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Abstract. The presence of Majorana zero-energy modes at vortex cores in a
topological superconductor implies that each vortex carries an extra entropy s0,
given by (kB/2)ln 2, that is independent of temperature. By utilizing this special
property of Majorana modes, the edges of a topological superconductor can be
cooled (or heated) by the motion of the vortices across the edges. As vortices
flow in the transverse direction with respect to an external imposed supercurrent,
due to the Lorentz force, a thermoelectric effect analogous to the Ettingshausen
effect is expected to occur between opposing edges. We propose an experiment
to observe this thermoelectric effect, which could directly probe the intrinsic
entropy of Majorana zero-energy modes.
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1. Introduction

The search for Majorana modes in condensed matter—a subject of intense experimental
effort—is driven in large part by the expectation that whenever such fermions appear as
zero-energy modes bound to either vortices [1, 2] or end points of superconducting quantum
wires [3–5] they are characterized by non-Abelian braiding statistics [6–8]. Such particles could,
as a result, be utilized for quantum information processing [9].

A number of condensed matter systems, most notably the ν = 5/2 fractional quantum Hall
state [10] and chiral p-wave superconductors [1, 2], are expected to host such non-Abelian
quasiparticles. Alternatively, chiral superconductors supporting Majorana zero-energy modes
can be fabricated as heterostructures composed of an s-wave superconductor and either a
topological insulator (TI) [11] or a semiconductor having strong spin–orbit coupling and an
additional source of Zeeman splitting [12–14]. A modification of the latter scheme for the case
of a semi-metal may remove the Zeeman splitting requirement [15].

However, an unambiguous experimental observation of a Majorana zero-energy mode
remains elusive, thus far. Following earlier proposals for the interferometric detection of non-
Abelian anyons in the ν = 5/2 fractional quantum Hall state [16–18], similar ideas were put
forward in the context of topological superconductivity [19–21]. Another possible signature of
Majorana modes would manifest itself through an unusual 4π (rather than the conventional 2π )
periodicity of a Josephson current as a function of the phase difference across the junction
[3, 22]. A zero-bias tunnelling anomaly and the corresponding 2e2/h quantization of the
tunnelling conductance from a single metallic channel into a Majorana zero-energy mode
[23, 24] could provide another signature. While the first experimental results consistent with
the latter prediction have been just reported [25], they cannot not address the most interesting
feature of these quasiparticles, namely their non-Abelian statistics.

This brings us to another unique but less explored feature—an intrinsic zero-temperature
entropy of s0 = (kB/2)ln 2 per Majorana zero mode—which is also an essential hallmark of such
quasiparticles. This entropy results from the exponential growth of the ground-state degeneracy
with the number of quasiparticles, a precondition for their non-Abelian statistics [9]. Hence,
a measurement of the intrinsic entropy carried by each vortex can be taken not only as an
unmistakable signature of Majorana zero modes but also as an indication of their unusual
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statistics. It has been argued by Yang and Halperin [26] that the presence of this zero-
temperature entropy leads to an enhancement of thermopower. Furthermore, it can be utilized
for the adiabatic cooling of systems supporting non-Abelian anyons [27, 28].

In this paper, we show that the zero-temperature entropy carried by vortices in a topological
superconductor induces a magneto-thermoelectric effect—the Ettingshausen effect. We also
propose a specific setup—a heterostructure combining a TI and an s-wave superconductor with
a wide Josephson junction—that should give rise to a measurable signal for this effect under
plausibly realizable experimental conditions.

2. Thermoelectric effect

Let us begin by introducing an intuitive qualitative picture of the edge thermoelectric effect
in a two-dimensional (2D) topological superconductor with broken time-reversal symmetry.
An edge of such a superconductor is characterized by the existence of a gapless chiral mode.
(Depending on the net vorticity inside the topological superconducting region, such a mode may
or may not be exactly at zero energy.) When a vortex enters the topological region, it necessarily
crosses this gapless edge and changes its spectrum; as a result a quantum state is ‘peeled off’
from the edge to form the Majorana zero-energy mode localized at the vortex core. This process,
in turn, reduces the entropy associated with the edge modes by exactly s0 =

1
2kB ln 2, which

is carried away by the vortex. In the reverse process, whereby a vortex moves out from the
topological superconductor region, the same amount of entropy is added back into the opposing
edge.

Alternatively, we could analyze the effect of a pair of vortices entering into the topological
superconductor. The advantage of this approach is that we need not concern ourselves with
the details of the edge spectrum reconstruction upon the passage of each successive vortex.
Once the pair has moved deep into the topological region, the energy spectrum of the edge
must return to its original form. On the other hand, both vortices now carry zero modes
(provided they are sufficiently well separated). Assuming that the temperature is lower than
the dimensional quantization energy inside their cores (the minigap), there are no other entropy
changes associated with the vortices. On the other hand, if the vortex passage is an adiabatic
process, the total entropy associated with the vortex and edge states must be conserved. The
only way to reduce the entropy of the edge states in order to compensate for the entropy now
carried by the two vortex zero modes is by reducing the temperature of the edge. (Only those
states that are within the ‘temperature window’ of the edge contribute to its entropy.) Naturally,
the opposite effect results from the pair of vortices leaving the topological region.

