First, we reparametrize the coordinates, eXjon has the form of a symmetric pair of minima located on

changingy by (1—x)r. Now, owing to the linearity, irr at
fixed x and vice versa, of the coefficients (1—x)r, and

(1—x)(1—r) in Eq. (72), it is certainly necessary for the

N
‘&Q’#,,'n,"'
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AT AT IT 77
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K ':0..0.'",,",".‘:.' 77
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FIG. 6. (Color online Entanglement of the pure stafté(x, (1

=x)1))=X|GHZ) + (1= x)r|[W) + /(1—x)(1—r)|W) vs x and

r. Note the symmetry of the surface with respect with1/2.

either side of a cusp, as shown in Fig. 7. Thus, to correct for
it, we simply locate the minima and connect them by a
straight line.

What remains is to consider the issue of convexity along
the x (i.e., at fixedr) direction for the surface just con-
structed. In this direction, nonconvexity occurs whelfs,
roughly speaking, greater than 0.8, as Fig. 8 suggests. In
contrast with the case of nonconvexity at fixedthis non-
convexity is due to an inflection point at which the second
derivative vanishes. To correct for it, we locate the point
=Xg such that the tangent at= X, is equal to that of the line
between the point on the curve g and the end point at
=1, and connect them with a straight line. This furnishes us
with a surface convexified with respectxdat fixedr) and
vice versa.

Armed with this surface, we return to the,y) param-
etrization, and ask whether or not it is fully convéxe.,
convex along straight lines connectimgy pair of points.
Equivalently, we ask whether or not any further convexifica-
tion is required. Although we have not proven it, on the basis
of extensive numerical exploration we are confident that the
resulting surface is, indeed, convex. The resulting convex
entanglement surface far(x,y) is shown in Fig. 9. Figure
10 exemplifies this convexity along the lingg2x=1. We
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X X
FIG. 8. Entanglement of the pure statég(x,(1—x)r)) FIG. 10. Entanglement of the mixed statéx,y=(1-—x)/2)

= JX|GHZ) + J(1=x)r W)+ (1=x)(1—r)|W) vs x for various ~ =x|GHZ)(GHZ|+ (1—x)/2(]W)(W|+|W)(W|) vs x. Inset: en-
values ofr (from the top: 0, 0.1, 0.2, 0.3, and 0.Fhis reveals the largement of the regiome[0.2,0.3. This contains the only point
nonconvexity inx in the (approximatg interval[0.85,1]. (x,y)=(1/4,3/8), at whichE ,(x,y) vanishes.

It is straightforward to calculate the negativity ofx,y);

have observed that for the case at hand it is adequate {f¢ regyits are shown in Fig. 11. Interestingly, for all allowed

correct for nonconvexity only in the direction at fixedr. values of ,y), the statep(x,y) has nonzero negativity, ex-
cept at &,y)=(1/4,3/8), at which the calculation of the
C. Comparison with the negativity GME shows that the density matrix is indeed separable. One

) ) . ) also sees thap(1/4,3/8) is a separable state from the fact
This measure of entanglement is defined to be twice thenat it can be obtained by applying the projecti®nto the
absolute value of the sum of the negative eigenvalues of thginnormalized separable pure staté0f+|1))®3. The fact
partial transpose of the density matfix 21]. In the present that the only positive-partial-transpo$ePT) state is sepa-
setting, viz., the family(x,y) of three-qubit states, the par- rable implies that there are no entangled PPT stdtes no
tial transpose may equivalently be taken with respect to anPPT bound entangled statesithin this family of three-qubit
one of the three parties, owing to the invariancep(X,y) mixed states. The negativity surface, Fig. 11, is
under all permutations of the parties. Transposing with requalitatively—but not quantitatively—the same as that of
spect to the third party, one has GME. By inspecting the negativity and GME surfaces one
can see that they present ordering difficulties. This means
_ that one can find pairs of statp$x;,y;) andp(x,,y,) that
N(p)= _ZMZO iy 73 have respective negativitiés andN, and GMESE; andE,

where the\’s are the eigenvalues of the matpXs,

Yo

FIG. 9. (Color online@ Entanglement of the mixed state
p(X,y). FIG. 11. (Color online Negativity of the mixed statg(x,y).
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such that, sayN;<N, but E;>E,. Equivalently, the nega- tangled,W-type, and GHZ-type statd24].

tivity and the GME do not necessarily agree on which of the Although there is no generally valid analytic procedure
pair of states is the more entangled. For two-qubit settingsfor computing the entanglement eigenvaldg,,,, one can
such ordering difficulties do not show up for pure states bugive—and indeed we have given—analytical results for sev-
can for mixed state§21,22. On the other hand, for three eral elementary cases. Harder examples require computation,
qubits, such ordering difficulties already show up for purebut often this is(by today’s computational standajdsivial.
states, as the following example showBl(GHZ)=1  We note that in order to find ,, for the statg ) it is not
>N(W)=242/3, whereas for the GME the order is re- necessary to solve the nonlinear eigenprobl&mn one can
versed. We note, however, that for the relative entropy ofnstead appropriately parametrize the family of separable
entanglement Eg, one has Er(GHZ)=1<Eg(W) stateg¢) and then directly maximize their overlap with the
=log,(9/4) [23], which for this particular case is in accord entangled statgy), i.e., Apnau=maxy|(¢4)||. Besides, we
with the GME. mention that there exist numerical techniques for determin-
ing E¢ (see, e.g., Ref25]). We believe that numerical tech-
niques for solving the geometric measure of entanglement
for general multipartite mixed states can readily be devel-

