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We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-

genesis nematic elastomers, via a phenomenological model that underscores the role of network

compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of

random field that reflects the memory of the nematic order present at network formation and also encodes

local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of

short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.
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Consider a melt or solution of nematogenic polymers, by
which we mean long, flexible polymers carrying rodlike
units. These units, which give the system the possibility of
exhibiting liquid crystallinity, may be integrated along the
polymer chain backbones (the main-chain case) or in
groups that dangle from the backbone (the side-chain or
pendant case). Now consider the process of instantaneous
cross-linking. Here, one begins with the melt or solution at
equilibrium and—so rapidly that hardly any relaxation has
time to occur—one introduces permanent bonds between
some random fraction of the pairs of chain segments that
happen, at the instant of cross-linking, to be nearby one
another. When the cross-linking process is carried out in
the isotropic state of the nematogens, the resulting material
is called an isotropic-genesis nematic elastomer (IGNE;
see Refs. [1–3]). The IGNE is a macroscopic random net-
work medium that ‘‘memorizes’’ both the positions of the
chain segments and the orientations of the nematogen units
at the instant of cross-linking. This memorization is, how-
ever, only partial, as a result of the thermal fluctuations that
occur in the new, post- cross-linking equilibrium state.

Several prior approaches to the liquid crystallinity of
such materials [4–7] have assumed the presence of a
random field that is attached to an elastically deformable
medium, but they ignore the following two facts: (i) the
medium is itself liquidlike at short length scales, owing to
thermal position fluctuations of the network chain seg-
ments, and (ii) the random field is influenced by the
configuration of nematic alignments at the instant of
cross-linking, owing to the aforementioned memory effect.
In this Letter, we focus on the influence of such short
length scale liquidity and memorization on liquid crystal-
linity in IGNEs. We construct a suitable Landau-type free
energy [see Eq. (3)], which involves two novel elements:
(i) a length scale–dependent nematic-nematic interaction
term reflecting the short length scale liquidity and (ii) a
random field that takes the memory effect into account. We
show that these elements lead to three predictions: (i) the

correlation length of the thermal nematic fluctuations in an
IGNE having a weak random field is shorter than it is in
liquid nematics held at the same temperature, (ii) the
thermal and glassy correlations of the liquid crystallinity
in IGNEs having sufficiently strong random fields exhibit
oscillatory spatial decay, and (iii) when the local nematic
order present at the instant of cross-linking is spatially
correlated over distances larger than the typical localiza-
tion length of the network, the system strongly memorizes
that local nematic order. We expect these features all to be
detectable via light scattering experiments.
To describe the structure and correlations of the system

post cross-linking, we employ the local nematic order
parameter Qdd0 ðrÞ, which is traceless, symmetric, and of
rank two, and is defined microscopically via

Qdd0 ðrÞ ¼
XP
p¼1

ðNp
dN

p
d0 �D�1�dd0 Þ�ðDÞðr�RpÞ; (1)

where P is the number of rodlike units, Np is the micro-
scopic unit orientation vector of unit p and Rp is its
microscopic position vector in D dimensions, and r is an
arbitrary position vector. In addition, we characterize the
random local environmental anisotropy, which tends to
induce local nematic alignmentQ in the post cross-linking
system, in terms of the random tensor field M:

M ðrÞ ¼ YðrÞ þ T

Tp

Z
dDr0Hðr� r0ÞQ0ðr0Þ: (2)

Here, T is the measurement temperature (i.e., the tempera-
ture at which the system is maintained, in equilibrium, long
after the cross-linking process), and Tp is the temperature

of the equilibrium state into which cross-links are instanta-
neously created, where p stands for preparation. The ran-
dom environmental anisotropy described by M is caused
by the thermally averaged part of random local spatial
arrangement of the localized polymers at post-cross-
linking equilibrium. It consists of two parts: (i) a part
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that is independent of the the pattern of local nematic
alignment Q0 present at the instant of cross-linking, which
we call the memory-independent random field and denote
by Y, and (ii) a part that is due to the pattern of Q0, which
we call the memory-dependent random field. Q0 is par-
tially imprinted in the network structure, and this imprint
then partially elicits a response similar to Q0 in the post-
cross-linking state. The relationship between Q and Q0 is
characterized by a ‘‘smearing’’ kernel, which embodies the
idea that Q (i.e., the post-cross-linking equilibrium-state
memory ofQ0) is partially erased as a result of the thermal
position fluctuations of the network. Equivalently, viewed
from wave-vector space, the contribution from Q0 be-
comes HkQ