Owing to the Lorentz force, vortices may be driven across the sample via an externally
imposed supercurrent. Because such vortex flow cools one and heats the other of an opposing
pair of edges, a thermoelectric effect, analogous to the Ettingshausen effect, occurs between
opposing edges. As we show below, such an effect can be quantified in terms of the ratio of the
temperature difference 1T between the opposing edges and the voltage drop V in the applied
current direction 1T/V = (e/kB)(12/π 2)ln 2.

As discussed by Yang and Halperin [26], the presence of the intrinsic entropy s0 per
vortex is justified only when the temperature is higher than the energy splitting of the zero-
energy modes, i.e. T � T0 ∼1e−l/ l0 . For the present work, 1 is the superconductor gap,
l0 is the typical size of a vortex, and l is the distance between vortices. Thus, in the limit
of dilute vortices, T0 is exponentially suppressed. At a non-zero temperature these vortices
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Figure 1. Schematic plot of the proposed setup showing the thermoelectric
mechanism for the edge state. A three-dimensional TI (colored yellow) is in
contact with an s-wave superconductor (colored gray) from one side, and the
rest of the surface is coated by a ferromagnetic insulator of magnetization
M normal to and inward from the surface indicated by the green arrow at
each surface. A circulating Majorana edge state (shown in red) forms at the
boundary separating the regions of superconducting pairing and magnetic gaps.
A magnetic field is applied in the z-direction. A current driven in the y-direction
produces a force that pushes vortices in the x-direction. The passage of a vortex
cools the left edge and heats the edge on the opposite (i.e. right) side.

carry additional entropy, due to other minigap states [29]. However, if the temperature is
lower than the minigap, i.e. kBT � Emg, these contributions are suppressed exponentially by
Smg ∼ |Emg/T | e−|Emg/kBT | and can be simply ignored (see appendix A). Therefore, the edge
thermoelectric effect due to the presence of the intrinsic entropy will only be prominent in
the temperature range T0 � T � Emg/kB.

As a concrete example, we shall consider the schematic setup shown in figure 1, which
illustrates the mechanism underlying this thermoelectric effect. We consider a TI that interfaces
with an s-wave superconductor, so that a superconducting pair potential is induced in the contact
region of the TI via the proximity effect. This region effectively emulates a 2D topological
superconductor. Each vortex in this region would have a Majorana zero-energy mode bound
at its core [11]. We envision magnetically gapping the rest of the TI surface by depositing on
it a ferromagnetic insulator. (We shall revisit this point and discuss more practical means of
producing such a gap later on.) In this setup, a one-dimensional chiral Majorana edge state
will form at the boundary of the superconducting region [19, 20]. We then imagine subjecting
this region to a transverse magnetic field of strength B > Bc1, which will result in a vortex
density nv = B/80 = B/(h/2e) in the superconducting slab. Here, Bc1 is the first critical field
and 80 = h/2e is a superconducting flux quantum. Finally, we envision applying an external
current to the superconductor, which will induce vortices to move laterally between the two
opposing edges.

If the vortices move with velocity u (which depends on the frictional force on moving
vortices), the entropy current in the TI would be given by [30, 31]

jS = s0nvu = s0
2eB

h
u. (1)

In order to sustain a constant vortex motion, a uniform electric field E = B × u should be applied
in the direction perpendicular to both the magnetic field and the vortex motion. Hence, in terms
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of the applied electric field, the entropy current becomes

jS = s0
2e

h
E × B̂, (2)

where B̂ ≡ B/ |B| is the unit vector in the direction of the magnetic field. Here, the effect of the
Magnus force has been ignored, as it will not affect the conclusion given in equation (2).

To understand the heating (cooling) of edges due to the vortex flow, we first need the heat
capacity per unit length CV of the chiral Majorana edge state, which is given by

cV =
π 2

3
k2

BTρEF
, (3)

where ρEF = 1/(4π h̄vψ) is the density of states at the Fermi energy, and vψ is the velocity
of the edge states. The energy current flowing out of/into the heated/cooled region is given
approximately by

dQ

dt
= cVvψδT =

π

12h̄
k2

BT δT, (4)

where δT is the temperature variation due to heating/cooling. By balancing this energy flow
with the heat added to (or removed from) the edge states due to the vortex motion crossing the
edge, i.e.

dnv

dt
= LT jS = T s0

2eV

h
, (5)

we obtain the result

δT =
6 ln 2

π 2

eV

kB
, (6)

where L is the length of the heated region and V = L|E| is the voltage drop across the
superconductor.