We have considered a rather general, geometrically motioPed. o _ _ _
vated, measure of entanglement, applicable to pure and The motivation fqr constructmg the measure discussed in
mixed quantum states involving arbitrary numbers and structhe present paper is that we wish to address the degree of
tures of parties. In bipartite settings, this approach provide§ntanglement from a geometric viewpoint, regardless of the
an alternative—and generally inequivalent—measure to th@umber of parties. Although the construction is purely geo-
entanglement of formation. For multipartite settings, there ismetric, we have related this measure to entanglement wit-
to date, no explicit generalization of entanglement of formal€sses, which can in principle be measured locgllg].
tion [23]. However, if such a generalization should emerge Moreover, the geometric measure of entanglement is rela_ted
and if it should be based on the convex-hull constructms 0 the probability of preparing a single copy of a two-qubit
it is in the bipartite case then one may be able to calculate Mixed state from a certain pure stdfi8]. Yet it is still de-
the entanglement of formation for the families of multipartite Sirable to see whether, in general, this measure can be asso-
mixed states considered in the present paper. ciated with any physical process in quantum mforma’uon, as

As for explicit implementations, the geometric measure of2re the entanglement of formation and distillation.
entanglement yields analytic results in several bipartite cases There are further issues that remain to be explored, such
for which the entanglement of formation is already known.as additivity and ordering. The present form of entanglement
These cases includ® arbitrary two-qubit mixed(ii) gener-  for pure statesEgz=1-A? is not additive. However, one
alized Werner, andiii) isotropic states. Furthermore, we Can consider a related forr,=—In A% which, e.g., is ad-
have obtained the geometric measure of entanglement féfitive for [#)ae®|#)cp, €.,
certain multipartite mixed states, such as mixtures of sym-
metric states. In addition, by making use of the geometric En(|#1)as®|¥2)cp) =Ein(| 1) ag) + Ein(| ¥2)cp) -
measure, we have addressed the entanglement of a rather
general family of three-qubit mixed states analyticallp to
root finding. This family consists of arbitrary mixtures of This suggests that it is more appropriate to use this logarith-
GHZ, W, and inverted¥ states. To the best of our knowl- mic form of entanglement to discuss additivity issues. How-
edge, corresponding results have not, to date, been obtaineder, it remains to check whether it is an entanglement
for other measures of entanglement, such as entanglement wionotone when extended to mixed states by convex hull.
formation and relative entropy of entanglement. We have As regards the ordering issue, we first mention a result of
also obtained corresponding results for the negativity meabipartite entanglement measures, due to Virmani and Plenio
sure of entanglement. Among other things, we have foun@22], which states that any two measures with continuity that
that there are no PPT bound entangled states within this gegive the same value as the entanglement of formation for
eral family. pure states are “either identical or induce different orderings

A significant issue that we have not discussed is how tan general.” This result points out that different entanglement
use the geometric measure to provide a classification of emneasures will inevitably induce different orderings if they
tanglement of various multipartite entangled states, even iare inequivalent. This result might still hold for multipartite
the pure-state setting. For example, given a tripartite state, isettings, despite their discussion being based on the existence
all the entanglement associated with pairs of parts or is somef entanglement of formation and distillation, which have not
attributable only to the system as a whole? More generallybeen generalized to multipartite settings. Although the geo-
one can envisage all possible partitionings of the parties, anghetric measure gives the same ordering as the entanglement
for each compute the geometric measure of entanglemernf formation for two-qubit mixed statelsee Eq.(45)], we
This would provide a hierarchical characterization of the enbelieve that the geometric measure will, in general, give a
tanglement of states, more refined than the global charactedifferent ordering. However, it is not our intention to discuss
ization discussed here. Another extension would involvethe ordering difficulty in the present paper. Nevertheless, it is
augmenting the set of separable pure states with certaiimteresting to point out that for bipartite systems, even
classes of entangled pure states, such as biseparable eéheugh the relative entropy of entanglement coincides with

VI. CONCLUDING REMARKS
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entanglement of formation for pure states, they can give difsought quantityEg;z. We start by fixing some notation. Let
ferent orderings for mixed states, as pointed out by Verstraetg) K be a compact convex sée.g., a set of states that
et al.[22]. includes both pure and mixed ong&) M be a convex sub-
We conclude by remarking that the measure discussed iget ofK (e.g., set of pure statgs(c) E:M—RU{+=} be a
the present paper is not included among the infinitely manyunction that maps elements df to the real numberte.g.,
different measures proposed by Vedetlal. [26]. These E=E.); and (d) G be a compact group of symmetries,
measures are based on the minimal distance between the ejtting onK (e.g., the groupy @ U™) asay:K—K (whereay
tangled mixed state and the set of separafikedstates. By s the representation of the element G) that preserve con-
contrast, the measure considered here is based upon thex combinations.
minimal distance between the entangled pure state and the \we assume thattMCM (e.g., pure states are mapped
set of separable pure states, and it is extended to mixed statggo pure states and thatE (aym) =E(m) for all me M and

by a convex-hull construction. ge G (e.g., that the entanglement of a pure state is preserved
underag). We denote by the invariant projection operator
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and provided the following recipe for computing the function

In this appendix, we now briefly review a technique de-ConE for G-invariant states{l) For every invariant statp
veloped by Vollbrecht and Werné4] for computing the en-  (i.e., obeyingp=Pp), find the setM , of pure statesr such
tanglement of formation for the generalized Werner statesthat Po=p; (2) compute e(p)=inf{E(c)|oceM,}; (3)
this turns out to be applicable to the computation of thethenC.,, E is the convex hull of this functior.
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