0
k. Physically, we expect HðrÞ to be positive

and bell-shaped, operative primarily over a region of order
the typical localization length �L (which reflects how
weakly localized the network constituents are; see, e.g.,
Ref. [8]), and to decay monotonically with increasing jrj
over this length scale, ultimately tending to zero for jrj �
�L. Correspondingly, in wave-vector space Hk would de-
cay monotonically to zero over a scale ��1

L . Hence, we see
that H serves as a ‘‘soft filter,’’ deamplifying—more
strongly the shorter the length scale—the contributions
made by the Fourier components of Q0 to the random
anisotropic environment on distance scales shorter than
�L. This is a natural consequence of the liquidlike charac-
ter of the post-cross-linking system on length scales shorter
than �L. As for the overall amplitude of H, this we expect
to increase with (i) the fraction G of polymers that are
localized, (ii) the sharpness of localization, 1=�L, (iii) the
nematogen-nematogen aligning interaction J, and (iv) the
length ‘ of the nematogens; and we expect this amplitude
to decrease with the ‘‘measurement temperature’’ T (see
below for more on this concept), because thermal fluctua-
tions tend to moderate any aligning forces. A complemen-
tary microscopic calculation [9] bears out these
expectations, yielding Hk ¼ H0 expð�k2�2

L=2Þ, where
the amplitude H0 / G2J2ð‘=�LÞ4=T.

In terms of these ingredients, we take as a model for the
Landau-type free-energy cost F associated with the induc-
tion of local nematic order in the post-cross-linking system
the form

F ¼ 1

2

Z
k
ððAtþLk2 þHkÞfQkQ�kg

� 2fðYk þ ðT=TpÞHkQ
0
kÞQ�kgÞ: (3)

Here,
R
k is shorthand for

R
dDk=ð2�ÞD, k2 is the squared

length of the vector k, and the Rk is the Fourier transformR
dDrRðrÞ expðik � rÞ. In addition, curly brackets—as in

fSS0g—indicate the trace of the product of the tensors S
and S0, i.e.,

P
D
d;d0¼1 Sdd0S

0
d0d. Furthermore,A characterizes

the aligning tendencies of nematic freedoms; and L is the
generalized stiffness for nematic order, for which (for the
sake of simplicity) we have adopted the Landau–de Gennes
equivalent of the one-Frank-constant approximation [10].

The symbol t denotes the reduced measurement tempera-
ture [11]; the occurrence of two temperatures, T and Tp,

stems from the fact that elastomers and related systems are
characterized by not one but two statistical ensembles.
One, which we call the preparation ensemble, provides a
statistical description of the random (non-equilibrating,
unmeasured) freedomsQ0 that characterize the local align-
ment immediately prior to cross-linking. The other en-
semble describes the equilibrium state of the system long
after cross-linking was done, via the statistics of the equili-
brating variables Q; we call it the measurement ensemble.
The free energy (3) consists of two terms. The first two

elements of the first term constitute the familiar Landau-de
Gennes free energy at quadratic order; higher-order terms
have been neglected as we focus on the properties of
IGNEs at t > 0. These elements describe the free-energy
cost of inducing nematic alignment from the unaligned
state. The second term incorporates what we have de-
scribed above, viz., the influences of (i) the configuration
of the rodlike constituents at the instant of cross-linking,
viaQ0, together with (ii) the memory-independent random
field Y caused by the localized polymers post cross-
linking. From the (previously given) value of H0 and
Eq. (3), we see that the contribution to F=T involving Q0

carries a factor ðJ=TpÞðG‘2=�2
LÞ2ðJ=TÞ. In it, the two tem-

perature factors show that the network is better able to store
a given pattern Q0 the lower the preparation temperature
Tp and, similarly, better able to elicit Q0 from Q the lower

the measurement temperature T. Taking the two terms
together, F is minimized by the most probable nematic

configuration ~Q, which is given by

~Qk ¼ ðYk þ ðT=TpÞHkQ
0
kÞ=ðAtþLk2 þHkÞ: (4)

By completing the square with respect to the first and
second terms in Eq. (3), we arrive at the following form
for F (up to a nonthermally fluctuating term):