As the amount of entropy removed from one edge is deposited by vortices at the other edge,
the ratio of the temperature difference 1T between the opposing edges and the voltage drop is
given by

1T

V
=

2δT

V
=

12 ln 2

π 2

e

kB
≈ 104 K V−1. (7)

Because both the temperature difference and the voltage drop directly originate from the motion
of vortices, any vortex pinning should not affect this signal [32]. As this thermoelectric response
is quite substantial (i.e. 1T ≈ 10 mK for 1µV of applied voltage), it should be possible to
measure this effect provided it proves possible to measure the edge state temperature while
keeping the edges isolated from the environment.

Although the setup in figure 1 is useful for demonstrating the idea of the thermoelectric
effect at a conceptual level, we emphasize that in reality the effect can be masked, and therefore
difficult to measure, in this simple setting, due to the following reasons. Firstly, an Abrikosov
vortex in an s-wave superconductor possesses a normal core, and thus carries entropy in addition
to the contributions from the zero mode and minigap states. We note that these additional sources
of entropy, although oblivious to the existence of the edge states, can build up a temperature
gradient—the classical Ettingshausen effect—in the bulk of the superconductor, and hence
obscure the edge thermoelectric effect [31, 32].
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Secondly, the motion of vortices may not be strictly perpendicular to the direction of the
applied current, instead having a Hall angle induced by the Magnus force and depending on
material properties [31, 33].

Thirdly, the motion of a vortex in a superconductor induces a non-zero resistivity that is
proportional to the applied magnetic field, ρ ∝ ρn B/Bc2, where ρn is the normal-state resistivity
and Bc2 is the second critical field strength [30]. Because conventional superconductor materials
are characterized by a small normal-state resistivity, a superconductor with moving vortices
yields a small resistivity. For a fixed voltage, the smaller the resistivity, the larger the Joule
heating. As a result, the superconductor can be heated considerably due to the motion of
vortices.

Finally, carriers in chiral edge states in a spatially extended heating (or cooling) region
may equilibrate with the environment before they can reach thermometers. This could make it
difficult to measure the temperature difference between two edge states that results from the
transfer of the intrinsic entropy carried by the vortices.

3. Wide Josephson junction device

In order to overcome the aforementioned obstacles to detecting the edge thermoelectric effect,
we now propose an alternative device that utilizes Josephson junctions, as shown in figure 2.
A wide Josephson junction, in which Josephson vortices can propagate, is situated under a slab
of TI. A constant supercurrent density Js is applied across the junction (i.e. in the y-direction),
in order to push Josephson vortices along the junction (i.e. in the x-direction) by means of a
Lorentz force. An impedance-matched resistance circuit should be placed at one end of the
junction, so that vortices are not reflected from the edge of the junction [34, 35]. Finally, to
induce a magnetic gap on the free surface of the TI, one could apply a magnetic field parallel to
the interface; chiral Majorana edge states then form at the boundary of the superconductor, as
shown in figure 2.

As with an Abrikosov vortex, a Josephson vortex carries a Majorana zero mode in the
topological superconductor region [21]. Therefore, an analogous thermoelectric effect, caused
by the mechanism described in the previous section, should occur when dilute Josephson
vortices move across the sample. A dissipative motion of such a vortex along the junction
induces a voltage pulse across it (due to the Josephson relation); the time-averaged voltage
drop across the junction is then given by

V̄ = ν80, (8)

where ν is the passage frequency of Josephson vortices through the junction. One can
subsequently show that the chiral edges emerge downstream from the junction, heated or cooled
according to equation (6) with a simple substitution V 7→ V̄ . As the cooling/heating processes
only take place at or near the junction, it should be possible to probe the thermoelectric effect
before the edge state equilibrates with the environment.

The advantage of dealing with wide Josephson junctions can be understood qualitatively,
before providing a formal treatment of its soliton excitations (i.e. Josephson vortices). Although
the superconducting phase winds by 2π around both types of vortices, a Josephson vortex has
a phase core but no minigap states, whereas an Abrikosov vortex contains a normal core with
minigap states [36]. Thus, the propagation of Josephson vortices in a conventional supercon-
ductor carries no entropy, resulting in a small temperature gradient, at most. Furthermore, as the
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Figure 2. Schematic of a setup involving a wide Josephson junction. An
insulating tunnel barrier (white region) sandwiched between two s-wave
superconductors (gray regions) forms a wide Josephson junction. The geometry
of the junction is as follows: the thickness of insulator is `; the depth of the
junction area is d; the width is w. The width of the TI is denoted by wTI. The
lighter and darker blue ellipses, located where edge states cross the Josephson
junction, indicate cooling and heating regions, respectively. Josephson vortices
are formed by applying a weak magnetic field Bz in the z-direction. Magnetic
fields are also applied, indicated by green arrows, in order to gap the surface
states in both positive x- and negative y-directions. The chiral Majorana edge
states appear between the superconducting and magnetic gapped regions as
indicated by a red perimeter with the red arrows indicating the flow directions of
Majorana edge states. Between the magnetic gapped surface states with opposite
magnetization directions, additional edge states appear and are connected to the
Majorana edge states as indicated by two vertical red arrows. Here, the upper
surface state of the TI is not gapped as Bz is very weak and is in general screened
by the superconductor. An impedance-matched resistance circuit is attached at
one end of the junction in order to guide the vortex out of the junction. Finally, a
supercurrent Js is applied through the junction to drive the vortices.

friction and pinning forces encountered by a Josephson vortex in a well-fabricated junction
can be much smaller than those associated with an Abrikosov vortex moving inside a bulk
superconductor, we expect much less heat dissipation due to the motion of a Josephson vortex.

The dynamics of a wide Josephson junction can be described by a sine-Gordon equation
that includes damping and driving forces [37], cf appendix B:(

∂2

∂ζ 2
−
∂2

∂τ 2
−α

∂

∂τ

)
ϕ(ζ, τ )= sinϕ(ζ, τ )+ γ, (9)

where ϕ(ζ, τ ) is the position and time-dependent gauge-invariant phase difference across the
Josephson junction as a function of dimensionless variables ζ = x/λJ and τ = c̄t/λJ. Here,

λJ ≡

√
80

2πµ0(2λL + `)Jc
, c̄ =

√
`

εµ0(2λL + `)
(10)
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are the Josephson penetration depth and the effective speed of light, respectively. These
parameters have the meaning of a characteristic size scale and a propagation speed of a
Josephson vortex along the junction; they are governed by material properties and geometric
parameters of the Josephson junction: the permittivity ε of the insulator, its thickness `, the
London penetration depth of the superconductor λL, and the critical current density Jc of the
Josephson junction. The damping coefficient α = µ0(2λL + `)c̄λJ/`ρ is inversely proportional
to the resistivity ρ of the insulator, and the (dimensionless) driving force γ = Js/Jc is the ratio
of the supercurrent and critical current densities.

To solve the sine-Gordon equation, one also needs to specify the boundary conditions. For
a junction of width ζ0, the boundary condition for equation (9) reads

ϕ(ζ0)−ϕ(0)=
2π

80
Bz(2λL + `)λJζ0, (11)

in the presence of applied magnetic field Bz. Indeed, this condition simply states that the total
phase winding along the junction has to match the total flux threading through the junction.

In the limit α, γ � 1, one can first ignore the contributions from the damping and driving
forces. When the total magnetic flux in the junction area is exactly one flux quantum, the sine-
Gordon equation (9) has a soliton solution having a profile given by [31]

ϕ(x, t)= 4 tan−1

[
exp

(
±

x − vt

λJ

√
1 − (v/c̄)2

)]
, (12)

in terms of the real time and coordinate. This moving soliton, trapping exactly one flux quantum
within the size lf = λJ

√
1 − (v/c̄)2, is a Josephson vortex. Here, the propagation velocity v of

the Josephson vortex is determined by the balance between the damping and driving forces, and
takes the value [37]

v = c̄/
√

1 + (4α/πγ )2, (13)

which can be controlled by the ratio of damping coefficient and driving constant. In the dilute
limit (i.e. vortex density dv < 1/λJ), the phase profile at the Josephson junction increases
monotonically, and is roughly a train of isolated Josephson vortices moving with velocity v. As
a result, the vortex density dv matches the magnetic flux density threading through the junction,
and hence can be adjusted simply by controlling the magnetic field strength Bz.

From energy conservation, we have that the heat dissipated per unit length by a propagating
vortex is precisely the work done by the Lorentz force acting on the vortex, i.e.

P =80 Jsv. (14)

To estimate how much energy is transferred to the edge state due to this heat dissipation, we first
assume that the cross-section of the edge state is of order ξsξ , where ξs and ξ are the coherence
length of the bulk s-wave and the topological superconductors, respectively. Here, ξs provides
the penetration depth of the edge state in the z-direction, and ξ is roughly the size of the edge
state in the x-direction. Because it takes a time ξ/v for a vortex to pass the edge state, we
estimate that the edge state will be heated with energy

Q = ξsξ80 Js, (15)
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which is independent of the propagating velocity. Similarly, the total heat dissipation for
transferring a vortex through a junction of depth d and width w can be estimated as Qt =

dw80 Js. Indeed, the heat dissipated by a propagating Abrikosov vortex driven by an applied
supercurrent is exactly the same as that of a Josephson vortex, as given in equation (14).
However, because it requires a much smaller supercurrent to drive the vortex moving along the
Josephson junction, heat dissipation becomes a much less severe issue for the wide Josephson
junction device.