1

2

Z
k
ðAtþLk2 þHkÞfðQk � ~QkÞðQ�k � ~Q�kÞg: (5)

The third element in the first term of the free energy (3) is a
new and central element. It encodes the essential physical
difference between our model and previous models of
IGNEs, viz., the elastomer’s possession of a network that
is localized randomly and fluctuating thermally, and is,
furthermore, liquidlike at sublocalization length scales
and solidlike at larger scales. As can be seen from
Eq. (5), this element gives rise to a nonlocal free-energy

cost for creating a departure from the nematic pattern ~Qk.
This cost arises because the network mediates additional
nematic-nematic interactions. We emphasize that (i) the
mediated interactions addressed here are not of a type
transmitted through coupling between the nematic order
and elastic deformation but of a novel type that is related to
the short length scale liquidity feature of the network [12],
and (ii) the free-energy cost associated with such mediated
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interactions arises from the competition of the tendency for
nematic alignment with localization forces (associated
with short-range liquidity) rather than with elastic forces
[13]. Thus, the nonlocal energy cost of creating a nematic

departure from ~Q that is essentially uniform over a length
scale rather larger than �L is relatively large, as at this
length scale the solidness of the network becomes pro-
nounced. Conversely, the nonlocal energy cost is relatively
mild if the departure varies only over some length scale
rather shorter than �L, where the system has a more liquid-
like character.

Various averaged diagnostics of the system involving the
local nematic order QðrÞ may be considered by means of
F. These averages come in two types. First, there are
disorder-averaged quantities (denoted by ½� � ��), by which
we mean quantities averaged over suitably distributed Y
and Q0. Second, there are thermally averaged quantities
(denoted by h� � �i), by which we mean quantities averaged
over the measurement ensemble. We focus on two particu-
lar diagnostics of nematic elastomers. The first is the
thermal fluctuation correlator CT , defined [14] via

C Tðr� r0Þ � ½hfðQðrÞ�hQðrÞiÞðQðr0Þ�hQðr0ÞiÞgi�: (6a)

The second is the glassy correlator CG, defined via

C Gðr� r0Þ � ½fhQðrÞihQðr0Þig�; (6b)

which is a diagnostic of any randomly frozen (i.e., time-
persistent) nematic order present. In particular, the value
CGðrÞjr¼0 is the nematic analog of the Edwards-Anderson
order parameter for spin glasses [15], and measures the
magnitude of the local frozen nematic order; hence, the
name glassy correlator. Moreover, how CGðrÞ varies with r
determines the spatial extent of regions that share a roughly
common nematic alignment [16].

One could also consider the disorder-averaged quantity
½hQðrÞi�; it, however, vanishes, owing to the macroscopic
isotropy of the post-cross-linking state. On the other hand,
the thermal average of the local order parameter for a
specific realization of the quenched disorder hQðrÞi is
maintained at a nonzero, time-persistent, random value,
which we shall compute shortly. This nonzero value is the
result of the partial trapping, by the network, of the orienta-
tional randomness Q0 present at the instant of cross-
linking, together with the memory-independent random
field Y of the network, post cross-linking. The free energy
(3) is quadratic inQ, and therefore the computation of hQi
and CT using the weight expð�F=TÞ is elementary, yield-

ing hQki ¼ ~Qk and

hfðQk � hQkiÞðQk0 � hQk0 iÞgi ¼ T�D�kþk0;0

AtþLk2 þHk

: (7)

Here, �D � ðD� 1ÞðDþ 2Þ=2 counts the number of de-
grees of freedom of Q and takes the value 5 for D ¼ 3.
Note that we have chosen units in which Boltzmann’s
constant has the value unity.

To perform the average over the quenched random var-
iables Y and Q0 we must adopt a model for their statistics
that is consistent with the physical origin each has. The
choice we make is that Y and Q0 are independent,
Gaussian-distributed random fields, with zero means and
nonzero variances, the latter being given by

½fQ0
kQ

0
k0 g� ¼ Tp�D

�kþk0;0

A0tp þL0k2
; (8a)

½fYkYk0 g� ¼ THk�kþk0;0: (8b)