4. Possible experimental realization

To achieve an appreciable temperature difference, the average voltage V̄ should be at least
in the range of 0.1–1µV, which corresponds to a passage frequency of ν = 50–500 MHz.
This voltage would result in a temperature difference of 1T ≈ 1–10 mK between the two
opposing edges. With a fixed vortex velocity, the passage frequency, and hence V̄ , increases
with increasing applied magnetic field Bz (i.e. the vortex density). Hence, the temperature
difference between two edges due to the Ettingshausen effect can be tuned by the magnetic
field strength. To understand the issue of feasibility, let us now show that an Ettingshausen
effect having a measurably large signal can be established in a wide Josephson junction device
within reasonable material parameters.

In our analysis, we assume the following wide Josephson junction geometry (see figure 2):
the thickness of the insulator `= 2 nm, the depth of the junction d = 5µm, and the width
of the Josephson junction w = 0.1 m. As a concrete example, the Josephson junction is
constructed by an AlxOy insulating layer of ε ≈ 10ε0 sandwiched between a pair of s-wave
superconductors made of Nb–Sn, and having material properties: the superconductor pairing
potential 1≈ 3.4 meV, the coherence length ξs = 3.6 nm, and the London penetration depth
λL = 124 nm. A Josephson junction of this type can be fabricated [34, 35], and is expected to
have a critical current density Jc ranging from 105 to 107 A m−2. In the present discussion, we
assume Jc = 106 A m−2.

Using these material properties, together with the flux quantum 80 = 2.07 × 10−15 V s,
from equation (10) one immediately obtains

λJ ≈ 32µm, c̄ ≈ 8.5 × 106 m s−1. (16)

With the pairing potential 1≈ 3.4 meV and the critical current density Jc = 106 A m−2, the
tunnelling resistivity of the Josephson junction can be estimated to be ρ ≈ 2�m, which
corresponds to a damping coefficient α ≈ 0.02 [38].

As the vortex propagation speed has to be slower than the Fermi (edge-state) velocity of
the TI (vF ∼ 5 × 105 m s−1), the wide Josephson junction should be operated in the damping-
dominated regime γ � α � 1. Hence, the size of a propagating Josephson vortex is lf ≈ λJ

since v � c̄ and the width of the TI should obey wTI � λJ. By requiring the vortex velocity
vJ ≈ 5 × 104 m s−1, we obtain from equation (13) the corresponding supercurrent density of
γ = Js/Jc ≈ 1.5 × 10−4.

From equation (11), the density of Josephson vortices is given by dv = Bz(2λL + `)/80. As
the mechanism leading to the Ettingshausen effect requires a dilute vortex density, i.e. dv < 1/λJ,
we obtain the constraint Bz < 0.25 mT. Then, by using the passage frequency ν = vdv and the
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average voltage V̄ = ν80, we obtain the relation

V̄ = v(2λL + `)Bz. (17)

In addition, by using the aforementioned parameters, the average voltage is restricted to
V̄ < 3µV, and can be controlled directly by changing the magnetic field Bz. From equations (7)
and (17), we note that the temperature difference is 1T ≈ 1–10 mK when tuning the magnetic
field in the range of Bz ≈ 0.01–0.1 mT. To enhance the strength of the Ettingshausen signal,
one could introduce a set of wide Josephson junctions, situated in parallel and separated by a
distance larger than London penetration depth λL. The temperature difference 1T would then
scale linearly with the number of junctions.

A superconductor in contact with a TI not only produces superconductivity via proximity,
but also renormalizes the Fermi velocity of the surface state [39]. If the tunnelling rate between
the superconductor and TI is optimized, and the chemical potential of the TI is close to the Dirac
point, the induced pair-potential 1TI ≈1/2 is about half of the bulk s-wave superconductor
pair potential, and the Majorana edge-state velocity vψ ≈ vF/2, i.e. the renormalized Fermi
velocity is about half the original Fermi velocity [40]. Thus, the coherence length of the induced
topological superconductor is ξ = h̄vψ/1≈ 25 nm. Then, by using aforementioned material
parameters, we find that the minigap of a Josephson vortex in the topological superconductor
region is estimated to be

E J
mg ≈

√
2h̄vψ1TI

λJ
≈ 0.13 meV, (18)

which equals 1.5 K, cf appendix C. Taking the operating temperature T ∼ 0.1 K ≈ (E J
mg/kB)/

15 K, which should be readily achievable experimentally, the entropy contribution from minigap
states is about Smg ∼ 0.0014s0 and can be neglected (cf appendix A).

Compared with the setup propagating Abrikosov vortices, the issue of heat dissipation is
dramatically lessened for the wide Josephson junction setup. From equation (15), we see that
the heat transferred to the edge state due to a propagating Josephson vortex can be estimated as
Q ≈ 10−28 J. Thus, compared with the heat added to (or moved from) the edge states due to the
crossing of a vortex, (kBT/2)ln 2 ∼ 5 × 10−25 J, we can ignore heating due to dissipation from
vortex motion. In addition, the total heat dissipation for a vortex moving through the junction is
about Qt ≈ 10−18 J per vortex, which should be drained away from the system in order to keep
it at a constant temperature.

Finally, we mention that by measuring the thermopower voltage 1V and the conductance
of point-contact tunnelling into the edge state, the temperature of edge states can, in principle, be
inferred via the Mott relation [41, 42]. For the tunnelling that occurs between two normal metals
(or charged 1D channels), the Mott relation reads S =1V/1T = −π 2k2

B T (∂ ln G/∂µ)/(3e),
where1T is the temperature difference between the two metals, G is the conductance, and µ is
the chemical potential. Although we are concerned with the tunnelling into a charge-neutral
edge state in a superconductor system, we expect that the Mott relation should hold, up to
an overall prefactor. We note that establishing a Mott relation for superconductors is in itself
an interesting question that is worth careful examination in the future work. We should also
emphasize that probing the temperatures of edge states can be a challenging experimental task.
However, we envision that a setup akin to the measurement of quantum Hall edge states, as
in [42], could be a viable scheme.
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5. Conclusion

In summary, we have shown that the intrinsic entropy carried by vortices possessing Majorana
zero-energy mode leads to an Ettingshausen effect between opposing sides of Majorana-
carrying edge states. In addition, we proposed that this effect could be measured using
a wide Josephson junction situated on a superconductor–TI heterostructure, and we have
shown that this setup should permit measurement of the Ettingshausen effect within the range
of experimentally accessible parameters. At low temperature, i.e. T � Emg/kB, this unique
thermoelectric effect can be related to the intrinsic entropy, and thus provides a distinct probe of
the non-Abelian nature of Majorana fermions. Moreover, this edge Ettingshausen effect could
potentially be used as a refrigeration process for cooling small objects, such as a quantum dot.
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Appendix A. Entropy contribution from the minigap states

When a vortex moves from a normal superconductor into a topological superconductor region,
it acquires a zero-energy quantum state. The entropy per vortex associated with such a state is
s0 = (kB/2)ln 2. In principle, the energy levels associated with other minigap states may also be
affected when a vortex is moving from one region to another, in which case there will be an
additional contribution to the heat transport.

The entropy carried by a fermionic state with energy Ei at temperature T is given by

Si = −kB {pi ln(pi)+ (1 − pi) ln(1 − pi)} , (A.1)

where pi = 1/(exp(Ei/kBT )+ 1) is the Fermi–Dirac distribution function for chemical potential
µ= 0. Because the entropy is extensive, the total entropy of multiple quantum states can be
simply added, to give

Smg =

∑
i

gi Si , (A.2)

where gi is the degeneracy. Because the entropy is suppressed exponentially by a factor
exp(−|Ei/kBT |) in the limit |Ei/kBT | � 1, the lowest energy state (with energy Emg) of the
minigap states makes the most substantial contribution, and the entropy can be approximated by

Smg ≈ kB

(
1 +

∣∣∣∣ Emg

kBT

∣∣∣∣) exp

(
−

∣∣∣∣ Emg

kBT

∣∣∣∣) . (A.3)

Therefore, one can conclude that the entropy contribution from the minigap states can be ignored
at sufficiently low temperatures.
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Appendix B. Sine-Gordon equation

Here, we derive the equation of motion for a wide Josephson junction in terms of the phase
difference across the junction. Our derivation emphasizes the relation between the magnetic
field distribution at the junction and its resulting phase, magnetic field, and current distributions
inside the bulk superconductors.

Referring to the coordinates of figure 2, let us consider a Josephson junction composed of
an insulating layer sandwiched between two semi-infinite superconductors at areas y > `/2 and
y 6−`/2. Hence, any z dependence can be ignored. The magnetic field B̄z(x, t) penetrating
through the insulating area, −`/2< y < `/2, is assumed to have no y dependence, and thus
obeys the Maxwell equation

−
∂ B̄z

∂x
= µ0

(
Jc sinϕ + Js +

1

ρ
Ey + ε

∂Ey

∂t

)
, (B.1)

where ϕ(x, t) is the gauge-invariant phase difference between two superconductors, µ0, ε and
ρ are, respectively, the permeability, permittivity and resistivity of the insulator, and Ey is the
electric field in the y-direction inside the insulator. On the right-hand side, the first term is
the Josephson supercurrent, the second term Js is the bias supercurrent, the third term is the
tunnelling current through the junction and the fourth term is the displacement current. By
using the Josephson relation [31]

∂ϕ

∂t
=

2e`

h̄
Ey, (B.2)

the Maxwell equation becomes

−
∂ B̄z

∂x
= µ0

(
Jc sinϕ + Js +

80ε

2π`

∂2ϕ

∂t2
+
80

2πρ`

∂ϕ

∂t

)
. (B.3)

Now, our goal is to associate B̄z with ϕ, and thus derive an equation of motion only in terms of
ϕ(x, t).