Here, A0 and L0 are, respectively, the preparation-
ensemble counterparts to A and L. The statistics of Q0

depends on the reduced temperature of the preparation
ensemble, tp [11]; it does not depend on H, because H

encodes the physics of random but imperfect spatial local-
ization, and this only comes into being post cross-linking.
(The impact of Q0 does depend on H, as H controls the
relaxation ofQ fromQ0 to its equilibrium value, post cross-
linking.) By contrast, the statistics of Y does depend on H;
this is because H characterizes the typical value of the
memory-independent random field that results from the
random (imperfect) spatial localization of the polymers
constituting the network. In view of their distinct origins,
it is natural that Y and Q0 be statistically uncorrelated.
However, it is not a coincidence (and can indeed be derived
from a microscopic calculation [9]) that the H that charac-
terizes the orientational caging induced by the network (via
Y) is the sameH that determines the fidelity with which the
network preserves the orientational order present immedi-
ately post cross-linking (i.e., Q0). It is, in fact, natural,
because localization that is sharper and more widespread
(i.e., involves a larger localized fraction) both creates more
intense network-induced orientational caging and enhances
the trapping-in of the local nematic order present immedi-
ately post cross-linking. Our physical expectation, borne
out by a complementarymicroscopic analysis (seeRef. [9]),
is that such strengthening of the localization would enhance
memorization more strongly than it would orientational
caging. This expectation is consistent with the phenomeno-
logical choice presented here, in which the corresponding
contributions to the random anisotropy field, Eq. (2), scale

as
ffiffiffiffiffi
H

p
for the caging (i.e., Y) part and H for the ‘‘memo-

rization’’ (i.e., Q0) part.
Returning to the disorder-averaged diagnostics—the

mean ½hQi� and the correlators CT and CG—we complete
their computation using the statistics of the quenched dis-
order, Eqs. (8), to arrive at (with ½hQki� ¼ 0)

CTk ¼ T�D

1

AtþLk2 þHk

; (9a)

CGk ¼ T�D

T
Tp
ðA0tp þL0k2Þ�1jHkj2 þHk

ðAtþLk2 þHkÞ2
: (9b)

Having computed the correlators CT and CG, we now set
about using them to study how the presence of a network
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modifies the organizational behavior of nematic freedoms.
To do this, we first note that there are two emergent length
scales present in IGNEs: (i) the typical localization length,
�L, quantifying the sharpness of localization of polymers
belonging to the network; and (ii) the intrinsic nematic

correlation length, �N [ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=At

p
], describing the range

over which nematic freedoms would be correlated if there
were no network present. On the other hand, we have the
strength of the memory-independent random field Y,
which is characterized by

ffiffiffiffiffiffi
H0

p
. In what follows, we shall

study the dependence of CT and CG on the parameters �N ,
�L andH0, doing so for two specific systems: one prepared
at tp � TH0=TpA0 and one at tp < TH0=TpA0.

First consider the behaviors of CT and CG for tp �
TH0=TpA0, so that any local nematic order present im-

mediately post cross-linking (and thus available for trap-
ping in) is spatially correlated only over distances far
shorter than the typical localization length �L; see
Table I. This separation of length scales implies that the
local nematic order arising from Q0 would be heavily
‘‘washed out’’ by thermal fluctuations of the network.
Thus, in this regime the dominant contribution to the
trapped-in local nematic order originates in the memory-
independent random field, Y.

Continuing with the case tp � TH0=TpA0, we observe

that CT and CG exhibit qualitatively distinct behaviors in
two regimes, depending on the strength of the random field

(see Fig. 1). For H0 <HðcÞ (where HðcÞ � 2L=�2
L—the

weak-disorder regime), CT and CG decay simply with in-
creasing real-space separation. More specifically, by exam-
ining their small wave-vector behaviors we ascertain that
the respective associated correlation lengths �T;d and �G;d

have the values given in Table I. We see from the behavior
of �T;d the physically reasonable result that the random

network, with its thermal fluctuations, serves to shorten the
nematic thermal fluctuation correlation length from the
value it would have in the absence of the network, a
phenomenon that conventional (i.e., nonthermally fluctu-
ating) random-field approaches would not capture. As for
�2
G;d, it comprises two parts. One (/ �2