For simplicity, we assume that the superconductor coherence length ξ vanishes, and the
heating effect due to the presence of the boundary and the magnetic field can be ignored.
Because the magnetic field B̄z at the junction effectively provides the boundary conditions
for both sectors of the superconductor, the magnetic field and phase distributions inside the
superconductors can be solved as a boundary value problem. To further simplify matters, we
take the limit `→ 0 when solving this boundary value problem. Also, we only consider the
boundary value problem for the y > 0 regions and then make use of the mirror symmetry to
obtain the solution for the other half-plane.

To derive the magnetic field and phase distributions inside the superconductor, we first
recall the supercurrent density

JB
s =

2ensh̄

m∗

(
∇φ−

2π

80
A
)
, (B.4)

where the prefactor involves the superfluid density ns and the effective mass m∗, φ is the
superconductor phase, and A is the vector potential. When ignoring the capacitance (as we
shall do), current conservation, ∇ · JB

s = 0, leads to

∇
2φ−

2π

80
∇ · A = 0. (B.5)
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From ∇ × B = µ0JB
s and B = ∇ × A, we then obtain the Maxwell-current relation

−∇
2A + ∇(∇ · A)= µ0

2ensh̄

m∗

(
∇φ−

2π

80
A
)
. (B.6)

To proceed, it is useful to choose a gauge. In order to read out the phase difference across
the junction, it is most convenient to choose the following one:

φ(x, y, t)= −φ(x,−y, t), Ax(x, y, t)= −Ax(x,−y, t), Ay = 0, (B.7)

in which case the phase difference is immediately given by ϕ(x)= 2φ(x, y = `/2). In this
gauge, current conservation (B.5) reads

∇
2φ−

2π

80

∂Ax

∂x
= 0, (B.8)

and equation (B.6) explicitly becomes

−
∂2 Ax

∂y2
=

2eµ0nsh̄

m∗

(
∂φ

∂x
−

2π

80
Ax

)
,

(B.9)

∂2 Ax

∂x∂y
=

2eµ0nsh̄

m∗

∂φ

∂y
.

Thus by using the relation Bz = −∂y Ax , we arrive at result

∇
2 Bz −

1

λ2
L

Bz = 0, (B.10)

together with the boundary condition Bz(y = 0)= B̄z. Here, λL =
√

m∗/(2e)2µ0ns is the
London penetration depth.

The differential equation (B.10) can be solved via the Green function method. The Green
function with homogeneous Dirichlet boundary conditions for y > 0 is given by

G(x, y; x ′, y′)= −

∫
d2k

(2π)2
eikx (x−x ′)(eiky(y−y′)

− eiky(y+y′))

k2
x + k2

y + 1/λ2
L

. (B.11)

By using Green’s theorem, we thus have that the field distribution in the upper half-plane is
given by

Bz(x, y > 0)= B̄(0) e−y/λL +
∫

∞

0+

dk

2π
2
∣∣B̄z(k)

∣∣ e−αk y cos (kx + θk) , (B.12)

where B̄z(k, t)≡ |B̄z(k, t)|eiθk is the Fourier amplitude of the magnetic field B̄z(x, t) at the
junction, and αk =

√
k2 + 1/λ2

L. We have also used the relation B̄(−k)= B̄∗(k), as B̄(x, t) is
real. The solution for y < 0 can be inferred using mirror symmetry.

Next, observe that the component B̄z(0) is the averaged magnetic field distribution, and
that B̄z(k) captures any spatially non-uniformity. For a uniform applied magnetic field, B̄z(0) is
exactly the external applied field strength and the non-vanishing B̄z(k) comes solely from the
nonlinear current-phase response of the junction.

Upon an integration over y, with the boundary condition Ax(x, y = 0)= 0 imposed by the
gauge choice (B.7), we obtain

Ax(x, y)= sgn(y)

[
λL B̄z(0)

(
e−|y|/λL − 1

)
+
∫

∞

0+

dk

2π
2
∣∣B̄z(k)

∣∣ cos(kx + θk)

αk

(
e−αk |y|

− 1
)]
.

(B.13)
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By using equation (B.9) and the boundary condition J B
s (y → ±∞)= 0, we find that the

superconductor phase is given by

φ(x, y)= −sgn(y)
2π

80

[
λL B̄z(0)x

∫
∞

0+

dk

2π

2
∣∣B̄z(k)

∣∣ sin(kx + θk)

kαk

(
λ2

Lk2e−αk |y| + 1
)]
. (B.14)

From ϕ(x)= 2φ(x, 0+), we thus have that the phase difference across the junction is

ϕ(x)= −
4πλ2

L

80

[
x B̄z(0)

λL
+
∫

∞

0+

dk

2π

2
∣∣B̄z(k)

∣∣αk

k
sin (kx + θk)

]
. (B.15)

This result immediately provides a way to connect the phase difference and the magnetic-field
distribution at the junction.

Two important consequences can be drawn now. First, we make the observation:

µ0

2

2ensh̄

m∗

∂2ϕ(x)

∂x2
=

∫
∞

0+

dk

2π
2
∣∣B̄z(k)

∣∣ kαk sin (kx + θk) . (B.16)

In the long wavelength limit, k � 1/λL, the expansion αk =
√

k2 + 1/λ2
L ≈

1
λL
(1 + 1

2k2λ2
L + · · ·)

leads to the relation

−
∂ B̄z(x)

∂x
≈

eµ0nsh̄λL

m∗

∂2ϕ(x)

∂x2
+O

(
∂4ϕ(x)

∂x4

)
. (B.17)

By inserting this relation into equation (B.3), we obtain the equation of motion

eµ0nsh̄λL

m∗

∂2ϕ(x, t)

∂x2
= µ0 Jc sin (ϕ(x, t))+ · · · . (B.18)

Then by defining the corresponding length scales λJ =

√
80

2πµ0 Jc(2λL)
and c̄ =

√
`

εµ0(2λL+`) , and

using dimensionless variables ζ = x/λJ and τ = c̄t/λJ, we arrive at the dimensionless sine-
Gordon equation(

∂2

∂ζ 2
−
∂2

∂τ 2
−α

∂

∂τ

)
ϕ(ζ, τ )= sinϕ(ζ, τ )+ γ, (B.19)

Here, α and γ are defined in the main text, and the Josephson penetration depth λJ recovers that
given in the main text provided the effect of the insulator thickness ` is taken into account.

Second, the boundary condition on the phase difference can be inferred from
equation (B.15). The phase consists of two contributions: a term linearly increasing with x
and an oscillating one. For a wide junction, i.e. w� λJ, the contribution of the oscillating term
is negligible (on average) by comparison to the linear term. This translates into the condition

ϕ(w)−ϕ(0)= −2π
8eff

80
, (B.20)

where 8eff = (2λL)w B̄z(0) is the effective total flux threading through the junction area.
Because B̄z(0) is the average applied magnetic field, the boundary condition for equation (B.18)
is controllable externally. Again, the effective total flux yields an additional correction with
2λL → 2λL + ` once the effect of the insulator thickness ` is taken into account.
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Figure B.1. The solution ϕ(ζ ) of the sine-Gordon equation is plotted as a
function of ζ for a magnetic flux density80/10λJ. As ζ is in units of λJ, vortices
are then separated by a distance 10λJ in (real) space.

In the limit α, γ � 1, the phase difference profiles can be approximated by first neglecting
those terms. The solution of sine-Gordon equation can be cast in term of elliptic integrals [37]
with the boundary condition (B.20). In figure B.1, we plot a typical phase profile for an effective
flux density of 80/10λJ, as a function of the dimensionless length ζ . We observe that solitons
(Josephson vortices) form, separated by 10λJ.

Appendix C. Fermionic states bound to a Josephson vortex in a topological
superconductor

Within the topological superconductor region, the fermionic states bound to a Josephson vortex
can be understood via a simple edge-state coupling model [21]. The low-energy fermionic
degrees of freedom along a wide Josephson junction can be described by the Hamiltonian

H = ivψ

∫
dx (ψR∂xψR −ψL∂xψL)+ 2i m

∫
dx cos(ϕ/2)ψRψL, (C.1)

where ψR(L) is the right(left) moving Majorana fermion operator, vψ is the velocity of the
Majorana edge states, and m is the tunnelling amplitude. The first term is the free Hamiltonian
of a pair of counter-propagating Majorana edge states, and the second term accounts for the
tunnelling amplitude, which depends on the superconducting phase difference ϕ across the
junction.

The Hamiltonian (C.1) satisfies the quantum mechanical supersymmetry that guarantees
the presence of a Majorana zero-energy mode [21]. This zero-mode is responsible for the
intrinsic entropy, (kB/2)ln 2. To obtain the low-energy excitations, we first note that the
Josephson vortex profile, ϕ = 4 tan−1 exp(x/ lf), leads to cos(ϕ/2)= −tanh(x/ lf). By linear-
izing the tunnelling term with the profile of ϕ, one can solve the energy spectrum, to obtain

E J
n = ±

√
2h̄vψm

lf
n, n = 0, 1, 2, . . . , (C.2)
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with a degeneracy gn = 1 for each state [43]. Hence, the minigap can be estimated as

E J
mg =

√
2h̄vψm

lf
≈

√
2h̄vψ1TI

lf
, (C.3)

where we have approximated the tunnelling amplitude by m ∼1TI, appropriate for a transparent
junction. From appendix A, we have that the entropy contributions due to the presence of the
minigap states can be estimated from this minigap.
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