T;d) arises from the

nematic thermal correlations; the other (/ �2
L) comes from

the local aligning effect exerted by the cage. The fact that
�G;d increases with �L does not mean that a more weakly

cross-linked network (for which �L would be larger) aligns
the nematogens more effectively. Whilst the length scale of
aligned regions �G;d may increase, the magnitude of CG,
which governs the intensity of the alignment locally, de-

creases [17]. By contrast, for H0 >HðcÞ (i.e., the strong-
disorder regime), the (weak disorder) simple decay of the
correlators can give way to oscillatory decay, as we now
discuss. Regardless of T, CT oscillates, whereas CG only
does for sufficiently small T. The oscillation wavelengths
�T=G;o are determined via the radii of the shells in wave-

vector space on which the corresponding correlators are
maximal. Thus, we arrive at an explicit (and, notably,

T-independent) formula �T;o ¼ �L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðH0=H

ðcÞÞ
q

and

an implicit one for �G;o, viz.,

1þ ð�N=�G;oÞ2 þ 4ð�N=�LÞ2 � ðH0=AtÞe��2
L=2�

2
G;o ¼ 0:

The value of �T=G;d in this strong-disorder regime, given in

Table I, is estimated via the widths of the peaks of CT=G.
Upon decreasing �L at fixed �N , the value of �T;d tends to

�L from above, indicating that the network is limiting the
range over which the thermal nematic fluctuations are cor-
related; on the other hand, �G;d remains at the scale of �L,

indicating that the range of coherent nematic alignment is
circumscribed by the network’s typical localization length.
Oscillatory behavior can be regarded as the resolution of

the interplay of two energetic costs of fluctuations. The
cost of creating local nematic order via rotations of the
nematogens is smaller for long-wavelength fluctuations.
By contrast, the cost of creating nematic order via local
segregation of nematogens according to their preferred
orientation is smaller for short-wavelength fluctuations
(which is a reflection of the short–length scale liquidity
of the network). When the former mode dominates for
all wavelengths, long-wavelength fluctuations are the
most probable and, hence, correlations decay without
oscillation. When the disorder is strong enough, however,

TABLE I. Values of the correlation length scales (�T;d and
�G;d), and the oscillation wavelengths (�T;o and �G;o), in the

weak- and strong-disorder regimes for the case of IGNEs cross-
linked at tp � TH0=TpA0.

Disorder strength Weak (H0 <HðcÞ) Strong (H0 >HðcÞ)

�2
T;o 1 1

2�
2
L= lnðH0=H

ðcÞÞ
�2
T;d �2

N
1�ðH0=H

ðcÞÞ
1þðH0=AtÞ ��2

L=ð1þ �2
L

2�2
N

Þ
�2
G;o 1 ��2

L= lnðH0=H
ðcÞÞ

�2
G;d

1
2�

2
L þ 2�2

N
1�ðH0=H

ðcÞÞ
1þðH0=AtÞ ��2

L

FIG. 1. (a) Glassy correlator (rescaled) ~CGðrÞ �
ð60�2L=T�DÞCGðrÞ, for tp � TH0=TpA0; t ¼ 0:1L=A�2

L,

at (i) H0=H
ðcÞ ¼ 0:5 (weak disorder; dashed line) and (ii)

H0=H
ðcÞ ¼ 40 (strong disorder; solid line). (b) Thermal correla-

tor (rescaled) ~CTðrÞ � ð2�2L=T�DÞCTðrÞ, for the same parame-
ters. On going from weak to strong disorder, both correlators
cross over from simple exponential decay to oscillatory decay at
wavelength of order �L.
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the latter mode drives the most probable fluctuations to a
finite wave-vector and, hence, correlations oscillate as they
decay. (Such behavior is analogous to the microphase
separation of cross-linked polymer blends [18,19].)

Having considered the behaviors of CT and CG for sys-
tems prepared at high temperatures, we now consider the
corresponding behavior for systems prepared at tp <

TH0=TpA0, so that the local nematic order present im-

mediately post cross-linking is spatially correlated over
distances larger than �L [20]. As one can see from
Eq. (9a), the behavior of CT is unchanged, undergoing
simple decay in real space at weak disorder but oscillatory
decay at strong disorder. Conversely, CG exhibits behavior
qualitatively different from that of a system prepared at
tp � TH0=TpA0, because it now receives its dominant

contribution from the memorization of Q0. Specializing to
t � tp and for wavelengths larger than �L, we see from

Eq. (9b) that CG is approximately given by

C G
k � �D

�
T

Tp

�
2 Tp

A0tp þL0k2
;

i.e., it is proportional to the correlator of the thermal
nematic fluctuations immediately post cross-linking. This
indicates that the pattern of these thermal fluctuations has
been faithfully memorized by the network.
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